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Amrals of Economic aid Sacial Meg rement_6/5, [978

A GRG ALGORITHM FOR ECONOMETRIC
CONTROL PROBLEMS*

By J. B. MaNTELL ann L. S, LAasnon

A software system for salving large determinisiic ecanametric control problems is presented.
The system. cansisting of FORTRAN Subrautines. implements a generalized reduced gradiens
{GRG) method.

I. INTRODUCTION

This paper describes a software system for solving large deterministic
econometric control problems. The system is a collection of FORTRAN
subroutines. implementing a generalized reduced gradient (GRG)
method. Its distinguishing features are:

(1) general, yet easy to use input formats and a range of output

options,

(2) the ability to solve problems with hundreds of equations

(3) dynamic storage allocation, so problems of any size may be at-

tempted by changing only one dimension statement

(4) a minimum of machine dependent statements, and

(5) well documented**

The GRG algorithin uses a pseudo-Newton method, implemented
using sparse matrix techniques, to solve the model equations, and a
choice of conjugate gradicnt or variable metric methods to generate search
directions for the controls. The step along the scarch direction is chosen
by a modification of an algorithm due to Shanno and Phua [24]. It allows
the user to choose either a modified “step-length™ procedure, which tends
to use fewer function evaluations per search, or a more accurate cubic
interpolation procedure.

The system has been tested thus far on three models: Ando-mini
(5 equations) Klein-Norman (27 equations) and Klein (1950) (7 equa-
tions). Results, presented in section 8, are most encouraging. Further tests
on larger models are planned.

2. PROBLEM FORMULATION

Let y(s) be an n-dimensional state vector at time ¢, and u(t) an m-
dimensional control vector. The class of problems considered has the form

*This research was supported by NSF Grant SOC74-23808 and by ONR Contract
NO0O14-75-C-0240.
**User and system documentation is currently in preparation.
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For simplicity, all exogenous variables have been suppressed, gl.
though the software has capabilities to handle them. T.he objective (1)
permits the term f; to be different in different time periods and allows
state and control lags of length 5" and ¢’ respectively. These lags may dif-
fer from the lags s and ¢ in the model equations (2). The # dimensiong]
vector of functions g and the functions f, may all be nonlinear, and are
assumed to be at least once continuously differentiable. The recursive
equations (2} are assumed to have a unique solution y(1),..., y(T) for
any set of vectors w(l), ..., U(T) satisfying (3) and for any initial condi-
tions and exogenous values under consideration. Only contro! bounds,
(3). are treated exactly. Bounds on the state variables y, or other inequal-
ity constraints, may be dealt with by penalty or Augmented Lagrangian
methods [2]. This simplifies the algorithm considerably, since no basis
changes are required. However, penalty or Lagrangian methods may not
be as efficient as approaches which deal with state variable bounds di-
rectly. For a description of such an algorithm, see the paper by A. Drud
in this issue.

All values of p(¢) and u(r) for ¢ < 1 which are needed to define the
problem over the interval 1 = 1, T are assumed known. For a description
of data input and required user-supplied subroutines, see the appendix.

3. A GENERALIZED REDUCED GRADIENT ALGORITHM

Let
) y =0 y@),.... y(T))
and
(5) u = (u(l),u(2),...,u(T))
Then the model equations {2) may be written
(6) G(y.u) =0

where G is an nT-dimensional vector consisting of the T vectors g with
arguments as indicated in (2). Then the problem (1)-(3) may be written

) minimize  f( y, u)
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(8) subject o0 G(y.u) = 0
and
9 b < u < ub

We have assumed that, given u, the system (8) may be solved for a unique
¥, y(). This function may be used to eliminate y in the objective yielding
a new function.

(10) Fu) = f(y(u), u)

By the implicit function theorem, y(u) is continuously differentiable, so
F is a differentiable function of . It is called the reduced objective func-
tion, and its gradient, 0F/du, is called the reduced gradient. This gradient
may be computed as follows [13};

(1} Solve

(1D N1{8G/ay) = af/ay

for the Lagrange multiplier (row) vector I1
(2) Evaluate dF/du by

(12) d0F/du = af/ou ~ I1(0G/du)

In the above, all partial derivatives are evaluated at some known point
(y,u), and (12) yields 9F/du evaluated at &.

Many authors (e.g. see 1], (3], [14) and [17]) have shown that, be-
cause of the dynamic structure of G and the nature of £, (11)-(12) have a
recursive structure. Let IT be partitioned as (I1(1),..., II(T)), and define

(13)  3g(t)/ay(r) = dg(y(t), ..., ylt ~ s)iu(t),... u(t - ¢))/ay(r)

and similarly for dg(r)/du(r). Then, since G/ay is lower block triangular,

(i1) may be written
£

(14) O B(1) = D fiai/3p()

i=0
Pﬂ
— DT + j)agle + )))ay(t) t =T, T—1,. . .1
j=1
where B(1) = dg(1)/ay(t), £ = min (T — t,5'), and p = min (T - 1,s).
Assuming that the matrices B(t) are nonsingular*, these equations may be
solved sequentially for II(T), II(T - 1),...,1I(l). Then the reduced gra-
dient subvectors dF/du(r) are evaluated using

*This. plus the fact that the problem functions are continuously differentiable are suf-
ficient conditions for existence of the function y(u) for all points in some neighborhood of
the current one.
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where £ = min (7"~ +.¢')and p” = min(7 - 1,¢).
’ A GRG algorithm for the problem (1) (3) mav now be stated in

general terms

Step 0

Step 1

Step 2
Step 3

Step 4

Step 5

Step 6
Step 7

(siven:

Initial control vector = u
all exogenous variables plus all initial values of lagged states
and controls

seti =0

Simulate the system with # = «*) to determine all state vari-
ables and the objective value Flu™')

Compute vF (") from (14) and (15).

Check for convergence. I the convergence criteria are satis-
fied, stop. Otherwise go to Step 4.

Compute the search direction " using an unconstrained
minimization algorithm. This step must be modified to ac-
count for bounds on the variables.

Perform a one dimensional scarch along d to tind ¢ = o"
such that F(® + «d") is minimized subject to « > 0, and
b < 1 + ad™ < ub. At cach value for a in the search it is
necessary to simulate the system. compuic the objective, and
{perhaps) compute the reduced gradient.

Set " = 1 4+ aVd"

Replace i by i + ! and return to Step 3 {to Step 2 if the re-
duced gradient is not computed in the onc dimensional
search).

0)

To transform this gencral algorithm into a computer code, the
methods used in the various steps must be specified, and they must be
implemented in a numerically reliable way which exploits sparsity. The
following sections describe our choices and impiementations.

4. SIMULATING THE SYSTEM (STEP 1)

We have chosen to simulate the system using a psecudo-Mewton
algorithm. Assume that, for given initial conditions, exogenous, and con-
trol variables, the model equations (2) have been solved for times 1, 2,...,
t — 1, and the solution for y(1) is desired. The pseudo-Newton method is

(16)

y°(1) given

(17) B8 (1) = g(3* (), vt = Doyt — 5); u(t), ... ouft = ©))
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(18) yhO = N 8t k= 12,

In the above. p*(r) is the &™ estimate of »r(t). The method is called
pseudo-Newton because the matrix B(r) is evaluated only once at the
starting point. In our code. this point is the 3 and u vector itom the last
simulation. The classical Newton's method reevatuates B{r) anew at each
point y*(¢).

Ortega and Rheinboldt {18] show that this method will converge if
the solution of (2) is sufliciently close to the starting point. and that the
rate of convergence is linear.

The key to impiementing this Newton's method successfully for large
models is exploiting the sparsity of B(r). For large econometric models
(more than, say, 100 equations), the nonzero density of B(¢) (i.e.. the
percentage of its elements which are nonzero) will be on the order of a
few percent. Hence only the ronzero elements are stored, and the linear
equations (17) are solved by finding lower and upper triangular matrices
L(t)and U(r) such that

(19) B(t) = L(OHU(n

Then (17) is easily solved by forward climination and back substitution in
two triangular systems.* Much work exists on how to perform the factori-
zation (19) so that, if B(r) is sparse, L{r) and U(t) will be sparse also
(91 [22]. Our software uses slightly modified versions of subroutines by
Curtis and Reid [2] and Duff and Reid [4) to perform the factorization in
a way which preserves both numerical stability and sparsity. Figure |
shows the result of applying these subroutines to the B(r) arising from
Klein's model [10). In the figure, X denotes a nonzero eclement. and F
denotes a new nonzero created in the course of the factorization, The
densities of L and U are only slightly higher than that of the original
matrix, while 8" is 100°, dense.

Actually, the structure of B(1) may be exploited even more fully. For
most models, the rows and columns of B(7) may be rearranged to create a
block trtangular matrix with nonsingular blocks. Figure 2 shows this for
Pindyck’s model [20]. The blocks may then be solved sequentially. In solv-
ing each block, the pseudo-Newton method (16)-(18) is used, and each
block is factorized rather than the entire matrix B(r). This yields sig-
nificant savings in efficiency, storage, and aecuracy.

When implemented as described above, simulation using Newton's
method is often faster than current Gauss-Seidel techniques. Newton’s
method converges in one step for linear equations, its storage demands

*LU decomposition is only ore of several techniques which have been developed for
solving sparse linear systems. I is widely used in linear programming. For other ap-
proaches, see [25].
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LU Decompositior vs. Matrix Inversion

Klein's Model of U.S. Economy (1950)

X X
X X
X X
92 _p . X X {34.7", dense)
ay{
X X X
X X X
\ X X x /
/1 /X X N\
] X X
X 1
LU = X 1 I3 X | (4297 dense)
X 1 X
X Fol X X
\. x x x 1) \ &
X X X X X X X
X X X X X X X
X X X X X X X
B'=IX X X X X X X|(100°, dense)
X X X X X x X
X X X X X X X
X X X X X X X/
Figure | LU decomposition.

are modest, and it is likely to be more accurate as well. The software
implementation is much more complex than for Gauss-Seidel, but many
of the subroutines are needed anyway for the reduced gradient computa-
tions. Little more is required of the user, since the partial derivatives in
B({t) can be computed by finite differencing of the model equations. Of
course, only nonconstant elements of B(r) are recomputed,* and any
blocks of B(r) which are constant are factorized only once, at the start of
the algorithm. In addition, the pattern of nonzero clements in B(¢) is in-
dependent of ¢. This means that the subroutine which determines the se-

’iTo permit this, the user must indicate which variables appear nonlinearly in each
equation - -see the appendix for details.
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An Example of Biock Pariitioning

Pindyoh's Quaiicely Mudel of the U S, k:conomy (1970)

P2 3 4 5 6 17 8 9 10 11 12

X X X X

2 X X

3 X

4 X X X

s X X

6 X X

7 X X X

8 X X

9 X X

10 X X

" X X

12 X X

After Partitioning:

1 2 3 4 5 6 7 10 12 11 8 9
1| x X X X )
2 x x X
3 X X
4 X X X ¢ Block #1
5 X X
6 X X
7 X X X
10 X X )
12 X X } Block 42
1 X 1x } Block #3
8 X X x| }Block 44
9 X x_)iJ}Biocus

Figure 2 Block Triangularization
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quence of pivot clements in B(1) need be invoked only ‘oncc at the start of
the algorithm, and recalled only if some pivot element is too small.

To dzal with the possibility of the pseudo-Newton method not con.
verging (within a prespecitied iteration limit), we¢ have added the option of
reevaluating and refactorizing B(r) every riterations, where r may be user
controlled. The classical Newton's method corresponds to r = . If this
option is unsuccessful, the step « in the one dimensional scarch (sce Sec.
tion 7) is reduced and the pscudo-Newton method is tried again. If o is
small enough, Newton's method must converge.

5. CoMPUTING THE REDUCED GRADIENT (STEP 2)

Computing §F/du by (14) (15) again requires an LU factorization of
each B(1). The factorizations used in simulating the system cannot be
used for two reasons. First, the matrices in (14) must be evaluated at the
point obtained by simulating the system in step 1. while the B{1) used
in the simulation were evaluated at the previously simulated point, since
the new state values are unknown prior to simulation. Second. to reduce
storage requirements, the matrices B(1) and their factorizations are over-
written when 1 is changed. so they are not available for use in (14).

For1=7,7T-1,..., I, the matrix B(r) is reevaluated and refac-
torized, (14) is solved for II(s). and 9F/du(t) is evaluated using (15).
These computations are considerably simplified by the fact that the
Jacobians with respect to the lagged states and controls (dg(r + N /ay()
in (14) and 9g(¢ + j)/du(t) in (15)) grow increasingly sparse as j in-
creases. Hence the summations in (14)-(15) may be evaluated very rapidly.

6. CONVERGENCE CRITERIA (STEP 3)

Let u; be the jth component of u. Then w satisfies the Kuhn-Tucker
necessary conditions for optimality in the problem (- if

Qo) U = lb = 9dF/du; > 0
@2n U = ub; =* 3F/du, < 0
(22) b < wy < uby = 9F/du; = 0

See {12] for proof. In this software system the algorithm stops if these
conditions hold to within a tolerance ¢, with default value 1077, 1t also
stops if the fractional change in the objective value is less than ¢’ for
NSTOP consecutive iterations, where ¢' and NSTOP have default values
of 107> and 3 respectively.

7. COMPUTING THE SEARCH DIRECTION (StEP 4)

In this software system, the user has a choice of a variable metric
method, or one of 6 conjugate gradient methods for choosing the search
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(default value 50), the system will switch froni the variable metric method
to whichever C'G method the user selects, switching back again if possible.

The direction finding subroutine must deal with the posstbility that 4
superbasic viriable may have hit a bound during the previous one dimen-
stonal scarch 1T <o, and & €6 method is being used. the OG method s
restarted (dis set to —dF/au). If the variable metric method is being used,
R can be modified by deleting the appropriate column, and transforining
the resulting matrix back to upper triangular form (sce |15) for details),
If a new superbasic variable is added by releasing a noubasic variable
frontits bound, a unit vector column is added to R. The logic for releas-
ing a nonbasic variable from its bound is as prescribed by Goldfarb (8],

Note that both the CG and the variable metric methods miitintize
quadratic functions in as wany one dimensional scarches as there are
variables, if the one dimensional search is done exactly.

8. THE ONE DIMENSIONAL SEARCH (STEP 5)

The one dincnsional search subroutine is an adaptation of one due (o
Shanno and Phua [24). It uscs quadratic and cubic interpolation and
extrapolation te estimate the value of o’. Both / and dF[du are evaluateg
ateach pointin the search, and the polynomials are fitted to the £ values
and the values of dF/da = (3F/au)"d. The decision to use dF/da was
made because, once the system is simulated to evaluate F, 3F/du can be
evaluated with less additionai effort than a complete simulation, i.e., the
gradient of F is easier to evaluate than F utseif.

The search operates in either of 2 modes. In modc 2 the search is
terminated whenever the decrease in F is deemed sufficiently large, i,
whenever the conditions

Fncv: < Fold + IO‘J(d[:-/da)ﬂ'U
and
(dF/da), .o < (dF/da),..

are satisfied [24]. In mode 1. the minimum nmust be bracketed and at least
one interpolation must be performed before the search will stop. This

For problems with linear model cquations and a quadratic cbjective,
the function F(u + ad) is quadratic in « for any wand d. Hence, by using
quadratic and cubic approximating functions, this one dimensional search
will converge in at most 2 evaluations of F and dF/da. This fact, the |
Step convergence of Newton's method, and the finiteness of the conjugate
directior methods of section 7 on quadratic functions, together imply that
this GRG algorithm will converge finitely for linear-quadratic problems.
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9. COMPUTATIONAL, RESULTS

This software system has been tested on three different econometric
models. These are Klein's Model (1950} [1 1}, the Ando-Mini Model and
the Klein-Norman Model [10i. [16]. The prohlems solved were chosen to
test the computational efliciency of the software system rather than to
evaluate economic policies.

Results are summarized in table §. In the methods column of the
table, VM denotes the Complementary DFP variable metric method, FR
the Fletcher-Reeves Conjugate Gradient Method, and SH a scaled con-
Jugate gradient algorithm proposed by Shanno [23]. G, DFP, and SA are
Gradient, Davidon-Fletcher-Powell, and Successive Approximation al-
gorithms tested by A. L. Norman [17]. A simulation is T solutions of the
model equations for ¢ = 1,2,..., 7 and time is in computer resource
units.*

All problems were solved using the FORTRAN V compiler on the
UNIVAC 1108 computer at Case Western Reserve University. with
double precision floating-point arithmetic (machine accuracy of ap-
proximately 107").

In all runs, convergence was assumed it the Kuhn-Tucker conditions,
(20)-(22), were satisfied to within 107* or if the relative change in the ob-
jective function was less than 107 for three consecutive iterations. The
convergence criterion used for the Newton method was that the left hand
side of each equation was less than 107 in absolute value. All runs used
finite difference derivatives for the mode! equations and analytic objective
derivatives.

The first two test problems use Klein’s Model with government
spending and business taxes chosen as controls. The objective function is
the sum of the squared deviations of the state variables from desired
values. These values were obtained by simulating the system at the his-
torical values of the controls. Thus, the optimal values of the objective
and the controls were known tc be zero and the historical values respec-
tively. One and three time period versions ot this problem were solved
using starting values of zero for all controls.

Since these problems are linear-quadratic, convergence using variable
metric or conjugate gradient methods should theoretically occur in A
iterations or less (where M is the total number of controls) if exact one
dimensional searches are used. This behavior was observed for the one
time period problem using the complementary DFP variable metric for-
mula and using the Fletcher-Reeves conjugate gradient formula. Both
algorithms converged in two iterations generating identical solutions at

*This is execution time plus a small charge for input/output and file handling. Cost is
computed on this basis.
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cach iteration. Similar results were obtained for the three period prob-
lem. The gquasi-Newton micthod converged in the theoretical fimit of siy
iterations. Two conjugate eradicnt algorithms.  Fletcher-Reeves  and
Shanno. performed almost as well. They reduced the objective from 505.0
to approximately 107" in six iterations. However. one more iteration was
requitegd by both to satisfy the Kuhn-Tucker conditions to within 10,

The second model was the Ando-Mini modcl. It has five equations
and is nenlincar. The policy problem considered used unborrowed ve-
serves as a control variable and bus been considered by other rescarchers,
Coniputational results for this problem obtained by A. L. Norman using
the successive approximation algorithm {16] arc listed in Table 1. For
this problem. the successive approximation method gave the best results
in terms of the number of simulations required.* Of course. the simula-
tons require different ameunts of effort. since diffcrent metheds were
used. The results of Table 2 suggest that the simulations done in (21D,
which used a Gauss-Seidel algorithm, required more time than ours,
which used the pscudo-Newton algorithm,

All Ando-Mini test runs achieved optimality exeept the Shanno
conjugate gradient with scarch mode 2 which terminated prematurely on
the fractional change criterion. This method converged when the scarch
mode was set to I,

The last model considered is the K lein-Norman model. This is a non-
hinear 27-cquation model of the U.S. economy. A policy problem pre-
vicusly considered by Normal el. al ** was solved. Results obtained using
the variable metric algorithm compare very favorably with the previous
results,

Great savings are obtained in this problem by using the pseudo-
Newton method for simulation rather than Gauss-Seidel. A comparison
between the two methods for the test problems considered is given in
Table 2. The Gauss-Seidel method was fourd to be highly sensitive to the
choice of the damping factor and thus requires a skilled analyst for ef-
ficient use. The Newton method. on the other hand. is very easy to use and
is significantly more efficient for these problems.

To compare the efliciencics of Gauss-Seidel and Newton methods for
optimal control problems. the Klein-Norman model was used as a test.
along with a Gauss-Seidel routine provided by A. L. Norman. With the
same initial values for the controls, and the same initial conditions as
were used in the runs of Table 1. the Gauss-Scidel algorithm required an
average of 110 iterations per lime period to solve the model at the initial
point. In the 13 period. 27 equation problem. this leads to over 33.006

*Comparison between the number of iterations is misleading since the compulational
clfort per iteration varics greatly.
**Policy problem 1 in[17].



TABLE 2

COMPARISON O GAUSS-SEIDIL AND Psicpo-Mirwion Ay THODS

Averspe Nuniber of Average Number of
Prohlem G Saded Boeations meudn-Newton* Herations
Klein (3-periad) 2200 (w1 1.0
Anda-Mim 7660 (v )
2963 (w05 25
Klcin-Norman 09 03 AR 1

*The Newton method used reevaluated and refactorized the matrix Bty every S and 3
ierations for Ando-Mini and K Icin-Norman respectivedy.
**was the relaxation parameter or damping factor,

model equation evaluations to perform a single simulation over all 13
periods. In contrast, a complete optimization of this model using our
code, with the same initial conditions required only 24 418 function eval-
uations {sce VM with mode = 2 in Tuble 1. During this optimization, ||
simulations were performed (each over 13 time periods), using the pscudo-
Newton algorithm.

The ratio of simulations to line scarches is a4 measure of the efliciency
of the one dimensional search routine. In mode 2 {less exact mode), this
ratio is exactly 1 (an extra simulation is required at the start). In mode
I the ratio is 2 except for | problem (Ando-Mini with method SH). Since
the total number of searches and stimulations is at most a small multiple
of the number of variables, both modes are operating well. Neither has g
clear superiority in these tests.

In closing this section, we note that computation times en larger
models should be considerubly reduced if analytic partial derivatives are
used. This is hecause the derivatives dre usually much simpler than the
cquations themselves. Since all runs here used finite difference derivatives,
some of these times could be reduced, perhaps significantly. Whether
the tradeolf of coding for execution time is worthwhile or not depends
mainly on how often the model is run and on how often its structure is
changed,

10. Concrusion

The software system described here promises to be an eflicient, robust
tool for solving large optimai control problems. The sparse matrix imple-
mentation of the pseudo-Newton method, the variable metric and conju-
gate gradient methods, and the inexiact one dimensional search all have
performed well in initjal tests. Further testing, on larger models, is
pitnned. Qur objectives in future work are to develop system which is
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portable. well documented. easy to use, efficient and robust. and to dis-
seminate such asystem s widely as possible.
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APrPENDIX
Input Data and Subroutire Descriptions

The user inputs the initial conditions. values of all exogenous vari-
ables, the bounds 1b and ub and other problem data using a data deck
which is divided into sections. Each section begins with a keyword (e.g.
LIMITS and METHODS) and ends with the word END. This muakes the
deck eusier to read and check. All internal limits and tolerances have de-
fault values. and need not be input. All input data is checked for obvious
errors and is echoed back to the user.

The model g and objective terms /i are specified by user-provided
subroutines. The model subroutine must allow computation of any speci-
fied model equation for given values of the y's and s (which requires
somewhat more complex coding than evaluating all equations). The solu-
tion algorithm requires first derivatives of all problem functions. The
user has the option of using a system finite difference subroutine to com-
pute them or coding his own subroutine to evaluate them analytically.

It is important to avoid computing Jacobian elements which are
identically zero, and to recompute only nonconstant Jacobian elements.
To permit this, one of the larger sections of the data deck centains in-
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formation specifying which variables appeat in cach cquation, and which
appeiar nonlinearly, This information. coupled with the ability to evaluate
any specificd model equation, allows the finit
routine to evitluate only those Jacobian cle
stage ol the alporithm,

¢ difference derivative sub-
ments needed Gt o pacticular
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