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4 nnafc of Economic and Social Men nzretne,,! (i/i / 9 7X

AN OPTIMI7ATII)N CODE FOR NONLINEAR
ECONOMETRIC MOI)ELS BASE!) ON SPARSE

MATRIX TECHNIQUES AND REDUCE!) GRAI)IENTS*

B ARNE DRUII

The paper describes an implenieniation o/ a redut'eif ',adieni code /or optimizing nonlinear
econometric models, The theory of reduced gradient o/gorit/I,nc is presented, and special of-
ten tion is given In / the represenutuon vi in/orniation in the eun;puu'r. ishere sparse imiatri
techniques are recommended. 2) a recurs-ion for coinputimig the reduced grathent, and 3 the
so/utwu of the econometric n:odel for prescribed controls st-here a psiudo-Ness-ton method
based on matrices computed in the reduced gradient step is described. Efficient handling of
linear ,,iodel equations, computation 0/ ann/ct is- der5'sst,s-es, and cvnipufqtionsj/ results n it/i a
small Danish model are also mmienlioned.

INrioIuc
In the past decade the interest in using optimization methods on macro-
economic models has grown rapidly. The ability of this new approach has
been demonstrated in a number of cases. Most of the employed models
had some special structure, e.g. were linear models or small recursive
nonlinear models. Methods for handling more general optimization prob-
lems have also been presented by e.g. Fair [7]. Due to rather high com-
putational costs with current methods more efficient computational
methods must be developed before optimization techniques may be ap-
plied in the economic planning.

The paper describes the main theoretical background of an optinliza-
tion code for nonlinear econometric models developed and implemented
at the Technical University of Denmark. The paper reviews sonic tech-
niques from mathematical programming and shows how the techniques
may be applied to econometric models.

Recently, many authors have suggested, that sparse matrix tech-
niques may be used for the many matrix manipulations in an optimiza-.
tion, see e.g. J. R. Bird, [4], J. Mantell, [14), or A. L. Norman, M R
Norman, & C. J. Palash, [17]. Following a short problem formulation in
section 2, the next section describes the basic ideas of sparse matrix tech-
niques, giving special attention to the topics relevant to nonlinear econo-
metric models.

The application of reduced giadients has been suggested by several

This research project has partly been supported hs the 1)snish Social Science Research
Council through grant no. 5l4-2Ol. A part ot the research was perlormed sshile the author
was at the Department of Mathematics, The Technical Universit) of Denmark.

5(13



authors, e.g. J. R. Bird. [4). and J Mantel1, [14). An algorithm br the

cornputat10 of the reduced gradient (or ecOflOIllctIiC models s' ith mans

lags is presented in sectiOn 4 After the reduced gradient has been COIn.

puted the control varithtC5 are chaiigeti and a si m ulation h perborn1j

'ielding the new state
variables- The simulation is pertorined USflg a

pseudoNe5vt0fl
niethod which applies an inverse matrix computed Ifl the

reduced gradient step. The repeated use of the same inverse matrix

originally suggested by J Ahadie & J. Carpentler. [I 1' is one of the illajor

advantages of reduced gradient methods. [he simulations are treated

sectiOn 5.
In sectiOfl 6 the handling of additional constraints such as rni\ed

constraints and simple lower and upper hounds is discussed.

The current code employs the analytical derivatives of both Obective

function and constraints. Some arguments in support ol this approach

are given in sectiOn 7. Finally. section gixes some computational Ck.

pericnceS from the application of the code.

2. N1ot)I FORML JAl Ii )\

In the sequel all vectors are column vectors v is the transpose oN.

/x - , is the matrix of partial derivatives of the components of the

vector function q, with respect to the variables in the vector The

matrix has one row per function in g, and one column per variable in

.vr-

In the following sections the model hebox is solved:

(I) ruin =

subject to g,(.v,.u,.x1 ,u v. ,.u, ) = 0.

= I.....
and

(1 (.x',u') <

where .v' = (.v , .v x ) is a vector ot endogenous variables and a' =

(u . u, u ) is a vector of control or policy variables ..vand a are

divided into J suhvectors. .,. u,. one br each time interval within the

planning horizon. Each sub vector x, is of length a. and each suhvector

is of length en. g, is a vector-valued function of length a representing the

structural equations of the econometric model. is assumed to incorpo

rate exogenous variables. Furthermore, it is assumed, that g, can he coni

puted from the same set of bormulas for all 1. Occassionally the constflhlfl
(2) are sunimeriied as G(x, u) = U. where ( has a 1 compoiletits. dC

pends on variables from -+- I time intervals, and x0 .x -

well as a0, u_1,..., u - are assumed to he known.

0

/
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fL, ii) in (I) is a sealar-va!ued objective function where exogenous
variables are built into the function 1. This form of the objective function
is preferred to the widcl used separable form

= J(x, u,),

since it Is more general and allovs for terms with arguments from several
time intervals. We assume that the partial derivatives of the objective
function, 0J/ix and 0J/iu, and of the mode! equations, /g,/Ii,v , and

t = I .c = 0.....mm (. i - I). are known.
In the first sections the constraints (3) will be omitted corresponding

to o = [a vector of - x [ and = [a vector ol' + x ]. In section 6 ii is dis-
cussed how these constraints can be taken into account.

3. SPARSE MATRIX TEUHNIQLES

A sparse matrix is a matrix with few nonzero elements. .Sparse matrix
techniques are computational techniques taking advantages of the many
zeros by storing only nonzero elements in the computer, and by only per-
forming multiplications in which both factors are non,eros Sparse matrix
techniques can save a large amount of core storage and a considerable
amount of computing time, the time saving usually bein the niost
important.

In large econometric models the matrices , will usually have
few nonzero elements. The purpose of this section is to describe the basic
ideas of sparse matrix techniques and, especially, how these techniques
may be applied in econometric modelling.

The following small matrix will be used for illustrative purposes:

The matrix may be stored as a sparse matrix in many different ways.
In the following, however, the matrix will always be used column by col-
umn, Consequently, the following scheme is suggested: The nonzero
elements are stored in a one-dimensional vector, A, and the corresponding
row numbers are stored in a parallel vector R. A third parallel vector. L.
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contains the index of the I1ex nonzero element iii the column. .4 - in

indicates the end of the column. A fourth shorter vector, S. contains the

mdcx of the first element in each column.

For the above example the storage scheme might he:

Index I 2 3 4 5 6 7

I

5

Matrix-vector multiplications are simple. A more difficult, but also

more important sparse matrix operation is the solution of a set of linear

equationS A x = b, with a sparse coetlicient matrix. This operation k

usually called an "inversion.'' From basic linear algebra it is known, that

a set of linear equations may be solved through a sequence of ro%-opera.

tions gradually changing the coefficient matrix into the unit matrix, J The

same row-operations applied to the right hand side yields the solution to

the set of equations.
lf4 is a sparse matrix only few row-operations have to be performed

since most of the matrix elements, which would otherwise have to be

eliminated, are already zero. The idea of sparse matrix inversion is to store

the few remaining row-operations. The stored row-operations are applied

to b each time A x = b is solved for a new vector h.
A row-operation may be: "add a times row k to row i.' As a result

of this row-operation row i of the coefficient matrix changes according to

the formula a: = a,, + cc a.1, j = I .....a. A very unpleasant thing
happens when a, was zero and a, was nonzero, because suddenly an ad-

ditional nonzero element appears. This so-called "till-in" must be ehni.

mated later on. The number of fIll-ins depends on the ordering of the ress

and columns of the matrix A. Many heuristic methods for ordering roos

and columns minimizing the number of till-ins have been suggested see

e.g. H. M. Markowitz, [15]. J. K. Reid, [181, or D. J. Rose & R. A.

Willoughby. 1191.
A valuable observation is, that when ro k is added to other rows.

fill-ins will only be created in those columns where ro k has noniere

elements. If row k has one nonzero element, rio till-ins will be created. In a
lower-triangular matrix the elements below the diagonal can he eliminated

from the left, and in each step the row added to other rows will have pie.
cisely one element. A method recently suggested by F. Hellerman & D. C.

Rarick, [10] and [11], utilize these observations. The rows and columns

A 3 6 1 2 2
R 3 21 3 24
L 11124 1 6 7

S 8 12 3 5

8 9 It) II 12

2 I 4 I -2

1 5 2 4 5

10 9
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spike-column

Figure I After rearranging rows and columns the matrix will be almost losser-triangular
with only a Few spike-columns.

are rearranged such that most of the elements are in the lower-triangular
part of the matrix. If it is not possible to create a completely lower-tri-
angular matrix, the elements above the diagonal are arranged to form as
few columns as possible. The columns with nonzero elements in the

e upper-triangular part of the matrix are called spike-columns or spikes,
re sec fig. I. The fill-ins will occur in the spike columns only Hellerman and
d Rarick's procedure applied to the exemplification matrix yields a matrix

where only the original column 2 is a spike column:
it
to
ng
ci.

in-
V. S

'vs

see
A.

'vs.

en
na
ted

p1c-

c-

1flS

If the set of equations is regarded as representing a flow of informa-
tion from of-dtagonal to diagonal elements as in D. V. Steward, 1201. the
lower-triangular matrix-elements correspond to a feed-forward of infor-
mation while the upper-triangular elements correspond to a feed-back.
The idea is to concentrate the feed-back into a small number of variables,
the spike variables. If the values of the spike-variables are known, the rest
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0

of the matrIx is iower-t riarigIliar and the set of equatton ma\ he solved

recursively. This recursion has been used h I. Nepomiastch's I ()j. to ob-

tiifl a solutiOn U) a set 01 iioiuliileat CtIUdtlOflS.

The set of row_operat10
USed to ci lint nate nouteros dhove and be-

low the diagonal in a given coluin ii cat he represeii ted by the folios5 in

informatiOI The pivot element and its ross number, arid 101 the remain.

ing nOflietOS in the column, the values of the elinated elements and their

row numbers. This information, however, is exactly the content of the

column before it is aftected by the eliniination Hence, the set of all ross.

operations in the inversion can he represented by the content of the col-

umns just before they are eliminated. Since onl the spike-columns are

changed before they are eliminated, the information requiring storage is

limited to:
I) The original matrix A

The spike-columns just before they are eliminated (called updated

spike-columns) added as extra columns to A using the Standard

matrix storage scheme.
A list of the order in which columns, including updated spike.

columns, are eliminated, and the row numbers for corresponding

pivot elements.
The storage scheme described above was originally suggested b\ J. E.

Kalari. [121, for use in large scale linear programming. Sharing core

storige between the inverse and the matrix itself, as it is done in the

present storage scheme. is very space saving. Furthermore. the schenie

holds a very important advantage over most other methods for repre.

senting the inverse. The matrix A will usually be the Jacobian aq,/3x1. As-

suniing the model to be nonlinear, changes in x1 during the iterations will

produce changes in the Jacobian. However, it is easy to find a representa-

tion of the new (iiq,/iix). When the new q,/3x is computed, the ifl-

formation in I) above is automatically updated. Arid the pivot pattern in
3)can be used unchanged. In 2)the nontero pattern of the updated spike.

columns will remain unchanged. only the numerical valueS of the ele-

ments of the updated spikes must he recomputed. Since most sparse

matrices will have fess spike columns, this reinversion is very fast.
Although only the operations for 'l b have been described, the in-

formation concerning row-operations may also he applied to compute
c' -if see e.g. A. Drud. [6)

3. 1 Linear Model.c and Sparse Ma:rie.s

A linear model may he written in structural form:

(4) . + ,,_.. i.t =

/

I
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where the nonzero pattern of the matrices represent the strnctirc of the
economy, or in reduced form:

= b -- li :. .- t -

b = 4'' b,,B, = d' ..s = 0
and

= 4,rI 4t.r-.,.c = I ......
have been introduced.

For most purposes the reduced form is used because x, can he coni-
puted recursively. , and 4,,_' are usually completely dense, and thus
the number of multiplications needed to compute x, is at least ii. (n ± m).

However, it is often faster to use the structural form (5. A ,' is com-
puted once. 4,, rarely has more than 3-4. nelements, and4 can be rep-
resented by 5-10 n row operations. The right-handsjde of(5) ma' usually
be computed in less than 5 n multiplications. Even with the additional
time for data-administration, the computing time with the structural form
is much smaller than the time for the approximately ,z (n ,n) multi-
plications in the reduced form, whenever the model dimensions are
medium or large.

The example above clearly demonstrates the computational power of
sparse matrix techniques. Similarilv, other computations in linear models
may be performed much faster using sparse matrices and the structural
form of the model instead of the reduced form.

4. Tni RFuucEi, GRADILNI

The concept of a reduced gradient was originally introduced by P.
Wolfe, [21), for linear models and later generalized to nonlinear models
by J. Abadie & J. Carpentier. [I]. J. Abadie, [2], describes a method for
computing the reduced gradient for dynamic, recursive models, and the
method is applied to recursive economic models by J. Ahadie & M.
Bichara, [3). Recently J. R. Bird, [4], has applied the reduced gradient to
simultaneous econometric models. The following is a slight generalization
of Bird's approach.

The model is (cf. section 2)

(7) mm z = f(x, u)

569
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subject to G (x, u) = 0

G represents an econometric model and thus it is possible for each
choice

of control variables, u, to compute the endogenous variables x, i.e.
G(x, u) = 0 < = > x = x(u). Introducing this implicitly deuicd functjo
x(u) in ) yields z = J(x(u),u) F(u), i.e. the objective functi0 de.
pends on the control variables u alone. The reduced gradient is defined as
the vector OF/Ou, i.e. the reduced gradient is equivalent to the gradi
that R. C. Fair, (7), computed using a finite difference method. The chain
rule provides a formula for the reduced gradient:

OF' Of' Of' OxOuOu+Ox Ou

and a formula for the matrix Ox/Ou may be derived from the implicit func-
tion theorem. The intuitive idea is:

(tO) G(x(u), u) = 0 for all u

f1G
Ou+Ox

Ou

Ox

Corn bining (9) and (10), the reduced gradient becomes

OF'
= L1

- {Ou Ox OxI
V j

Of'
i9u

where the content of the large brackets, the vector fl, is computed first
and then multiplied by the second matrix. This is cheaper than computing
the matrix-matrix product in (10) directly. The computation of 11 involves
solving the set of linear equations:

(H,fl;.....H')

OXT. I
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where II, f7Ox, and G/x have been decomposed into tinie-conipo-
nents, Since OG/ax is lower-block-triangular, the solution may be found
by a recursion, starting at t =

fmin(LIg)
(I?) 1I = -- ll, I:s) () ,t = T,..., i

Note, that only the blocks on the diagonal are inverted. If the model is
valid, the blocks are always regular. For large models ôg,/x, will be
sparse, and the inverse diagonal blocks should be represented by some
sparse form as described in section 3. Further note, that apart from the
inversions, only vector-matrix products are computed, a fairly inexpensive
operation when the matrices ag.5/ax, are stored as sparse matrices.

After the multipliers, 11, (which in the optimal solution are equal to
the Lagrange multipliers) have been computed, the reduced gradient may
be computed by

min(,T_:)

(13) = - £ = T,...,

where again all operations are inexpensive vector-matrix multiplications.
Many lags in the model or a large number of lagged variables does

not airect the size of the inverted matrices. It is not necessary to introduce
additional model variables and model equations to reduce the number of
lags in the model as it is done in G. C. Chow, [5], and in J. R. Bird, (4].
Neither is it necessary that the objective function is separable like

f(x,, u1) as long as the vectors af/ox1 and af/öu1 may be computed.

5. SIMULATIONS

The reduced gradient, aF/au, may now be used in combination with
any gradient, conjugate gradient, or variable metric method to minimize
F(u). All the methods mentioned include a one-dimensional search in
which u is changed into u + y iu and F(u + -y zXu) is computed for
various y-values. However, the function F(u) is not known explicitly.
Consequently, the model must be solved with respect to x(u), and the
explicitly known objective functionJ(x,u) may then be applied.

There are two standard methods for numerically solving a nonlinear
simultaneous econometric model. Gauss-Seidel's method and Newton's
method, see e.g. G. From & L. R. Klein, [8). Until recently, Newton's
method has not been widely used with econometric models due to the
matrix inversions. However, when the matrices involved are sparse
matrices, and when the reduced gradient is computed as shown in (12)-
(13). a relatively efficient pseudo-Newton method may be devised:
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I
Consider time interval 1. It is assumed that .v, has already hce co.

puted for s = I.....t I, and the problem is to find .V, such that .

(x,, u,,...,x,.,,r1 ) = /i(x,) 0, where I, is used to indicate that at the
moment only x, is unknown.

Newton's method is based on the formula

h (x, Ii (x,) 4-
th(, + ii

the right-hand-side equal to 0 yields
where 0 = diag(01 .....ll ) is a diagonal matrix with 0 u, Setting

(14)
- {

ih(x, + V ix,)
}-1Ox,

Unfortunately, .v, ± 0. x, is not known. Otherwise (14) could
have

been used to compute the correct x, + x, in one iteration. In the stan-
dard Newton method, the inverse Jacobian

JOh(x, .1-

1

is approximated by the inverse Jacobian computed at the current point .,,
-1

Ox, J
and as x, converges to the solution,

con verges to

Jah(x, + j
Ox, J

In an optinlization several x,-vectors are available: Let x representthe point from which the one-dimensional search is started and where theinverse Jacobian

JOh(x5l -
Ox, J -

is computed for use in (12), and let x, represent the current trial-solutionto /z(x,) = 0 on which improvement is desired. The pseudo-Newton
method applied in connection with reduced gradient algorithms applies toknown
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instead of

is sufficiently close to

i1:(. )

(I

as in the standard Newton method saving both the computation of the
Jacobian and the inversion. The pscudo-Ne toil metho(l Converges as
long as

J3/:(x)

1

j()h(x, + )v,)

and the limiting rate of convergence is

p.1'
I. / J

where .v, is the true solution and p indicates the spectral radius, i.e. the
absolute value of the numerically largest eigenvalue of' the matrix. Note,
that the rate of convergence is linear and not quadratic as for the standard
Newton method. Also, the rate of convergence depends on the steplcngth
'y in the one-dimensional search. For a small steplength x will he close to
.v, implying a good rate olconvergence.

A first trial-solution x, for the pseudo-Newton method may be ob-
tained in various ways, e.g. by a first order approximation .=x° + y

+ -y'x,u° + y'.\u) + -'su1 = 0
1u

Vi.J \)u I
which may be solved recursively by:

/ ' I
imni.i 1)

(Og,
' E ig,

\l).s,/ IOU, I \OX,. OU,1

I = 1,. ..T.
where only the inverse matrices computed earlier are used.
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During a one-dimensional search is an implicitly defined function
of the steplength -y, x = .v('), with iix/iL1 = v. The trial_solLJtIQfl
mentioned above is based on a first order approxiniation to the implicit
function L. S. Lasdon et ai., 1131, suggest that a second order approxinia
tion he used after the first simuIaion. ihe quadratic approximation mas
e.g. be fitted to the points x(0) arid x(y1) with derivative x in where
Yo is the steplength of the first simulation.

In the current code, CONOPT, none of the two above methods for
computing a first trial-solution have yet been implemented .x is in itiali,ed
as the x corresponding to the best objective function found so far Even
with this unsophisticated start, the simulations usuall Converges with
approx. 3 evaluations of the residuals g, and 2 multiplications by the in-
verse (i9g,/'Jx,)' per time interval.

5.1. Linear Equations

A linear function is always equal to its first order approximation
evaluated at any point. Thus, during Newton or pseudo-Newton itera-
tions, where a solution satisfying a first order approximation to the set
of equations is computed, the linear equations are solved in one iteration.
When the initial trial-solution is computed using either the linear or the
quadratic approximation mentioned above, the linear equations will
even be satisfied by the trial-solution.

When an equation is known to be satislied, there is no reason to
compute its residual. Hence, the subroutine that computes residuals
should contain an input argument. which controls whether all residuals or
only residuals of nonlinear equations should be computed. Most large
econometric models contain a large percentage of linear equations, and
when they only have to be considered in a few calls of the constraint sub-
routine, the saving will be considerable. Furthermore, during the inver-
sion, i.e. during the row-operations, more savings will be obtained, since
all row-operations with a zero in the right-hand-side of the pivot-row are
not performed.

5.2. Stop Criteria for Simulations

The question to be answered in this section is: "How accurately
should the simulations he performed?' The purpose of a simulations is,
at least during the optimization, to find an x-vector which can be used in
the objective function subroutine for evaluating f(v,u). Hence the ac-
curacy of the simulation should be determined such that the accuracy off(x, u) is sufficient.

The error e in the objective function due to an error x in x may be
estimated as follows:
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r /( I .\u) /(u)
I.

hetc (l$) diRt (II) III, IICCII iiSt(I. I Iciicc. the (1 1(11 i!I the OI)eIilV1
ltnctau is ilt)I)U)XiiOi1cI', to thr suiItir liiotlut ot the i'iiihiiplit-i
ettor with the tesitl tial vectol.

(tuisettientIy, the lohlowiiig sttipiitciii arc scd: ilijoite tile
SLIIII til sctiia, ed ie.idtials diviticd by the iiuiiiht-i oh coii,tiaiiiIs II is

Ies thaii eisiiitii (c4. l (lieu sip it i riot PssitIc to tiuid a nitric
accurate solution tIne to rouud-)ht errors. II is less than epsiIr;is (e.g
10 b), and i the esiniattd error

I hl h, is less thiiiii
then stop, /, may e.g. he htwecni 10 to It) tiiiies the chaiipc- iii the
objective h'unetitui in the pi'es'It)us oiie-(!iilieilsioilal search. I he last top
criterion is: It' a solution sat islynnig crnir oh the tiisI two stop criteria lais iioi
been hound within a hauL unuiiihei of iterations (e.g 10), the leutlo
Nevtoii niethtrd cih1 11roltbl not cuinveige. ( oniscijuenillc, it is stopped
and a shorter steplengthi us used in the ouic-cljiuicuisiiiural scauch.

'I he stop criteria suggested here huivc the important advantage, that
the solutions become gradually untie accnu'atc as we ippIoacIi the tth)tl'
mum and the changes iii the obpectuse l'unuctutrn are sniiahkr, while it the
same time COulil)Iuter-time is not wasted on accuiriute solntiouis when ii is
tar tronir the optimum.

'['his section contains some ideas on how to treat simple bouunuls on
the variables. A more detailed description is given by A l)ruid

The problem I rinuhaution oh section 2 included the siiiuple bounds:

(tc', ii')

When only the u-vector has unite simple bounds the basic piticetliire
is as described earlier. The only dutlererice is that I'u) is mimnii,ecl sub-
ject It) it U ' . I Itiwcver, t lie simple loser amid upper bounds are
easily taken into account by using e.g. I). (ioldfarh's, n)], approach.

When sinipk hounds arc active on . the following obscuvahioru is
useful: An optimal solution is ii set of variables (s. u) that satislies the
constraints a mid iii iniiuiics the objective function whet her sonic variables
are control variables and others are endogentsus variables is without iii-

terest, at least from (he optunui/ation point nil view. Ibis leads to the hd-
lowing proposal: Since lower anti tipper hounds on the control variables
can easily be dealt wihi, use the variables that are close to a hound as
pseudo-control variables, u, and use the variables far from the houmiuds

ô. Ai)I 'Ii it )NA1 (uNs I RAIN iS

a, '
'I ( - II'a- \it /



as pseudo-endogenous variables, v -'p !hOUId l5() he chosen siih thttg,(x,, u ......= 0 can he solved with respect to x, , 1 1 ...,-j', orsuch that v., has n components and is regular theCONOPT-code the set of pseudo-endogenous variables ks,, IS chüse fromthe set of candidates (i.e. variables tar Irom hound such that thc matrixui,g,/ix,, is easy to invert, i.e. such that v h f. ele.ments above the diagonal.
It shouid he noted, that mixed inequality constraints like

e(x,, u,, .v, ... ) K 0
may he handled as well: Add a slack variable with lower bound Zero andtransform the inequality into an equality which is added to the model withthe slack variable as the corresponding endogenous variable

The optimization procedure with hounded variables roughly is:
Divide (x, u) into x and u and compute the inverse matrices(Ôg,/x1)'.
Compute the reduced gradient F(u)/u using equations Simikirto (I 2)-( 13) and use the gradient in the rnininhizitioii of
subject to up

F(u) is computed indirectly: The model is solved with respect to v usingthe pseudo-Newton method with the inverse matrices (g1/ix,)' andF(u) = f(x, ui,) is computed by the usual objective function subroutine.During the optimization it may happen that some pseudo-endoge
nous variables come close to their bounds. In this case redefine x andsuch that the variables near bounds are in u. In most practical optirniza.tions such redefinitions ofx and u are rare.

The main differences between the procedure outlined above and theprocedure used when there are no constraints on x, are, that in the newprocedure it is not known at the beginning which (n x ii) - submatrix of
(gi/x:,g,/ou,) is going to be inverted, neither is it known with re-
spect to which variables the model must be solved. With the inversion pro-cedure and storage scheme mentioned in section 3 the inversion is not adifficult problem. Likewise, the pseudo-Newton method described in sec-tion 5 does not depend on which set of variables is used as pseudo-endogenous variables (It would have been very difficult to implement
the procedure above using the Gauss-Seidel or related methods for the
simulations because these methods depend heavily on a prescribed set of
output_variables)

When the number of active simple bounds in a single time intervalis large (i.e. > in) e.g. when the model has man terminal conditions it isnot possible to choose a set of pseudo-endogenous variables satisfyingthe necessary requirements A reduced gradient method may still be ap-plied. However, oG/x will no longer be lowcr-blocktriangukjr and the
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computation of the reduced gradient and the simulation can not he de-
composed into time-components as described in section 4 and 5. The best
approach seems to he to take care of the additional bounds through a
penalty term in the objective function.

7. iNPUT REQUIRI:MtNTS

The CONOPT-code needs the following input:
I) A subroutine computing the value of the objective function

A subroutine computing the gradient of the objective function
A subroutine computing the residuals of the constraints
A subroutine computing the Jacobian oithe constraints
The nonzero pattern of the Jacobian
lower bounds, upper bounds, initial solution etc.

Often the objective function and the econometric model are written
as a set of expressions/equations with variable-names like C. 1, GNP etc.
Translating this information into the 4 subroutines mentioned above can
be very time consuming. Therefore, a special computer code, TRANSL,
has been produced based on the IBM-product FORMAC (FORmula
MAnipulation Compiler). Input to TRANSL is a set of variable-names
defined as endogenous, control, or exogenous variables, a data bank,
and a set of equations written as equations of an ordinary econometric
model. All variable-names are translated into X( I), ,\'(2). . . . , XE( 1),
XE(2),. . . etc, and replaced in the equations and in the objective function,
and equations and objective function are punched as FORTRAN state-
nients for the residual and the objective function subroutines. Simulta-
neously, all partial derivatives are computed analytically, and it is tested
whether they are zero, constant, or variable. The nonzero pattern of the
Jacobian as well as the values of the constant Jacobi elements are punched
in a data bank, and the variable derivatives are punched as FORTRAN
statements for the Jacobian and the gradient subroutines. TRANSL also
has a device for scaling equations and variables in order to improve the
numerical stability of CONOPT.

The TRANSL code is an experimental code and as such not very
efficient or flexible, but it proves that analytic derivatives may be used
even for large models. In a better implementation that TRANSL the
analytic derivatives should be computed one equation at a time and
stored with the equation in an equation-derivative bank with information
on nonzero pattern, linearity, etc. Before the optimization the equations,
the derivatives, and other data items should be collected into subroutines
and data files. This approach will make it very easy and cheap to make
changes in the model or in the objective function.
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I
8. COMPWATIONAJ. EXpERIEN(I

The computer codes have been applied to a small model of the
Danish economy with 28 equations, 33 endogerious and control variables
47 exogenous variables, and 3 lags. In TRANSL a total of 2128 derjva
tives were coiitputcd. 1951 were zcro, 120 were constant, and oii;y .57 Wele
variable. The time used by TRANSL was approx. 113 sec. CPU
IBM 370/165 corresponding to a cost of approx. US $7.50 at the con
puting center at the Technical University of Denmark. Because only
variable elements are computed by the Jacobi-subroutine, the subroutine
required less core storage than the constraint subroutine and was also
faster to execute. This should be compared to a method based on numeri-
cal derivatives, where the computation of the Jacobian would require at
least 33 calls of the constraint subroutine.

The following figures relate to the CONOPT-code. They are rather
detailed in order to give the ieader an impression of the distribution of the
computing time on the various sleps in the optimization. The model was
optimized over a 5 period planning horizon corresponding to a problem
with 25 control variables and 140 equations. With one objective function
the total optimization time was 24 sec. CPU including some 2 sec. for
input/output, initialization etc., leaving 22 sec. for the optimization.
58 iterations, consisting of a computation of the Jacobian, the inverse
Jacobian, the reduced gradient, and a one-dimensional search, were per-
formed, i.e. 0.380 sec. per iteration. During these 58 iterations the length
of the reduced gradient was changed from 11.4 to 3.3. l0, a factor of
approx. jØ7 Computing the Jacobian and the inverse Jacobian for five
periods consumed 0.160 sec., that is 0.032 sec. per time interval, leaving
0.220 sec. per iteration for the one-dimensional search. An average of
4.4 difterent steplengths were employed by the one-dimensional search
which gives some 0.050 sec. per 5-period simulation. With other objec-
tive functions the number of iterations has changed a little, hut the time
per iteration is almost constant.

Some of the techniques described in this paper have not yet been
implemented in CONOPT and some savings are expected:

I) All row-operations of the inverse Jacobian are now stored
separately and not embedded in the Jacobian itself as described
in section 3. After a change the core storage requirement will be
reduced a little and the reinversion time is expected to be cut by
at least a factor 0.5.
A linear or quadratic estimate for the initial x in the pseudo-
Newton iterations is expected to decrease the simulation time by a
factor 0.5.
Dividing the equations in linear and nonlinear equations will
probably decrease the simulation time further by a factor 0.6.
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9. Coci.usjos
An optimization code for nonlinear econometric models has been

presented. The code is based on sparse matrix techniques and will there-
fore be able to solve models with 200-300 equations per time interval
within a reasonable core-stoi-age. No computational cxperimcnts with a
really large model has yet been performed. However, the method for
computing the reduced gradient is expected to be much faster and more
accurate than currently used finite difference methods, and the simulation
procedure is also inure accurate and probably also faster than current
methods.

Institute of Matheniazical Statistics and Operations Research
Technical University ofDenmark
DK-2800 L'ngbv- Denmark
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