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John Shea
UNIVERSITY OF MARYLAND AND NBER

What Do Technology Shocks Do?

1. Introduction

The real business cycle (RBC) approach to short-run fluctuations, pio-
neered by Kydland and Prescott {KP) (1982) and Long and Flosser (LP)
(1983), has dominated the academic business-cycle literature over the
last decade and a half. KP and LP were seminal in several respects. First,
they reintroduced the Schumpeterian idea that stochastic technological
progress could generate business cycles. Second, they argued that one
could explain fluctuations using a frictionless neoclassical framework in
which business cycles are optimal and therefore require no smoothing
by policymakers. Third, they argued that business cycles could and
should be explained using dynamic stochastic general equilibrium mod-
els in which preferences and production are explicitly spelled out in a
way consistent with microeconomic first principles, such as optimizing
behavior.

The RBC literature has broadened considerably since KP and LF. Re-
cent research has introduced frictions such as imperfect competition
(e.g., Rotemberg and Woodford, 1995), increasing returns to scale (e.g.,
Farmer and Guo, 1994), and price stickiness (e.g., Kimball, 1995), as well
as alternative sources of shocks, such as government spending (e.g.,
Christiano and Eichenbaum, 1992), monetary policy {e.g., Christiano
and Eichenbaum, 1995), and animal spirits (e.g., Schmitt-Grohe, 1997).
The idea that business cycles should be analyzed using explicit dynamic
stochastic general equilibrium models seems destined to be the main
lasting contribution of KP and LP’s work.

Meanwhile, the profession has largely ignored the empirical question
of what role technology shocks actually play in business cycles. I believe
that this is unfortunate, for four reasons. First, the idea that new prod-

I thank Kortum and Susanto Basu for providing their data, and the editors and partici-
pants, as well as seminar participants at Brown, for helpful comments.
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ucts and processes are introduced at a time-varying rate is inherently
plausible, at least at the disaggregated industry level. Second, much
recent research exploring the effects of frictions on business-cycle propa-
gation still assumes that cycles are driven by technology shocks (e.g.,
Cogley and Nason, 1995; Horvath, 1997; Carlstrom and Fuerst, 1997). It
would be useful to know if this modeling strategy has any empirical
foundation. Third, while few would argue any more that technology
shocks are the only source of business cycles, it would still be useful to
know if technology shocks can explain some part of fluctuations, particu-
larly given that monetary, oil price, and other observable shocks seem
unable to account for a large fraction of observed cydlical variation in
output (Cochrane, 1994). Finally, even if technology shocks are not re-
sponsible for a large share of volatility, the response of the economy to
technology could help distinguish between competing views of the econ-
omy’s propagation mechanisms. In the baseline one-sector flexible-price
RBC model, technology shocks shift out the production possibilities fron-
tier, inducing short-run increases in investment, labor, and materials. In
multisector models, industry technology shocks reduce input prices to
downstream sectors, inducing increases in downstream input and out-
put. Meanwhile, Gali (1996) and Basu, Fernald, and Kimball (1997) dem-
onstrate that favorable technology shocks may reduce input use in the
short run if prices are sticky; intuitively, if prices do not fall, output will
be unchanged and inputs must fall to accommodate improved total fac-
tor productivity (TFP). Thus, one can potentially distinguish between
sticky and flexible price models by examining whether technology
shocks increase or decrease input use.

To date, the empirical case for technology has largely been made indi-
rectly, by showing that plausibly calibrated models driven by technology
shocks can produce realistic patterns of volatility and comovement. Of
course, these quantitative exercises, while informative, do not tell us
what technology shocks actually do. Two pieces of more direct evidence
are that measured TFP is procyclical and that aggregate output poten-
tially has a unit root, suggesting that at least some output shocks are
permanent. However, it is now well known that neither of these facts
proves that technology is important to business cycles. Observable
nontechnology shocks cause procyclical movements in TFE, consistent
with imperfect competition, increasing returns to scale, procyclical factor
utilization, or procyclical reallocation of factors to high productivity sec-
tors (e.g., Hall, 1988; Evans, 1992; Burnside, Eichenbaum, and Rebelo,
1995; Basu and Fernald, 1997). Meanwhile, demand shocks can have
permanent effects on output in endogenous growth models (e.g.,
Stadler, 1990); and in any case, a unit root is consistent with transitory
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shocks driving an arbitrarily large fraction of short-run variation (Quah,
1989).

This paper takes a more direct approach to assessing what technology
shocks do, an approach inspired by the large literature estimating the
impact of monetary policy shocks on the economy (e.g., Christiano,
Eichenbaum, and Evans, 1998). Using annual panel data for 19 U.S.
manufacturing industries from 1959 to 1991, I employ vector auto-
regressions (VARs) to document the dynamic impact of shocks to two
observable indicators of technological change: research and development
(R&D) spending, and patent applications. R&D measures the amount of
input devoted to innovative activity, while patent applications measure
inventive output. Previous studies (e.g., Griliches and Lichtenberg,
1984; Lichtenberg and Siegel, 1991; Scherer, 1993), as well as results
reported below, suggest that variation in R&D and patenting is related to
long-run variation in productivity growth across firms and industries.
Moreover, industry-level R&D and patents display nontrivial short-run
fluctuations, as can be seen in Figure 1, which plots log real R&D and log
patent applications by industry of manufacture and use for the U.S.
aerospace industry. If technological progress is truly stochastic, then
fluctuations in R&D should in part reflect variation in the perceived
marginal product of knowledge, while fluctuations in patents should in
part reflect shocks to the success of research activity. I use these fluctua-
tions to estimate how a typical industry’s inputs and TFP respond over
time to technology shocks, and to quantify the share of industry volatility
due to technology shocks. I estimate the impact of both own technology
shocks and technology shocks in upstream input-supplying industries.

To be sure, fluctuations in R&D and patent applications may not be
due to technology shocks alone. Griliches (1989), for instance, argues
that patenting fluctuations in the U.S. are in part responses to factors
such as changes in patent law and changes in the efficiency and re-
sources of the U.S. Patent Office. Both R&D and patent applications,
meanwhile, are a type of investment, and as such they may respond
endogenously to output shocks, either because of financial-market con-
straints or because current shocks are positively correlated with the fu-
ture marginal product of capital. My preferred VAR specifications ad-
dress these concerns by including time dummies in the regressions and
by placing the technological indicators last in the Choleski ordering used
to decompose the VAR innovations into orthogonal components. The
time dummies remove fluctuations in R&D and patent applications due
to aggregate factors unrelated to true technological progress, such as
changes in the number of patent examiners, provided that these factors
affect all industries equally. My impulse responses therefore measure the
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Figure 1 TECHNOLOGY INDICATORS IN THE AEROSPACE INDUSTRY
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impact of industry-specific technology shocks on industry-specific fluc-
tuations in inputs and TFT, while my variance decompositions estimate
the contribution of technology shocks to idiosyncratic industry fluctua-
tions. Placing technology last in the ordering, meanwhile, defines tech-
nology shocks as the component of R&D or patenting orthogonal to both
lagged technology and lagged and contemporaneous inputs and TFP.
Empirically, innovations to industry output are positively correlated
with innovations to both R&D and patent applications; placing technol-
ogy last assumes that this contemporaneous comovement reflects an
accelerator mechanism running from industry activity to technology,
rather than an instantaneous impact of technology shocks on output.
This assumption seems inherently plausible given the likely lags be-
tween R&D spending, invention, and diffusion of a new technology
(Gort and Klepper, 1982).

My main empirical findings are as follows. First, favorable technology
shocks—increases in the orthogonal components of R&D and patents—
tend to increase input use, especially labor, in the short run, but to reduce
inputs in the long run. Second, technology improvements tend to encour-
age substitution towards capital relative to materials and labor, as well as
substitution towards nonproduction labor relative to production labor.
These results are consistent with recent cross-sectional studies establish-
ing a complementary long-runrelationship between technological change
and equipment (Delong and Summers, 1991) and skilled labor (Berman,
Bound, and Griliches, 1994). Third, favorable technology shocks do not
significantly increase measured TFP at any horizon, and indeed in some
cases reduce TFP. This suggests that procyclical movements in TFI* have
little to do with the introduction of new products and processes. Fourth,
technology shocks explain only a small share of idiosyncratic industry
volatility of inputs and TFP at business-cycle horizons. This result is bad
news for technology-shock-driven models, particularly given that
industry-specific technology shocks are likely to explain industry-specific
volatility better than aggregate volatility (Horvath, 1997). However, my
results could be consistent with models in which technology contributes
to low-frequency fluctuations (e.g., Jovanovic and Lach, 1997); or with
models in which the important “real” shocks come from strikes, weather,
cartel behavior, and so on; or with models in which “technology shocks”
are not due to stochastic scientific and engineering developments, but to
stochastic movements in management techniques or industrial organiza-
ton that cause a given set of inputs to be more or less efficient. Finally, I
find that technology improvements are more likely to raise TFP and re-
duce prices in industries characterized by process innovations than in
industries dominated by product innovations. This suggests that my fail-
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ure to find strong effects of technology on TFP may be due in part to the
failure of available price data to capture productivity gains caused by
quality improvements and new product introductions.

Two other recent papers (Gali, 1996; Basu, Fernald, and Kimball, 1997)
also investigate the short-run impact of technology shocks, in both cases
using aggregate data. Gali estimates a structural vector autoregression
for labor productivity and labor input in the United States, identifying
technology shocks by assuming that only technology affects long-run
productivity. Basu, Fernald, and Kimball correct industry-level TFP for
variations due to increasing returns to scale, imperfect competition, and
cyclical factor utilization, and then measure aggregate technology as an
appropriately weighted average of sectoral technology. Interestingly,
Gali (1996) and Basu, Fernald, and Kimball (1997) both find that favor-
able technology shocks reduce input use in the short run, consistent
with sticky prices but contrary to my results.

These two papers represent a distinct advance over existing literature.
Nevertheless, one might disagree with their methodologies for measur-
ing technological change. Gali’s approach rests heavily on the assump-
tion that demand shocks cannot affect productivity in the long run. This
assumption is inconsistent both with endogenous growth models and
with models in which recessions cleanse the economy by wiping out
low-productivity firms (e.g., Caballero and Hammour, 1994, 199).
Cleansing models, in particular, predict that favorable demand shocks
will reduce long-run productivity, and Gali himself has in the past ar-
gued for such an interpretation of the data (Gali and Hammour, 1992).
Interestingly, my impulse response functions suggest that input innova-
tions lead to short-run increases in TFF, consistent with increasing re-
turns or procyclical utilization, but long-run decreases in TFP, consistent
with cleansing models.

Basu, Fernald, and Kimball’s approach does not rely on long-run re-
strictions. It does, however, rely on the idea that TFP fluctuations are
valid measures of stochastic technological progress at the two-digit in-
dustry level, once one corrects for increasing returns, imperfect competi-
tion, and cyclical factor utilization. This idea seems plausible, but it is not
necessarily true, given that fluctuations in “corrected” sectoral TEP could
still be due to nontechnology sources such as measurement error,
within-sector factor reallocations, or inadequate corrections for increas-
ing returns or cyclical utilization. Basu, Fernald, and Kimball’s methodol-
ogy would be more convincing if their corrected measure of technology
could be linked to some sort of outside measure of technological prog-
ress, such as anecdotal evidence on the timing of particular technical
changes in particular industries.
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The remainder of the paper proceeds as follows. Section 2 describes
the data. Section 3 examines long-run and contemporaneous relation-
ships between technological progress and my measures of innovative
activity, largely to connect my work to previous studies. Section 4 pres-
ents evidence from VARs, and Section 5 concludes.

2. Data Description

My goal is to examine the time-series interactions between measures of
technological change, such as patents and R&D, and measures of eco-
nomic activity. Ideally, I would estimate these interactions using aggre-
gate data for a single country, following the empirical literature on mone-
tary policy. However, this approach is not feasible in my case. The only
readily available data for patents and R&D are annual rather than quar-
terly or monthly, implying short aggregate time series. Even if higher-
frequency data could be constructed, it is not clear that they would be
useful, since the impact of technological change on the economy is likely
to operate at a somewhat lower frequency than the impact of monetary
shocks. To obtain sufficient degrees of freedom to estimate the impact of
technology shocks with reasonable precision, I use panel data for 19
manufacturing industries covering 1959-1991, exploiting the fact that
technological developments are not perfectly synchronized across indus-
tries. An alternative, worth pursuing in future work, would be to use
annual aggregate data for a panel of countries, or for panels of both
countries and ind ustries.

Data on Ré&D by industry are taken from the National Science Founda-
tion’s annual survey of U.S. firms. I examine only company-financed
R&D. Previous research using cross sections of industries and firms
(e.g., Terleckyj, 1975; Lichtenberg and Siegel, 1991) has shown thatlong-
run productivity growth is related to company-financed R&D, but not to
federally financed R&D, suggesting that public R&D dollars are spent
inefficiently or that they are spent in areas, such as defense or space
exploration, where productivity measurement is difficult. I convert nomi-
nal R&D to 1991 dollars using the GDP deflator, then convert real R&D
flows to an R&D capital stock, following Griliches (1973) and most other
subsequent research. I employ a linear capital accumulation equation,
assuming a 15% annual depreciation rate and setting the 1959 stock
equal to the 1959 flow divided by 0.15 plus the industry’s average R&D
growth over the sample period; these assumptions are standard in re-
cent literature (e.g., Lach, 1995; Keller, 1997). The empirical results are
similar if I use real R&D flows instead of R&D stocks. As a timing
convention, I include R&D spending in year t in the R&D stock for year
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Table1 SAMPLE MEANS

Manuf. Use
R&D Manuf.  Patent Use  Patent
Industry R&D  Growth Patents Growth Patents Growth
Food (SIC 20) 8791 4.62 311.2 063 1085 0.06
Textiles (SIC 22-23) 1855 357 6209 117 994 —081
Lumber (SIC 24-25) 1520 4.81 6059 0.08 597 —0.05
Paper (SIC 26) 611.7 5.53 482.4 0.04 490 0.08

Industrial chemicals (SIC 281-282, 32117 2.80 37588 075 2518 047
286)

Drugs (SIC 283) 26294 775 825.5 590 1100 2.73
Other chemicals (other SIC 28) 1053.0 527 2517.4 054 1261 0.70
Petroleum (SIC 29) 18124 282 17455 -130 1659 0.22
Rubber (SIC 30) 6932 401 1586.0 1.03 1348 1.45
Stone (SIC 32) 5745 3.05 506.8 1.60 557 076
Metals (SIC 33) 8359 151 373.1 0.30 795 0.06
Metal prods. (SIC 34) 684.1 206 3737.6 0.18 1979 0.24
Computers (SIC 357) 5172.6  6.66 1114.3 270 1333 3.09

Other nonelec, equip. (other SIC 21023 508 10961 -0.15 4084 —0.33
35)

Electronics & commun. equip. (SIC 50184  6.65 5629.4 151 4456 1.76
366-367)

Other electric equip. (Other SIC 36) 20437 0.99 4154.1 041 2779 0.43
Aerospace (SIC 372, 376) 40224 481 2769 -1.22 392 -0.77
Autos & other transp. equip. (SIC  5701.8 4.37 19721 -028 2787 -0.09
37)

Instruments (SIC 38) 31003 742 3626.7 233 1268 1.59

t, so that Ican interpret the correlations between R&D and other variables
as reflecting a contemporaneous response of R&D to industry activity. I
use data for 19 manufacturing industries; these are listed in Table 1 along
with sample means of real R&D flows in millions of dollars and the growth
rate of the R&D stock. The largest flows of company R&D are found in
automobiles, electronics, and computers; the fastest-growing Ré&D stocks
are in drugs, electronics, computers, and instruments. Note that my base-
line sample omits nonmanufacturing industries as well as some manufac-
turing industries (tobacco, printing and publishing, leather, and miscella-
neous manufacturing) whose R&D data are lumped together by the NSE
The share of overall R&D accounted for by these sectors is trivial for most
of my sample period.

I must mention two problems with these data. First, to avoid disclo-
sure of individual firms’ operations, the NSF suppresses some industry-
year observations. In virtually all such cases, the NSF suppresses either
company-financed or total (including federally financed) R&D, but not
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both, so that I can interpolate gaps in company R&D using growth of
total R&D. Second, the NSF data are collected at the company level. All
R&D spending performed by a company is assigned to the industry in
which the company had the most sales, even if part of the R&D was
conducted in establishments belonging to another industry. Given that
R&D is typically performed in large conglomerated firms, the assign-
ment of R&D to particular industries is presumably subject to error.
Particularly troubling is the fact that a given firm’s industry classification
can change over time as its pattern of sales changes, creating the possibil-
ity of large movements in measured industry-level R&D spending unre-
lated to actual changes in spending at the establishment level. Griliches
and Lichtenberg (1984) attempt to overcome this problem by using R&D
data grouped by applied product field rather than by industry of origin.
Unfortunately, the reporting requirements of the NSF's product field
survey were burdensome on participating firms, leading to spotty cover-
age. The survey was reduced from annual to biannual beginning in 1978,
and was discontinued in 1986.

Patent data for U.S. industries are not routinely available. The reason
is that the U.S. Patent Office assigns new patents to technological fields,
but not to industries. Estimating patents by industry for the U.S. thus
requires a mapping from technological fields into industries. The most
satisfactory mapping available is the Yale Technology Concordance
(YTC), described by Kortum and Putnam (1997). This concordance uses
the fact that the Canadian patent office assigns patents to technological
fields, to industries of manufacture, and to industries of use; for in-
stance, a new farm tractor invented in an aerospace establishment would
be assigned to the agricultural machinery sector (industry of manufac-
ture) and to agriculture itself (industry of use). The YTC estimates map-
pings between technological field and industries of manufacture and use
using the Canadian data, then applies the Canadian mapping to U.S.
patents by technological field. For this study, I use annual data on U.S.
patent applications grouped both by industry of manufacture and by
industry of use, generously provided by Sam Kortum. I convert the
annual flows of patents to stocks using the same method as for R&D; the
empirical results again are similar if I use flows instead of stocks. Note
that patents grouped by date of application are superior to patents
grouped by date of grant, both because application presumably coin-
cides with the economic viability of an innovation, and because histori-
cally there have been long and variable lags between application and
granting in the United States, caused in part by changes in the resources
of the U.S. Patent Office (Griliches, 1989).

I must again acknowledge potential problems with these data. First,
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the assignment of U.S. patents to industries is presumably not perfect,
as the mapping between technological fields and industries probably
varies between the U.S. and Canada as well as over time. Kortum and
Putnam (1997) show that the estimated Canadian mapping forecasts
Canadian industry patents out of sample reasonably well, alleviating
these concerns somewhat but not entirely. Second, the distinction in the
data between industry of manufacture and industry of use is not as
sharp as one might hope. Ideally, I would like to interpret manufacture
patents as “product innovations” and use patents as “process innova-
tions.” However, conversations with Sam Kortum suggested that this
interpretation is not entirely correct; for instance, process innovations
often wind up being assigned the same industries of manufacture and
use even if no new product is created, while new products with broad
applicability often wind up being assigned no industry of use. My sense
is that we can at least safely assume that manufacture patents contain a
higher fraction of product innovations than do use patents, and that use
patents contain a higher fraction of process innovations than do manufac-
ture patents.

I present sample means for patent flows and patent stock growth in
Table 1. The flows of both manufacture and use patents are highest in
nonelectrical machinery and electronics, while patent stocks grow most
rapidly in drugs and computers. Notice that manufacture patent flows
exceed use patent flows in most industries, and for my sample as a
whole; this reflects the fact that many product innovations originating in
manufacturing are used in nonmanufacturing, while few innovations
originate in nonmanufacturing. The table also documents the fact, dis-
cussed in Griliches (1989) and Kortum (1993), that patent stocks have
grown more slowly in the postwar United States than R&D stocks, or
equivalently that the amount of real R&D per patent has been steadily
rising. Some observers assert that this trend is evidence of vanishing
technological opportunities; others argue that the cost of patenting has
risen secularly and that patenting has become more concentrated in
high-value innovations. Recall that my VARs include time dummies,
which will control for any economy-wide changes in the cost or benefits
of patenting that have affected the ratio of inventive activity to patents.

In addition to examining the impact of own R&D and patents, I exam-
ine the impact of innovations in upstream industries. 1 construct these
measures using data from the 1977 U.S. input-output study, following
the methods used by Terleckyj (1975), Keller (1997), and others. 1 begin
by constructing a 19-by-20 matrix whose (i, j} element shows the total
flow of goods in 1977 from sample industry i to sample industry j,
including both intermediate and capital flows; 1 describe the construc-
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tion of total flow matrices from raw input-output data in Shea (1991,
1993). The 20th column combines flows to omitted manufacturing indus-
tries, nonmanufacturing industries, private consumption, and govern-
ment. | set diagonal elements to zero, then divide by row sums to obtain
the shares of external demand for each sample industry accounted for by
each other sample industry. 1 then multiply these demand shares by
each industry’s R&D and patent flows, to obtain the implicit “flow” of
R&D and patents to and from each sample industry. Taking column
sums gives me an estimate of the flows of upstream R&D and upstream
patent applications to each manufacturing industry in any year. 1 cumu-
late these flows into stocks using the methods described above. These
measures exclude R&D or patents coming from omitted industries; as
mentioned earlier, however, those industries account for little innovative
activity for most of my sample period.

My measures of TFP and inputs for manufacturing industries come
from the NBER productivity database, described in Bartlesman and Gray
(1996). The NBER data include annual measures of gross output and
capital, labor, and materials inputs for 450 four-digit manufacturing indus-
tries. L measure labor as total employment multiplied by hours worked per
production worker, assuming that production and nonproduction hours
per worker are perfectly correlated. 1 define total input growth as a Divisia
index of capital, labor, and materials growth, weighting with factor shares
in gross outputand measuring the capital share as a residual. TFP growth
is defined as output growth minus input growth. I measure inputand TFP
growth at the four-digit level, aggregate up to the 19 industries listed in
Table 1 using shares in nominal gross output, then convert growth rates to
level indices. Below, 1 examine the dynamic impact of technology shocks
both on total input and on capital, labor, and materials separately, pre-
multiplying log capital, labor, and materials by their shares in nominal
gross outputin order to avoid having to impose the condition that factor
shares in production are identical across industries.

3. Preliminary Evidence

This section examines the univariate time-series properties of my data,
and replicates previous work examining cross-section and contempora-
neous time-series relationships between technology and TFP. My base-
line data are annual observations for 19 manufacturing industries from
1959 to 1991 on TFP; total input and its share-weighted capital, labor,
and materials components; stocks of own R&D, manufacture patents,
and use patents; and stocks of upstream R&D, manufacture patents, and
use patents.
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Table2 PANEL UNIT-ROOT TESTS

Other Deterministic Terms

Time Dummies and

X Time Dummies Sectoral Trends
TFP -0.003 -0.174
(0.007) *40.022)
Total input -0.024 -0.193
(0.011) *+(0.026)
Capital -0.014 -0.244
{0.008) *(0.034)
Labor -0.107 -0.201
{0.018) **(0.028)
Materials —-0.038 -0.218
{0.013) *+0.029)
R&D -0.017 —-0.096
{0.004) *+0.011)
Manufacture patents —0.009 —0.092
{0.003) *+0.011)
Use patents -0.014 -0.058
(0.004) {0.010)

BlogX; = v, + (other deterministic terms) + Slog{(X,_,) + 23k=1ak4 log X;,_) + €;. This table presents
estimates of 8 from Augmented Dickey—-Fuller tests of the null hypothesis that log X contains a unit
root, using annual panel data for 19 industries from 1959 to 1991. All regressions include sector-specific
intercepts and time dummies; regressions in the right column also contain sector-specific linear time
trends. Standard errors ave in parentheses. * indicates that 8 is significant at 10%, while ** indicates
significance at 5%. The critical values of 6.816 (10%) and 7.093 (5%) are taken from the asymptotic
formula provided in Levin and Lin (1992).

Table 2 presents univariate time-series evidence. For each series, I
perform an Augmented Dickey—Fuller test of the null hypothesis that
the series has a unit root in log levels, including three lagged growth
rates to correct for serially correlated errors. I include sector-specific
intercepts and time dummies in each specification, and experiment with
including sector-specific time trends; all other coefficients are con-
strained to be equal across sectors. Since these are panel data, I cannot
apply the usual Dickey-Fuller critical values; I instead use the formula
provided in Levin and Lin (1992), which with 19 industries implies a 5%
critical value of —7.093 and a 10% critical value of —6.816. According to
Table 2, I can never reject the null of a unit root when I include only
sectoral intercepts and time dummies. However, I can reject a unit root
in seven of eight cases when I include sector-specific trends. I conclude
that my data are stationary around trends that differ across sectors.

Table 3 looks at the long-run relationship between technology and TFP
growth. I estimate cross-section OLS regressions of mean TFP growth on
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a constant and the mean growth rates of my technology indicators, taken
one at a time; the sample size for each regression is 19. The coefficients on
own R&D and own manufacture patent growth are positive and signifi-
cant at 10%, while the coefficients on own use patent growth as well as
upstream use and manufacture patent growth are positive and significant
at 5%. My sample is too small to allow for multivariate analysis, and the
results are fragile; omitting computers, for instance, reduces the coeffi-
cient on technology in all cases, and renders the own R&D results insig-
nificant. Still, these results suggest that my technology indicators capture
something about technological progress. My findings are consistent with
Griliches and Lichtenberg (1984), Scherer (1984, 1993), and Lichtenberg
and Siegel (1991), who find that R&D and productivity growth are posi-
tively related across firms and industries, and with Terleckyj (1975), who
reports a significant positive relationship across industries between TFP
growth and upstream R&D. Notice that use patents are more strongly
related to TFP growth than manufacture patents, suggesting that process
innovations may be better captured by available TFP data than product
innovations, a theme to which I return below.

Table 4 estimates contemporaneous time-series relationships between
TFP and technology indicators in log levels, while Table 5 does the same
in growth rates. I include sectoral intercepts and time dummies in the
levels regressions, and experiment with sector-specific trends; I include
a constant and time dummies in the growth-rate regressions, and experi-

Table 3 LONG-RUN EVIDENCE

¥
X Estimate Estimate
R&D —0.005 0.328
(0.009) *(0.196)
Manufacture patents 0.006 0.426
(0.004) *(0.233)
Use patents 0.003 1.082
(0.003) **(0.275)
Upstream R&D -0.023 0.752
(0.021) (0.483)
Upstream manuf. patents —0.005 1.880
(0.004) **{0.768)
Upstream use patents —0.006 2.345
{0.006) **0.837)

Alog (TEP) = ¥ + B A log X; + ¢ This table presents estimates of cross-section relationships between
long-run total factor productivity growth and long-run growth in technology indicators. Each variable is
entered as a mean industry-level growth rate over 1960-1991; the sample size is 19. Standard errors are
in parentheses. * denotes significance at 10%, while ** denotes significance at 5%.
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Table4 CONTEMPORANEQUS EVIDENCE: LOG LEVELS

Other Deterministic Terms

X Time Dummies  Time Dumimies and Sectoral Trends
R&D 0.334 0.056
**(0.041) *(0.035)
Manufacture patents 0.39 —0.300
**(0.055) **(0.063)
Use patents 1.102 0.121
**(0.073) (0.078)
Upstream R&D 0.773 —0.460
**(0.095) *+(0.126)
Upstream manuf. patents 2121 ~0.441
**(0.217) **(0.149)
Upstream use patents 3.289 —0.784
**(0.250) *+(0.263)

log (TFP,} = ¥, + other deterministic terms + Slog X, + €. This table presents estimates of contempora-
neous relationships between log levels of total factor productivity and technology indicators, using
annual panel data on 19 industries from 1959 to 1991, All regressions include sector-specific intercepts
and time dummies; regressions in the right column also contain sector-specific linear time trends.
Standard errors are in parentheses. * indicates significance at 10%, ** indicates significance at 5%.

Table 5 CONTEMPORANEQUS EVIDENCE: GROWTH RATES

Other Deterministic Terms

X Time Dummies  Time Dummies and Sectoral Trends
R&D 0.132 0.047
**(0.049) (0.050)
Manufacture patents 0.19 —~0.070
**{(0.074) (0.101)
Use patents 0.512 0.052
**(0.099) (0.124)
Upstream R&D 0.235 —0.058
**(0.123) (0.142)
Upstream manuf. patents 0.530 —0.291
**0.217) (0.254)
Upstream use patents 1.140 ~0.057
**(0.280) (0.367)

4 log (TFP,) = ¥ + other deterministic terms + 8 4 log X; + ¢, This table presents estimates of
contemporaneous relationships between growth rates of total factor productivity and technology indica-
tors, using annual panel data on 1% industries from 1960 to 1991. All regressions include a constant and
time dummies; regressions in the right column also include sector-specific intercepts. Standard errors
are in parentheses. * indicates significance at 10%, while ** indicates significance at 5%.
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ment with sectoral intercepts. Results omitting sectoral trends in Table 4
suggest strong, positive contemporaneous relationships between TFP
and all six technology indicators. However, including sectoral trends
weakens the relationship substantially for own R&D and use patents,
and reverses the sign in the other four cases. Similarly, in Table 5 there is
a strong positive relationship between TFP growth and technology
growth when I control only for time dummies, but this relationship
vanishes when I add sectoral intercepts. I conclude that cross-industry
differences in trend productivity growth are positively related to cross-
industry differences in trend technology growth, but that once I control
for these differences there is little correlation between TFP and technol-
ogy. My results contradict Lach (1995), who reports a contemporaneous
positive relationship between patent stock growth and TFP growth in a
sample similar to mine, as well as Griliches and Lichtenberg (1984), who
find no time-series relationship between TFP and R&D even when omit-
ting sectoral trends.

Tables 4 and 5 suggest that there is no contemporaneous within-
industry relationship between TFP and technology in annual data. Table
6 asks whether such a relationship exists over a longer horizon, by
regressing medium-run TFP growth on technology growth measured
over the sixteen-year intervals 1960-1975 and 1976-1991. There are two

Table 6 MEDIUM-HORIZON EVIDENCE: 16-YEAR GROWTH RATES

Other Determinisiic Terms

X Time Dummy Time Dummy and Fixed Effect

R&D 0.285 0.140
*{0.154) {0.288)

Manufacture patents 0.297 —0.347
(0.166) {0.416)

Use patents 0.960 0.614
**0.233) (0.451)

Upstream R&D 0.462 ~1.206
(0.406) (0.872)

Upstream manuf. patents 1.209 0.149
*+0.572) (0.835)

Upstream use patents 2.348 2371
*0.729) {2.078)

4 log (TFP,) = ¥ + other deterministic terms + 8 Adlog X;; + €,. This table presents estimates of the
refationship between medium-horizan growth rates of total factor productivity and technology indica-
tors, using data on 19 industries for two 16-year periods, 1960-1975 and 1976-1991. All regressions
include a constant and a dummy for the second period; regressions in the right column also include a
sector-specific fixed effect. Standard errors are in parentheses. * indicates significance at 10%, while **
indicates significance at 5%.
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observations per industry, implying a sample size of 38. In the first
column, I control only for a constant and a dummy for the second pe-
riod; these results suggest a positive and significant relationship be-
tween TFP and technology growth in the medium run. However, these
results rely on both cross-industry and within-industry variation. Add-
ing a sectoral fixed effect in the second column makes the relationship
between TFP and technology insignificant, as standard errors rise sub-
stantially in all cases and point estimates fall substantially in five of six
cases. These results suggest that most of the variation in medium-run
technology growth is cross-industry rather than within-industry, and
that within-industry medium-run variation in technology and TFP are
only weakly related. I obtain similar results when I experiment with
different starting and ending dates, as well as with four- and eight-year
horizons.

One might wonder if Tables 4 through 6 obviate the need for any
further investigation of time-series relationships between TFP and tech-
nology. The answer is no. Had I found a robust positive contemporane-
ous relationship between (say) R&D and TFF, I could not have concluded
that R&D shocks cause TFP to rise, because of potential omitted-
variables bias; shocks to industry output could raise measured TFP due
to (say) cyclical utilization, while at the same time increasing R&D for
accelerator reasons. Similarly, the absence of a contemporaneous rela-
tionship does not prove that R&D has no impact on TFP, since such an
impact is likely to emerge only with a lag. Both of these problems can be
addressed by using vector autoregressions.

4. VAR Evidence

In this section I present results from a series of vector autoregressions
using annual industry panel data on inputs, TFP, and technological indi-
cators from 1959 to 1991. All variables are in log levels, following the
panel unit-root tests presented in Table 2, although the impulse re-
sponse functions in log levels are broadly similar if I estimate using
growth rates. All specifications include sector-specific intercepts, sector-
specific time trends, and time dummies. The time dummies are intended
to control for aggregate shocks that affect R&D and patenting intensity,
but are unrelated to true technological progress, such as the changes in
the U.S. Patent Office discussed in Griliches (1989). Of course, time
dummies will also remove any variation due to aggregate technology
shocks, which may bias my results against technology-shock models;
fortunately, my results are broadly similar if I omit time dummies. I use
four lags; experiments with other lag lengths yielded similar results.
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Figures 2 through 4 present the complete set of estimated impulse
response functions, along with 1.65 Monte Carlo standard error bands,
for three-variable VARs estimated on the manufacturing sample. The
VARs are ordered as total input, TFP, and either own R&D (Figure 2),
own manufacture patents (Figure 3), or own use patents (Figure 4). I
enter technology indicators one at a time for presentational simplicity;
results are similar if I enter multiple indicators simultaneously. Placing
technology last reflects my belief that shocks to R&D or patenting are
likely to affect industry activity only with lags. Placing technology first
would generate a significant but small expansionary initial impact of
technology on inputs and TFF, but with otherwise similar impulse re-
sponses and variance decompositions. Figure 5 breaks the input re-
sponses to own technology into disaggregated components, taken from
five-variable VARs ordered as capital, labor, materials, TFF, and technol-
ogy. Figures 6 and 7 present the responses of input, TFF, capital, labor,
and materials to upstream R&D and patents; these estimates are similar
if I control for input—output weighted measures of upstream input de-
mand, suggesting that upstream technology is not merely proxying for
upstream activity. I summarize these impulse responses in Table 7,
which lists the sign and horizon of every significant effect of technology
shocks on nontechnology variables. Table 8 presents Granger causality
evidence, and Table 9 presents variance decompositions.

While the results vary somewhat across specifications, some robust
patterns emerge. First, the impulse responses of TFP to technology are
not significantly positive at any horizon, and indeed are significantly
negative in the long run for all three upstream technology measures.
This result is reinforced in Table 8, which indicate that TFP is Granger-
caused only by upstream R&D and upstream use patents (and in these
cases with negative coefficients).

Second, the impulse responses of total input to technology tend, if
anything, to be positive in the short run but negative in the long run. I
find that technology shocks significantly raise input use in the short run
for three of six technology indicators, while significantly decreasing
long-run input use in four of six cases.

Third, the impulse responses of individual inputs (particularly labor
and materials) to technology are stronger than the responses for total
input, as the disaggregated impacts tend to wash out due toboth stagger-
ing and conflicting signs. This pattern is mirrored in the Granger causal-
ity results, which show that technology shocks forecast total input for
only three of six technology indicators, but forecast labor and materials
in five of six cases. Favorable technology shocks increase short-run labor
use significantly in five of six cases, while decreasing long-run materials
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Table7 IMPULSE RESPONSE FUNCTIONS: SUMMARY

Three-Variable VAR Five-Variable VAR
Tech. Indicator Total Input TEP Capital Labor Materials
R&D 1 7-10 — T4 T2-3 4 4-10
1 7-10

Manufacture - - ‘4 T 4-5 i 8-10
patents T 8-10

Use T2 — 1 3-10 T 2-7 T2
patents 1 9-10 i 8-10

Upstream { 9-10 L 7-10 T 2-10 i 8-10 i 6-10
R&D

Upstream T 2-7 + 7-10 - T 2-6 T 2-6
manuf. patents

Upstream T 24-5 1 6-10 + 9-10 T 2-5 T 2-5
use patents i 8-10 { 8-10 { 8-10

This table summarizes the VAR impulse functions by reporting all cases of a significant (10%) impact of
technology on industry variables, along with the relevant horizons in years. The impulse responses are
calculated from VARs estimated using annual panel data for 19 industries from 195910 1991. The results in
the first two columns are based on three-variable VARs ordered as total input, TFP. and technology, while
the results in the last three columns are based on five-variable VARs ordered as capital, labor. materials,
TFP, and technology. All VARs are estimated in log levels and include sector-specific intercepts and
trends as well as time dummles. The standard errors are computed using Monte Carlo integration.

Table8 GRANGER-CAUSALITY TESTS: P-VALUES

Three-Variable

VAR Five-Variable VAR

Technology Indicator Total Input  TFP  Capital  Labor  Materials

Panel A: Does Technology Granger-Cause Inputs or TFP?
R&D 0.21 0.95 042 0.01 0.02
Manufacture patents 0.85 0.51 0.04 0.05 0.13
Use patents 0.05 0.92 0.01 0.01 0.00
Upstream R&D 0.12 0.07 0.02 0.12 0.01
Upstream manuf. patents 0.01 0.46 0.47 0.03 0.01
Upstream use patents 0.00 0.01 0.15 0.00 0.00

Panel B: Do Inputs and TFP Granger-Cause Technology?
Ré&D 0.38 0.62 0.34 0.95 0.63
Manufacture patents 0.05 0.41 0.58 0.14 0.21
Use patents 0.11 0.56 0.72 0.25 0.01
Upstream R&D 0.00 0.35 0.04 0.06 0.00
Upstream manuf. patents 0.06 0.48 0.08 0.03 0.51
Upstream use patents 0.00 0.32 0.01 0.02 0.16

This table presents P-values from Granger causality tests from technology to industty activity and vice
versa. The tests are based on VARs estimated using annual panel data for 12ind ustries from 1959 to 1991,



What Do Technology Shocks Do? - 299

Table9 VARIANCE DECOMPOSITIONS

Percentage of Variance Due to Technology

Three-Variable VAR Five-Variable VAR

Tech. Indicator Years  Total Input  TFP  Capital Labor  Materials
R&D 3 0.05 0.07 0.23 0.66 0.04
6 0.38 0.06 1.08 0.95 2,06
9 2.42 0.07 1.20 3.89 4.06
Manufacture 3 0.19 0.16 031 0.27 0.37
patents 6 0.22 0.60 0.53 1.22 0.42
9 0.23 0.97 1.60 1.25 1.32
Use patents 3 0.26 0.04 0.54 0.87 0.70
6 0.28 0.05 2.81 349 0.93
9 0.98 0.19 5.22 413 3.49
Upstream R&D 3 0.76 0.44 1.47 0.22 0.16
6 1.15 217 8.04 0.99 223
9 8.21 1251 2033 8.01 14.10
Upstream 3 1.00 0.08 0.03 1.38 1.34
manuf, patents 6 3.98 0.25 0.28 4.65 3.94
9 4.49 1.82 0.39 4.86 3.95
Upstream 3 0.60 0.08 0.09 1.09 1.19
use patents 6 211 1.48 0.23 3.69 297
9 5.35 10.13 1.38 5.27 5.57

This table summarizes the VAR variance decompositions by reporting the share of variance of industry
activity variables accounted for by shocks to technology at 3-, 6-, and 9-year horizons. The variance
decompositions are calculated from VARs estimated using annual panel data for 19 industries from 1959
to 1991. The results in the first two columns are based on three-variable VARs ordered as total input,
TFP, and technology, while the results in the last three columns are based on five-variable VARs
ordered as capital, labor, materials, TFP, and technology. All VARs are estimated in log levels and
include sector-specific intercepts and trends as well as time dummies.

use significantly in five of six cases. Note that shocks to both own and
upstream R&D significantly increase capital accumulation in the short
run. This result is consistent with Lach and Rob (1996), who find that
R&D Granger-causes physical investment in industry panel data, and
with Lach and Schankerman (1989), who find the same result in firm-
level data. In my data, R&D does not Granger-cause capital, but it does
Granger-cause investment.

Fourth, technology shocks explain only a small fraction of input and
TFP variation at business-cycle horizons. Technology explains less than
2% of three-year volatility in all cases, and less than 5% of six-year
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volatility in all but one case. Technology has somewhat more explana-
tory power at longer horizons, particularly for upstream R&D and up-
stream use patents; recall, however, that the impulse responses for these
cases suggest significant long-run contractions of inputs and TFP follow-
ing favorable technology shocks. The fact that technology explains a
larger share of variance at longer horizons is consistent with Jovanovic
and Lach (1997), who model technology shocks as having long diffusion
lags and find that technology shocks underexplain short-run volatility
but overexplain long-run volatility.

Along with the results for technology shocks, two other features of my
estimates are worth noting. First, own R&D and own patents respond
positively and significantly to input shocks; moreover, R&D increases
immediately, whereas patents increase only after five years. One possi-
ble interpretation is that industry expansions generate increased R&D
immediately, and that this investment eventually leads to an increased
flow of patentable inventions. Second, input shocks lead to short-run
increases but long-run decreases in TFP. A possible interpretation is that
industry expansions raise measured TFP in the short-run due to increas-
ing returns or cyclical utilization, but reduce long-run productivity. An
interesting question is how these two features of the data can coexist—if
expansions increase R&D and patents, then why don't they increase
productivity? One possibility is that expansions raise inventive activity
but also allow lower-productivity firms to enter and survive, generating
a net decline in productivity.

4.1 RESULTS FOR INPUT MIX, WORKER MIX, AND PRICES

While this paper is primarily concerned with the impact of technology
shocks on total input and TFF, technology shocks are likely to affect
other variables as well. Conventional models predict that favorable tech-
nology shocks reduce the relative price of industry output. Meanwhile,
if technology shocks are permanent and the supply of capital is more
elastic in the long run than the supply of labor or materials (as in the
baseline RBC model), then favorable technology shocks increase the
long-run ratio of capital to other inputs. Finally, some have hypothesized
that technological advances have been biased towards skilled workers
during the postwar period, either because skilled workers have an advan-
tage in learning new technologies (Greenwood and Yorukoglu, 1997) or
because technology shocks are investment-specific and capital is comple-
mentary with skill (Krusell et al. 1996).

In the working version of this paper (Shea, 1998), I present impulse
response functions to own and upstream technology shocks for three
variables: the worker mix, defined as the ratio of nonproduction to total
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employment; the input mix, defined as the log ratio of capital’s product
(capital raised to the power of capital’s share of revenue) to labor and
materials” product; and the industry’s relative price, defined as the im-
plicit gross output deflator divided by the GDP deflator. I assume that
increases in nonproduction employment are positively correlated with
changes in the ratio of skilled to unskilled employees, following Berman,
Bound, and Griliches (1994). My input-mix variable is one of several
ways I could quantify changes in capital relative to other variables; re-
sults are similar when I use more familiar measures such as the capital—-
labor ratio. The impulse responses are taken from four-variable VARs in
which the new variables are ordered after inputs and TFP but before
technology. Data for nonproduction employment, total employment and
prices are taken from the NBER productivity database.

The results conform to prior intuition in two out of three cases. Favor-
able technology shocks cause significant long-run substitution towards
capital for five of six technology indicators; technology improvements
also significantly increase the ratio of nonproduction to total employ-
ment in five of six cases, although these increases often occur in the
short run rather than the long run. However, the estimated impact of
technology shocks on price is not robust; own R&D and own use patent
shocks significantly reduce price in the long run, but manufacture patent
shocks raise price in the medium run, while upstream use patent shocks
raise price in the long run. The fact that own use patents (which should
reflect process innovations) reduce prices while own manufacture pat-
ents (which should reflect product innovations) raise prices suggests
that available price data might not accurately reflect product innova-
tions, an idea to which I return below.

4.2 RESULTS FOR NONMANUFACTURING

My empirical results to this point have relied exclusively on manufactur-
ing industries. However, technology shocks originating in manufactur-
ing, such as the introduction of the jet engine in the late 1950s, often
have important downstream impacts in nonmanufacturing. While disag- -
gregated data on own R&D and own patenting in nonmanufacturing
industries is not readily available—in part because virtually all R&D and
patenting occurred in manufacturing until very recently—I can con-
struct measures of upstream technology for nonmanufacturing using the
techniques described in Section 2. Figure 8 presents impulse responses
of inputs and TFP to upstream technology shocks for a panel of 10
nonmanufacturing industries: agriculture; mining; construction; trans-
portation; communications; electric utilities; gas utilities; trade; finance,
insurance and real estate (FIRE); and services. Data on inputs and TFP
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come from an updated version of the KLEM database described by Jor-
genson, Gollop, and Fraumeni (1987), generously provided by Susanto
Basu. Although their preferred measure of labor input corrects for varia-
tions in labor-force composition, I use man-hours to be consistent with
the manufacturing data. The impulse responses for nonmanufacturing
are striking and robust: favorable upstream technology shocks signifi-
cantly increase total input in the short run, but reduce measured TFP in
the short run; total input and TFP return to trend in the long run. In the
working version of the paper, I show that results for capital, labor, and
materials are similar to those for total input. The variance decomposi-
tions (available from the author) assign technology a substantial share of
TEP and input volatility at six years, particularly for upstream R&D;
however, technology has a much smaller role for output volatility, as the
input and TFP effects cancel each other out.

4.3 MEASUREMENT ERROR IN PRICE INDICES

The fact that favorable technology shocks do not significantly increase
measured TFP raises suspicions about the quality of the TFP data. Much
recent research has criticized BLS price data for not registering implicit
price changes due to quality improvements or new product introduc-
tions (e.g., Gordon, 1990), or, for sectors outside of manufacturing, for
not registering price changes at all (e.g., Baily and Gordon 1988). If
product innovations do not reduce measured prices, they are less likely
to increase measured output or TFP; this is especially troublesome given
that roughly 80% of U.S. R&D is devoted to product rather than process
innovation (Scherer, 1984). Similarly, if nonmanufacturing prices are
measured poorly, then upstream innovations that reduce true prices and
increase true activity may not raise measured output; if measured inputs
rise (perhaps because inputs are easier to measure than output), then
measured TFP is likely to fall.

To examine whether measurement errors in prices are important
for my results, I divide the 19 sample manufacturing industries into
process-innovating vs. product-innovating sectors. Table 10 presents the
average percentage of R&D spending in gross output over the period
1959-1991, as well as the percentage of process R&D in total R&D spend-
ing in 1974, as reported in Scherer (1984). The table indicates that there
is a fairly sharp break between process- and product-innovating sec-
tors, and that the most R&D-intensive industries are typically product-
intensive. I assign food, textiles, lumber, paper, industrial chemicals,
petroleum, rubber, stone, and primary metals to the process-innovating
group, and the other ten industries to the product-innovating group.
Figures 9 and 10 present the responses of total input, TFF, and price to
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Table 10 PROCESS V5. PRODUCT Ré&D INTENSITY

R&D  Percentage of

Indusiry Intensity  Process R&D
Food (SIC 20) 0.2 56.1
Textiles (SIC 22-23) 0.1 61.3
Lumber (SIC 24-25) 1.5 59.0
Paper (SIC 26) 0.7 33.1
Industrial d’lemlcals (SIC 281-282, 286) 3.4 47.6
Drugs (SIC 28) 8.2 12.0
Other chemicals (other SIC 28) 1.4 14.6
Petroleum (SIC 29) 1.4 64.0
Rubber (SIC 30) 1.1 48.0
Stone (SIC 32) 0.9 52.5
Metals (SIC 33) 0.5 75.2
Metal prods. (SIC 34) 0.4 14.6
Computers (SIC 357) 12.5 5.5
Other nonelec. equip. (other SIC 35) 1.2 4.1
Electronics & commun. equip. (SIC 366-387) 5.4 21.2
Other electric equip. (other SIC 36) 2.3 11.5
Aerospace (SIC 372, 6) 4.4 21.7
Autos & other transp. equip. (SIC 37) 2.6 4.8
Instruments (SIC 38 5.0 8.0

The first column reports the average value of R&D spending as a percentage of nominal gross output
over the sample period 1959-1991, The second column reports the fraction of 1974 R&D spending
devoted to process R&D, as reported in Scherer (1984).

technology shocks for the two groups. The results indicate a sharp
distinction between process- and product-innovating industries: for
process-innovating sectors, favorable technology shocks induce a signifi-
cant long-run increase in TFL, a significant long-run decline in price, and
a significant long-run decline in inputs; for product-innovating sectors,
favorable technology shocks do not raise TFP in any instance, and re-
duce long-run inputs and prices in only one case. These results suggest
that the failure of technology to increase TFP in my full sample may be
due to the failure of available data to reflect price declines and productiv-
ity gains due to quality improvements and new-product introductions.
Another interesting result is that process-industry TFP declines signifi-
cantly in the short run in two of three cases. This result is consistent
with models in which technological advances cause a short-run produc-
tivity decline as workers move down the new technology’s learning
curve (e.g., Greenwood and Yorukoglu, 1997; Hornstein and Krusell,
1996).
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5. Conclusion

This paper’s contribution is to estimate the impact of technology shocks
on the economy using R&D spending and patent applications rather
than observed total factor productivity to measure technology. The most
surprising finding is that favorable technology shocks do not raise mea-
sured TFP at any horizon. Taken at face value, this suggests that ob-
served procyclical variation in TFP is entirely due to factors such as
increasing returns, cydical utilization, and factor reallocation, and not at
all due to procyclical technology. It also suggests that efforts to measure
short-run changes in true technology by purging measured TFP of move-
ments due to cyclical utilization and so on (e.g., Basu, Fernald, and
Kimball, 1997; Burnside, Eichenbaum, and Rebelo, 1996) may be doomed
- from the start.

Of course, another interpretation of my results is that my R&D and
patent data are riddled with measurement error that biases me against
finding a significant impact of technology on TFP. While the R&D and
patent data are certainly vulnerable to criticism, my results cannot be so
easily dismissed. Measurement error should bias me against finding a
significant impact of technology on anything. Yet I find that favorable
technology shocks have a significant short-run expansionary impact on
labor, a significant long-run contractionary impact on total input, and a
significant positive impact on capital and nonproduction worker intensi-
ties. I also find that technology shocks raise long-run TFP and reduce
long-run prices in a subsample of industries dominated by process R&D.
These results suggest that the important measurement error is not in
R&D or patents, but in output prices. Most R&D in the United States is
devoted to product innovations, yet many observers believe that avail-
able price data systematically ignore real price declines due to quality
improvements and new-product introductions. Similarly, a good deal of
the impact of industrial R&D is felt in downstream nonmanufacturing
sectors, yet many observers argue that price changes of all kinds in
nonmanufacturing are poorly measured.

It is quite possible, then, that technology shocks are more important to
actual output and TFP fluctuations than they are to observed fluc-
tuations. To paraphrase Ed Prescott (1986), theory may be ahead of
business-cycle measurement. If real-business-cycle enthusiasts want to
convince the profession that technology shocks are genuinely important
to business cycles, their first order of business should be to construct
historical price series for manufacturing and nonmanufacturing sectors
that correct for quality improvements and new product introductions,
following the painstaking work of Gordon (1990) on durable goods.
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Such a project will surely require many hours of research into the history
of product innovations in particular sectors, but imagine how different
the profession would be today had Friedman and Schwartz (1963) not
devoted many hours of research to the history of monetary institutions
and monetary shocks.
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Comment

JORDI GALI
New York University and NBER

1. Technology and Business Cycles, in the Theory and in
the Data

Under the world view advocated by real business cycle (RBC) econo-
mists, observed economic fluctuations can be interpreted, to a first ap-
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proximation, as the result of agents’ optimal responses to changes in
aggregate technology, in an environment with perfect competition, mar-
ket clearing, and flexible prices. The empirical basis for that claim lies in
the ability of calibrated RBC models to match patterns of unconditional
second moments of a number of macroeconomic time series.

Though that ability is largely acknowledged, some recent research has
undertaken “more direct” assessments of RBC models—and of alterna-
tive business-cycle frameworks—by identifying the dynamic effects of
variations in technology on different macroeconomic variables, and by
evaluating quantitatively their role as a source of short-run economic
fluctuations. Many interesting questions that may shed light on the
nature of business cycles are addressed in that literature: What are the
effects of technology shocks in actual economies? How do they differ
from the predictions of standard RBC models? What is their contribution
to business-cycle fluctuations? Shea’s present paper fits squarely into
that line of research.

The key challenge facing such an inquiry lies in the empirical identifica-
tion of exogenous technology shocks, since it is generally accepted that
conventional Solow residuals cannot be taken as reliable measures of
“true” total factor productivity. Different approaches to identification
have been pursued in the literature. Thus, Basu, Fernald, and Kimball
(1997) identify technology shocks as the innovation in an “adjusted”
Solow residual series, where the adjustment attempts to correct for the
bias associated with the potential presence of increasing returns, imper-
fect competition, variable input utilization, and sectoral reallocation of
inputs across heterogeneous sectors. In my own work (Gali, 1996) identi-
fication is achieved by restricting permanent technology shocks to be the
only source of the unit root in labor productivity, i.e., the only shocks
that may have a permanent effect on the level of that variable—a restric-
tion that can be shown to hold under assumptions typically made in
standard models.

Despite the different methodologies and data used, a number of com-
mon findings emerge in those papers, including a result that appears to
be very robust: exogenous improvements in technology tend to reduce
employment, at least in the short run.! That result is in stark contrast to
the prediction of the standard RBC models, where a positive response of
employment to an exogenous increase in TFP is at the center of the
mechanism underlying business cycles. On the other hand, and as ar-
gued by the above-mentioned authors, the estimated effects of technol-

1. Basu, Fernald, and Kimball (1997) use postwar U.S. annual data. Gali (1996) uses quar-
terly data for the U.S. as well as the remaining G7 countries. Gali’s methodology has
been applied by Kiley (1997) to two-digit industry-level U.S. data.
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ogy shocks are consistent with the prediction of New Keynesian models
characterized by imperfect competition and sticky prices. The intuition
underlying that prediction is straightforward: if nominal aggregate de-
mand is predetermined and prices respond only sluggishly to shocks,
real aggregate demand (and thus, the position of the demand schedule
facing each firm) will change little in response to an increase in TFP.
Accordingly, the quantity of goods each firm will wish to produce and
sell will also remain largely unchanged (since, by assumption, adjusting
prices downward is either unfeasible or too costly). Since firms now
have access to a more efficient technology, that level of output can now
be produced with less inputs, thus leading to a decline in employment
{(and, presumably, a lower capital utilization as well). Needless to say,
such effects and the mechanism through which they are transmitted
have little in common with those underlying RBC models.

2. Shea’s Empirical Framework

Shea’s "What Do Technology Shocks Do?” has a similar motivation to the
papers by Basu, Fernald, and Kimball (1997) and Gali (1996), but uses a
different strategy in order to identify exogenous technology shocks. Spe-
cifically, Shea's approach exploits the availability of data on "tangible”
activities associated with technological innovation, and the fact that indi-
cators of such activities display non-negligible short-run fluctuations.
Of course, the study of the empirical links between innovative activi-
ties and productivity measures has been the subject of a time-honored
empirical literature.2 Work in that tradition generally takes variations in
technology (over time and/or across firms or industries) as the phe-
nomenon to be explained, trying to detect and quantify the relationship
between measures of technological change—typically, estimates of total
factor productivity (TFP)—and indicators of innovative activity (R&D
expenditures or patent applications). From the point of view of that
literature, Shea’s main contribution lies in the use of a structural VAR
to model the connection between technological innovation and TFP
growth, an approach which allows for largely unrestricted dynamics,
including the possibility of an endogenous response of technological
innovation to fluctuations in each industry’s level of economic activity.
Shea uses two different variables as indicators of technological innova-
tion: R&D (i.e., a measure of the input in the innovation process) and the
number of patent applications (a measure of the output of that process).
For each industry he estimates the responses of inputs and TFP to or-

2. See, e.g., the Griliches (1984) NBER volume devoted to the subject.
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thogonalized shocks (1) to the industry’s own technology indicators,
and (2) to the technology indicators of upstream industries {constructed
using input-output data).

It is important to distinguish between the two types of shocks, since
the predicted responses are likely to be very different. In particular,
technological innovation in upstream industries should not affect an
industry’s own TFP (unless technological spillovers are present), but
only its marginal cost (to the extent that it is reflected in suppliers’
prices). Thus, there is no reason why, in the presence of sticky prices,
input use in an industry should decline in the face of a positive shock in
upstream industries, as opposed to an analogous shock in the own
industry. Hence, and for the sake of brevity and comparability with the
existing literature, I will concentrate the remainder of my comments on
the results based on own technological innovations.

Shea assumes that the level of R&D (or, alternatively, the number of
patents) in industry i is determined by the equation

zi = ’Zl @z + ;onny:" + €,

where z, is the value taken by the industry technology indicator, y, is a
vector including industry TFP and inputs measures, and € represents
the “exogenous” technology shock. The key identifying assumption is
that ¢ is orthogonal to y; (as well as its lags), i.e., that a technology
shock does not have a contemporaneous (within the year) impact on indus-
try aggregates such as TFP or inputs.

The dynamic effects of technology on any industry variable i’ are then
given by the sequence of coefficients {¢)} of the regression equation

yf = ;1 ¢j6:—j+ ;.

The structural VAR approach adopted by Shea seems, in principle,
clearly suitable for the issue at hand, for it allows for an endogenous
component in innovative activities, as well as rich, largely unrestricted
dynamics. Furthermore, the recursive restriction used (namely, that
shocks to R&D or patents cannot have a contemporaneous impact on
industry aggregates such as TFP or inputs) seems reasonable when R&D
data are used, given the likely lags between R&D expenditures and
actual implementation of the resulting innovation (it may be more ques-
tionable when patent data are used).

Given the previous setup, Shea’s question can be formulated as fol-
lows: what are the effects of exogenous variations in industry R&D or
patents on the industry’s TFP and its level of activity?
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3. Shea's Main Results and their Interpretation

Let me focus on two of the results emphasized by Shea among those that
are claimed to be reasonably robust across specifications:

RESULT1 A positive own technology shock (i.e., one associated with an
increase in R&D or the number of patents in the same industry) has no
significant effect on industry TFP at any horizon.

RESULT 2 A positive own technology shock tends to increase inputs
(especially labor), in the short run, but decrease them in the long run.

My main concern has to do with the economic interpretation of those
results, i.e., what we learn from them regarding the merits of alternative
business-cycle models. Standard business-cycle frameworks do not ex-
plicitly model the process of innovation in the R&D sector (or, for that
matter, the process of patent application, grant, and diffusion of associ-
ated knowledge). Hence, Shea’s technology shocks do not have an exact
counterpart in those models, in which changes in TFP are taken to be
exogenous (wisely or not). Given that the estimated response of TFP to a
“Shea technology shock” is essentially flat, it is not clear what sort of
prediction of those models could be refuted by looking at Results 1 and
2. In particular, models with imperfect competition and sticky prices
predict a decline in employment in response to a technology shock only if
the latter is associated with an increase in TFP. Since in Shea’s evidence the
level of TFP remains essentially unchanged in response to an orthogo-
nalized innovation in own technology shocks (R&D or patents), the
absence of a response of employment and other inputs to the same
shock would seem to be consistent with the prediction of a conventional
sticky price model. Thus, Results 1 and 2 can hardly be interpreted as
providing evidence against New Keynesian models. Neither can they be
seen as being in contradiction with the results reported in Gali (1996) and
Basu, Fernald, and Kimball (1997), for those authors found evidence of a
decline in employment after a technology shock that “succeeds” in rais-
ing productivity.

Most interestingly, in the only two VAR specifications for which Shea
detects a significant short-run change in TFP in response to an {own)
technology shock (namely, when the analysis is restricted to process-
innovating industries and patents are used as a technology indicator),
inputs are shown to respond in the direction opposite to the movement
in TFL, i.e., in a way consistent with the predictions of sticky-price
models!
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In the remaining cases, the only hypothesis supported by the Shea’s
evidence is that innovations to industry R&D or patents have no signifi-
cant dynamic effects on the same industry’s TFP. That is an intriguing
result, but not one with obvious implications for business-cycle theory.

4. Are All Industries Alike?

In spite of some of the rhetoric found both in the paper and in the
present discussion, it is not completely true that the dynamics of the
estimated model are “essentially unrestricted”: Shea’s methodology con-
strains the dynamic responses to shocks to be the same for all industries.
Of course, if that restriction is satisfied in the population, its imposition
in the estimation procedure can only increase the precision of the esti-
mates. But a look at some simple statistics gives us a reason to be some-
what suspicious. Table 1 reports cross-correlations of R&D (or patents)
and TFF, industry by industry, using Shea’s data set. In addition to the
contemporaneous correlation, the highest cross-correlation (in absolute

Table 1 INDUSTRY CROSS-CORRELATIONS

R&D Patents

Industry pfAZ) oA Z) pAZ) oA wZy

Food 0.61 0.65(-1) -0.37 —0.49 (+4)
Textiles 0.05 —0.57 (+4) 0.11 0.51 (-2)
Lumber -0.54 —0.54 (+0) 0.22 0.61(—3)
Paper -0.09 0.42 (+3) -0.17 =0.17 (+0)
Ind. chem. 0.29 0.52 (+3) 0.53 0.58 (—1)
Drugs -0.92 —0.92 (+0) —-0.85 —0.85 (+0)
Other chem. -0.40 —0.58 (—4) 0.71 0.71 (+0)
Petroleum 0.29 0.73 (+3) 0.11 0.67 (+4)
Rubber 0.03 —0.38 (+4) 0.35 0.62 (—3)
Stone 0.39 0.62 (+2) 0.53 0.72(-2)
Metals —0.26 -0.34 (+2) 0.38 0.48 (-2)
Metal prod. -0.05 -0.17 (=2) 0.43 0.49 (-2)
Computers 0.97 0.97 (+0) -0.29 -0.72 (+4)
Other nonelec. —-0.41 —0.50 (+2) 0.74 0.74 (+0)
Eilec. & Commun. -0.20 0.42 (—4) -0.18 —0.38 (+3)
Oth. elec. eq. 0.07 0.55 (—4) 0.58 0.58 (+0)
Autos & Trans. 0.05 —0.37 (—4) 0.54 0.64(-1)
Aerospace —0.51 —0.57 (+1) -0.06 0.36 (+4)
Instruments —-0.72 -0.72 (+0) 0.32 0.57 (+3)

pA,2) is the contemporaneous correlation between TFP and R&D (or patents). p{A,,,, Z,} is the ele-
ment of the cross-correlogram of the same variables with the highest {absolute) value, with the corre-
sponding lead or lag belng shown in brackets. Data are detrended.
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value) and the lag or lead at which the latter is found are shown in
parentheses. No clear common pattern emerges: values and signs are all
over the place, pointing to substantial heterogeneity across industries
(even across indicators) in the size and timing of the effects of technol-
ogy shocks, and/or in the properties of the endogenous component of
the innovation indicators. That result may not be surprising, since after
all, industries as different in the nature of their production processes as
lumber and aerospace are included in Shea’s sample. But it clearly raises
some doubts about the usefulness (and meaning) of any estimates that
fail to take such heterogeneity into account.

5. Concluding Comments

John Shea has written a paper that addresses an issue at the center of
some of the macroeconomic controversies of the past twenty years: the
link between technological change and business cycles. In doing so he
makes use of a data set as well as an empirical approach that seem very
well suited to the issue athand. Yet, many readers are likely to find some
of the results somewhat disappointing, in the sense that they seem to
raise more questions than they answer. The inability, for most specifica-
tions, to detect a significant effect of an industry’s R&D expenditures or
patent applications on its own TFP is worrisome, for it is hard to think of
many other factors that may underlie variations in productivity mea-
sures at horizons other than the long run (though mismeasurement,
cyclical or other, is always a likely candidate).

Most of the results also seem to fall short of yielding any obvious
lessons that could further our understanding of business cycles and/or
help evaluate the empirical merits of alternative models. Exceptions ap-
ply, however: as I have argued above, some of the few significant results
seem to lend some additional support to the existing evidence that
points to a short-run negative comovement between TFP and inputs in
response to technology shocks, which is consistent with sticky-price
models.

I am convinced that some of the interesting issues raised by Shea’s
approach and results will stimulate further work on the subject. We can
only hope that, when alternative empirical models or data sets are used
to ask the question that gives Shea’s paper its title, the data choose to
speak somewhat louder.
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Comment

ADAM B. JAFFE
Brandeis University and NBER

This paper describes a valuable empirical exercise that was carried out
with care and is presented with clarity. It provides a comprehensive
summary of the empirical relationships, at the level of approximately
two-digit SIC industries, among R&D, patents, other inputs, measured
output, measured total factor productivity (TFP), and measured output
prices. The results can be distilled into the following set of stylized facts:

1. Thereis a clear cross-sectional relationship across industries between
indicators of technological activity and the growth rate of measured
TEF.

2. For the set of industries taken as a whole, it is impossible to “find”
this effect of technology on measured TFP in the form of significant
impulse responses at any time horizon to technology shocks.

3. For a set of industries dominated by process rather than product
innovation, there is a significant long-run positive response of mea-
sured TFP to technology shocks.

4. For all industries taken together, technology shocks have a significant
short-run expansionary effect on labor input.

5. For all industries taken together, technology shocks have a significant
long-run contractionary effect on total input, and induce significant
long-run substitution of capital and nonproduction labor for produc-
tion labor.

Shea concludes from these stylized facts that (1) technology shocks can-
not be viewed as a significant driver of short-run movements in measured
output or productivity for the economy as a whole; (2) technology shocks
may be driving actual output and productivity even in the short run; and
(3) macroeconomists should devote significant time and attention to the
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history of product innovation in particular sectors, in order to develop
price series that would permit accurate measurement of output and pro-
ductivity. While I am certainly not going to argue with the third conclu-
sion, I believe that there is sufficient uncertainty about what is really going
on in the data that the first conclusion must be somewhat qualified.

The separation of industries between those dominated by product
innovations and those dominated by process innovations is a valuable
and important improvement in the final version of the paper. I agree that
the results for the process-innovation-dominated industries suggest that
the absence of technology shock responses in the overall pooled sample
is probably due, at least in part, to the failure of the output series to
incorporate appropriately the effects of new products and quality im-
provements. I also agree that this partition confirms the results in the
overall panel in which patents classified by industry of use typically
have clearer effects on TFP than patents classified by industry of manu-
facture. Quite apart from its macro implications, this is a nice contribu-
tion to the industry-level literature on interindustry technology flows.

The only cloud over this otherwise sunny picture is that the greater
effect of patents by industry of use relative to patents by industry of
manufacture continues to hold when one looks at upstream patents. In
principle, innovations “used” in my upstream industries should lower
their costs and hence the prices of my inputs, but should not affect my
measured productivity. In contrast, innovations “manufactured” in my
upstream industries create precisely the kind of unmeasured product
improvement that we are worried about; if my (actual) inputs are improv-
ing in quality but my (measured) inputs are not, then I should be having
improvements in my (measured) TFP. In other words, the very story that
explains the greater effect on “own” productivity of patents by industry
of use relative to patents by industry of manufacture implies that this
relationship ought to be reversed in the upstream patents. The fact that
it is not suggests that some other factor may be at work. Econometrically,
the pattern of results could be explained by inherently greater measure-
ment error in the classification by industry of manufacture. But this
doesn’t seem very plausible; if anything, it is harder to figure out where
something will be used than it is to figure out where it is made. This
issue probably merits further exploration, looking in more detail at spe-
cific industries and examining how differences between the two patent
totals drive the results.

The finding that the results differ significantly between product-
innovating and process-innovating industries also confirms what one
would suspect more broadly, which is that neither the magnitude nor
the timing of technology responses is likely to be the same across such
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diverse industries. While it is perhaps possible to interpret the overall
results as mean effects in a random-coefficients framework, the likely
fragility of the results with respect to other partitions suggests that we
should at least hesitate before concluding that technology shocks have
no effect at the industry level.

More fundamentally, it remains quite plausible to me that, even at the
level of individual industries (as defined here), one might find no effect
of technology shocks at any specific time horizon, even if they did have
real effects on measured TFP. The simplest way to view the above styl-
ized facts about the relationship between technology and TFP is that
technology does affect (measured) TFF, but it does so with lags that are
so variable that it is impossible to pin down the timing of the effects. I
am not a macroeconomist and do not know if a model in which technol-
ogy shocks produce productivity and output impacts with highly vari-
able lags will generate business cycles. If not, then these results may
suggest that technology shocks are not a likely explanation for observed
business cycles, but this is a little different from saying that they have no
impact on measured TFP at the industry level.

Shea does a very good job of discussing the potential problems and
limitations with the R&D and patent series as indicators of technological
improvement. In addition to the problems that he discusses, I would
emphasize the highly aggregated nature of the sectors that are the units
of observation here, and the difficulty of R&D and patent series in mea-
suring really big innovations. If one thinks of likely candidates for tech-
nology shocks, it is not hard to think of examples of innovations that
have had perceptible effects on output or productivity, but would proba-
bly not be visible in the R&D or patents series for sectors as broad as
those defined here. Consider Viagra relative to all prescription and
nonprescription drugs; Aspartame relative to the entire food sector, or
the electric-arc steel furnace relative to the entire metals sector. It is in
some sense the essence of important shocks that their effects on produc-
tivity or output are highly disproportionate to the R&D or patents associ-
ated with them. For this reason, it is possible for the industry TFP series
to be reflecting real technology shocks even if those shocks were not
associated with R&D or patents.

Shea correctly points out that this kind of measurement error in the
technology indicators ought to bias the results towards finding no effects
of technology shocks, while he does find significant effects at some
horizons on other inputs. He concludes from this that his negative con-
clusion about the effects of technology shocks on TFP and output should
be taken at face value. While I agree that finding significant technology
effects on inputs puts some qualitative limit on the amount of measure-
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ment error, it seems a bit of a jump to rule out its having a material
impact on the TFP results.

My queasiness about using the significant effects of technology on
inputs to conclude that the negative conclusion about technology and
TFP is real is strengthened by the nature of these significant input ef-
fects. Specifically, the significantly negative long-run contractionary ef-
fect of technology shocks on total inputs seems inconsistent with the rest
of the story. If inputs are falling because of process innovation, then
there is no reason why this should not be seen in a long-run positive
impact on measured TFE. On the other hand, if the story is that in the
complete panel technology is largely producing product innovations that
are not picked up in measured TFF, how can it be that technology shocks
significantly reduce total input in the long run? If TFP is unchanged,
than a significant decline in total inputs implies a significant decline in
(measured) output. While we know that the increase in real output corre-
sponding to improved products may not be reflected in measured out-
. put, itis hard for me to understand how product innovation would lead
to a significant long-run decline in measured output. Overall, then, the
significant pattern of effects of the technology indicators on inputs is not
really consistent with the interpretation given to those indicators, so I
cannot take much comfort from it.

It is the nature of a Comment to focus on criticisms and areas of
disagreement. Despite my having done so, it is still true that I learned a
lot from this paper, and believe that this kind of empirical analysis is
crucial to a better understanding of the linkages between the macro
economy and the microeconomic phenomena of innovation and techno-
logical change.

Discussion

The finding that the link between innovative activity and short-run out-
put fluctuations is weak generated considerable discussion. Several par-
ticipants, including David Backus, Susanto Basu, and Russell Cooper,
stressed the point that, in the business-cycle literature, a “technology
shock” occurs only at the time at which output is affected—not at the
time that the inventive process begins or a technological innovation is
patented. Various factors, including slow diffusion of knowledge, the
need to work out details of implementation, and the time needed to -
adjust factors of production, can lead to long and varying lags between
inventive activity and any effect on output.
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The fact that measures of R&D fail even to affect total factor productiv-
ity (TFP) is a significant puzzle, as Basu noted. Julio Rotemberg pointed
out that this result seems inconsistent with the finding that R&D activity
and TFP growth are positively correlated across industries. Shea re-
sponded that the cross-sectional finding is not inconsistent with the
conclusion that R&D activity has little effect on TFP or output in the
short run. Michael Woodford added that the cross-sectional results may
be spurious, in that R&D activity and TFP growth might be jointly deter-
mined across industries by some third factor. Henning Bohn suggested
that as Shea’s measures of R&D do not affect TFL, it is possible that there
exist unmeasured sources of technical change which determine TFP; and
therefore that we shouldn’t necessarily conclude that TFP changes are
irrelevant for business fluctuations. Backus noted that short-run output
and TFP dynamics are more likely to reflect the underlying transmission
mechanism than the nature of the shocks themselves, and that these
shocks need not be technological to account for observed behavior.

A potentially important but hard-to-measure source of TFP growth is
organizational change. As an illustration, Backus stressed the important
effects on productivity of organizational changes in the airline industry.
Shea and Rotemberg expressed skepticism that changes in organization
were likely to have high-frequency effects.

John Cochrane questioned the implicit restriction that only unantici-
pated changes in research and development have real effects. Unlike
anticipated changes in monetary policy, anticipated changes in R&D
should have important effects on measured TFP and output. Shea de-
fended his approach as an identification assumption; while anticipated
R&D can have real effects, it is difficult to disentangle those effects from
the effects of other shocks that change both R&D and output.

Simon Gilchrist pointed out that the effects of technology shocks on
input use depends on auxiliary assumptions about the economy. For
example, they will depend on the nature of the monetary authority’s
responses to various shocks. Jordi Gali cited results from his own work
supporting the view that the Fed does not accommodate technology
shocks sufficiently.






