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AN OPTIMIZATION CODE FOR NONLINEAR
ECONOMETRIC MODELS BASED ON SPARSE
MATRIX TECHNIQUES AND REDUCED GRADIENTS*

By ARNE DRruD

The paper describes an implementation of a reduced gradient code Jor aptimizing nonlinear
econometric models. The theory cf reduced gradient algorithins iy presenied., mul. special at-
tention is given to 1) the representaiion of information in the computer. where sparse matrix
teckniques are recanmiended. 2} a recursion jor computing the reduced gradient. and 31 the
solution of the econometric model for prescribed controls where a psendao-Newtan methad
based on matrices computed in the reduced gredient step is described, Efficient handling of
linear model equations. computation of analviic derivatives, and computational resolts with a
small Danish model are also mentioned.

l. INTRODUCTION

In the past decade the interest in using optimization methods on macro-
economic models has grown rapidly. The ability of this new approach has
been demonstrated in a number of cases. Most of the emploved models
had some special structure, ¢.g. were linear models or small recursive
nonlinear models. Metheds for handling more general optimization prob-
lems have also been presented by e.g. Fair [7]. Due to rather high com-
putational costs with current methods more efficient computational
methods must be developed before optimization techniques may be ap-
plied in the economic planning.

The paper describes the main theoretical background of an optimiza-
tion code for nonlinear econometric models developed and implemented
at the Technical University of Denmark. The paper reviews some tech-
niques from mathematical programming and shows how the techniques
may be applied to econometric models.

Recently, many authors have suggested, that sparse matrix tech-
niques may be used for the many matrix manipulations in an optimiza-
tion, see e.g. J. R. Bird, [4], J. Mantell, |14}, or A. L. Norman, M. R.
Norman, & C. J. Palash, [17]. Following a short problem formulation in
section 2, the next section describes the basic idcas of sparse matrix tech-
niques, giving special attention to the topics relevant to nonlinear econo-
metric models.

The application of reduced gradients has been snggested by several

*This rescarch project has partly been supported by the Danish Social Scienee Rescarch
Council through grant nc. 514-5201. A part of the rescarch was performed while the author
was at the Department of Mathematics, The Technical University of Denmark.
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authors, e.g. J. R Bird. [4]. und‘ 1. Mamlcll, [14]. ,f\n ;llgori(hm for the
computation of the reduced gr;@cnl for cconomcmc.mndcls with many
lags is presented in section 4. After the 'rcduccd grudtcm hqs hL‘L‘lT. com.
puted the control variables are C}lfl.llgCtt- and a .\‘ml.u!ulm?] s i‘c"'i‘_rl'l'wd
viclding the new state variables. l.hc sm.mlzmon 1S pcrtormcd using
) _Newton method which applies an inverse matnx computed in the
The repeated use of the same nverse matriy
Abadic & J. Carpentier. [1], 15 one of the major
ent methods. The stmlations are treated ip

pseudo
reduced gradient step.
originally suggested by J. AD
advantages of reduced grad
section 5.

In section 6 the handling of additional constraints such as mixed

constraints and simple lower and upper bounds is discussed.
The current code employs the analvtical derivatives of both objective
jints. Some arguments in support of this approach

function and constre .
section 8 gives some computational ex.

are given in section 7. Finally.
periences from the application of the code.

2 Mobrl FORMULATION

In the sequel all vectors are column vectors. X' is the transpose of x.
AG]AX, 18 the matrix of partial derivatives of the components of the
vector function g, with respect to the varables in the vector x, . The
matrix has one row per function in g, and once column per variable in

X o
In the following sections the model below 1s solved:

(1) min = f(x.u)

subjectto g (v, g Xty v, )= 0

(2) r=1....T

and

(&) a < (') <8

where X' = (X 3. vy is a vecter of endogenous variables andu' =
(uy. .. ... W)Y is a vector of control or policy variables. x and w are

divided into T subvectors. x,. 1. one for each time interval within the
planning horizon. Each subvector x,is of length n. and cach subvector s,
is of length m. g, is a vector-valued function of fength n representing the
structural equations of the ecconometric model. g, is assumed te incorpe:
rate exogenous variables. Furthermore. it is assumed. that g, can be com-
puted from the same set of formulas for all 1. Occassionally the constraints
(2y are summerized as G(x. @) = 0. where G has o 7 components. ¢ de-
pends on variables from 7 + 1 time intervals, and xg X g Xy 8
wellas ug. -y .. .., u, ;are assnmed to be known,
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S u) i (1) is a scalar-valued objective function where exogenous
variables are built inte the function /. This form of the objective function
is preferred to the widely used separable form

1
2= 20 filvew).
=1
since it is more general and allows for terms with arguments from several
time intervals. We assume that the partial derivatives of the objective
function, @f/dx and df/du, and of the model equations. g, /dx, . and
dg/Ou:g, t = 1,....T: 5 =0, .. min({.1 — 1), are known.
In the first sections the constraints (3) will be omitted corresponding
o a = [avector of — =] and B = [a vector of + = ]. In section 6 it is dis-
cussed how these constraints can be taken into account

3. SPARSE MATRIX TECHNIQUES

A sparse malrix is a matrix with few nonzero elements. Sparse matrix
techniques are computational techniques taking advantages ot the many
zeros by storing only nonzero elements in the computer, and by only per-
forming multiplications in which both factors are nonzeros. Sparse matrix
techniques can save a large amount of core storage and a considerable
amount cf computing time. the time saving usually being the most
important.

In large econometric models the matrices dq,/ax, . will usually have
few nonzero elements. The purpose of this section is to describe the basic
ideas of sparse matrix techniques and. especially. how these techniques
may be applied in econometric modelling.

The following small matrix will be used for illustrative purposes:

1 2 3 4 5

12 6

214 3 -2
A =13 -1 |

4 | 2

S11 =2 |

The matrix may be stored as a sparse matrix in many diflerent ways.
In the following, however, the matrix will always be used column by col-
umn. Consequently, the following scheme is suggested: The nonzero
elements are stored in a one-dimensional vector. 4. and the corresponding
row numbers are stored in a parallel vector R. A third parallel vector. L.
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contains the index of the next nonzero element in the column. 4 — 1 jp
indicates the end eof the column. A fourth shorter vector, S, contains the

index of the first element in each column. »
For the above example the storage scheme might be:

____—_,_"_—_————’”‘———" ————
ndex| 1 2 3 4 S 6 7 8 910 1l D

L1 36 1 o-22 Vo2 b4 12
R 13 21 3 24 5 1 5 2 4 5
T I A A e (e I e

53‘23L|

- p—

Matrix-vector multiplications are simple. A more difficult, but alsp
more important sparse matrix operation. is the solution of a set of linear
equations. 4 x = b, with a sparse coetlicient matrix. This operation i
usnally called an “inversion.” From basic linear algebra it is known. that
a set of linear equations may be solved through a sequence of row-opera.
tions gradually changing the coeflicient matrix into the unit matrix. /. The
same row-operations applied to the right hand side vields the solution to
the set of equations.

If A is a sparse matrix only few row-operations have to be performed
since most of the matrix elements. which would otherwise have to be
eliminated, are already zero. The idea of sparse matrix inversion is (o stor
the few remaining row-operations. The stored row-operations are applied
to b each time 4 x = b is solved for a new vector b.

A row-operation may be: ““add « times row k 1o row .. As a resull
of this row-operation row i of the coeflicient matrix changes according to
the formula a,: = a;, + «-ay. j = ... n. A very unpleasant thirg
happens when a; was zero and a,, was nonzero. because suddenly an ad-
ditional nonzero element appears. This so-called “fill-in™ must be ehm-
inated later on. The number of fill-ins depends on the ordering of the rovs
and columns of the matrix 4. Many heuristic methods for ordering rows
and columns minimizing the number of fill-ins have been sugpested see
e.g. H. M. Markowitz, [15]. J. K. Reid. [I18]. or D. J. Rose & R. A
Willoughby. [19].

A valuable observation is, that when row & is added to other rows.
fill-ins will only be created in those columns where row & has nenzr
elements. If row & has one nonzero element. no fill-ins will be created. In
lower-triangular matrix the elements below the diagonal can be eliminated
from the left, and in each step the row added to other rows wiil have pre
cisely one element. A method recently suggested by k. Helierman & D. C.
Rarick, [10] and [11]. utilize these obscrvations. The rows and columns
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spike-column

/

Figure I After rearranging rows and columns the matrix wiil be almost lower-triangular
with only a few spike-columns.

are rearranged such that most of the elements are in the lower-triangular
part of the matrix. If it is not possible to create a completely lower-tri-
angular matrix, the elements above the diagonal are arranged to form as
few columns as possible. The columns with nonzero elements in the
upper-triangular part of the matrix are called spike-columns or spikes,
see fig. 1. The fill-ins will occur in the spike columns only. Hellerman and
Rarick’s procedure applicd to the exemplification matrix vields a matrix
where only the original column 2 is a spike column:

4 | 5 3 2
311 -1
116 2
4 2 |
2 4 -2 3
5 | 1 -2

If the set of equations is regarded as representing a flow of informa-
tion from of-diagonal to diagonal elements as in D. V. Steward, [20], the
lower-triangular matrix-elements correspond to a feed-forward of infor-
mation while the upper-triangular elements correspond to a feed-back.
The idea is to concentrate the feed-back into a small number of variables,
the spike variables. It the values of the spike-variables are known, the rest
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ol the matrix is jower-triangular and the set of cquntiqns may bhe solveg
¢ly. This recursion has been used by P. Nepomiastehy {16). 1o ob.
’ a4 set of nonlincat ¢quations.

The set of Tow-operations used to climinate nonzeros above and be.
jow the diagonal in a given column can be represented by the following
information: The pivot clement and its row number, and for the remain.
ing nonzeros in the column, the vilues of ll¥c clinated clements and thejp
row numbers. This information, however, is exactly the content of the
column before it is affected by the elimination. Henee, the set of all row.
operations in the inversion can be rcprcs.cnlcd by the conﬂlcnl of the col.
before they are climinated. Since only the spike-columns e
are climinated, the information requiring storage is

recursiy
tain a solution to

umns just
changed before they
limited to:

1) The original matrix A.

2) The spike-columns just before they are climinated (called updated
spike-columns) added as extra columns to 4 using the standard
matrix storage scheme.

A list of the order in which columns, inciuding updated spike.
columns, are climinated, and the row numbers for corresponding

o
~—

pivot clements.

The storage scheme described above was originally suggested by J. E
Kalan, [12], for use in large scale lincar programming. Sharing cor
storage between the inverse and the matrix itself, as it is done in the
present storage scheme, is very space saving. Furthermore, the scheme
holds a very important advantage over most other methods for repre
senting the inverse. The matrix A witl usually be the Jacobian dg,/dx,. As
suming the model to be nonlinear, changes in X, during the iterations wili
produce changes in the Jacobian. However, it is casy to find a representa-
tion of the new (i!q,/(l.\';)". When the new dg,/dx, is computed, the in-
formation in §) above is automatically updated. And the pivot pattem in
3) can be used unchanged. In 2) the nonzero pattern of the updated spike-
columns will remain unchanged, only the numerical vatues of the k-
ments of the updated spikes must be recomputed. Since most sparse
matrices will have few spike columns, this reinversion is very fast.

Although only the operations for A “'. b have been described, the in-
formation concerning row-opcrulinnsﬁmu_\' also be applied to compute
¢ -A 'seceg A Drud, (6]

3.1 Linear Models and Sparse Matrices

A lincar model may be written in steuctural form:

(4\’ Z ‘é"-/ s Ny + i_'.}“..‘ ~ (’ = hl

t s=0
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i=1

) duxo=bo—

it

where the nonzero pattern of the matrices represent the structure of the
economy. or in reduced form:
7

(6) X, = b,I - g;:!l, - Z Qf=1,l, PERIS PR ;[__},l, 7.

s=1
where

bi=A;-b.Bl. = A B, .s=0.. . ¢

and

have been introduced.

For most purposes the reduced form is used because x, ¢an be com-
puted recursively. 8/, and é,’_,_, are usually completely dense. and thus
the number of multiplications needed to compute xXois at least n-(n + m).

However. it is often faster to use the structural form (5). 4. is com-
puted once. 4,, rarely has more than 3 4 - y elements, and 4, can be rep-
resented by 5-10 - n row operations. The right-handside of (5) may usually
be computed in less than S - » multiplications. Even with the additional
time for data-administration, the computing time with the structural form
is much smaller than the time for the approximately n - (n + m) multi-
plications in the reduced form, whenever the model dimensions are
medium or large.

The example above clearly demonstrates the computational power of
sparse matrix techniques. Similarily, other computations in linear models
may be performed much faster using sparse matrices and the structural
form of the model instead of the reduced form.

4. THE REDUCED GRADIENT

The concept of a reduced gradient was originally introduced by P.
Wolfe, [21], for linear models and later generalized to nonlinear models
by J. Abadie & J. Carpenticr. |1]. J. Abadie, [2], describes a method for
computing the reduced gradient for dynamic, recursive models, and the
method is applied to recursive economic models by J. Abadie & M.
Bichara, [3). Recently J. R. Bird. [4], has applied the reduced gradient to
simultaneous econometric models. The following is a slight generalization
of Bird’s approach.

The model is (cf. section 2)

@) minz = f(x.u)
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(8) subjectto G{x,u) = 0

G represents an econometric model and thus it is possible fqr each choige
of control variables, u, to compute the endogenous variables, y fe
G(x,u) = 0 <=> x = x(u). Introducing this implici.(!y ficfirlcd function
x(u) in (7) yields z = f(x(u),u) = F(u), 1.c. the ObjCCl‘ch function de-
pends on the control variables u alone. The reduceq gradient is defined 4
the vector ¢F/du, i.e. the reduced gradient is equivalent to the gradient
that R. C. Fair, (7], computed using a finite diflference method. The chain
rule provides a formula for the reduced gradient:

aF  af"  af" ax
@ W w taw u
and a formula for the matrix dx/du may be derived froin the implicit func-
tion theorem. The intuitive idea is:

(10) I G(x(u),u) = 0 forally
0G , 3G o
du dx du
ox _ (a6} o
du \dx du
Combining (9) and (10), the reduced gradient becomes
» aF  of" af’  (98G -'} G
(th W o \ax) [
af’ , 0G
“w o Uwm

where the content of the large brackets, the vector I, is computed first
and then multiplied by the second matrix. This is cheaper than computing
the matrix-matrix product in (10} directly. The computation of I involves
solving the set of linear equations;

ag
Ix,

982 | 98,
(?X| 6,\'2 ar’ of' ar
(L, 105, 103 - ﬁ_(f / f)_

= RV,E‘...,E

éxr_. (7).'7-
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where 11, df/9x, and 0G/dx have been decomposed into time-compo-
nents. Since dG/dx is lower-block-triangular, the soluticn may be found
by a recursion, startingat 7 = T

/('Jf' min(i.1-1) e A
(I A D A ro, hirs ) To =
(12} 11, Fye E ", > N T,...,1

X, oy dx, 0x,

Mote, that only the blocks on the diagonal are inverted. If the model is
valid, the blocks are always regular. For large models dg,/é¢x, will be
sparse, and the inverse diagonal blocks should be represented by some
sparse form as described in section 3. Further note, that apart from the
inversions, only vector-matrix products are computed, a fairly inexpensive
operation when the matrices dg,, ,/dx, are stored as sparse matrices.

After the multipliers, II, (which in the optimal solution are equal to
the Lagrange multipliers) have been computed, the reduced gradient may
be computed by

min({ . T-1)
aF  af 38145
3 L n,, B o710
(13) o o, Z) T r

where again all operations are inexpensive vector-matrix multiplications.
Many lags in the model or a large number of lagged variables does
not affect the size of the inverted matrices. It is not necessary to introduce
additional model variables and model equations to reduce the number of
lags in the model as it is done in G. C. Chow, [5], and in J. R. Bird, [4].
Neither is it necessary that the objective function is separable like
¥ I fix,u,) as long as the vectors Jf/dx, and df/du, may be computed.

S. SIMULATIONS

The reduced gradient, 0F/du, may now be used in combination with
any gradient, conjugate gradient, or variable metric method to minimize
F{u). All the methods mentioned include a one-dimensional search in
which u is changed into ¥ + y-Au and F(u + 7v-Au) is computed for
various y-values. However, the function F(x) is not known explicitly.
Consequantly, the model must be solved with respect to x(u), and the
explicitly known objective function f(x, u) may then be applied.

There are two standard methods for numerically solving a nonlinear
simultaneous econometric model, Gauss-Seidel’s method and Newton’s
method, see e.g. G. From & L. R. Klein, {8]. Until recently, Newton’s
method has not been widely used with econometric modeis due to the
matrix inversions. However, when the matrices involved are sparse
matrices, and when the reduced gradient is computed as shown in (12)-
(13), a relatively efficient pseudo-Newton method may be devised:
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Consider time interval ¢. It is assumed that x, has already been com.
puted for s = 1,....¢ — L, and the problem is to find x, such that g,.
(Xp bt - o X y1) = h{x) = 0. where A is used to indicate that at !Ee
moment only x, is unknowrn.

Newton’s method is bascd on the formula

. dh(x, + 6 - Ax
By, + Ax) = hlx) + *—(~—’-.——,~—~—-1—) - Ay,
dx,
where # = diag(,.....#,) Is a diagonal matrix with 0 < o, < | Stlling
the right-hand-side cqual to 0 yields

P . v Y-
(14) Ay, = _{oh(_\, :‘g Ax,)} - hix).

Unfortunately, x, + §-Ax, is not known. Otherwise (14) could have
been used to compute the correct v, + Ax, in one iteration. In the stan-
dard Newton method. the inverse Jacobian

ax,
is approximated by the inverse Jacobian computed at the current point x,
oh(x)) !
dx, )

and as v, converges to the solution.

(x|~ '
Tdx,

dh(x, + § - Ax,))!
ax, ’

converges to

lr! an opumization several x,-vectors are available: Let x! represent
Fhe point from which the one-dimensional search is started and where the
inverse Jacobian

dx, ax, f

kI

15 C,()mputed for use in (12), and let x, represent the current trial-solution
0 Ax,) = 0 on which Improvement is desired. The pseudo-Newton

method applied in connection with reduced gradient algorithms applies to
known
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"/l(‘?_) l

dy,

dhix,))
ax,

as in the standard Newton method saving both the computation of the
Jacobian and the inversion. The pscudo-Newton method converges as

long as
dh (.\;',L) -
dx

fit o -0}

dx,

instead of

is suthciently close to

L

and the limiting rate of convergence is

BPERZIEnS (f'_"l;-\‘?’,) !
;s ax, ix, '

where x, is the true solution and p indicates the spectral radius, i.c. the
absolute value of the numerically largest cigenvalue of the matrix. Note.
that the rate of convergence is lincar and not quadratic as for the standard
Newton method. Also, the rate of convergence depends on the steplength
v in the one-dimensional scarch. For a small steplength 7 will be close to
x, implying a goud rate of convergence.

A first trial-solution x, for the pseudo-Newton mcthod may be ob-
tained in various ways, £.g. by a first order approximation x = x° 4 y-
Av:

G+ v Ax,u’ + vy Au) o~ ‘y-{‘—;—%-Ax + %-Au} =0
I (.

\

|
. - S
Ax = a<ﬁ> ~(ﬁ-Au)
Jdx du

which may be solved recursively by:

. 1. min(f .z 1) . .
)
Ax, = —(d—gl) {@-Au, - Z ((—'g-'——-A.\‘,_. + ,}-'g—'-‘.‘m, .)}

Jx, duy sl (A Oy s V;

t=1,...,T.

where only the inverse matrices computed earlier are used.
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During a one-dimensional scarch x is an tmplicitly dcting.-d function
of the steplength v, x = x(vy), with 4x/d,y,.0 = _\.\'.. The ll'lill-S‘olu[j(m
mentioned above 1s based on a first order approximation to the implicit
function. L.. S. Lasdon et al., [13], suggest that a sccpnd ordcr‘ aApPpProxiniy-
tion be used after the first simulation. Thg quud{atlg uppro‘xmlzlliun may
c.g. be fitted to the points x(0) and .\'(7.',,) with derivative Ax in x(0), where
vo is the steplength of the first simufation. ‘

In the current code, CONOPT, none of the two above methods for
computing a first trial-solution have yct been lmplgmantch X 18 initialized
as the x corresponding to the best objective function found so far. Even
with this unsophisticated start, the simulations usAuzl!ly f:()nvcrges with
approx. 3 evaluations of the residuals g, and 2 multiplications by the in-
verse (dg, /9x,)”" per time interval.

5.1. Linear Equations

A linear function is always equal to its first order approximation
evaluated at any point. Thus, during Newton or pscudo-Newton itera.
tions, where a solution satistying a first order approximation to the set
of equations is computed, the linear equations are solved in one iteration,
When the inttial trial-solution is computed using either the linear or the
quadratic approximation mentioned above, the linear cquations will
even be satisfied by the trial-solution.

When an equation is known to be satisfied, there is no reason to
compute its residual. Hence, the subroutine that computes residuals
should contain an input argument, which controls whether all residuals or
only residuals of nonlinear equations should be computed. Most large
econometric models contain a large percentage of linear equations, and
when they only have to be considered in a few calis of the constraint sub-
routing, the saving will be considerable. Furthermore, during the inver-
sion, i.e. during the row-operations, more savings will be obtained, since
all row-operations with a zero in the right-hand-side of the pivot-row are
not performed.

5.2. Seop Criteria for Simulations

The question to be answered in this section is: “How accurately
should the simulations be performed?” The purpose of a simulations is,
at least during the optimization, to find an x-vector which can be used in
the objective function subroutine for evaluating f(x,u). Hence the ac-
curacy of the simulation should be determined such that the accuracy of
S (x, u) is sufficient.

Theerror e in the objective function due to an error Ax in x may be
estimated as follows:




i)

i’ i i (.‘1(.'\ !
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d R
where (34) and (1) have been used. Henee, the error in the objective
fenehon is approximately equal to the scalar prodact of the mdtiphen
vector with the residhnd vector,

Consequently, the following stop-citerii are used: Compnte v, the
sum ol squaved esidats divided by the mmber of constiaints, 1 2 iy
less than epsmin (e, 10 ™), then stop it is not possible to find & more
acenrate sohtion dne to ronnd-oll ereors, 2 s fess than epsman (c.p
10°%), and if the estimated error e, | = | o b is dess than £, /1,
then stop. /o, may e be between 10 ' 1o 10 * times the change i the
objective fanction in the previous one-dimensional search. The last stop
criterion is: I solution satisfying one of the first two stop eriteria his not
been fonnd within o certain mimber ol iterations (e.p. 10), the pseudo
Newton method will probably not converge. Conseqitently, it iy stopped
and a shorter steplength is used in the one-dimensional scarch.

The stop eriteria suggested here have the important wdvantage, that
the solutions become gradially more acenrate as we approach the opu-
mum and the changes in the objective Tuncuon are smaller, while at the
same time compnter-time is not wasted on acenrate selutions when i is
far from the optimum,

6. ADDITIONAL CONSTRAINITS

This section contains some ideas on how 1o treat simple bonnds on
the variables. A more detailed description is given by A. Drnd, [6).
The problein formulation ol section 2 inchaded the simple bounds:

TGN (TR i ) &

When only the k-veetor has finite simple honnds the basie procedure
is as deseribed eartier. The only difference is that F(u) is minimized suh-
ject 1oy, < < g, However, the simple lower and upper bounds re
easily taken intor account by using e.g. D, Goldfarh's, [9], approach.

When simple bounds are active on 1 the following observation is
useful: An optimal solntion is a set of variables (v, 1) that satisties the
constraints and minimizes the objective tanction  whether some variibles
are control variables and others are endogenons variables is withont in-
terest, at feast from the optinmzation point of view. This leads to the fol-
lowing proposal: Since lower and npper bounds on the control vanables
can cisily be dealt with, nse the vanables that are close to a bound as
psendo-control variables, u,, and wse the variables far from the bounds

vl
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as pseudo-endogenous variables. _rp._.x}',, should also be chosen such thay
Xty ..) = O can be solved with respect to Xl o= ] Ve

. o
such that x,, has » components and dg,/0x,, is regular, In the

CONOPT-code the set of pseudo-endogenous varizbles X018 chosen from
the st of candidates (i.c. variables far from bound) such thay the magriy
dg,/0x,, 18 casy to invert, re. such that de /iv_, has few N0nZero gle.
ments above the diagonal.

It shouid be noted, that mixed inequality constraints like

e(x,u.x, ,..) <0

may be handled as well: Add a slack variable with lower boung zero and
transform the inequality into an equality which is added to the model with
the slack variable as the corresponding endogenous variable

The optimization procedure with bounded variables roughly is:

a) Divide (x,u) into x, and u, and compute the inverse malrices
(0g,/dx.,)".

b) Compute the reduced gradient dF(14,)/ du, using equations similar
to (12)-(13) and wse the gradient in the minimization of Fu,)
subject 10 a,, < 1, < B,

F{u,) is computed indirectly: The model is solved with respect o v, using
the pscudo-Newton method with the inverse mairices (g:/dx,,)", and
Flu,) = S{xp.1,)is computed by the usual objective funetion subroutine,

During the optimization it may happen that some pseudo-endoge-
nous variables come close to their bounds. In this case redefine x, and ,
such that the variables near bounds are in tp. In most practical optimiza-
tions such redefinitions of x, and w, are rare.

The main differences between the procedure outlined above and the
procedure used when there are no constraints on X, dare, that in the new
procedure it is not kncwn at the beginning which (n x n) — submatrix of
(9g./dx.,dg,/ou,) is going to be inverted, neither is it known with re.
spect to which variables the model must be solved. With the inversion pro-
cedure and storage scheme mentioned in section 3 the inversion is not a
difficult problem. Likewise, the pseudo-Newton method described in sec-
tion § does not depend on which set of variables is used as pseudo-
endogenous variables. (It would have been very difficult to implement
the procedure above using the Gauss-Seidel or related methods for the
simulations because these methods depend heavily on a prescribed set of
output-variables.)

When the number of active simple bounds in a single time interval
islarge (ie. >m) e.g. when the model has many terminal conditions it is
not possible to choose u set of pseudo-endogenous variables satisfying
the necessary requirements. A reduced gradient method may still be ap-
plied. However, dG/ax, will no longer be lower-block-triangular and the
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computation of the reduced gradient and the simulation can rot be de-
composed into time-components as described in section 4 and 5. The best
approach seems to be to take care of the additiona! bounds through a
penalty term in the objective function.

7. INPUT REQUIREMENTS

The CONOPT-code needs the following input:

1) A subroutine computing the value of the objective function

2) A subroutine computing the gradient of the objective function

3) A subroutine computing the residuals of the constraints

4) A subroutine computing the Jacobian of the constraints

5) The nonzero pattern of the Jacobian

6) Lower bounds, upper bounds, initial solution etc.

Often the objective function and the econometric model are written
as a sct of expressions/equations with variable-names like C, [, GNP etc.
Translating this information into the 4 subroutines mentioned above can
be very time consuming. Therefore, a special computer code, TRANSL,
has been produced based on the 1BM-product FORMAC (FORmula
M Anipulation Compiler). Input to TRANSL is a set of variable-names
defined as endogenous, control, or exogenous variables, a data bank,
and a set of equations written as ¢quaticns of an ordinary econometric
model. All variable-names are translated into X(1), X(2)....,XE(l),
XE(2),...etc, and replaced in the equations and in the objective function,
and equations and objective function are punched as FORTRAN state-
ments for the residual and the objective function subroutines. Simulta-
neously, all partial derivatives are computed analytically, and it is tested
whether they are zero, constant, or variable. The nonzero pattern of the
Jacobian as well as the values of the constant Jacobi elements are punched
in a data bank, and the variable derivatives are punched as FORTRAN
statements for the Jacobian and the gradient subroutines. TRANSL also
has a device for scaling equations and variables in order to improve the
numerical stability of CONOPT.

The TRANSL code is an experimental code and as such not very
efficient or flexible, but it proves that analytic derivatives may be used
even for large models. In a better implementation that TRANSL the
analytic derivatives should be computed one equation at a time and
stored with the equation in an equation-derivative bank with information
on nonzero pattern, linearity, etc. Before the optimization the equations,
the derivatives, and other data items should be collected into subroutines
and data files. This approach will make it very easy and cheap to make
changes in the model or in the objective function.
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8. COMPUTATIONAL EXPERIENCE

The computer codes have been applied to a small model of the
Danish economy with 28 equations, 33 endogenous ard control variabies,
47 exogenous variables, and 3 lags. In TRANSL a total of 2128 derivy.
tives were computed, 1951 were zero, 120 were constant, and oniy 37 were
variable. The time used by TRANSL was approx. 70 sec. CPU on a4y
IBM 370/165 corresponding to a CQSt 0'_' approx. US $7.50 at the com.
puting center at the Technical University Ql l)cnm.ark, Because only
variable elements are computed by the Jacobi-subroutine, the subroutine
required less core storage than the constraint subroutine and was alsq
faster to exccute. This should be compared to a method based on numer;.
cal derivatives, where the computation of the Jlacobian would require at
least 33 calls of the constraint subroutine.

The following figures relate to the CONOPT-code. They are rather
detailed in order to give the reader an impression of the distribution of the
computing time on the various steps in the optimization. The model was
optimized over a 5 period planning horizon corresponding to a problem
with 25 control variables and 140 equations. With one objective function
the total optimization time was 24 sec. CPU including some 2 sec. for
input/output, initialization etc., leaving 22 sec. for the optimization,
58 iterations, consisting of a computation of the Jacobian, the inverse
Jacobian, the reduced gradient, and a one-dimensional search, were per-
formed, i.e. 0.380 sec. per iteration. During these 58 iterations the length
of the reduced gradient was changed from 114 to 3.3-10°%, a factor of
approx. 10”7, Computing the Jacobian and the inverse Jacobian for five
periods consumed 0.160 sec., that is 0.032 sec. per time interval, leaving
0.220 sec. per iteration for the one-dimensional search. An average of
4.4 different steplengths were employed by the one-dimensional search
which gives some 0.050 sec. per 5-period simulation. With other objec-
tive functions the number of iterations has changed a little, but the time
per iteration is almost constant.

Some of the techniques described in this paper have not yet been
implemented in CONOPT and some savings are expected:

I) All row-operations of the inverse Jacobian are now stored
separately and not embedded in the Jacobian itself as described
in section 3. After a change the core storage requirement will be
reduced a little and the reinversion time is expected to be cut by
at least a factor 0.5.

2} A linear or quadratic estimate for the initial x in the pseudo-
Newton iterations is expected to decrease the simulation time by a
factor 0.5.

3) Dividing the equations in linear and nonlinear equations will
probably decrease the simulation time further by a factor 0.6.
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9. CONCLUSIONS

An optimizaticn code for nonlinear econometric models has been
presented. The code is based on sparse matrix techniques and will there-
fore be able to solve models with 200--300 equations per time interval
within a reasonable core-storage. No computational experiments with a
really large model has yet been performed. However. the method for
computing the reduced gradient is expected to be much faster and more
accurate than currently used finite difterence methods. and the simulation
procedure is also more accurate and probably also faster than current
methods.

Institute of Mathematical Statistics and Operations Research
Technical University of Denmark
DK-2800 Lyngby-Denmark
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