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Annals of Economic and Social Measurement, 6/3, 1977

RECENT RESULTS IN LEAST-SQUARES ESTIMATION THEORYt

B M. M0RFandT. KAILATH

Dynamic models have become of increasing interest in economics, with consequent attention
to state-space models, quadratic control and least-squares Kalman filters. We present a sur-
vey of results in two new trends in the study of dynamic systems. One is the observation that
while the Riccati-equation based Kalman filter has the advantage of applying equally to models
with constant or time-variant parameters, substantial computational benefits can be obtained
for constant models by using 'fast' Chandrasekhar-type equations or square-root algorithms.
These algorithms enable order-of-magnitude reductions in storage and computation, from
0(N2) and 0(N3) to 0(N) and 0(N2) respectively. As an illustration we derive new fast
algorithms for the well-known polynomial regression problem. The second group of results
deals with the trend back to external input-output and transfer-function descriptions as a
counter to the almost total concentration on state-space models in the recent literature. We
have generalized the work of Levinson (1947) on efficient recursive methods for solving
Toeplitz equations, by introducing the concept of the distance from Toeplitz' of an arbitrary
matrix and thereby obtaining recursive algorithms for general nonstationary processes. For
state-space models, our new recursive algorithms can be reduced to the previously known
Chandrasekhar and R iccati equations.

I. INTRODUCTION

Economists have become increasingly interested in dynamic models and
consequently are paying more attention to state-space models, quadratic
control and least-squares Kalman filtering and prediction. The study of
dynamic systems and their use in control and estimation has been a very
active field in recent years. The applications of these results have ranged
from classical industrial process control, space-applications, and air pollu-
tion estimation, to identification and estimation in econometric systems,
see, e.g., the special issue on identification and time series analysis [I], and
the survey on linear filtering [2].

The emergence of state-space models in control and subsequently in
linear estimation theory in the 1960's led to a voluminous literature on
the so-called Riccati equation of the state-space-based Kalman filter
[3], [4] and optimal (quadratic) control solutions, see, e.g., [5].

Although these solutions are elegant and widely used, with some
hindsight we can quote several reasons for looking for alternatives:

First, the computational complexity of these solutions might be
prohibitive for large systems since the number of equations required per

tThs work was supported in part by the Air Force Office of Scientific Research, Air
Force Systems Command under Contract AF44-620-74-C-0068, by the National Science
Foundation under Contract NSF-Eng75-18952, and by the Joint Services Electronics Pro-
gram under Contract N00014-75-C-0601.
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time step is proportional to the cube of the number of states, the number
of variables that are tO be controlled or estimated. Economists are now

studying systems with hundreds or thousands of variables; for such
models a single observation would require millions of operations using
standard optimal estimation or control solutions.

Second, time-invariant models lead to no significant simp1ticatiOn
of these solutions, since the solutions are generally valid for time-variant
models.

Third, these solutions require state-space models. The procedures
to find them are not always trivial and conversion of an input-output
model (that might be more readily available in economics) may not be
desirable.

Fourth, extensions of these optimal estimation and control solu-
tions have not been too successful and alternative models and methods
might be more appropriate.

Alternatives to Riccati-equation based solutions have actually been in
existence in the past, but they have perhaps not been fully recognized or
developed. For instance, "nice" recursive solutions to estimation prob-

lems were found, at least for stationary time series, by LevinsOn [7] in
1947, rediscovered in 1960 by Durbin [8] and extended by Whittle [9],
[10] and Robinson [11]. Interestingly, roughly at the same time as Levin-
son found his results, Ambartsumian [12] and Chandrasekhar [13] de-
veloped what we now recognize as the equivalent results for continuous-
time processes.

This led to the discovery of Chandrasekhar-type equations for
constant-parameter state-space models [14], [15]. These equations have
the property that the number of parameters that have to be computed is
reduced from being proportional to the cube to proportional to the square,
or in some cases directly proportional to the number of states, in a large
class of problems of practical interest. This reduction of the computa-
tional complexity for state-space models is the first of two new trends in
the study of dynamic systems that we shall report on here.

The second set of alternatives to the current state-space methods is
exemplified by a trend. back to external or input-output and transfer-
function descriptions. These types of models have actually always been
more popular in econometrics and related fields. The work of Levinson
and Chandrasekhar resulted in efficient recursive methods for filtering
of stationary processes not explicitly requiring a model. Mathematically
these methods are efficient means for solving linear Toeplitz or displace-

ment kernel equations. By introducing the notion of "shift low rank",
of an arbitrary matrix, in [16], or the related concept of "distance from
Toeplitz", in [17], we have obtained recursive algorithms for general
nonstationary processes, without requiring an apriori model. It is interest-
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ing and important however that the state-space assumption can be im-
bedded in the input-output descriptions and our new algorithms can be
specialized to the previously known Chandrasekhar and Riccati equations.

II. DYNAMIC MODELS

For the sake of definiteness let us first define the two most important
types of dynamic models. Define

rninput variables u, (an m >< I vector)
poutput variables y1 (p >< I)

nstate variables x, (n >< I).

The discrete-time linear st ate-space model is then given by

(2. 1) x1+i = 4'1x1 + F1U,

= H1x1 + v1,

with

poutput (observation) noise variables v1, ap by I vector.

where

(4, F1, H1) are compatible matrices.

The linear input/output or autoregressive moving-average (ARMA)-type
model (or ARMAX) can be defined by

(2.2) A01y1 + A1,1y1_1 + + Aq.tY1_q

B01 U1 + B11U1 + + Bq,tU1_q

+CO31e1 + C11e1_1 + +

with A01 0 and

p(random) driving noise variables e1, ap by 1 vector.

Here the input variables U1 are assumed to be known.
In econometrics the variables { y1 are sometimes labled the "depen-

dent" or "endogenous" variables and {UI sometimes "exogenous" or
"control" variables.t

The Riccati-equation-based Kalman filter can now be summarized as

tDepending on the precise application, these labels are not necessarily fixed. For
instance in certain time-series modeling or identification procedures the rotes of the input,
outputand state variables and the model parameters are switched, see, e.g., [I], [18].
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follows. Ifu1 and v are white noise processes (E denotes expectation)

I o_

and the initial conditions are random with

E x0 = 0, Ex0x = H, EU1X 0 Ev1x

for simplicity, then the Kalman-Bucy equations, [3], [4], give the n esti-
mated state variables recursively by

(2.3) = + K1(R;)-1, oLt = 0,

where thep output prediction errors or innovations are equal to

= yt - It-

and have variance

= R = H1P1111H + R,
Here P111is the variance of the state prediction error,

t+ilt = t+I - t+ijt

and

(2.4) = = 4P 4)' + F1Q1F - K1(R;)-' K,ut-i 1

where

= = Ex0x,
(2.4) is then x n matrix Riccati Equation (RE). K1 in (2.3) is given by

K1 =

The number of operations for the RE is of order 0(n3) per time step.
We may note that there exist many related forms.t For instance for

high initial uncertainty (Ho = cc) we can use the Bayes or information
filter form; it leads to a Riccati equation for (Pt), see, e.g., [19].

Alternatives to the RE are the Chandrasekhar-type equations [14],
[15] based on the fact that even if P1 if full rank, the rank (a) of

- P1neednot be full.

tFor notational convenience we shall from now on drop the conditioning of P on past
data, as is customary, i.e., P1 = P1
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Examples

For low initial uncertainty, i.e. certainty: H = 0

OP1 = P1 - P0 = FQF', rank: p[0P1] = a m A n A min(min)
For stationary process: H = + FQF' = steady state covar-

ian ce

OP = P - P0 = HH'(R + HHH)'HHJA', a <pAn
For high initial uncertainty, i.e. complete ignorance: H =

0(P1t) = P - P = H'R'H, p[O(P')] = pAn.

It can be proven, see [14], [15], that for constant parameter models
p[0P1] is an upper bound for p[0P1]. This fact can be exploited via the
Chandrasekhar-type equations [IS]. Let

0P1= Y1MY,
a low rank factorization (nonunique) where Y is n >< a, M is a >< a, then

(2.6)

((n + p) >< p) variables

Y1

M1+1] - M,

265

K1

YH'
(R;)- HY,

((n + a) >< a) variables,
with initial conditions found from OP0 = Y0M' Y.1

Equations (2.5) and (2.6) can replace the n >< n matrix equation (2.4)
for constant models (cI, F, H, R, Q). The most interesting feature of these
new equations is their reduced computation complexity: (for p << n),
they require O(n2a) operations per time step (or 0(na) for canonical
forms), and O(na) in storage (plus 0(n2) for noncanonical forms).

For example, in an air-pollution study in [I] the order of the model
was 500 and a reduction of roughly a thousand was achieved using (2.5),
(2.6).

Another alternative to (2.4) is the square-root filter [19]. We can
roughly describe this method by triangularly factoring the matrix P1 into
P/2 PT'2 and defining the "pre-array" (containing a-priori information)
and the "post-array" (with a-posteriori information) as

ttA right bracket denotes.a (block) vector.
tThis decomposition is only unique modulo orthogonal transformations, i.e., Y0 =

Y0Twith TT' us another factorization, where ii3 = T'M0Tcould be a signature matrix,
see [15], [19].

(2.5)ff K1

R;1
=

K,

R
-

H]

I

IY1MT'YH'
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where r is an orthogonal matrix (e.g., product of Householder transfor-
mations [19])

7_7_' = I,
that triangularizes the pre-array into the post-array with

x11 = (R) 1/2 (triangular)

x21 = K1 (R) -T/2 = K1, x22 = (triangular),

the required "a posteriori" information for the filter.
The proof can be seen from

"Post-Array" = "Pre-Array" r
or with [M]2 MM'
(2.8) ["Post-Array"]2 = "Pre-Array'']2 =

R + H1P1H
R = x11x

Let P, = L1L or L1 = Y1(M[/2y' (with possibly imaginary columns), then

A = XflX21
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[Gain Equation]

This leads to a reduction of the arrays from p + n + m (the equivalent of

p
n

R 1/2

0

p

HPY2

P2
n

0

FQ'/2

m

=
(R)'/2

R

0

p'/2
1+1

n

0

0

p
n

= F, + L1L1 [P2,0] = [pi/2L]7-

p (R;1)'/2 HL1 (R/ Op
7-2 =Kl1 " L1n

p a p a

P1H [Riccati Equation 2.4]

K1 = x21x P1 + K1(R)-'K = x22x2 + x21x1

Similarly we can find square-root Chandrasekhar forms [19] from

pre-array post-array

(2.7) RI2 H1P/2 0 xii 0 0
7_ =

0 IP/2 F1Q/2 x21 x22 0_

pre-array post-array

(2.7) R/2 H,P]/2 0 x,1 0 0
T =

0 'f,P1 F,Q]12 21 22
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_p n
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P,+ + K,(R)K = x22x2 + x2x
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n

p
n

p
n



(2.4)) top + a (a n) columns in the arrays (the equivalent of (2.5) and
(2.6)). The initial conditions ar given by

P1P0=L0L=ll0 '+FQF'k0
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The estimator (2.3) can then be written as

(2.9) = + K1p,

(R)'12 = (R)'/2(y1 -
where p1 are the orthonormalized innovations, since their covariance is
given by

Ep1 p = (R) - '12E1 (R) - T/2
5

Iölr.

By examining these alternative algorithms to the RE it becomes evident
that they have considerable advantages:

Because of the fact that they work with (matrix) square roots of P
(or öP) the numerical conditioning is much better, since the eigenvalues
of the square root matrix are the square roots of the eigenvalues of P (or
SP); e.g., if the eigenvalues of P are 106 and 10-6, those of P'12 are l0 and
l0-, a considerable reduction that allows, for example, the use of single-
precision instead of double-precision computations in a computer.

In addition the nonnegativeness of P can be better insured, since P
is obtained by "squaring" (i.e. ,["Pl12"]2 pI/2pT/2)

If the value of a = rank (SP) is small compared to n, and if the
system parameters are constant (for simplicity) considerable savings can
be obtained in computation and storage requirements, typically a reduc-
tion by a factor of n.

III. SIGNIFICANCE OF DIMENSIONALITY REDUCTION

For state-space models with constant H and c1 matrices and with
a = rank (P11 - P1), the order of computation and storage required
by the fast algorithms is equal to O(na), or in other words proportional
to a, see [14], [15], [19]. This reduction in computation is not necessarily
restricted to state space models.

The general results can be stated as follows [16], [171. The order of
computation and storage required to invert various types of matrices of
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a = rank(R - Z'RZ).

If Z is the "delay matrix"

0..o
(2.10) Z=l.

0 1 0

the a is the so-called "shift rank ' or tensor rank in [16] or the "distance
from Toeplitz" [17]. The matrices L1, U;, L1, U;, L1, U; are lower-triangu-
lar Toeplitz matrices that are found by decomposing a matrix R into sums
of a products of the type U1L1 or LU1. The significant point is that
products and inverses of Toeplitz matrices are not Toeplitz in general,
while inverses of sums of products of matrices of the type above have the
same form and therefore a nice closure property. The L1U1 matrices can be
computed, for instance, via Levinson-type algorithms [16], [17] of 0(N2)
operation. Examples of matrices with low "shift rank a':

a = I : L - lower triangular Toeplitz matrix
a = 2: T - fullToeplitzmatrix = I.T + T_.I
a = 3: LU = lower times upper triangular Toeplitz

= U1L1 + U2L2 - U3L3
a = 4 : T1 T2 - product of two full Toeplitz matrices
a : covariances of state space models with constant parameters e.g.,

R = LL' + 00 (OisN x n).
For these types of matrices, Levinson-type equations can be used [16],
[17] (and they can be specialized to the Chandrasekhar-type equations
(2.5), (2.6)). In another set of important applications a = 3,4 : Y' Y,
where Y is a (t x n) Toeplitz matrix, found in least squares problems and
identification of AR, ARMA models, see, e.g., [16], [20] and equations
(2.19) to (2.24).

tR is Toeplitz if[R]11 function of (i - j) only, e.g., covariance matrices of stationary
processes.
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size N x N are
operations storage

for a general matrices: R' 0(N3) 0(N2)
for a Toeplitz matrices: R = L1Lç - L2L 0(N2) 0(N)

for a "a-distant" matrices: R = EU1 0(N2a) 0(Na)

where R =

and

U,L = 0(N2a) 0(Na)
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(2.11) Z = ZL

The matrices Z and Z' do not have to be "delay matrices" in order to
get a closure property, but many other interesting choices can be made.
For instance if Z is a particular circulant niatrix

,z' = z-',Ol0
we can define the "distance from circularity"

a. = rank[R - ZRZ].
This concept is useful in inverting so-called banded Toeplitz matrices

Jb1_1, i - j I < n = constant << N
I - , else, where I i,j

Here a(B) = 2n, therefore we can find a decomposition of B

(2.12) B = C + PMP', (full) rank[M] 2n,

where B - C is of rank at most 2n << N, therefore PMP' = B - C is a low
rank factorization (of this type in Eq. (2.6)). C is a circulant matrix, de-
fined by

(2.13) C = [c1 .....eN] Zc1 = WDW*,

where c = b. for instance. D is a diagonal matrix of the eigenvalues of C
obtained from the first column c1 of C by

(2.14) D = diag(W*c)
and W is the orthogonal matrix of the discrete Fourier transform
(W*W = I). The eigenvalues in (2.14) can therefore be computed very
efficiently, 0(N log n), using the Fast Fourier Transform (FET) as is well-
known in numerical analysis. Thus a representation for the inverse of the
matrix B in (2.12) (or the solution to a linear equation with B) can be
computed with 0(N log n) + 0(n2) operations using another well-known
fact, the matrix identity

(2.15) [A + BCD]' = A' - A'B(DAB + C')DA
in

B' = [C + PMP'],
with L and P,M given by
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(2.19b)

Now

(2.16) B = C' - CPT'P'C',
where T turns out to be a Toeplitz matrix in this case. The inverse of a
circulant is particularly simple because of the eigenvalue decomposition
in (2.13)

(2.17) C1 = WDIW*.

We may note as an example that W itself has "weighted shift-low rank"
(see[16}) since(D = diag(W11/W1111))

(2.18) = rank[W ZIDWD*ZI = 2,

a fact that is related to the so-called Chirp-Z transform.

A Least-Squares Prediction Problem
Let be generated by an autoregressive model of order n, then define

the one-step predicted estimate by

(2.19a) .2, = - akyl_k, 0

and
e1 = -

as the prediction error. Then we can distinguish four cases of interest, the
set of equations with braces ito 4 (= i)

-

Yo

Yi Yo.
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Yn Yo

YTn.

YT YTn

0

YT

L

=Xa
U

L' 0 In
[0 L'BC= 0 ,P. 0 0 ML\I
[L 0

0

1

a1

- an

(2.19b)
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Case I

If
(2.21) eL[e0 .....eT+fl]

cBT[YV 1T+n- I iio 15 loeplitz,
and we can use Levinson's algorithm. It can be shown that a is stable,(i.e., a(z) = ..... Ija has its root inside the unit circle); Gohberg (seereference in [17]) showed that Gt = AA' - BB', where A, B are (lower)triangular Toeplitz matrices.

Case 2

If
Alete .....eTJ,

we get the most commonly used least-squares solution, where
(2.22) [Y V2 ] is not Toeplitz

= - L'L - U'U,
however, in this case one can show that

= AA' - BB' - CC' + DD',
where C, D are of similar type as A, B.

Case 3

If
(2.23) e [e0 .....eT}' (-- I.R.)

[VV
is not Toeplitz, but equals

= - UU
271

Note that L, X, U are Toeplitz matrices. Define the vectors
e- = Va1, I = 12,3,4.

The object is to minimize a squared error criteria say
II e. 2 = ee1 = P,.

The solution is given by the normal equations

or = [Y;e1]

(2.20)
= 8 = 1,2,3,4.

Note that L, X, U are Toeplitz matrices. Define the vectors
e. = V1a1, i = 12,3,4.

The object is to minimize a squared error criteria say
II e 2 = ee1 =

The solution is given by the normal equations
IY;Y1Ja = [Y;e1}

p.1
= 01j,i = 1,2,3,4

e{eo,...,e+J'
I Y V1 g+n is Toeplitz,

and we can use Levinson's algorithm. It can be shown that a is stable,(i.e., a(z) = .......ija has its root inside the unit circle); Gohberg (seereference in [17J) showed that = AA' - BB', where A, B are (lower)triangular Toeplitz matrices.

Case 2

If

eL[e,.
.

we get the most commonly used least-squares solution, where
(2.22) cR [V Y2] is not Toeplitz

= - L'L - U'U,
however, in this case one can show that

= AA' - BB' - CC' + DD',
where C, D are of similar type as A, B.

Case 3

If
(2.23) e Ieo,...,erj' (1.R.)

cR [YY3}
is not Toeplitz, but equals

= - U,U
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or

(2.20)

Case I

If
(2.21)



and

(2.24) = AA' - BB' - CC'

By considering block Toeplitz matrices of the type

U

Lu' i
this result can be verified.

Case 4 is not commonly used; however, it turns but that a4 is also
stable.

Outline of a Least-Squares Polynomial Regression Application

Often the problem of fitting polynomial trends to observations {y}
arises, i.e., we want to find a vector x such that

= [I, t, t2.....t]x + e
= H1x + e1

with {e1} = error sequence. Note that H1 is time-varying. The usual solu-
tion is givenby defining

.J14[y0.....y1]
[Ojkj = k', i 0.....n

k=0.....t
then the least squares regression coefficients are given by

XLS =

which requires.O(n2t) + 0(n3) operations in general.
However, notice the fact that powers of t are solutions to constant

parameter difference equations! For example, equivalently consider

"Pascal Triangle"
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We can now get a constant parameter state-model of the type
=

= Hx1 + v1,

where(c.f. (2.10)) cI = [I + Z'] =

H = [1,0.....0]
Let R = I, H = 0 in the Kalman filter, then the state estimates will con-
tain the least-squares solution to the problem of fitting a polynomial to
the observations {y. Since we have now a constant-parameter model, we
can use the Chandrasekhar-type equations for prediction purposes or
trend removal (the prediction errors { will be the desired reduced
process). The least-squares estimate of x in the usual solution has to be
found actually via smoothing versions of these estimators, see, e.g., [19].
Notice that since H = 0, we have a high initial uncertainty and the
Bayes or informationfilterforms [19] should be used.

IV. CONCLUSIONS

Due to space limitations, this paper is only a rough and somewhat
biased outline of some new results in time-series analysis and estimation.
The control aspects have essentially been ignored, partially because for the
linear model, quadratic cost case, many of the mathematical results have
their duals in linear estimation problems and can therefore with some skill
be translated from one area into another.

As a conclusion we would like to encourage mathematically oriented
workers in econometrics to try to follow the field of estimation and con-
trol, for instance through the journals of [I] and [2], since many of the
methods developed in these fields have interesting potential applications
in econometrics and related areas.
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