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Environmental Policy

and Firm Behavior

Abatement Investment and
Location Decisions under
Uncertainty and Irreversibility

Anastasios Xepapadeas

9.1 Introduction

A firm’s response to changes in environmental policy is an issue that has
drawn considerable attention in the environmental economics literature.'
Questions that usually arise when environmental policy is introduced or
changed are primarily associated with how firms react regarding their
choices of investment in productive or abatement capital, the mix of rela-
tively more or less polluting inputs, the choice of labor input or the deci-
sions about research and development (R&D) expenses (process R&D or
environmental R&D),? or what kind of decisions firms make regarding
location choices.?

This paper focuses on these questions, and in particular it explores the
behavior of polluting firms regarding expansion of abatement capital and
location decisions in the presence of environmental policy. Environmental
policy takes the form of emissions taxes or tradable emissions permits, and
subsidies for the costs of expanding abatement capital. In this context,
accumulated abatement capital can be interpreted as the stock of knowl-
edge in pollution and abatement processes. This knowledge is useful in de-
signing new “cleaner” products or better abatement processes.

One of the major factors affecting the responses of firms when a regula-
tory policy—in our case environmental policy—is introduced or changed

Anastasios Xepapadeas is professor of economics at the University of Crete and dean of
the Faculty of Social Sciences.

1. See, e.g., Xepapadeas (1992, 1997a), Kort (1995), and Hartl and Kort (1996).

2. See, e.g., Xepapadeas (1992, 1997a), Kort (1995), Hartl and Kort (1996), and Carraro
and Soubeyran (1996a, 1996b).

3. See, e.g., Markusen, Morey, and Olewiler (1993, 1995), Motta and Thisse (1994), Hoel
(1994), Rauscher (1995), and Carraro and Soubeyran (1999).
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is uncertainty regarding important parameters of the model. In particular
for the case of firms responding to environmental policy, uncertainty could
be associated with output price movements; that is, demand could be
affected by stochastic shocks, or technological uncertainty could affect the
efficiency of the abatement process. Another type of uncertainty that could
be important is policy uncertainty, which in our case can be associated
with stochastic movements of tradable emissions prices or unpredictable
(from the firms’ point of view) policy changes. In all these cases, the anal-
ysis of firms’ behavior under uncertainty could be important not only in
explaining the effects of environmental policy on abatement investment or
relocation decisions, but also as a guide for exploring issues of optimal
environmental policy design.

A second important factor affecting the same problem is the fact that
firms’ decisions regarding abatement investment and location have irre-
versibility characteristics. Thus abatement investment expenses are irre-
versible once they are incurred by the firms; movement to a new location
when the costs of returning to the old location are sufficiently high is also
an irreversible decision.

Since abatement investment is a dynamic process of accumulating
abatement capital, and the type of uncertainty described undoubtedly em-
bodies a time dimension since output or tradable emissions price evolves
dynamically through stochastic processes, it follows that the analysis of
firms’ responses to environmental policy might be more realistically ex-
plored in a dynamic framework. In a dynamic setup, the interaction of
uncertainty with the irreversibility characteristics of investment decisions
or relocation decisions generates well-known option value issues.*

Thus, the purpose of the present paper is to explore abatement invest-
ment and location responses to environmental policy under uncertainty
and irreversibility. The problem is analyzed in a dynamic setup, where
uncertainty is modeled by It6 stochastic differential equations, by using
optimal stopping methodologies. The idea is to define continuation inter-
vals during which firms do not expand abatement capital or relocate, and
intervals during which firms take the irreversible decision to undertake
abatement investment expenses or relocate. The optimal stopping method-
ology will define a free boundary. When a state variable—which could be
output price, the price of tradable emissions permits, or a technological
coefficient—crosses the boundary, the irreversible decision to increase
abatement capital or relocate is taken. The structure of the free boundary
determines, therefore, the conditions under which the firm will invest in
abatement capital or relocate.

Using this methodological approach, free boundaries are determined or

4. See Arrow and Fisher (1974), Fisher and Hanemann (1986, 1987), and Xepapadeas
(1998) for related issues or Dixit and Pindyck (1994) for a more general treatment.



Abatement Investment and Location Decisions 283

characterized for a variety of cases that include output price uncertainty,
policy uncertainty expressed both in terms of continuous fluctuations of
permit prices and unpredictable policy changes, and technological uncer-
tainty. The advantage of this approach is that although a complex mathe-
matical model is used, the emerging results regarding the structure of the
free boundary are relatively simple and depend on estimable parameters.
Thus it allows the analysis of firms’ responses to environmental policy in
a framework that combines uncertainty and irreversibility effects.

A second advantage of the approach is that when uncertainty is not
associated with environmental policy parameters, but is either demand or
technological uncertainty, the free boundaries are defined parametrically
in terms of policy instruments, such as emissions taxes or abatement in-
vestment subsidies. This allows the meaningful performance of compara-
tive statics regarding the irreversible decisions. Thus it is possible, given
the parameters characterizing the stochastic processes associated with out-
put price or technological uncertainty, to analyze how firms respond to
changes in emissions taxes or abatement subsidies, regarding abatement
investment or relocation decisions, by analyzing the shifts of the boundary.

Finally, the optimal stopping approach makes possible the design of
optimal policies under uncertainty. The optimal policy is determined such
that the firm’s free boundary under the optimal policy is identical to a free
boundary determined by maximizing the objective function of a regulator.
In this case, the firm reaches decisions regarding abatement investment or
relocation, given the stochastic movements of the state variables (output
price or technological uncertainty), which are the same as the decisions
that a regulator would have taken in the same stochastic environment.
Thus this methodology introduces an approach to optimal policy design
in which, under uncertainty, the target is not to choose the instrument
such that the firms choose the same value of the variable of interest (e.g.,
abatement), but rather the target is to induce them to base their decision
rule on the same rule that the regulator would have selected. In this case,
the decision rule is determined by the free boundary.

9.2 Abatement Investment Decisions under Uncertainty

We assume an industry consisting of 7 identical firms producing in a
small open economy. The firms behave competitively and sell their product
in the world market where international competition prevails. We consider
the representative firm producing at each instant of time output ¢(¢) at a
cost determined by a cost function c(g(?)), with ¢'(g) > 0, ¢"(g) > 0. Output
is sold in the world market at an exogenous world price p(?).

The production of output generates emissions. Emissions per unit of
output are determined by the function E(f) = v(¢) e(R(t)), where v(t) > 0 is
an efficiency parameter associated with the abatement process and e(R(?))
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is a function of the accumulated abatement capital, up to time ¢.> A reduc-
tion in v indicates an improvement in the efficiency of the abatement pro-
cess, while abatement capital, denoted by R(¢), is defined as

R(t) = Jr(s)ds,
0
where r(s) is the abatement investment flow undertaken at instant of time
s. This flow can, for example, represent resources devoted to the firm’s lab
in order to design cleaner processes at time s. It is assumed that r(s) = 0;
thus, the abatement capital accumulation process is irreversible.® For the
abatement process, we assume that

e(0) =0, ¢(R) <0, ¢"(R) >0,
lgée(R) < —oo, %&e(R) = 0.

Therefore an increase in abatement capital reduces unit emissions at a
decreasing rate, which means that diminishing returns in abatement capi-
tal are assumed. Thus, when the firm produces output ¢(¢), total emissions
are defined as v(¢) e(R(?)) ¢(?).

The cost for increasing the stock of accumulated abatement capital by
AR is defined as (1 — s) AR, where / is the exogenous unit-abatement
investment cost and s € [0, 1) is a subsidy potentially given by the govern-
ment to cover some of the expenses for expanding abatement capital. As-
sume that the firm pays an exogenously determined emission tax 7(z). Then
the tax payments are defined as 1(t)[ v(z) e(R()) ¢(1)].

Given this setup, the firm has to decide about output production and
abatement investment. At each time the firm decides about the optimal
output level given the stock of abatement capital. Thus output is regarded
as an operating variable and output decisions can be regarded as short-
run decisions, while abatement investment decisions are long-run deci-
sions. The optimal choice of output for any given level of abatement capi-
tal determines a reduced-form instantaneous profit function, which can be
defined as

(D w(p,v,7.R) = maxip(t)q(t) — c(q(t)) — 7(O(0)e(R(1)q()]}-

The first-order conditions for the optimal output choice, assuming interior
solutions and dropping ¢ to simplify notation, are given as

5. A more general formulation would be to define the e(-) function as e(R, R4°), where
RA% = nR, is aggregate abatement knowledge. In this case there could be positive spillovers
from aggregate abatement capital to the individual abatement function. When firms consider
aggregate knowledge as fixed, there is a divergence between the private return of abatement
capital and the social return of abatement capital (Xepapadeas 1997b).

6. To simplify things, we ignore depreciation issues.
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p — (q) — e(R) =0,
with optimal output determined as
q* = ¢*(p,7,m, R).

Using the first-order conditions for the optimal output choice, we obtain
the following short-run comparative static results:
dq* daq* oq*

*
>0, <0, +<0, == >0.
op ot v oR

Thus an increase in the tax rate or a reduction in the abatement efficiency
(increase in v) reduces optimal output, while an increase in the stock of
abatement capital increases optimal output. From the short-run compara-
tive statics and the envelope theorem, we obtain the derivatives of the
profit function as’

aa;r = ¢*(p,v,T,R), g;f = aa‘g >0,

I (R < 0, TT = ()% 5,

?T: = —(ve(R)g*) < 0, 3:7 - —ve(R)% > 0,

g% = —me'(R)g* > 0, g:zr = —TV(e”(R)q* + e'(R)%CZj-

Thus the profit function is convex in prices for fixed (r,v, R), decreasing in
(1,v), and increasing in R.

Uncertainty can be introduced into this model in three ways. First, it
can be assumed that the world demand is affected by stochastic shocks
giving rise to a geometric Brownian motion price process. In this case,
output price is the exogenous state variable,

2 dp(t) = ap(t)dt + op(t)dz,(1),

where [z (¢)] is a Wiener process,® and a and o are constants. If the current
price is a given constant p(0) = p,, then the expected value of p(¢) is
E[p(®)] = p,e* and the variance of p(¢) is’

7. It is assumed that [¢"(R)g* + ¢'(R)(g*/R)] > 0, so that the profit function is concave in
R for fixed (p, 7, v). The concavity assumption requires sufficient curvature of the unit emis-
sions function e(R).

8. For definitions see Malliaris and Brock (1982).

9. See Dixit and Pindyck (1994).
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VIp)] = ple(e™ - 1),

It should be noted that the Brownian motion assumption causes price
to move away from its starting point. If, however, price is related to long-
run marginal costs, then a better assumption about price movements could
be a mean-reverting process. Under this assumption, price tends toward
marginal costs in the long run and price movements can be modeled as

dp(t) = a(p(t) — p(t))p(t)dt + ap(t)dz,(1),

where p(¢) can be interpreted as long-run marginal costs.!®
Second, it can be assumed that environmental efficiency evolves stochas-
tically according to the geometric Brownian motion:

3) dv(t) = yr(t)dt + dv(t)dz(1).

The interpretation of this type of uncertainty can be associated with the
stochastic operating conditions of abatement equipment. It can also be
associated with stochastic effects of the general level of abatement knowl-
edge in the economy that is external to the firm, but can affect the firm’s
abatement efficiency through spillover effects.!!

Third, it can be assumed that environmental regulation takes place
through a system of tradable permits, in which case 7(¢) can be interpreted
as the competitive market price for permits, which can evolve stochas-
tically according to the geometric Brownian motion:!?

4) dr(t) = mt(t)dt + w7(t)dz (1).

Given the firm’s instantaneous profit function (1), the next stage is to
define the optimal abatement investment policy for the types of uncer-
tainty described.

9.2.1 Abatement Investment Decisions under Price Uncertainty

Having optimally chosen the output level, the next step is to analyze the
decision to undertake new abatement investment, denoted by AR, from
the existing abatement capital level of R, under price uncertainty modeled
by equation (2) and assuming that (7, v, s, &) are fixed parameters. Consider
the firm’s decision to undertake new abatement investment by AR from
the existing abatement capital level R;; then the new abatement capital
level becomes

10. If we consider entry and exit decisions in the world market, then an upper reflecting
barrier p to the price movement can be considered. When price moves to the reflecting bar-
rier, new entry is triggered, quantity increases, and price decreases.

11. Stochastic delays in the R&D processes can be modeled by assuming that v follows a
Poisson process.

12. Then v(¢) e(R(?)) q(7) can be interpreted as the excess demand for permits. The expected
values and the variances for v(¢) and of 7(¢) are defined in a similar way as for p(z).
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R, = R, + AR.
The cost of this change in abatement capital is defined as
(5) (1 = 9A(R,, — R,).

In the model developed here, the optimal abatement investment strategy
takes the form of a free boundary, p = p(R; T, v, s, h), relating price and
accumulation of abatement capital. This boundary is parametrically de-
fined for the vector of parameters (1,v, s, 7). When observed price p°® is
less than p(R; T, v, s, h), no abatement investment is undertaken, while
when p°® is greater than p(R; 7, v, s, h) enough abatement investment is
undertaken in the current period to restore equality on the boundary.
Changes in the parameter vector (t,v, s, &) shift the boundary and can
accelerate or decelerate abatement investment accumulation for any given
price. Thus we can determine, by using comparative statics associated with
the free boundary, the effects of environmental policy on the firm’s deci-
sion rule regarding abatement investment.

Assume that the initial price is p, and the firm’s initial abatement capital
stock is R,. Given a discount rate p, the firm seeks the nondecreasing pro-
cess R(), which will maximize the present value of profits less the cost of
development. The value function'® associated with this problem can be
written as

(6) V(p,R) = max %Te’“’fr(p(t), v(t),7(t),R(¢))dt,

subject to equation (2).

At each instant of time, the firm has two choices: to undertake the new
abatement investment or not. The time interval when no new abatement
investment is undertaken and the existing abatement stock is used to deter-
mine the unit emission coeflicient, can be defined as the continuation inter-
val. A stopping time is defined as a time J at which new abatement invest-
ment is undertaken.

Let R*(9) be the optimal development process at time J. If T is a
stopping time, then

(7 V(p,R;7,v)

= mgx%[?e“’”w(p(u),v,T,R(u))du + e‘PgV(R*(g),p(g))},

0

where R*(9) is the optimal process at time J (see Fleming and Soner
1993). Assume that in the time interval [0, 8], the firm undertakes no new

13. By the concavity of the profit function in R and the linear dynamics, the value function
is also concave in R (Dixit and Pindyck 1994).
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abatement investment, but keeps it constant at R,. By the principle of
dynamic programming, the value function should be no less than the con-
tinuation payoff in the interval [0, 8], plus the expected value after 6, or

®) V(p,R;7,v)
> %ﬁePl’w(p(u),v(u),T(u),R(u))du + eV (R(0),p(0))],

with equality if R, is the optimal policy in [0, 6]. Applying It6’s lemma to
the value function on the right-hand side of equation (8), dividing by 6,
and taking limits as 8§ — 0, we find that the value function should satisfy**

©) Wz%wﬂm+@n+ﬂﬂmﬂx

with equality if R(f) = R, in the interval [0, 8].

Consider now the decision to undertake abatement investment instanta-
neously by AR = R,, — R,. Then from the definition of the optimal stop-
ping time, we have

(10)  V(p,R;7,v) 2 EV(R,.,p;7,v) = (1 = (R, = R))].

Since the value function is concave in R, the optimal abatement invest-
ment flow can be obtained by maximizing the right-hand side of inequality
(10). The necessary and sufficient condition for the optimal abatement in-
vestment choice is

(1D ViR, p;1,v) — (1 = s)h <0,

with equality if AR > 0.

Thus when no new abatement investment is optimal, inequality (9) is
satisfied as equality, whereas when new abatement investment is optimal,
inequality (11) is satisfied as equality. Combining inequalities (9) and (11),
the Hamilton-Jacobi-Bellman (HJB) equation can be written as

(1) min{pv ST, = b, = w(paR)|

—U@—a—sm%=u

The optimal free boundary will divide the (p, R) space into two regions:
the “no new abatement investment” region, which we call region I, and
the “new abatement investment” region, which we call region II.

In region I, the first term of the HIB equation (12) is 0, since AR = 0,

14. Subscripts associated with the value function denote partial derivatives.
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and the second term of the HJB equation is positive by inequality (11);
while in region II, the second term of equation (12) is satisfied as 0 and
AR > 0. These conditions allow the determination of the value function
and the free boundary as functions of the policy parameters.

PROPOSITION 1. Given the structure of the model as defined above and a
quadratic cost function c(q) = 2cq?, the value function and the free boundary
are defined respectively as

V(p,R) = A(R)p* + Il(p,R;7,v),
Vi(p,R) = A(R)p* + I (p,R;7,v) = (1 — s)h, A(R) <0,

p(R;T,V,S,h) — _Bl (p - a) [Cp(l - S)h + TV@(R)Q’(R)]‘
B, -1 P Tve'(R)

ProOF. See the appendix.

The solution of the value function V(p, R) indicates that the maximized
expected value consists of the term II(p, R; T, v), which can be interpreted
as the present value of net profits when abatement capital is kept constant,
and the term A4,(R)pP!, which is the current value of the option to expand
abatement capacity. When the firm increases abatement capital, it sacri-
fices the option value of the incremental abatement capacity; thus 4;(R)
< 0. Therefore an increase in abatement is desirable if its contribution to
net profit Il ,(p, R; 7, v), realized through savings in emissions taxes less
the cost of giving up the option to wait 4,(R)pP!, equals the marginal
expansion cost (1 — s)i. The free boundary p(R; 7, v, s, 1) can be deter-
mined for estimated parameter values that characterize the price process,
the cost structure, and the discount rate. Since p(R) > 0, the free boundary
is defined for parameter values such that cp(1 — s) & > | Tve(R)e’(R) |. In
order to describe the free boundary we have, by the assumptions on the
unit emissions function, p(0) > 0 and lim,, ,_ p(R) = +eo. Furthermore,

ap B, (p — a) [()(€)’ — cp(l — s5)he”]

= 0.
OR B, -1 p v(e')? g

The free boundary is shown in figure 9.1. For any given level of abatement
capital, random price fluctuations move the point (R, p) vertically upward
or downward. If the point goes above the boundary, then new abatement
investment is immediately undertaken so that the point shifts on the
boundary. Thus optimal abatement capital accumulation proceeds gradu-
ally. In the terminology of Dixit and Pindyck (1994), this is a “barrier
control” policy.

By inverting the free-boundary function p(R; 7, v, s, 1), we can obtain the
optimal boundary function R* = p~!(p; z), which determines the optimal
abatement investment boundary as a function of the state variable p and
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Fig. 9.1 Free boundary under price uncertainty

the vector z of the parameters of the problem. For price movements to the
right of the boundary, new abatement investment is undertaken. If price
stays on the left of the boundary, no new abatement investment is under-
taken.

If price follows a mean reverting process, then the HIB equation for
region I that corresponds to equation (12) becomes

, 1 -
12y pV - EGZPZVW —a(p - p)pV, — w(p,R;7,v) = 0.

The steps for solving for the optimal boundary are the same as before;
however, due to the more complicated structure of equation (12"), the anal-
ysis of the effects of mean reversion requires numerical solutions (see Dixit
and Pindyck 1994).

9.2.2 The Impact of Changes in Policy Parameters

We can examine the shifts of the free boundary in response to changes
in the tax parameter 7 or the subsidy parameter s. These effects are deter-
mined as

B _ B (p-aepl — Dk _
or B, -1 p T2ve’

>

o _ B (p-aeph _,
as B, -1 p v

Thus an increase in the tax rate or the subsidy rate shifts the boundary
downward and induces more abatement investment for any given price
level, as is also shown in figure 9.1. An increase in the tax rate might not,
however, increase abatement investment if there is a drop in prices below
the boundary. This is because the reduction in equilibrium output and the



Abatement Investment and Location Decisions 291

consequent emissions reduction do not necessitate an increase in abate-
ment. Abatement investment might increase at a future time when prices
go up. This reveals that uncertainty affects the timing of the impact of
environmental policy. At declining prices, a change in environmental pol-
icy might not induce any abatement investment. The impact of the policy
might, however, be realized with a delay.

By performing the same type of comparative statics, we obtain

dp
- < 0.
av <

A reduction in abatement efficiency induces more abatement investment
for any given price level.

9.2.3 Optimal Environmental Policy

In section 9.2.2 the tax and the subsidy parameters were treated as fixed.
The analysis can, however, be extended to analyze the case of an environ-
mental regulator who can choose the policy parameters optimally. Optimal
policy choice is considered in the following way. From proposition 1, the
free boundary that determines the profit-maximizing abatement invest-
ment depends on the tax and subsidy parameters. Consider the case of an
environmental regulator that determines a socially optimal free boundary
by explicitly taking into account environmental damages. An optimal en-
vironmental policy can then be defined by determining the values of the
policy parameters such that the profit-maximizing free boundary will coin-
cide with the socially optimal free boundary, as determined by the environ-
mental regulator. Define a social profit function by

W(p,v.R) = max[p(t)q(t) — c(q()) — D(v()e(R(1))q(1))],

where D(v(f)e(R(?))¢(?)) is a strictly increasing and convex damage func-
tion. By following the steps in section 9.2.1, a free boundary that deter-
mines the socially optimal abatement investment under price uncertainty
can be defined. Denote this free boundary by p*(R), and consider the free
boundary defined in proposition 1 as a function of the policy parameters,
or p(R; T, 5). An optimal environmental policy can be defined as the pair

(7%,5%) © p(R;7%,5%) = p°(R).

A solution of the form 7* = {(s*) will determine the trade-off between
emissions taxes and abatement investment subsidies in the design of envi-
ronmental policy.'>

In the simplest possible case of constant marginal damages at the level
d, the optimal trade-off is determined as 7 = d(1 — s). The tax rule for

15. The relationship between the two policy instruments can be further elaborated to in-
clude budget-balancing schemes, where total tax revenues equal total subsidy expenses.
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this case is very simple and, given the parameters of the model and output
price observations, the regulator can determine the firms’ responses re-
garding abatement investment.

It is interesting to note that under uncertainty and irreversibility, the
optimal environmental policy equates the privately optimal and the so-
cially optimal free boundaries and not the privately optimal and the so-
cially optimal levels of the choice variables as in the case of optimal policy
design under certainty.

9.3 Abatement Investment Decisions under Environmental Policy
or Abatement Efficiency Uncertainty

When, under fixed prices, the environmental policy uncertainty is pres-
ent in the form of stochastic evolution of prices for tradable emissions
permits, or abatement efficiency is stochastic, then the mathematical treat-
ment is similar, although the sources of uncertainty are different. Policy
uncertainty can be regarded as uncertainty outside the firm, while abate-
ment uncertainty can be regarded as internal to the firm. So although the
mathematical results are the same, their interpretation and their policy
implications are different.

In the case of policy uncertainty, the HIJB equation can be written as

min{pV - %wzﬂerﬂ -ntV, - ﬂ(T,R;p,V):|, -[Ve-(1- S)h]} =0.

As before, the optimal free boundary will divide the (t,R) space into two
regions: the “no new abatement investment” region (region I) and the
“new abatement investment” region (region II).

PRrROPOSITION 2. For the quadratic cost function defined in proposition 1,
the value function and the free boundary are determined as

V(T,R) = BI(R)T§1 + &(p,R;T,v), BiI(R) <0,
Vo(1,R) = B/(R)TY + &p(p,R;7,v) = (1 — $)h,

“E, A(RIE, - 1) + A

7(R) = ’
. 28, - 2) A% (R)
A= [A’I(R)(&lg 1}] + 4A’2(R)[E”g 2](1 - s)h,
N(R) = — PR v gy = DURER)
l cn-p) T 7 2¢(0” + 2m = p)

PrOOF. See the appendix.



Abatement Investment and Location Decisions 293

)

v

7 R

v

Fig. 9.2 Free boundary under policy uncertainty

The interpretations of the value function and the free boundary are simi-
lar to those under price uncertainty.

Using the assumptions about the unit-emissions function we have

lg}) T(R) = —, and EET(R) =M > 0.
If the free boundary is monotonic, a property that can be checked by using
specific functions, then its graph is shown in figure 9.2.

An increase of the policy parameter above the boundary induces more
abatement investment. By inverting the T7(R) function, an optimal bound-
ary function for abatement capital accumulation in terms of the policy
parameter 7 is defined as

R* = 17Y(71,2).

Policy uncertainty and abatement efficiency uncertainty can also be ex-
amined together by introducing the variable z = Tv, with €(dz_ dz,) = p_dt.
Using the fact that 9°z/d1> = 9°z/dv> = 0 and 0°z/dTv = 1 we obtain

dz = (y + m + p,dw)zdt + (3dz, + wdz,)z.

Thus changes in z have mean and variance
ky
k,

Y +m+ p,d0,

3% + 2p_dw + o?,

respectively. Following the same steps as before, the HJB equation is de-
fined as
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min{[pV - %k%szx —kzV, - ’n'(z,R;P)} -[Ve-- s)h]} =0.

Then the free boundary can be defined in the context of correlated policy
and technological uncertainty, as in the previous case of policy uncer-
tainty.

9.3.1 Unpredictable Policy Changes

Policy uncertainty as analyzed previously is associated with continuous
fluctuations of the tradable-emissions-permit price. It is possible, however,
for a sudden change in policy due, for example, to an unexpected (from
the firm’s point of view) change in the supply of permits, to cause a discon-
tinuous change in their price. In the context of our model, this unpredict-
able change introduces jump characteristics. Thus, while the usual fluc-
tuations in prices are captured by the geometric Brownian motion, the
sudden policy change should be captured by a Poisson process. Therefore,
the price of permits is modeled by a mixed Brownian motion and jump
process, or

dr = mtdt + wtdz. + 1dg”,

where dg” is the increment of a Poisson process with a mean arrival time
of the change in the supply of permits \. We further assume that the
change in the supply of permits represents an increase and that this causes
a fixed drop in the price'® by a known percentage s € [0, 1] with probabil-
ity 1, and that dz_ and dq” are independent.

To analyze this problem, the HIB equation is derived by using Ito’s
lemma for combined Brownian motion and jump process (Dixit and Pin-
dyck 1994). Then the HJB equation can be written as

min{pV - %szzKT - 1V - 'n'(T,R;p,v)}

+ AV = )7 - V], - [V, - (1- S)h]} = 0.
The solution to the value function is

V(T,Rb) = BUR)T + (1, R; p,v, 1),

where &) is the positive solution of the nonlinear equation (see Dixit and
Pindyck 1994),

16. A fixed increase in the price can be treated symmetrically.
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JOEE =D+ Mg = (o + N+ M= ) =0,

Once a solution for & is obtained, then the free boundary can be obtained
as before.

It should be noted that special cases of the general mixed Brownian
motion and jump process model can be used to analyze specific cases. For
example, if n = o = 0 is set and 7 is interpreted as an emissions tax, then
the same model can be used to analyze the implications of unpredictable
changes in the emissions tax rates.

The analysis of policy uncertainty provides a general way of analyzing
firms’ reactions to environmental policy. Given the structure of the free
boundary, which can be determined for estimated parameter values, the
regulator can obtain the firms’ reactions to a wide range of policy changes
using a unified model.

9.4 Location Decisions

When we examine location decisions, the problem can also be defined
as an optimal stopping problem. In the waiting or continuation region, the
firm stays in its present location, pays the emissions tax, and follows the
optimal abatement capital-accumulation path, R*(¢), given uncertainty de-
scribed by the evolution of the state variable (price, policy parameter, or
technology parameter).

Suppose that the firm examines the possibility of relocation to a new
location (country) where there is no environmental policy. Assume that the
setup costs are fixed, F, and are incurred once at the time of relocation,
that the cost function remains the same, and that there are no transporta-
tion costs.!” Suppose that relocation takes place at time ¢,; then the profit
function for the firm that chooses optimally operating output is defined as

w,(p(t)) — F, fort =1¢,,
Trd(p(t))’ fort > I

where m,(p) = max [pg — c@)].
Assuming that price uncertainty exists, then at each period of time the

firm faces a binary choice:

1. Relocate and take the termination payoff defined as W(p(t,),F)) = €
frem (pe)dt — F.

2. Continue operation at the initial location for one period, choosing
output and abatement investment optimally; receive the operating profits;
and then consider another binary choice in the next period.

17. See the proofs of propositions 1 and 2 in the appendix for these conditions.
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The Bellman equation for this problem can be written as

13) V(p) = max{w(p,T,v,R*) +
1+p

eV (p + dplp)) W(p,F)}-

In the continuation region, the first term on the right-hand side is the largest.
Using It6’s lemma on this term, we obtain the usual differential equation,

- apV, — w(p;R%7,v) = 0,

p

(14) oV — %azpzv

with solution
(15) V(p(t):R*7,v) = K,p(t)" + H(p(1);R%,v).

From the Bellman equation we have that at the critical relocation time 7,
(16) V(p(t,):R*7,v) = W(p(t,), F).

This is the value-matching condition. The smooth-pasting condition re-
quires that!®

(17) V.(p(t,); R 7,v) = W (p(2,), F).

Conditions (16) and (17) can be used to determine the constant K, and the
free boundary p = p*(z,). By inverting the boundary equation we obtain
the optimal relocation time boundary function #¥ = p*~!(p). This bound-
ary determines the critical relocation time as a function of the observed
price for given values of the parameters T, v, and s.

Environmental policy uncertainty or abatement efficiency uncertainty
can be treated in the same way. Suppose that policy uncertainty exists in
the sense of stochastic permit prices. Then, following the same steps as
before, the free boundary T = 7#(¢,) is defined by the following conditions,
using the quadratic cost function:

V(r(t):R*, p,v) = Ar(0)" + @(1(1); R% p,v),

V(t(t,);R* p,v) = W(F), value matching,

W(p,F)

- s ,
ferPar — F = P~ — F, pfixed,
o 2 2cp

V.(7(t,);R% p,v) = W.(F) = 0, smooth pasting.

Using these conditions, the free boundary 7*(¢) is implicitly defined by

18. Alternative assumptions could include the existence of a different environmental policy
abroad, for example command and control regulation, or differences in the political systems
that affect the stringency of environmental policy.
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By inverting the boundary function 7*(z,), we obtain the optimal relocation
time boundary function ¥ = 7*~!(7) in terms of the environmental policy
parameter and the rest of the parameters of the problem. Optimal reloca-
tion implies the existence of a threshold policy parameter such that when
the actual policy parameter crosses this threshold, relocation takes place.
This result is stated in the following proposition.

PROPOSITION 3. Let 7°(t") be the observed environmental policy parameter
at time t'. If to(t") < v*(t"), then it is optimal to remain at the initial site. If
To(t") > T*(t") it is optimal to relocate at time t'.

ProoOF. See the appendix.

This proposition implies that for any time ¢ a threshold environmental
policy parameter exists such that when the policy parameter exceeds the
threshold, the firm moves to the new location. The relation between the
threshold policy parameter and the optimal relocation time is shown in
figure 9.3, where 7 indicates the permit price that induces immediate relo-
cation. The lower the permit price, the further away the optimal relocation
time is. When the permit price crosses the boundary, it is optimal to take
the irreversible relocation decision. Similar analyses, although with differ-
ent interpretations, can be applied to the case where uncertainty relates to
abatement efficiency, or to correlated policy and abatement uncertainty.

The analysis suggests that since firms are identical, they will relocate
simultaneously when the critical time arrives. If firms are heterogeneous
regarding characteristics of production cost or abatement technologies,
then the optimal relocation time will be different across firms. In this case,
there will more than one boundary such as the one depicted in figure 9.3.
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Suppose that a second boundary, 7(z,), exists and, as shown in figure 9.3,
the two boundaries do not intersect. Then the same permit price 7 implies
different optimal relocation times.

9.4.1 Relocation Time Policy under Uncertainty

The free boundaries and the optimal relocation policy functions derived
here can be used to provide useful information regarding the effects of
exogenous shocks on the critical relocation time and describe a framework
for designing a policy that could affect relocation time. This can be ob-
tained by performing comparative static analysis of the optimal bound-
ary function.

Assuming, again, identical firms to simplify things, consider the bound-
ary function ¥ = p*~! (p; 7, v, 5) and take the derivative:

ak _ ap™'(p)
oT ot

This derivative determines the effect on the critical relocation time of an
exogenous change in the emissions tax for any given price level. In the
same way, the effects from changes of other parameters of the model on
relocation time can also be defined.

Consider now the total differential,

ot*

ds.
ass

ot*
dt}(p) = ai:dld +
This differential can express the rate of substitution between the emissions
tax rate and the abatement investment subsidy rate in order to produce a
given change in the critical relocation time at any given price level. For
example by setting dr*(p) = 0, the marginal rate,

ds _ dt,/07
dr  0t,/9s’

expresses the necessary increase in the abatement investment subsidy in
order to keep the critical relocation time constant after an increase in the
emissions tax for any given price. The changes in the policy parameters
shift the free boundary p = p*(¢,) and enlarge or shrink the stay or relocate
regions as shown in figure 9.4. The particular forms of the policy functions,
the comparative static derivatives, and the marginal rates of substitution
can be explored under the quadratic cost function assumption.

9.5 Concluding Remarks

The responses of firms to environmental policy regarding their abate-
ment investment and location decisions have been analyzed in an analyti-
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cal framework characterized by uncertainty and irreversibilities. The opti-
mal stopping time methodology adopted in this paper makes it possible to
analyze firms’ responses to environmental policy in terms of the impact
that this environmental policy has on the barrier control policies followed
by firms regarding their profit-maximizing decisions. The analysis of envi-
ronmental policy impacts through their effects on barrier control policies
makes it possible to view these impacts as shifts of a free boundary that
determines firms’ policies regarding abatement investment or relocation
decisions. In this sense the approach developed in this paper can be re-
garded as another way of analyzing the effects of regulatory policy under
conditions of uncertainty and irreversibility. Despite the mathematical
complexity of the approach, the effects of regulatory policies on the free
boundary are determined by parameters related to the stochastic process
associated with uncertainty and the firms’ production structure, which are
in principle estimable.

It is also possible to use the optimal stopping time methodology in order
to design optimal environmental policy under uncertainty and irreversibil-
ity, in the sense of choosing the policy parameters so that the free bound-
ary, or equivalently the optimal policy function under profit maximization,
coincides with the socially optimal free boundary (abatement-investment-
policy function). The implication of this approach regarding optimal pol-
icy design under price uncertainty and irreversibility is that a regulator
can in principle design a policy scheme consisting of two instruments: an
emissions tax or a tradable permit system, and a subsidy on abatement
investment. The policy scheme takes into account uncertainty through its
dependence on the parameters of the price process and will induce individ-
ual firms to undertake the same output and abatement investment under
uncertainty that a regulator would have undertaken. In this sense, the pol-
icy mix of emissions taxes (or emissions permits) and abatement invest-
ment subsidies will be welfare maximizing. It should be noticed that the
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function T* = {(s*), determining the optimal trade-off between taxes and
subsidies, allows the regulator to determine the policy mix in order to ob-
tain an optimal balance between the output-contracting pollution control
by emissions taxes and pollution control through the subsidization of the
accumulation of abatement capital.

A similar mix of emissions taxes (or emissions permits) and abatement
investment subsidies can be used to affect location decisions. By linking
location decisions to subsidies in emissions-reducing abatement invest-
ment, it was possible to derive rules relating to the amount of subsidy
required in order not to accelerate relocation after the introduction of a
stricter environmental policy. Given the function that determines optimal
relocation time as a function of the observed price, an increase in emis-
sions taxes may induce relocation of all or a subset of firms, depending on
the heterogeneity assumptions, by bringing relocation time forward at the
same price level. If relocation is not desirable, it may be prevented by an
appropriate increase in the abatement subsidy. On the other hand, if price
movements in the world market induce relocation, our results indicate that
it could be prevented by an appropriate change of the policy mix, that is,
changes in emissions taxes and/or abatement subsidies.

Further research could be directed toward the study of the relocation
time when the country abroad follows a different environmental policy, or
when the firms in the home country are heterogeneous. Further research
could also be directed toward the study of the socially optimal relocation
time. The optimal-stopping-time methodology could indicate the time at
which it is socially desirable for a firm to relocate, and then help to design
a policy scheme to prevent suboptimal relocation decisions.

Appendix

Proof of Proposition 1

From the HJB equation we obtain for region I
1, .,
(Al) pV - Eozp-Vpp - apV, — w(p,R;7,v) = 0.

The general solution of this second-order differential equation (A1) can be
obtained as"

V(p.R) = A(R)p» + A(R)p* + TI(p,R:7,v),

where

19. The homogeneous part of this differential equation is an Euler equation.
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1 a . fa 1)V 2
= -2+ |5 -2+ 5
B 2 o? \(0'2 2) o?

is the positive root; B, is the corresponding negative root of the fundamen-
tal quadratic,

Q=%GZB(B—1)+aB—p:0;

and II( p, R; 7, v) is the particular solution. We need to disregard the nega-
tive root in order to prevent the value from becoming infinitely large when
the price tends to 0; thus we set 4,(R) = 0 (see Dixit and Pindyck 1994).
So the solution becomes

(A2) V(p.R) = A(R)p" + L(p,R;7,v).

In order to obtain tractable results we need a better specification of the
particular solution. To obtain such a specification, we consider a quadratic
cost function c(g) = /2c¢? then the profit function becomes

w(p,7,v,R) = zic{p2 — 27ve(R)p + [tve(R)]*}.

Using the method of undetermined coefficients, we obtain the particular
solution as

(A3) M(p,R;t,v) =T, + I''p + [, p?,
2
(Ad) T, = - [Tve(R)] T, =- Tve(R) T, = 1 ’
2¢p c(p—a) 2¢(p — 2a — ¢?)

p—a>0, p—2a—-o0c*>0.

In region II the second term of equation (12) is satisfied as 0 and AR >
0, or

(AS) V(p.R) — (1 — s)h = 0.

Solving equation (AS5) for p in terms of R, we can write the yet unspecified
boundary equation as p = p(R). From equations (A2) and (A5) we can
determine the unknown functions 4,(R) and p = p(R) using the value-
matching and the smooth-pasting conditions.?® The value-matching condi-
tion means that on the boundary separating the two regions, the two value
functions should be equal. Then we have, combining equations (A2) and
(AS) and substituting for p,

20. For a presentation of these conditions, see Dixit and Pindyck (1994).
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(A6) Vi(p.R) = A(R)p™ + T(R) + T(R)p = (1 = s)h, p=p(R).

The smooth-pasting condition means that the derivatives of the value func-
tions with respect to p on the boundary are equal, or

(A7) V(P R) = B A(R)p"™ + TI(R) = 0, p = p(R).

Combining equations (A6) and (A7), we can solve for the unknown func-
tions p(R) and A4,(R) to obtain

B, (I - s)h - I'(R)

(A8) PR) =

T(R)

A9 A(R) = —
(A9) (R) [Bl

][p(R)]IB‘ :

Relationship (A8) is the equation of the free boundary, which can be writ-
ten, after substituting for I'j(R) and I'|(R), as

B (@ = p)[ep(1 = $)h + Tve(R)E(R)]

(ALD) — p(R) = B, -1 p Tve'(R)

Proof of Proposition 2

In region I, the first term of the HJB equation is 0, since AR = 0, and
the second term of the HJB equation is positive. Thus in region I,

PV = J@ TV, = mil = m(nRip) = 0.

The general solution of this second-order differential equation can be ob-
tained as before as

V(t,R) = Bl(R)T‘il + BZ(R)”A":2 + O(p,R;T,v),

where

2
1 I M 1 2p
= - 4+ |+ -] + 251
3 2 ? \(mz 2) ?

is the positive root; &, is the corresponding negative root of the fundamen-
tal quadratic,

0 = JwEE - 1) + M5 - p = 0;
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and ®(t, R; p, v) is the particular solution. As before, we set B,(R) = 0, so
the solution becomes

V(7,R) = B,(R)T™ + O(1,R;p,v).

Using again the quadratic cost function specification, c(g) = 2cq?, we
obtain the particular solution as

O(7,R;p,v) = A, + AT+ A,7?,

’ o pveR) [re(R)]
P 2¢(0* + 2m - p)

A = P =
’ 207 ! cn - p)

In region II, the second term of the HJB equation is satisfied as 0 and AR
>0, or

Ve(t,R) — (1 — s)h = 0.
The value-matching and smooth-pasting conditions imply that
(All) V(7,R) = B[(R)™% + AY(R)T + AJ(R)7> = (1 — $)h, 1=1(R),
and
(A12) V,.(7,R) =& B/(R)T" + A(R) + 2A%(R)T=0, 7=1(R),
respectively, where

_ pre(R) >0, A(R) = 2ve(R)e’(R)

AR == = ) 2@ + I + p)

Combining equations (A11) and (A12), we obtain a quadratic expression
that implicitly defines 7(R) as

&1_2

1

E_»l_l

1

(A13) A;(R){ jT(R)z + A;(R)[ ]T(R) — (1= s)h=0.

By taking the positive root of equation (A13), the free boundary is de-
fined as

&, A(RIE, - DIE] + A
2(¢, - 2) A(R)

[Aque)[&‘ : lﬂ + 4A;(R>(§1§‘12J(1 - 9h,

with § > 2 for A > 0.

7(R) =

b

A
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Proof of Proposition 3

The Bellman equation is

b e+ d’T|T)],W(p,F)}.

V = max ;D Vv, R*) +
(1) {w(TpV ) I+ pdr

Following Dixit and Pindyck (1994), define G(t) = V(1) — W, T + dr =
7’ and subtract W from both sides of the Bellman equation to obtain

(Al14) G(7) = max {O,fn'(ﬂr) -W+ L JV(T’)d(I)(T,lT)}
1+ pdt
1 1

maX{O,'rr(T) -W+ J-G(T,)d(D(T,lT)}.

W+
1+ pdt 1+ pdt
Since W does not depend on 1, we have that the expression,

1

m(T) = ’1T('T) —W+m

>

is decreasing in T, since dm/dr = dmw/dv < 0. The function m(t) reflects the
difference between waiting for one period before relocating and relocating
right away. Since m(t) is decreasing in T, continuation—that is, no reloca-
tion—should be optimal when T is low.

Assume that the cumulative distribution ®(7’ | 7) of the future values of
the policy parameter shifts uniformly to the left as 7 increases, so that the
disadvantages of an increase in the current value of the environmental
policy parameter in the original location are unlikely to be reversed in the
future. This assumption, along with the decreasing m(7) function, implies
that G'(7) < 0 (see Dixit and Pindyck 1994, app. B).

Therefore, the second argument of equation (A14) is decreasing in 7.
Thus, a unique critical time 7*(¢") exists such that the second argument of
equation (A14) is negative if and only if 7o(z") > 7*(¢'). Then it is optimal
to relocate (optimal to stop) at time ¢'. If 7o(z") < 7*(¢'), then it is optimal
to remain at the initial site (continue).
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Comment Charles D. Kolstad

This is a very interesting and impressive piece of work. Prof. Xepapadeas
has tackled a very difficult question: In a dynamic context with irreversibil-
ities in abatement investments and a pollution tax and abatement subsidy,
as well as uncertainty, what is an optimal output and investment profile?
The author examines three types of uncertainty: stochastic evolution of
product price, stochastic evolution of the efficiency of abatement, and sto-
chastic evolution of the pollution tax (or the price of pollution permits).
Quite naturally, the author then asks what is the optimal environmental
policy given this behavior of firms? Related to this issue, he closes the
paper by asking what the optimal time is for firms to pull up stakes and
move to a location with lighter environmental regulations.

While the paper provides an impressive use of stochastic calculus, the
paper would be improved by refining or at least justifying some aspects of
the model to provide a closer connection to realistic problems in pollution
policy. For instance, of the three types of stochasticity, product-price evo-
lution seems the most realistic and interesting. It is difficult to visualize the
efficiency of abatement equipment following a random walk, sometimes in-
creasing, sometimes decreasing. In the case of the level of a pollution tax,
one would not expect it to wander around, since it is set by policymakers.
On the other hand, it is plausible that the price of permits could follow a
stochastic process, much as stocks do.

It would appear that one of the primary purposes of this paper is to
investigate the importance of uncertainty and irreversibilities. Because of
this, it is somewhat disappointing that the paper focuses on only one type
of irreversibility—abatement capital investment irreversibility. There are
several interesting extensions that would push this issue further, for in-
stance, a stock of pollution whose level is nondiminishing, corresponding
approximately to the stock of carbon dioxide in the atmosphere or nuclear
wastes in salt domes.

Another interesting extension would be to look at the stock of knowl-
edge (as, in fact, the author hints at in the opening paragraph and exam-
ined in an earlier version of this paper). This endogenization of the R&D
process would be an important contribution to this literature. The prob-
lem, which is very difficult to overcome, is that there are spillovers among
firms. Without spillovers, the problem is less interesting (although still po-
tentially of some interest).

The treatment of location is one of the more unique aspects of this pa-

Charles D. Kolstad is the Donald Bren Professor of Environmental Economics and Pol-
icy at the University of California, Santa Barbara, with appointments in the Department of
Economics and the Bren School of Environmental Science and Management.

This work was supported in part by grant no. DE-FG03-96ER 62277 from the U.S. Depart-
ment of Energy.
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per. The firm can choose to move to a regulation-free area, incurring a
one-time fixed charge. The question is, when to do it? Basically, by paying
a one-time charge, a firm can forever evade environmental regulation. This
is really a shut-down and start-up question, which could be separated.
When should a firm choose to shut down? When should a firm choose to
restart in a pollution-free area, incurring a fixed start-up cost? This is an
interesting problem, with many possible extensions.

One possible extension is to treat location as continuous, developing a
Hotelling model of spatial competition. This would not be easy, but could
be potentially very interesting. Where do firms locate in response to envi-
ronmental regulations? How do regulations interact with spatial differ-
ences in pollution? Do environmental regulations provide an entry barrier?
How do regulators compete with one another over space?

In summary, this is an ambitious paper that pushes our knowledge of
firm behavior in a polluting environment subject to stochastic shocks. I
would encourage the author to push this further, bringing more policy-
relevant dimensions into the problem.






