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A GRG ALGORITHM FOR ECONOMETRIC
CONTROL PROBLEMSX

B J. B. MANTIN AND L. S. LAsi)ON

A soft i,ar . c1ni /or s o1vin' !Urlt dt'ttrj,jpjc,j ec000,ne!r,e (OF1IFol problem i pie 'nied
11w .ciste,,,. con.sLcI,ne of FOR1RA1V .shroui,,u.c iPnp/e,.,e,uc a generali:ed reduced gnulieni
GRG) method.

I. INTRODUCTION

This paper describes a software system For solving large deterministic
econometric control problems. The system is a collection of FORTRAN
subroutines, implementing a generalized reduced gradient (GRG)
method. Its distinguishing features are:

(I) general, yet easy to use input formats and a range of output
Options,
the ability to solve problems with hundreds of equations
dynamic storage allocation, so problems of any size may be at-
tempted by changing only one dimension statement
a minimum of machine dependent statements, and
well documented**

The GRG algorithm uses a pseudo-Newton method, implemented
using sparse matrix techniques, to solve the model equations, and a
choice of conjugate gradient or variable metric methods to generate search
directions for the controls. The step along the search direction is chosen
by a modification of an algorithm due to Shanno and Phua (24j. It allows
the user to choose either a modified "step-length" procedure, which tends
to use fewer function evaluations per search, or a more accurate cubic
interpolation procedure.

The system has been tested thus far on three models: Ando-mini
(5 equations) Klein-Norman (27 equations) and Klein (1950) (7 equa-
tions). Results, presented in section 8, are most encouraging. Further tests
on larger models are planned.

2. PROBLEM FORMULATION

Let y(1) be an n-dimensional state vector at time t, and zt(i) an n-
dimensional control vector. The class of problems considered has the form

Thus research was supported by NSF Grant S0074-23803 and by ONR Contract
NOOl 4-75.C.0240.

**User and system documentation is currently in preparation.
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y = (y(l), y(2).....y(T))
and

u = (u(1),u(2).....u(T))
Then the model equations (2) may be written

G(y,u) = 0
where G is an nT-dimensional vector consisting of the T vectors g with
arguments as indicated in (2). Then the problem (l)-(3) may be written

minimize f(y,u)

582

(I) minimize J;( v(z) ,...,y (1 - .c'), u(i),..., -
subject to

g( (t ) ,...,r (1 .c), u(t).....u(f - c) ) - 0, t = t , 1'

lh(t) u(t) ub(t), g = I,

For simplicity, all exogenous variables have been suppressed .

though the software has capabilities to handle them. The objective (I)
permits the term J to be different in different time periods and allows
state and control lags of length s' and c' respectively. These lags may dif-
fer from the lags s and c in the model equations (2). The n dimensional
vector of functions g and the functions f may all be nonlinear, and are
assumed to be at least once continuously differentiable. The recursive
equations (2) are assumed to have a unique solution l'(l),...,'(T) for
any set of vectors u( I).....(1(T) satisfying (3) and for any initial condi-
tions and exogenous values under consideration. Only control bounds.
(3), arc treated exactly. Bounds on the state variables i', or other inequal-
ity constraints, may be dealt with by penalty or Augmented I.agrangian
methods 2j. This simplifies the algorithm considerably, since no basis
changes are required. However, penalty or Lagrangian methods may not
be as efficient as approaches which deal with state variable bounds di-
rectly. For a description of such an algorithm, see the paper by A. Drud
in this issue.

All values of y(t) and u(t) for I < 1 which are needed to define the
problem over the interval i = I, T are assumed known. For a description
of data input and required user-supplied subroutines, see the appendix.

3. A GENERALIZED REDUCED GRADIENT ALGORITHM

Let

(4)



subject to G(y.u) = 0

and

lb<u<ub
We have assumed that, given u, the system (8) may be solved for a unique
y, y(u). This function may be used to eliminate j' in the objective yielding
a new function.

(lO) F(u) = f(y(u),u)
By the implicit function theorem, y(u) is continuously differentiable, so
F is a differentiable function of u. It is called the reduced objective func-
tion, and its gradient, aF/ou, is called the reduced gradient. This gradient
may be computed as follows [13):

(I) Solve

H(8G/ap) = OJ/'3v

for the Lagrange multiplier (row) vector H
(2) Evaluate aFJau by

= Of/au - H(OG/Ou)

In the above, all partial derivatives are evaluated at some known point
(y, ii), and (12) yields OF/Ou evaluated at ü.

Many authors (e.g. see (I], [3], [14] and [17]) have shown that, be-
cause of the dynamic structure of G and the nature off (lI)-(12) have a

recursive structure. Let H be partitioned as (H(1).....H(T)), and define

Og(:)/Oy(r) = Og(y(:).....y(t - s); u(t).....u(l -- c))/dy(r)

and similarly for Og(i)/Ou(r). Then, since OG/Oy is lower block triangular,
(II) may be written

11(1)8(t) = Of,+J8y(t)
s-0

- ll(t + j)Og(t + j)/Oy(t) = T, T - I,..., I

where 8(z) Og(t)/ay(t), = mm (T l,s'), and p = mm (T -
Assuming that the matrices B(t) are nonsingular*, these equations may be
solved sequentially for H(T),H(T - 1),. ..,fl(1). Then the reduced gra-
dient subvectors OF/Ou(t) are evaluated using

*This. pius the fact that the problem functions are continuously differentiable are suf-
ficient conditions for existence of the function j'(u) for all points in some neighborhood of
the current one.
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(15)

F/iu(i) i/,11/i)u(t) -- ll(i + j) i)g(1 - j)/Iu(t)
2-0

where ' = mm (i -- !, e') and p = nlin( 1 1, ).

A G RG algortthm for he problem (I) (3) 'Y flO" he stated in
general terms

Siep U Given:
Initial control vector =
all exogenous vartiihles plus all initial values of lagged states

and controls
set i = 0

Step I Simulate the system with u to determine all state vari-

ables and the objective value l'(u'

Step 2 Compute F(u°) from (14) and (IS).

Step 3 Check for convergence. If the convergence criteria are satis-
lied, stop. Otherwise go to Step 4.

Stej' 4 Compute the search direction dt' using an unconstrained
minimization algorithm. This step must he modilled to ac-

count for hounds on the variables.
Step 5 Perform a one dimensional search along d1 to find a

such that F(u . J(I)) is minimized subject to a > 0, and

lb - u' + ad < ub. At each value for a in the search it is

necessary to simulate the system. compute the objective, and

(perhaps) compute the reduced gradient.

Step 6 Set
+ I) = u° +

Step 7 Replace i by I + I and return to Step 3 (to Step 2 if the re-
duced gradient is not computed in the one dimensional
search).

To transform this general algorithm into a computer code, thc
methods used in the various steps must be specified. and they must be
implemented in a numerically reliable way which exploits sparsity. The
following sections describe our choices and implementations.

4. SIMULATING IIF SysrE1 (Smi' I)

We have chosen to simulate the system using a pseudo-Newton
algorithm. Assume that, for given initial conditions, exogenous. and con-
trol variables, the model equations (2) have been solved for times L2.....

- I. and the solution for v(t) is desired. The pseudo-Newton method is

(17) B(l)k(z) = g( y (t), v(r - I) '(: - s); u(t).....u(t - e))

584
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L.. a..

y5(1) = y'(1) + (t), k = 1,2,..
In the above, (i) is the k' estimate of t'(t). l'he method is called

pseudo-Newton because the matrix B(t) is evaluated only once at the
startrng point. lii our code, this point is the and a vector from the last
simulation. 1 he classical Newton's method reevaluates R(t) anew at each
point (t).

Ortega and Rheinboldt [18] show that this method will converge ii
the solution of (2) is sulliciently close to the starting point, and that the
rate of convergence is linear.

The key to implementing this Newton's method successfully for large
models is exploiting the sparsity of 8(i). For large econometric models
(more than, say, 100 equations), the nonzero density of B(t) (i.e., the
percentage of its elements which are nonzero) will be on the order of a
few percent. Hence only the nonzero elements are stored, and the linear
equations (17) are solved by finding lower and upper triangular matrices
L() and U(z) such that

8(t) = L(t)U(t)
Then (17) is easily solved by forward elimination and back substitution in
two triangular systems.* Much work exists on how to perform the factori-
zation (19) so that, if B(t) is sparse, L(t) and U(i) will be sparse also
[9] [22]. Our software uses slightly modified versions of subroutines by
Curtis and Reid [2] and Dull' and Reid [4] to perform the factorization in
a way which preserves both numerical stability and sparsity. Figure I

shows the result of applying these subroutines to the B(t) arising from
Klein's model [10]. En the figure, X denotes a nonzero element, and F
denotes a new nonzero created in the course of the factorization. The
densities of L and U are only slightly higher than that of the original
matrix, while B' is l00° dense.

Actually, the structure of B(i) may be exploited even more fully. For
most models, the rows and columns of B(t) may be rearranged to create a

block triangular matrix with nonsingular blocks. Figure 2 shows this for
Pindyck's model [20]. The blocks may then be solved sequentially. In solv-
ing each block, the pseudo-Newton method (l6)-(18) is used, and each
block is factorized rather than the entire matrix B(i). This yields sig-
nificant savings in efficiency, storage, and accuracy.

When implemented as described above, simulation using Newton's
method is often faster than current Gauss-Seidel techniques. Newton's
method converges in one step for linear equations, its storage demands

tLU decomposition ts only one of several techniques which have been developed for
solving sparse linear systems. It is widely used in linear programming. For other ap-
proaches, see 125].
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Figure I LU decomposition.

are modest, and it is likely to be more accurate as well. The software
implementation is much more complex than for Gauss-Seidel, but many
of the subroutines are needed anyway for the reduced gradient computa-
tions. Little more is required of the user, since the partial derivatives in
8(i) can be computed by finite differencing of the model equations. Of
course, only nonconstant elements ol B(t) are recomputed,4 and any
blocks of 8(t) which are constant are factorized only once, at the start of
the algorithm. In addition, the pattern of nonzero elements in 8(1) is in-
dependent of 1. This means that the subroutine which determines the Se-

To permit this, the user must indicate which variables appear nonlinearly in each
equation - -see the appendix for details.
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Figure 2 Block Trangularization
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See f12j for proof. in this software system the algorithm stops if these
conditions hold to within a tolerance , with default value l0. It also
stops if the fractional change in the objective value is less than ' for
NSTOP consecutive iterations, where and NSTOP have default values
of 1O and 3 respectively.

7. COMPUTING THE SEARCH DIRECTION (STEP 4)

In this software system, the user has a choice of a variable metric
method, or one of 6 conjugate gradient methods for choosing the search
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quence of pivot elements in 8(t) need he invoked on!y 011CC at the start of
the algorithm, and recalled only ii some pivot element is too small.

To deal with the possibility of the pseudo-Newton method not con
verging (within a prespecificd iteration limit), we have added the Option of
reevaluating and refactorizing 8(t) every r iterations, where r may he user
controlled. The classical Newton's method corresponds to r I. If this
option is unsuccessful, the step in the one dimensional search (see Sec-
tion 7) is reduced and the pseudo-Newton method is tried again. If is
small enough, Newton's method must converge.

5. COMPUTING THE REDUCED GRADIENT (STEP 2)

Computing F/Oii by (14) (15) again requires an LU factorization of
each 8(z). The factorizations used in simulating the system cannot be
used for two reasons. First, the matrices in (14) must be evaluated at the
point obtained by simulating the system in step I. while the B(i) used
in the simulation were evaluated at the previousl' simulated point, Since
the new state values are unknown prior to simulation. Second. to reduce
storage requirements, the matrices 8(t) and their factorizations are over-
written when t is changed, so they are not available for use in (14).

For z = T, T I.....1, the matrix B(i) is reevaluated and refac-
torized, (14j is solved for 11(1), and aF/9u(r) is evaluated using (IS).
These computations are considerably simplified by the fact that the
Jacobians with respect to the lagged states and controls (äg(t + j)/j'(t)
in (14) and g(t + j)/c9u(i) in (IS)) grow increasingly sparse as j in-
creases. Hence the summations in (14)-(l5) may be evaluated very rapidly.

6. CONVERGENCE CRITERIA (STEP 3)

Let u1 be thejth component of u. Then u satisfies the Kuhn-Tucker
necessary conditions for optirnality in the problem (I )-(3) if

S

(20) U1 = lb1. 9F/äu3

(21) = ub ÔF/öu,
(22) f b3 < u1 < UI), = 0
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(detiuJt value 50), the system will switch from the variable metric niethod
to whichever ('G method the user selects, switching back again if Possible.

The direction tnding subroutine must deal with the possibility that a
superhasic variable may have hit a hound during the previous One dinien_sional scar'h If n, and a ('G method is hing used, the CG method isrestarted (d is set to iI7iu). lithe variable metric method IS being used,R can he modified by deleting the appropriate column, and transfornuingthe resulting matrix hack to upper triangular orni (see II 5J for details)

If a new superhasic variable is added by releasing a nonhasic
variablefrom its hound, a unit vector column is added to R. The logic for releasing a non basic variable from its bound is as prescribed by Gold farb (8j.

Note that both the CG and the variable metric methods fl1fljfllZquadratic functions in as many one dimensional searches as there are
variables, if the one dimensional search is done exactly.

8. Tui ONF DIM.NSI0NAI SIARCI1 (Sup 5)
The one dimensional search subroutine is an adaptation of one due toShanno and Phua f24]. It uses quadratic and cubic interpolation and

extrapolation to estimate the value of a'. Both F and !F/Ou are evaluatedat each point in the search, and the polynomials are fitted to the F valuesand the values of dF/da = (9F/au)1d. The decision to use dF//0 wasmade because, once the system is simulated to evaluate F, aF/m can beevaluated with less additional effort than a complete simulation, i.e., thegradient ofF is easier to evaluate than F itself.
The search operates in either of 2 modes. In mode 2 the search is

terminated whenever the decrease in F is deemed sufficiently large, i.e.,whenever the conditions

< toid + l04(dF/da)0
and

(dF/da),.0 < (dF/da),,
arc satisfied 124J, In mode I. the minimum must be bracketed and at leastone interpolation must be performed before the search will stop. Thisusually yields a more accurate estimate of a' at the expense of more elTonin the search. Some experience with these options is described in section 9.For problems with linear mode! equations and a quadratic objective,the function F(u + ad) is quadratic in a for any u and d. Hence, by using

quadratic and cubic approximating functions, this one dimensional searchwill converge in at most 2 evaluations of F and dF/da. This fact, the Istep convergence of Newton's method, and the finiteness of the conjugate
direction methods of section 7 on quadratic functions, together imply thatthis ORG algorithm will converge finitely for linear-quadratic problems.

590



9. Co.i PUTATIONAI, Ris Ii i.s
This software system has been tested on three diflrent econometric

models. These are Klein's Model (1950) [II], the Ando-Miuj Model and
the Klein-Norman Model 1101. (16]. The nroh!ems solved were chosen to
test the computational efficiency of the software system rather than to
evaluate economic policies.

Results are summarized in table I . In the methods column of the
table, VM denotes the Complementary DFP variable metric method, FR
the Fletcher-Reeves Conjugate Gradient Method, and SN a scaled con-
jugate gradient algorithm proposed by Shanno [23]. G, DFP, and SA are
Gradient, Davidon- Fletcher- Powell, and Successive Approximation al-
gorithms tested by A. L. Norman [17]. A simulation is Tsolutions of the
model equations for I = 1, 2.....T and time is in computer resource
units.*

All problems were solved using the FORTRAN V compiler on the
UNIVAC 1108 computer at Case Western Reserve University. with
double precision floating-point arithmetic (machine accuracy of ap-
proximately 10-').

In all runs, convergence was assumed if the Kuhn-Tucker conditions,
(20)-(22), were satisfied to within 10 or if the relative change in the ob-
jective function was less than l0- for three consecutive iterations. The
convergence criterion used for the Newton method was that the left hand
side of each equation was less than iO in absolute value. All runs used
finite difference derivatives for the model equations and analytic objective
derivatives.

The first two test problems use Klein's Model with government
spending and business taxes chosen as controls. The objective function is
the sum of the squared deviations of the state variables from desired
values. These values were obtained by simulating the system at the his-
torical values of the controls. Thus, the optimal values of the objective
and the controls were known to be zero and the historical values respec-
tively. One and three time period versions of this problem were solved
using starting values of zero for all controls.

Since these problems are linear-quadratic, convergence using variable
metric or conjugate gradient methods should theoretically oct.ur in M
iterations or less (where M is the total number of controls) if exact one
dimensional searches are used. This behavior was observed for the one
time period problem using the complementary DFP variable metric for-
mula and using the Fletcher-Reeves conjugate gradient formula. Both
algorithms converged in two iterations generating identical solutions at

*Thls is execution time plus a small charge for input/output and lile handling. Cost is
computed on this basis.
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cacti iteration. Similar results were obtained lou the three period prob-
lem I he quasi-Newtoii method converged in the theoretical limit ol sis
itera ions. iW() con pigate gradient a gun th ins, Fletcher-k ecvcs an d
Shin ito. performed almost a well. lhev reduced the obtect ive from 51)5.1)
to approximately II) in six iterations. lIowcver. one nmr' It'r:itnn 's:is
requited h' both to satisfy the K uhn-lucker conditions to within I 0.

The SCcon(1 model was the Ando-M mi model. It has live equations
and is nonlinear. The policy problem considered used iinhorrosvcd re-
serves as a control variable and has been considered by other researchers.
Computational results for this problem obtained by A. F. Norman using
the successive approximation algorithm (16] are listed in Table I For
this problem, the successive approximation method gave the best results
in terms of the number of simtilations required.* Of course, the simula-
tions require dilThrent amounts of etlort, since dilkrerit methods were
used. The results of Table 2 suggest that the simulations done in ]2 I ]),
which used a Gauss-Scidel algorithm, required more time than ours,
which used the pseudo-Ness ton algorithm.

All Ando-Mini test runs achieved optimalitv except the Shanno
conjugate gradient with search mode 2 which terminated prematurely on
the fractional change criterion. This method converged when the search
mode was set to I.

The last model considered is the Klein-Norman model. This is a non-
linear 27-equation model of the U.S. economy. A policy problem pre-
viously considered by Normal et. al.** was solved. Results obtained using
the variable metric algorithm compare very favorably with the previous
results.

Great savings are obtained in this problem by using the pseudo-
Newton method for simulation rather than Gauss-Seidel. A comparison
between the two methods for the test problems considered is given in
Table 2. The Gauss-Seidel method was found to be highly sensitive to the
choice of the damping factor and thus requires a skilled analyst for ci-
licient use. The Newton method, on the other hand, is very easy to use and
is significantly more efficient for these problems.

To compare the efficiencies olGauss-Seidel and Newton methods for
optimal control problems, the Klein-Norman model was used as a test,
along with a Gauss-Sudel routine provided by A. L. Norman. With the
same initial values for the controls, and the same initial conditions as
were used in the runs of iable I, the Gatiss-Seidel algorithm required an
average of 110 iterations per time period to solve the model at the initial
point. In the 13 period, 27 equation problem, this leads to over 33,000

Cornparison between the number oF Iterations is misleading since the compulaii.-inal
effort per iteration Varies greatly.

apolicy prohleiii I in 1171.
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I he Newton melhtitl used reevahjak1j aiid retaci,,ri,ed tIi luau) II(i cser 5 anditerations mr Au lu-Mini and Klein- Norniaii respediYeiy
is the relaxaiion parameter or damping tactor

model equation evaluations to perform a single stnjulat ion OVer all 13periods. lii contrast, a complete optimifa(R)n 0I this model using ourcode, with the Same initial condiioits required oiulv 24,41 function eval-uations (see VM with mode 2 in lahle 1). l)uring this optimi,tti IIsim ulations were perlormned (each over I 3 line periods), usini the pseudo.
Newton algorithm.

The ratio of simnula lions to line searches is a measure of the diljejen(",'
of the one dimensional search routine. In mode 2 (less exact mode), thisratio is exactly I (an extra simulation is required at the start). In modeI the ratio is 2 except for I problem (A ndo-M mi with method SI!). Sincethe total number of searches and simulations is at most a snriall multiple
of the run niher of variables, both modes are operating well. Neither has aclear superiority in these tests.

In closing this section. we note that computatk)n times on larger
models should be considerably reduced if analytic partial derivatives areused. This is because the derivatives are usually much simpler than the
equations themselves Since all runs here used finite difkrence derivatives,Some of these times could he reduced, perhaps signiticantly. Whetherthe tradeoff of coding for execution time is worthwhile or not dependsmainly on hos olten the model is run and on how often its structure ischanged.

10. CON(1.US ION

The sollware system described here promises to he an eflicient, robusttool for Solving large optimal control problems. The sparse matrix imple-mentation of the pseudo-Newton method, the varja ble metric and conju-gate gradient methods, and the inexact one dimensional search all haveperformed well in initial tests. Further testing, on larger models, isplanned. Our objectives in future work are to develop a system which is
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portable, well documented, easy to Use, dflicirit and robust, and to (Its-
seminate such a system as widely as possible.
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AppI:,curx

Input Data and Stthroiigjne De.ccripiions

The user inputs the initial conditions, values of all exogenous vari-
ables, the bounds lb and ub and other problem data using a data deck
which is divided into sections. Each section begins with a keyword (e.g.
LIMITS arid METHODS) and ends with the word END. This makes thedeck easier to read and check. AU internal limits and tolerances have de-fault values, and need not be input. All input data is checked for obvious
errors and is echoed back to the user.

The model g and objective terms f are specified by user-provided
subroutines The model subroutine must allow computation of any speci-
fied model equation for given values of the "s and u's (which requires
somewhat more complex coding than evaluating all equations). The solu-
tion algorithm requires first derivatives of all problem functions. Theuser has the option of using a system finite difference subroutine to com-pute them or coding his own subroutine to evaluate them analytically.Jt is important to avoid computing Jacobian elements which areidentically zero, and to recompute only nonconstant Jacobian elements.To permit this, one of the larger sections of the data deck contains in-
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h)IIj1ItI&)fl Sl)eciIj,L hieIi " ii hies III)eitI in each e(!ilatjii, aitti which
appeir iioii!inearly. iJis lI1foiniiIioii c(LII)lcd ith the ahjJjt 1 evalu;tte
aiiy sI)ecile(I Ii1U(ICt (I1IatI);l. (lie lililte ilit1eieiie dci ativc suh-
i'OtiIi!lC t) vtltia(e IiIV those Jac hian eIeiiiciut needed at a patictiIai-

t the dgorithm.

l)7

4

.-:




