This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 6, number 5

Volume Author/Editor: NBER

Volume Publisher: NBER

Volume URL: http://www.nber.org/books/aesm77-5
Publication Date: December 1977

Chapter Title: Towards the Construction of an Optimal Aggregative Model of International Trade: West Germany, 1963-1975

Chapter Author: John S. Chipman
Chapter URL: http://www.nber.org/chapters/c 10542
Chapter pages in book: (p. 535-554)

TOWARDS THF: CONSTRUCTION OI: AN OPTIMAI AGGREGATIVE: MODEL. OI: INTERNATIONAI. TRADE: WEST GERMANY. 19631975

By Johis S. CHIPMan*

Abstract

 plawatory variahles 'impurt and expurt price imbice lies womewhere hemetho and

I. Introduction

Almost all econometric models currently in use are macroeconomic in nature, dealing with variables such as national income. employment. the general price level. etc.. and ignoring relative prices and resource allocation. The reason nations engage in trade however is that they difler in their relative endowments of labor. capital. and natural resources and therefore in their relative production costs in the absence of trade. One can therefore hardly ignore relative prices in a model of international tiade.

It appears to have been generally overlooked that in 1953. Samuelson [23] presented a model of the relation between international and domestic prices that is very simple in structure and highly amenable to statistical treatment. Samuelson's paper is best known for its celebrated "factor price equatization theorem. 'to the effect that if certain stringent conditions are fulfilled notably that all countries have identical production functions, that they all produce some amount of every traded commodity (this assumption can be relaxed somewhat). that their factor endowments are in a precise but complicated sense not too far apart, ${ }^{\text {b }}$ or ahernatively.

[^0]that there is no "quctor-intensity reversal" in a gencralized sense. then the rentals of factors of production will he cepalatares comtries. Owin: to the startling nature of this restlt, and to the obvious fact that is is mot fulfilled in the rea! world (immigration barriers would not he noeded if the result were (rate), attention has been diverted from the fact that the theorem is only a corollary of a much more basic proposition which dos not require any of the stringent assumptions emumerated ahove. The basic proposition is that under the assumption of competitive markets. absence of joint production, and constant returns to seate, if there are at least a many "produets" as "factors" then the rentals of the latter will depend only on the prices of the former, and in particular will be independent of factor endowments.

This proposition can be generalized still further, as shown in the nex! section to state that as long as the number of internationally traded commodities also produced at home exceeds or equals the number of primar! factors of production, all domestic prices will depend unicuely on international prices. independently of factor endowments and the balance of payments. In a way this result is even more startling than the factor price equalization theorem; and it cries out for statistical verification.

An immediate difficulty that presents itself at the outset is that the hypothesis that the number of traded commodities produced at home exceeds or equals the number of primary factors is not subject to empirial verification at least directly; for the outcome depends entirely on how the products and lactors are aggregated into groups. Tarifl schedules of various countries distinguish at least 10.000 commodity groups, and each of these is. typically, itself a highly heterogencous aggregate. ${ }^{3}$ Allowing for the heterogeneity of capital, not to mention that of labor, it should not be hard to reach or exceed this number on the "factor" side. The theory itself provides no guide as to how one might recognize the number of products and of factors, ${ }^{4}$ any more tham it provides us with a guide as to the correct numerical magnitudes of the cocfficionts. This latter analogy provides us with the required clue: we shoudd let the data decide the question.

The hypothesis that the number of traded commodities produced at

[^1]home exceeds or equals the number of primary fators can in principle be tested indirectly by reason of the fact that it implies that domestic product prices and factor rentals depend on prices of imports and exports alone independently of factor cindowments and of the balance of paymients on current account. However, our logical conundrun remains: in carrying out such a test. should "labor" be treated as a single honogeneous aggregatc, or as a set of "specitic factors" immobile among industries? The tratment of capital and natural resources presents even greater difficulties, particularly that of finding reliable data. It seems not unreasonable, therefore, to proceed on the hypothesis that the number of traded commodities produced at home exceeds or equals the number of primary factors, and to try and construct an optimal aggregative model on the assumption that this hypothesis is true: having at that stage settled on the optimal (on the hypothesis) number of groups of products and factors and on their composition (these numbers satisfying the analogous hypothetical inequality in terms of the groups of traded commoditics produced at home and of primary factors), one could then procced with the required statistical test. Should we at that point decide to reject the hypothesized model as an unsatisfactory representation of reality, we will at least not have rejected it because we chose unsuitable modes of aggregation: ${ }^{5}$ and we may have learned something along the way.

My approach in this paper will thus be to adopt the hypothesis that there exists some way of partitioning products and factors into groups of aggregate products and aggregate factors such that the number of aggregate products produced at home exceeds or equals the number of aggregate factors, and such that the aggregative model is a good approximation of reality. The object of the statistical analysis is then to decide, on the basis of the data, on the optimal number of aggregative groups of products and factors, on the optimal way of partitioning the given sets of products and factors into the required number of aggregative groups, and on the numerical magnitudes of the parameters all sinultaneously.

Owing, however, to some mathematical programming. statistical, and econometric problems that remain as yet unresolved, it has been pessible in this paper to carry out the above objectives only to a partial extent. The first difficulty that must be faced is that whatever criterion is chosen for measuring aggregation bias, the number of partitions of k objects into k^{*} groups is, for any realistic values of k, so huge that computation of the optimal mode of aggregation is quite out of the question. This difficulty is inherent in the aggregation problem, and cannot be avoided. We inust be content with linding modes of aggregation for which the aggregation bias

[^2]is acceptably small, and which therefore stand a good chance of being close to the optimal partition. The criterion of acceptability chosen in section 3 below is that the mean square error of the blown-up aggregative parameter estimator should be sigmiticanty less (at a prescribed significane level) than that of the corresponding direct least squares estimator. This leads directly to the second difficulty, however. which is that the appropriate test statistic has (under the null hypothesis) a non-centrat Hotelling T_{0}^{2} distribution, the percentage points of which are as yet unknown except for the ease of a single dependent variable. Precise result are therefore obtained only for the more limited problem of finding an optimal partition of the exogenous variables (the international prices) into aggregative price indices for purposes of forecasting a single endog. enous variable (a domestic price or aggregate price index).

The third difficulty that is skirted here but which must eventually be faced is that it is impossible to separate the problem of commodity ag. gregation from that of temporal aggregation. since the data reflect dyname adjustment processes rather than equilibrium states. The decision concerning the appropriate lag structure and that concerning the appropriate commodity classification system should properly be made simultaneously. It goes without saying that the analysis of commodity aggregation presented here reflects some inevitable and unknown degree of distortion resulting from sub-optimal temporal aggregation. ${ }^{6}$

2. The Generalized Stomer:Samehison Mapping i

My starting-point is Samuelson "s [23] model of production and trade. in which prices of commodities produced in positive amounts just cover unit costs, which in turn depend only on the input prices. I shall assume that there are four categories of commodities, and that over the period of time studied. commodities do not switch categories. Let p^{1}, p^{2}, and p^{3} be row vectors of prices of k_{1} internationally traded (exported or innported) products also produced domestically, k_{2} imported products not produced domestically, and k_{3} products produced domestically but not traded :internationally, and let p^{4} be a $1 \times k_{4}$ row vector of rentals of k_{4} primary factors of production (including industry -specific immobile factors). Then we have

$$
\begin{align*}
& p^{1}=p^{1} A_{11}+p^{2} A_{21}+p^{3} A_{31}+p^{4} A_{41} \\
& p^{2}<p^{1} A_{12}+p^{2} A_{23}+p^{3} A_{32}+p^{4} A_{42} \tag{1}\\
& p^{3}=p^{1} A_{13}+p^{2} A_{23}+p^{3} A_{33}+p^{4} A_{43}
\end{align*}
$$

[^3]where the A_{j} are $k_{i} \times k_{1}$ input-ontput matrices (which will in general depend on the prices $p^{1} \cdot p^{2}, p^{3}, p^{4}$): the striet inequality in (1) is required to ensure that a slight pertarbation does not result in commodities switching eategories. In this paper I shatl eontine the empirieal analysis to the case of the Leontief teehnology in which the input-output matrices A_{μ} are tixed.'

The equations in (1) may be written in the form

$$
\left(p^{1} \cdot P^{2}\right)\left[\begin{array}{ll}
I-A_{11} & A_{13} \tag{2}\\
-A_{21} & A_{23}
\end{array}\right]=\left(P^{3} \cdot P^{4}\right)\left[\begin{array}{ll}
A_{31} & I-A_{33} \\
A_{41} & -A_{43}
\end{array}\right] .
$$

For a given set of observable values of the external prices $\left(p^{1}, p^{2}\right)$, the solution (p^{3}, p^{4}) of (2) (which exists by assumption) will in general not be unique, but will depend on factor endowments and the balance of payments on current account. ${ }^{8}$ Formally. we may write the set of solutions of (2) as

$$
\begin{align*}
& \left(\rho^{3}, p^{4}\right)=\left(\rho^{1}, p^{2}\right)\left[\begin{array}{ll}
I-A_{11} & A_{13} \\
-A_{21} & A_{23}
\end{array}\right]\left[\begin{array}{ll}
A_{31} & I-A_{33} \\
A_{41} & -A_{43}
\end{array}\right] \tag{3}\\
& +z\left(\left[\begin{array}{ll}
I_{k_{3}} & 0 \\
0 & I_{k_{4}}
\end{array}\right]-\left[\begin{array}{ll}
A_{31} & I-A_{33} \\
{\left[A_{41}\right.} & -A_{43}
\end{array}\right]\left[\begin{array}{lll}
A_{31} & I-A_{33} \\
A_{41} & -A_{43}
\end{array}\right]\right) .
\end{align*}
$$

where z is an arhitrary $\mid \times\left(k_{3}+k_{4}\right)$ row vecter and M denotes any generalized inverse of $M^{.}$. If the $\left(k_{3}+k_{4}\right) \times\left(k_{i}+k_{3}\right)$ matrix on the right side of (2) has rank $k_{3}+k_{4}$ (which implies that $k_{1} \geq k_{4}$, i.e. that the number of traded products produced at home exceeds or equals the number of primary factors), then the arbitrary term in (3) will vanish and the solution of (2) will be unique. This is the essential mathematical result

[^4]underying Samuelsons factor-price equatization theorem. " Since empirn cal matrices can be expected always to have full rank. the conditioni $k_{1} \geq k_{4}$ is also sultivient (with probabilit! I) for migueness of the solution of (2). Under these conditions. and assumine also that the matrix l A3 satistics, the Hawkins-Simon conditions [1.3| (i.e.. has positive priachpal minors , it may be veritied that we can express this solution as
\[

$$
\begin{align*}
& \left(p^{3} \cdot p^{4}\right)=\left(p^{1} \cdot p^{2}\right)\left[\begin{array}{llll}
{\left[A_{13}+\left(I-A_{11}\right) A_{11}^{K} A_{43} \mid(I\right.} & \left.A_{13}\right)^{\prime} & \left(I-A_{11}\right) A_{41}^{K} \\
\left(A_{23}-A_{11} A_{41}^{K} \cdot L_{43}\right)\left(I-A_{11}\right)^{\prime} & -A_{11} A_{41}^{K}
\end{array}\right] . \tag{4}\\
& \text { where }
\end{align*}
$$
\]

$$
\bar{A}_{i 1}=A_{i 1}+A_{i 3}\left(l-A_{33}\right)^{-1} A_{31} \quad(i=1.2,4)
$$

and where \bar{A}_{41}^{R} denotes any right inverse of \boldsymbol{T}_{41}.
Since (4) is a gencratization of the relation lirst investigated by Stolper and Sammetson [24] between intermationai prices and domestic factor rentals for the 2-prodact. 2-factor ease it may be described as the "gencralized Stolper-Samuctson mapping." Oar matin object in the net section will be to obtain quantitative estimates of the parameicers of this mapping. or rather of a simplitied aggregative variant of it. by means of a regression model in which the extermal prices $\left(p^{\prime} \cdot p^{\prime}\right)$ are treated as exogenous variables and the internal prices $\left(p^{3} \cdot p^{4}\right)$ as endogenous variables. Some care must be taken. however, in order to justify the treatment of external prices as exogenous. In the first plate it mast be noted that. in general it is not logically possible for the external prices $\left(p^{\prime} . p^{2}\right)$ in (4) to be exogenous exeept under certain conditions or within certain welldefined limits. For, the assumed existence of a solution to (2). together with the assumption that the matrix on the right in (2) has rank $k_{3}+k_{4}$. implies that the vector on the left side of (2) must be contained in the $\left(k_{3}+\dot{k}_{4}\right)$-dimensional space spanned by the rows of the matrix on the right. If $k_{1}+k_{2}>k_{3}+k_{1}$, this means that the price vectors $\left(p^{1}, p^{2}\right)$ must thenselves be so conlined and their exogenous variation assumed to be limited to a subspace of dimensionality $k_{3}+k_{4}$. . $\| k_{1}+k_{\leq} \leq$

[^5]$k_{3}+k_{4}$, then since also $k_{3}+k_{4} \leqq k_{1}+k_{3}$, we require $k_{3}-k_{2} \leqq k_{1}-$ $k_{4} \geqq 0$. In the conventional catse on which Samuelson [23] concentrated attention in which $k_{2}=k_{3}=0$. this requires $k_{1}=k_{4}$ (equal numbers of products and factors); it is apparent that the present, more general, formulation is substantially less restrictive than this.

There remains the empirical (as opposed to logical) question as to whether the international prices (p^{1}, p^{2}) may properly be specified as exogenous, given the above conditions and limitations. There are at least three possible grounds on which one might question this hypothesis in the case of West Germany. (1) It could be argued that Germany share in world trade is large enough so that autonomous shifts in its imports and exports (or at least some of the latter) can be expected to exert a substiantial influence on world prices. While this is no doubt true, the real issue is whether there have been significant autonomous shifts and whether they have been of importance relative to externally induced effects. For example, although Germany is an important exporter of coal, one could hardly argue that the 60°, increase in the price index of its coal exports from October 1973 to October 1975 was a consequence of its own influence in the international coal market rather than of the rise in petroleum prices. ${ }^{12}$ (2) One might argue that cost-push inflation induced by union pressure would lead to a devaluation of the mark and thus to a rise in the international prices (which are denominated in marks), so that the catasation would be the reverse of that assumed. However. the value of the deutsche mark (in terms of U.S. dollars) rose quite steadily throughout most of the period, by over 50° "in fact. (3) Domestic prices of those agricultural products subject to the variable levy under the European Communitys common agricultural policy are insulated against changes in international prices. This cannot be denied: unfortunately, however, at the level of aggregation employed in the present study it was not possible to separatc

[^6]
out the variable-levy commodities, which constituted about 40° value of :agricultural imports from the U.S. (cf. Preen (21. p. 30.).," of the

3. Construction of as Optimal Ageikfathe Moms

On the basis of the mapping (4) we postulate the multivariate mut. tiple regression model ${ }^{\text {it }}$

$$
\begin{equation*}
Y=A B+E \quad \varepsilon \ell=0 . \quad \varepsilon(\text { row } \ell)^{\prime}(\text { row } Z)=I_{n} \otimes . \tag{5}
\end{equation*}
$$

where Y is an $n \times m$ matrix whose rows are consecutive observations of the $m=k_{3}+k_{4}$ internal prices $\left(p^{3} \cdot p^{4}\right) . X$ is an $n \times k$ matrix whose rows are consecutive observations of the $k=k_{2}+k_{2}$ external prices ($p^{1} \cdot p^{2}$) B is the $k \times m$ matrix of the generalized Stolper-Samuelson mapping (4). and E is an $n \times m$ matrix of random errors. Of course. (4) represents a theoretical relationship among equilibrium prices. and wo have no formal dynamic theory of the adjustment process to describe the prices we can actually expect to observe. It was nevertheless decided. in order to concentrate on the commodity aggregation problem. to fit the model (5) directly: monthly data were averaged to quarterly data in the belief that this would minimize the specification error introduced by the neglect of lags. ${ }^{15}$

[^7]Genuine price indices (as opposed to unit value indices) for imported and exporied products are available for very few countries. ${ }^{16}$ For West Giermany, monthly data are available back to January 1958, in terms of three Laspeyres series with bases 1958, 1962, and 1970, for some 200 commodity groups 99 . Reihe 11. At the time the study to he reporied here wats carried out, datat had been acquired going back to 1963 for 37 import and 37 export categories, furnishing 52 quarterly observations; these were aggregated into 12 eategories of each as indicated in Table la, furnishing $k=24$ exogenous variables. ${ }^{17}$ Monthly consumer and wholesale price indices, and quarterly wage and salary indices, were employed as indicated in Tables lb-1d: ${ }^{18}$ these furnished a total of $m=39$ endogenous variables.

The export price indices are f.o.b., and the import price indices c.i.f., exclusive of tariffs. 「ariff-inclusive import price indices are available only for certain basie materials. ${ }^{19}$ Customs duties as a percentage of total import value are shown in Table 2, indicating a marked decline front 1963 to 1964 from 7.16° ", to 4.27°, followed by a gradual decline to $1.68^{\prime \prime}$, in 1975. The general import price index rose by 54.6° "over the same period, with some substantial fluctuations including the four-fold inerease in petrolcum prices in 1973 74. The neglect of tariffs, while unfortunate, is probably not too serious, especially since non-tariff barriers have not been taken into account.

Let us now formulate the probien of constructing an optimal aggregative model. Let us assume that the price indices have been multiplied by a single set of weights (the nore complicated problem of dealling with

[^8]

TNBII I:

(Cassitication	limpori Werght	Eyon 4 cien!
1. Agricultural Forestrs. \& lishers rati jroduce	143.88	
Agricularal	115311	1.96
Forestry	5.65	1.11
1 -ishery	290	0 0.1
2. Mining \& quarrsing	$50.1 i$	0 3,
Coal mining products	6.2 ;	2.9
Iron ore non-ferrous metal ores. prites	2950	20.4
Potash \& silts		
Quarrsing products	14.38	206
3. Perobeum \& persocumprodicts. \& other mimine products	88.26	75
Petroletm. gas. \& hitunimous rock	6.97	10.5
Otner mining products. incl. peat		
Petrokarn products	3 B	1.
4. Iron. stecland their products	8660	936
frein \& sted	56. 60	17513
Ioundry products	56.29 1.0	59.6 .4
Products of dawing plants. cold roiling nillts. \& stecl shaping	1.68	2\%
Products of siructural engincering	8.68	2049
Iron. steel. sheer \& mestal goods	16.13	8 Si
5. Non-ferrous mictals (incl. precious metats) \& semi-finishes	76.13	+304
6. Machincre ${ }^{\text {a }}$ (${ }^{\text {a }}$	79.09 $\times 1.77$	$\cdots 4$
Products of mechanial engincering (inal focemotises \& agricultural iractors)	81.7	$2!? 4$
Onlice nathines and dita processing cquipment	62.78	198 00
7. Road vehicles (excl. agr tractors \& clectr driven vehicle	18.99	19.14
8. Electrical \& precisiongoods. elc.	46.98	1500
Eleciricalgoods	75.24	1363
Prccision \& optical goods	55.22	98.9
Musical instruments tovs. mbleric goods. jewelery et	11.14	213
9. Chemical products	4.03	8.6
10. Wood.glass. plastics \& rubher products	78.22	143 3
Fine coramics	83.94	70.14
Gilass \& glass products	3.22	6.97
Sawn wood. pivwood. other worked	5.93	76
Wood products	13.79	330
Wood pulp. collulose paper	6.17	81
Paper \& paperboard	28.82	66°
Printed products	319	+'
Pastios products	3.65	Siiciol
Ruhber \& ashestos products	9.31	153
11. Iecather \& textile products	10.19	1015
Leather	98.29	9
l.cather products \& footwe:r	3.84	20
Textiles	4.93	3.4
Clothing	629?	358
12. Foodstufis, heveriges, \& tohatco	21.54	Nut
foodstuts \& herefages. cti.	87.5	$\leq+4$
Tohacos products	87.13	$2+6$
	10.39	93
${ }^{\text {a }}$ The two groups in this eategory were combined in the price 958-and 1962-hased serics. and firs! hroken :part in the 1970-bas	dux stails acs	

INBIt Ib

Clansitication U	Weiche
1. Food, heverages \& tobateo (inel. restamrams)	4.39 .83
2. Coothing \& Cootucar 1	119.98
3. L.odging	93.6.3
4. Hicetriety, y :s, and fuel	+5.85
5. Other houschold goods \& services 109	109.78
6. Trameportation and communication	61.98
7. Personal cire \& health	30.97
8. Fducation \& entertaimment	62.97
9. Personal eftects, other goods \& services	35.01
TABLE 16	
	Thor $\sqrt{\text { aven }}$
Clissitic:tion	Weight
1. Girain, seeds, fertilizers \& live animals	105.8
2. Textile raw materials. intermediote products hides \& skins	59
3. Chemicals for technical use, drugs	9.6
4. Coal, other solid fuels. \& petroleum products	20x.8
S. Iron, stecl, non-ferrous metals \& their semi-manufatures	110.8
6. Wrod, wood products, \& building \& plumbing miticials	88.8
7. Serap and other waste products	19.5
8. Foodstults beversges \& tobaceo	217.0
9. Clothing \& tootweir	33.9
10. Hardware art materiahs, etc.	39.2
11. İlectrisil, precision \& optical products, jewelers, cte.	19.4
12. Transportation equipment. michinery	78.8
13. Miscellancous supplics	11.2
14. Phar mateutical. cosmetic, dental, and medicinal artictes	30.6
15. Paper \& paper products, printed products, school \& office supplies	lies 14.7

TABLI: Id
Wagis and Salarifs by Inotstry, (ifrmaty, Whit

Classification	Hage Wight	Salary Height
I. Mining	49.07	22.47
2. Eleetricity, ges, and water supply	17.33	25.1.3
3. Primary \& praducers goods industries	188.98	129.71
4. Investment goods industrics	351.14	285.54
5. Consumer goods industries	195.74	88.17
6. Food beverige \& tohilco industries	51.59	39.36
7. Construction industries	146.15	50.17
8. Trade credit institutions. $\&$ insuramee		359.45

1ㅅBI. 2

$1 \cdot 6$	$1 \% 6$	$1 \% 6$	196	1\%:	1906	$19\left(0^{\circ}\right.$	1974	10?1	1072	1\%3	$1 \cdot 94$
- ..	--										
7.16	4.27	395	3.82	3.4	313	$\therefore 20$	$\therefore 19$	\therefore	\therefore -	$\therefore \therefore$	1.78

chain indices will not be taken up here so that aggregation takes the form of addition. Leet ($;$ and $I /$ be $k \times k^{*}$ and $m \times m^{*}$ grouping matrices having at most one unit element in each row and the remaming elements zero. G being a proper grouping matrix with exactly one unit element in each row, where $h^{*}<k$ and $m^{*} \leq m$. Definc $A^{*}=X G$ and $\gamma^{*}=Y H$. The aggregative model then takes the lorm
(6) $Y^{*}=I^{*} B^{*}+I^{*} . \quad \varepsilon^{*} I^{*}=0 . \quad \varepsilon^{*}\left(\operatorname{row} I^{*}\right)^{\prime}\left(\right.$ row $\left.I^{*}\right)=I_{n} \otimes \Xi^{*}$. where \mathcal{E}^{*} is the assumed but not "true" expectation operator. The discrepancy between the "true" and "alse" expectations of \boldsymbol{y}^{*} being $E Y^{*}$. $\mathcal{E}^{*} Y^{*}=X\left(B / I-\left(B B^{*}\right)\right.$. the aggregation bias mat be defmed as an ap. propriate "distance" between the transfornations $B / 1$ and $\left(B B^{*}\right.$. In I have argaed in favor of the Mahalanobis distance, so that we may detine the distance of any $k \times m^{*}$ matrix (${ }^{\prime}$ from $B / /$ to be

$$
\begin{equation*}
d(B H . C)=m^{*-1} \operatorname{tr}(B H-C)^{\prime} x^{\prime} X(B H-C)(H \Sigma H)^{-1} \tag{7}
\end{equation*}
$$

We define $d\left(B H . G B^{*}\right)$ to be the aggregation hias associated with the model (6). It was proved in [3. p. 668] that for given ($;$ and $I /$. this ag. gregation bias attams a minimum with respect to B^{*} when $B^{*}=G^{*} B H$. where $G^{2}=\left(G^{\prime} X^{\prime \prime} X^{\prime}\right)^{\prime} G^{\prime} X^{\prime} X=\left(x^{*} X^{*}\right)^{\prime} X^{*} X^{20}$ The minimum ag. gregation bias is then

$$
\begin{equation*}
\lambda(G . H) \equiv \inf _{B^{0}} d\left(B H, G B^{*}\right)=m^{*-1} \operatorname{tr} I^{\prime} B^{\prime} X^{\prime} X\left(I-G G^{*}\right) B H . \tag{8}
\end{equation*}
$$

The problem of optimal aggregation is then that of selecting G and H out of a certain class of pairs of matrices ($(B . / 1)$ so as to minimize (8).

The problem as just posed is, however, quite intractable. Suppose $I /$ and k^{*} are fixed. Ther a proper grouping matrix G.eonsidered as a an of eolumns without regard to their order. completely defines a partition of k elements into k^{*} subsets. Now. there are a total of

$$
\frac{1}{k^{*}} \sum_{i=0}^{i^{*}}(-1)^{i}\binom{k^{*}}{i}\left(k^{*} \ldots i\right)^{k}
$$

[^9]such partitions (cf. Chipman [2. p. 151]). Taking. for example, $k=24$ and $k^{*}=9$. the number of partitions is approsimately 1.206×10^{17}. There would be no hope of finding the opimal partition even if B were completely known. We must be content to accept a partition for which the minimum aggregation bias is aeceptably small. And. of course. we must be content with estimates of B and B^{*}.

In the case at hand, onr 52×24 matrix X of quarterly observations of international prices. while quite ill-conditioned. ${ }^{21}$ is of full rank, as is every $X^{*}=X G$ that arises. The least-squares estimators of B and B^{*} are then given uniquely by $\bar{B}=\left(X^{\prime} X^{\prime}\right)^{-1} X^{\prime} Y$ and $\bar{B}^{*}=\left(X^{*} X^{*}\right)^{\prime 1} X^{* \prime} Y^{*}$. It was proved in [4. Theorem I] that

$$
\begin{equation*}
\mathcal{E} d\left(B H, G \tilde{B}^{*}\right) \leqq \mathcal{E} d(B H, \tilde{B} H) \Leftrightarrow \lambda(G, H) \leqq k-k^{*} \tag{9}
\end{equation*}
$$

In words: the "blown-up" aggregative least squares estimtator $G \tilde{B}^{*}$ of $B H$ has lower mean square error than the direct least squares estimator $\tilde{B} H$ if and only if the aggregation bias associated with G and $/ H$ is less than the reduction of dimensionality from the origimal to the aggregative model. The latter hypothesis can in principle be tested. by means of the statistic

$$
\begin{equation*}
r=m^{*-1} \operatorname{tr}!\left(H^{\prime} S^{*} H-H^{\prime} S H\right)\left(H^{\prime} S H\right)^{-1} \mid \tag{10}
\end{equation*}
$$

where $S=Y^{\prime}\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right] Y, S^{*}=Y^{\prime}\left[I-X^{*}\left(X^{*} X^{*}\right)^{-1} X^{*}\right] Y$. When the residuals in (5) are normally distributed. $m^{*}(n-k) r$ has (under the null hypothesis) a non-central Hotelling T_{0}^{2} distribution. Calculation of its percentage points remains a difficult task: I therefore have concentrated in the present study on the case $m^{*}=m=1$ and $H=1$, in which $(n-k) c^{\prime} /\left(k-k^{*}\right)$ has (under the null hypothesis $\left.\lambda(G . I)=k-k^{*}\right)$ a non-central F distribution with $k-k^{*}$ and $n-k$ degrees of freedom and non-centrality parameter $k-k^{*}$. If the hypothesis $\lambda(G, 1) \leqq 24-k^{*}$ is not rejected (say at the $5^{\prime \prime}$ " level), G is considered to be alceptable.

It remains to lind a search procedure to discover partitions that have a good chance of passing the aforementioned test. To this end, Marquardt's [19] estimation procedure has been applied.

Letting $X=Q I^{\prime} P^{\prime}$ be the singular value decomposition (ef. [12]) of X, where $Q^{\prime} Q=P^{\prime} P=I_{k}$ and I is the $k \times k$ diagonal matrix of singular values of X (in descending order), we define I, to be the diagonal matrix obtained from l ' by replacing its $k-r$ smallest diagonal elements by zeros, and I_{r}^{+}to be the generalized inverse of I^{\prime}, (positive diagonal ele-

[^10]ments replaced by reciprocals. ero elements left unchanged). The matrix $A_{\text {, }}=Q \Gamma_{r} P^{\prime}$ is then the bese appoximation of 1 by an $n \times k$ matrix of
 mator of 8 in (5) of rank 1 .
\[

$$
\begin{equation*}
\dot{B}_{r}=X_{r}^{\prime} Y \tag{11}
\end{equation*}
$$

\]

Margatardt has shown [19. p. 601] that if certain a promi bounds ate placed on the elements of B, (11) will have lower mean square errer then the least squares eatimator $\bar{B}=\bar{B}_{h} .{ }^{3}$

These extimates were calctitated for $r=24.23 \ldots$. I In ligure 1 is shown the "rank chart" corresponding to the fourth column of \dot{R}_{r}. con. taining the estimated regression coeflicients (measured on the vertical axis) for the dependent variable CPI 4 (comsumer price index component for electricity, gas. and fiel). for cath value of r (measured on the horizon. tal axis). The chart has a remarkable keature (which it has in common with those for most of the remaming dependent varables): for $24 \geq r>16$. the regression coeflicients oseillate widls. with implatusbly large magni tudes in absolnte value. but they become quate stable for $16 \geqslant r \quad 3$. In the stable regions. the estimates provided visual clusterings which were ased for trial grouping matrices ($;$. The same process was repeated with A replaced by the original price index series (and the estimates sealed back to the weighted form). and again with 1 normalied to have columas of unit leng! h ${ }^{-4}$

With the trial ($;$ matrices so obtained, the hypothesis test of (9) was carried out lor each dependent variable separately (the case $m^{*}=m=1$). The results are summarized in Table 3. At $k^{*}=12.71 .03^{\prime \prime}$. of the trial modes of aggregation passed the test: but the Marquardt estimates were judged to have somewhat implausible economic values. For $k^{*}=4$ only $0.85^{\prime \prime}$, of the trial modes passed the test. It was concluded that the optimal \dot{k}^{*} was somewhere in the region $9 \geqq k^{*} \geqq 6$. While this argues in faror

2 In the sente of mimimition the + robentiandorm

$$
1-A_{1} 1 F=\operatorname{tri}\left(1 \quad 1,1(1-1,)^{1 / 2} \quad 1 \cdot f 12\right)
$$

${ }^{23}$ This method abo furnishes a nicans of eflecting the requirement of consmaned

 or 10 the approximation of an r dimenomal submanitold by an r dimembenal lires subspatic
${ }^{24}$ If $t_{0} \mathrm{~F}_{0}$ atre the data matrices with the original price indices and $H_{\text {f }} \mathrm{H}_{1}$
 10 "clasticit! foran" is $W_{y} \dot{B}, H^{-1}$. The Marquardt estmate in oriphat form, sales baid
 replacing A_{0} by $\lambda_{y}=\lambda_{0} .^{-i}$ where I is the diagenat marin whone deaponal elements are
 10 such seale transformations se Wedint [afi].

$h^{*}=h \cdot p-2+i$	1.	11	1!	9	S		θ	i	4
$f^{*}=$ h $h^{*}=-4 \cdot h^{*}$	1.	13	14	$i 5$	io	i	$1 \times$! 4	20
Critical ${ }^{\text {as puint }}$	1.74	1 so	1.98	$\therefore 109$	≥ 20	233	2.46	$\cdots 57$	276
Highest: niosersed	6.60.			13.314	16.388		51.383		$72+4$
Category	WPL			WPls	WP?		W ACi 7		Side 6
Lowast observad	0.116			0.608	0.584		0.743		1.814
(atcome	WVİ			S 11.1	いや?		W.19:		W Pl
Percent:ge of abserned vatues below critical point	71.03			36.26	4.67		10.601		Uxi
Nimber of modes of atgregation testad	10			7	12		36		U.

of simple models it suggests that the 2-dimensional models that have been the favorite of trade theorists are not adequate to represent reality. ${ }^{25}$

In Table 4 are displayed the three sets of Marquardt rank 9 estimates for the dependent variable (PI 4 (i.e., the fourth column of the 24×39 matrix \dot{B}_{4}). scaled to weighted form. Three custerings were tried on the basis of the estimates in column 1 . and the corresponding blown-up ag. gregative cstimates are displayed in columms 46 : the clustering can b_{i} inferred from the values of the coefficients. Columns 7 and 8 display the blown-up aggregative estimates derived irom clusterings suggested by the estimates of eolumns 2 and 3 . Table 5 shows the same results. but with the regression coeflicients rescaled to the form corresponding to the case in which the observations are the original price indiees: this is called the "elasticity form." and is useful for checking the economic plausibility of the magnitudes. The clustering can be inferred from the common valees of the t-ratios within groups. For example. we read from column 7 that in partition 2, import prices of mining and quarrying and of petroleum have been aggregated together. and the estimate implies that a ten per cent rise in petrolcum import prices will lead (roughly) to a 2.5 per cent rise in the domestic consumer price index component for electricity. gas. and fuel.

From Tables 4 and 5 we read that partition 2 had the lowest aggrega. tion bias for prediction of CPI 4 . as measured by the e-statistic (nameh 1.312). On the other hand. For purposes of predicting (PI I (price of

[^11]TABIR: 4
Rank 9 Marquarde femmatrs. And Reatho Biowsup Agerigathe
 (Critical upper $\mathfrak{F}^{\prime \prime}$, pome for test for ageregation bias ? (19)

$\begin{aligned} & \text { Int } \\ & \text { Price } \end{aligned}$		Marquardt Rank 9 Estimates			Blown-Up Aggregative tistmates					1 cast Squater 9 OLS Estimatc
		I	2	3	4	;	6	7	8	
			Orig-	Nor.	Par.	Par-	Par.	Par-	P'Ir.	
		Weighted	inal	matized	tition	tition	(ition	tition	tition	
		Data	Data	Data	I:	16	lc	2	3	
	1 AGR	-. 056	0.3	. 002	- . 029	- .0x5	...021	. 071	.090)	035
	$2 \mathrm{M} \mathrm{\& Q}$. 299	291	. 338	284	. 482	. 195	. 261	-. 0.38	-1.076
	3 PETR	. 235	286	. 106	260	245	. 195	. 261	. 146	405
	$41 \& S$	-.213	-. 172	-. 147	-. 511	-. 502	-.432	-. 346	-.721	306
	5 NIM	. 08.3	-. 025	. 029	.052	. 073	.125	. 671	. 090	. 694
	6 MACH	-.098	-. 027	-. 033	. 108	. 153	. 197	. 071	.090	-2.083
	7 RDV	-.029	:174	.061	. 042	. 025	. 06.5	.095	.146	1.296
Σ	8 ELEC	-. 014	-.122	\cdots	092	. 025	. 06.5	- . 346	555	-. 6.39
	9 CHEM	- . 074	-. 276	-. 244	-. 092	-. 0885	-. 021	-. 060	138	- 2.0 .31
	$10 \mathrm{WD.GI}$. 122	$-.109$	009	-.101	-. 316	-. 940	-. 346	(090)	. 375
	11 I. T1:	006	. 016	\cdots	. 042	025	. 0605	071	. 090	1.167
	12 FOOD	.06\%,	-. 007	-. 015	. 0.3	. 073	. 125	071	. 090	. 318
	1 AGR	-. 02 I	--. 406	. 244	. 042	025	. 065	-. 566	-. 0.088	-1.072
	$2 \mathrm{M} \& \mathrm{Q}$. 242	. 783	1.003	. 260	. 482	1.535	1.230	1.047	2.297
	3 PETR	. 025	-. 488	. 777	.052	. 073	125	-. 745	-. 170	-. 49.3
	4185	-. 125	. 031	. 008	. 108	.153	. 147	. 071	. 090	-. 546
	5 NF M	. 029	. 373	. 312	.0.2	073	. 125	. 177	-. 03 k	-1.024
	6 MACH	. 36.3	. 49	. 090	. 305	233	. 074	. 095	. 146	- 256
$\stackrel{\square}{0}$	7 RDV	- .005	. 040	. 015	. 042	. 025	. 065	. 071	. 090	. 739
$\frac{2}{x}$	8 ELEC	-. 067	. 098	. 076	-. 092	-. 085	-. 021	. 095	. 146	. 304
	9 CHEM	. 075	-. 004	. 034	.052	. 073	.125	. 071	. 090	514
	10 WD.GL	. 042	. 094	.202	. 052	. 073	125	. 095	-. 088	- 1.045
	11 L.TEX	-. 029	. 001	$-.076$. 042	025	. 065	. 071	. 090	1.902
	12 FOOD	. 053	. 401	. 189	. 052	. 073	.i25	. 247	-.088	-1.382
	($\mathrm{CPI}^{\text {4) }}$				2.150	2024	1.464	1.312	1.588	
	(all CPIs)				3.449	3.493	4.028	3.727	3.861	

foodstuffs) partition Ic would have been the best of these. The bottom row of each table furnishes the value of the i-statistic for the case in which $H=\left[I_{9}, 0.0\right]$: this provides a general-purpose measure of aggregation bias for the 9 CPI components simultaneously. and the best partition on this criterion is partition la, with $z^{\prime}=3.449$. Partition le turned out to be the best of these for prediction of wages and salaries, i.e.. for the case $H=\left[0,0 . I_{15}\right]$.

The estimates obtained furnished a number of interesting results along with some purzles. Among the interesting results it was found that. almost without exception, the regression coefficients for wages and salaries had, for each import or export price, the same sign for all industries and comparable magnitudes when expressed in weighted form. While no

formal test was applied. the result could be interpreied as justifying the treatment of "labor" as a single factor. mobile among industrics. Of collse. other interpretations would be possible. c.g.. that anion policies to equalize wage rates among industrics keep wate and atary movenents in line across industrics: but a deeper analysis of sach monion policies might reveal that they are not unrelated to potential labor mobility. Another interesting result (combined with a purde) wats that the elasticities of wages and salaries with respect to international prices were positive for nearly all export prices (the exceptions being calcegorics 7. 11. and 12). and negative for nearly all import prices (the exceptions being categories 3. 4. and 12). The result suggests that there is something to the common practice of treating exports and imports as natural catceorics for purposes of aggregation: but it also suggests that there are very important exceptions to this rule. One might be tempted to interper the general result as providing evidence of a "Lconticf paradox" for West Germany, though independent calculations with returns to capital (as well as more detailed dynamic analysis) would be ineded to confirm this as well as to determine whether one ean justify treatment of "eapital" ats an aggregate factor.

(iniversity of Minnesota

Refereves

IIf Chiman. John S.. "A Surses of the Theory of International trade. Part 3. The Modern The ry." Fcomometricai. 34 (Januars 1966), ! 76.
[2] Chipm: John S. "Optimal Aggregation in L:ape-Scille tconometric Models." Sankha[C]. 37 (Part t. 1975). 121159.
(3) Chipnian. John S.. Fstimation and Ageregation in Econometrics: An Application of the Theors of Generalized Inverses." in Gemeralized lmernes and appicatioms fedited hy M. Kuhair Nashed). Nen York: Academic Press. 1976. pp. $5+9769$.
$[4]$ Chimman. John S. "Statistical Problems Arising in the Thcory of Apgregation." in Procedings a/ the S:mpositum on Applicanoms of Shastics (edited oy P. R. Krishmath). Amsterdam: North-Holland Puhlishing Co., 1977. pp. 123140.
[5] Donges. Jucrgen B.. Gicrbard Fels. Axel Nuct, W.a.. Promektion und Brambhemuriehmer der weadewashen Hirrschafi. Tühingen: J. C. B. Mohr (Pad Sicheck). 197.
 Zoilarif. Colognc: Verlag des Bundesinfögers. 1976.
[7] Germany. Federal Republic. Statististhes Bundesame. Wizshaden. Fachacric \mathfrak{a} :

 Statisuh der Bumderepuhih Deams hlamd. B:and 250(1958), Band 260 (1959).
[8] Germans. Federal Repuhlic Statistiches Bundesme. Wieshaden. Faciseric o:

 Verkg W. Kohlhammicr. 1958 1976.
110. Germans. Federal Repuhlic. Statistisehes Bundesamt. Wieshaden. Syammishes
 W. Kohlhammer. 1970.
[11] Germans. Icderal Republic. Statistisches Bundesma. Wie:baden. Haromeredama
 hanmer 1976.

 and Basingstoke: The Macmallan Pressl tid. 197e. pp. 7 ts.
[15 Ho. Dit Sang. An Ricommetric Sumb of the Rekationship betucen Intirmational and
 December 1977.
[16] Hudan. l:dward A. and Dale W. Jorpenson. "Tas Policy and Inces ©onervation,"
 dam: Vorth-Holland Publishing Compans. 1976. pp. 7 94.

[18 Jones. Romald W.. and Jose a Schankman. " The Relesame of the I wo Semor Pro
 90945
[19] Maryuardi.Domald W.."(iencralized lmbencs. Rage Regresion. Best I incar Cinbiased

 Commmities Luxemhourg: Statistied Ottice of the European Commumitics. 1970.
21: Precg. !erncsi $11 .$. Traders and Diphoman. W:shongton. D. (\therefore The Brookings Institution. 1970.
[22] Rostin. Wermer. "Dic Indies der Aossmhandelopreise aui Banis 1970." Wirmati thatsarivih. Junc 1974. 36? 394.
23: Samuchon. Paul A. "Pricen of Pators and (ioods in (icneral Eymbhrima," Revien

 of Eiconemic Stadies 9 (Nosember 1941). ix 73.
[25] Teher, I. G.. •Dincrate Smples and Mosing Sums in Statonary Stochastic Processes."

[27] Zollner. Arnold and Claude Monamargactac. A Stady of Some Aspects of Tempors
 53 (Vorember 1971). 135.342

[^0]: *Rescath supported by Ford Foundation grant 750-0114. program on International Economic Order. Graitelul thanks are duc to Abdessatir Otance for his untiring and expert computaional assistance. I atil also mueh indebted to Wermer Rostin and triedrich Mars of the Price Division of the Statistisetes Bundesamt. Wiesbaden. for their help in furneshing me with the price data and weights used in this sudu. Finalls. I wish to thand the referces for their penctraing commems: but they are of course absolved of all responsibilit! for the many shoricomings that still remain
 ${ }^{1}$ To be precise. the codownment vetors of the varions countrics should all lic in the same "diversilicition conc" (cil. (hipman [1. p. $2+$).

[^1]: ${ }^{2}$ The commonts accepted conditiongencraliang the notion of "nom-seserat of fathe intensily" to the case of n fectors and n producis is the Gate Nikado condmon that th: principal minors of the Jacoban matrix of the tansformation irom product prico to for tor rentals be all positive. (f. Chipman [l. p. 30 .
 [6] require a further expansion of this list 16 ; a 9 -dieit code.
 ${ }^{4}$ Onc interesting criterion setting a lower limit on the number of "prodach" N Whe!

 comse eg., those of the N.A.C.i. sysiom who remarh [20. p. wi. " The liner the degree et subdivision the less chanee there is of tinding homogencous units at the le: el chosen

[^2]: ${ }^{5}$ Sce for example. Johnson's [17] argument that the "Leonticf paradox" can he reconciled with the Hecksther-Ohtin nodet if skilled labor is aggregated together with phesical capital rather than with unskilled lahor.

[^3]: ${ }^{6}$ For a discussion of the temporal aggregation problem. see Keller $\&$ Montmarqucte

[^4]: ${ }^{7}$ Removal of this limitation would he one of the many steps one could take to improve upon the methods presented in this paper. Non-lincar regression methods have recenty been employed hy Hudson \& Jorgenson [16] to estimate variahle input-output matrices in a model which, like the present one, exploits a "non-suhstitution theoren" arising out of Samuelson's work.
 ${ }^{8}$ The situation may he visualized as follows, for the case $k_{1}=2, k_{2}=0 . k_{3}=1$. and $k_{4}=2$. The country's production possibility frontier will be a ruled surface (its shape depending on the factor endowments): if, starting from balanced trade, the eountry goes into deficit. it must shift resources out of the export and import-competing industries into production of the domestic, non-traded good in order to satisfy the increased demand for the tatter (assuming it to he a superior good). This can be accomplished hy moving along the linear segnent of the raled surface to which the price plane is tangent. If $k_{4}=3$, however, the production possibility surface will (except for singular abes) he strictly coneave to the origin, and the price of the domestie good will necessarily rise as the deficit increases, to an extent depending on factor endownents and consumer preferences. Assuming consumer tastes to remain stable, the donestic price will then deperd on factor endowments and the side of the delicit in addition to the international prices.
 ${ }^{y}$ I.e., any matrix M^{-}such that $M M^{-} M=W$ C Chipman [3].

[^5]: ${ }^{10}$ la general. ath input-output coclicients deperading upon inpat prices. the uniquenes. necd only be local in the absence of lurther conditons (ace townote 2 abobe). Iha mean that the mapping (4) may be difierent for different countries exen if production functoma
 only in the mapping for a particular country
 "Taking account of the dependence of input-output cotfictents on inptt pries the domain of the mapping (4) will be not a !ine.or subapate but a submanitud at dimemben $h_{3}+k_{4}$. The dea of constranced or conditional exogencits can aho be coplaned in the lollowing uay. Iet $k_{1}+k_{2} \cdot h_{3}+k_{4}$ and suppone that $r \cdot k_{3}+k_{4}$ of the internationat prices are unconditionally exogenous: suppose forther that the countrys imports and exporsesare functions of the international prices. and that wome of the later prace are in turn intluenced by the countrys imports afd export. How math of them must be wo

[^6]: fluenced? The answer is: exacdy $k_{3}+k_{4}-r$. This is not a fortuitous result. but is simply a logical requirement of the assumptions made. If we knew the magmitude of r and could identify the r uncondtionally exogenous international prices. we could ent ploy them as our exogenous variables. But we do not hate such knowledge a priori.
 ${ }^{12}$ This does not nean that the domestic repercussions of the rise in oil prices could not have had a further influence on coal prices. Indeed, this was probably the case. The volume of Germanys coal exports was $30^{\prime \prime}$, higher (and of industral production of coul. $10^{\prime \prime}$, higher) in the tirst quarter of 1974 than it had been in the third quarter of 1973. "hile the coal export and domestic prices had risen bs $4^{\prime \prime}$, and 9 ", respective!y: by the third quarter of 1974 the coal export and domestic prices had risen by $30^{\prime \prime}$, and $2 x^{\prime \prime}$. respectively. Thereafter the volunse of coal exports dropped of sharply and continued dectinng until the third quarter of 1975 , retlecting incrasing domestic denand: and coal prices continued to rise signiticandly. The sharp rise in the volume of coal exports in 1974 could well have contributed to the sluggishness of the initial rise in price, and the sharp drop in the volume of coal exports in 1975 to the subsequent acceleration in price. Nevertheless. :here is no question that the driving force was the petroleun price. The outcone would have been substantially the same if Germany had not been a signiticant coal exporler.

[^7]: ${ }^{13}$ Such a separation is planned in a more disageregative study curcembly in progress
 ${ }^{14}$ Here. "row E ". denotes the row sector of rows of E and 0 denotes the krone che product. " ε " denotes the expectation operator, assumed conditional on f
 ${ }^{15}$ It should be noted first of all that i, is is suggested by the discussion in foment is
 and consumption, could not very well be ignored in exports, and domestic production dynamic adjustment process. even therugi these varia ts satisfactory explanation of the relationships among the prices. Even wop these variables are absent from the equilibrium first approximation. the introduction of loping. however, that they could be excluded as a specification error if the "race duane process is cold of course not remove temporal one (ci'. Telfer 2251): at best it might reduces is considered to be a continuous-time logical difficulty involved in allowing for lace 12 . But the men n practical and method. inge it necessary to increase the amount of es is that they use up degrees of frecolom. matreduce temporal aggregation crore wheregation over commodities: that is. we cannot commodities. Moreover. it is char that out aggravating the problem of agemeation over over commodities, similarity in lag patter deciding upon the optimal mode of aggregation ton to the kinds of considerations (structural have to be taken into account in addinvolved in the static case (ci. Chapmen (2) In similarities and multicollinearits) that ate ton in dynamic models still needs to be developed. In short. : theory of optimal agerega.

 In a study of price relationships incloped monthly data on nine aggrepationships in the: ease of the Japanese coonoms. mooing lengths to vary from two to six mutational price indices. Ho (is) found the average lag months. Undoubtedly such laps account. and to be concentrated around three and four results reported below: in particular, the for some of the anomalies found in the empirical import and export prices on domestic fuel phexplanatory power of mining and quarrying ascribed to the fact that both import and prices found its some of the regressions mas be lagged behind petroleum import prices. and export coal prices and domestic fuck price

[^8]: ${ }^{16}$ Namely. West Gemman, Sueden. Finland. Japan. and South Korea (ct. Rostin [22, p. 393]). A U.S. serics of gradual!y increasing eoverage has been insued by the Bureau of Labor Statistics since 1974. the most recent accounting for 15° ", and $54^{\prime \prime}$, of the value of U.S. merchandise imports and exports respectively (mainly nanufactures).
 ${ }^{17}$ This preliminary aggregation doubtless introduced some distortion in the subsequent analysis, and in retrospect could have been improved upon in some ways. Of course, the original price index data are not free from such defects, being themselves aggregates.
 ${ }^{18} \mathrm{C}$ f. [9]. Reihe 6. 8, and 15 respectively. Since the study reported here was completed a breakdown of the wage and salary data into industries ronghly comparahle in classifieation to that of the international prices has been obtained as have producers price indices for industrial and agricultural products (Reibe 3 and 4) which employ the same methed of classifteation as the international price series. Annual protit data by in dustrial calcgories are also available (ef. [7]). A more comprehensive sludy employing these series. back to 1958. is currently under way.

 19 99 . Reihe 2 . Annual tarif revenue data are published in the annual supplements of [8j. Reihe 2 (and unpublished monthly data have recently been acquired). chassified according to the 2 -digit Brussels Nomenclature, which forms neither a finer nor a coarser partition than the industrial commodity classification system 100 used for the price index series. Work is currently under way to convert the one to the other by regression and other approximation methods. with the help of impert statistics classified by the two methods (in [8]. Reihe 2, 1. 7) as well as of average tariff rates computed according to the industrial classitication system from tariff sehedules by fiemeny and Rabenau [5, pp. 23 6]. [14] separately for the European Community and other countries. for the years 1958. 1964. 1970. and 1972 .

[^9]:
 of C

[^10]: ${ }^{3}$ The condition number $n(x)$ of X. detined as the ratio of the largest to the smallest non-ero singular value of $i($ (ci. [12]) is in the present case 203.9290/0612 $=3332.18$. For all varianles other tham petroleum and non-ferrous metal import prices, when I is rescaled so that $X^{\prime} X$ is a corretation marix. 17 of the 23 corretation coeflicients exceed .99 .

[^11]: that certain of its propositions, when appropriately reformulated or "eakened. earry obe to higher-dimensmalat cases provided all commoditios are prodused and traded and tha: their number does not exceed the number of factors (the opposite of the situation beme considered herel. Note that even if this is true it does not follow that a a dimensional model can adequately represent a higher-dimensional situathon

