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RESTRICTIONS ON THE CONTROL VECTOR IN
ECONOMIC OPTIMIZATION PROBLEMS

By RoGrr CRAINEY

This paper compares exact and “stochastic”™ smocthing restrictions oa the control vecior.
shows that restricting the ko 15 ume difference of the control vector 1o zero iy cquavalent
1o restricting the comired 10 a 'k degree pelynoniial functior of time, aitd that the smoothing
restriction cant be relexed by making the kX - 130 difference stochasiic. The restrictions are
tested on a twelve-quartzr optntization problem witit the M PS model as a constraint. Solutions
asing exact resirictions are cheaper o compute, but are more senitive to numeree probicen..

INTRODUCTION

Restrictions on the control vector are a natural part of the problem speci-
fication in many cconomic apphcations, ¢.g.. in macrocconomics a solu-
tion which yiclds a smooth mstiument path is more politically seeeptable
than a policy with erratic changes. Restrictions should. and usually do.
reduce the computations reguired to obtain a solution. McCarthy and
Palash have shown that restricting the control path to 4 polvnomial func-
tion of time reduces the dimensionality of a control problem the same way
that restricting distributed lag weights te a polynomial reduces the dimen-
stonality in an estimation prohlem. This paper extends their work in two
directions: (1) I show that restricting the control vector to a k degree
polynomiul in time is equivalent to restricting the & + 1™ time difference
of the control vector to zero  this provides an casicr and somewhat more
intuitive way to impose cxact polynomial restrictions: and (2) 1 alfow the
restriction on the k + 1* dillerence to be “stochastic™" which only forces
the solution to lic in a band about the restiiction.

Section | presents the two exict restriction procedures and shows
that they are equivalent. Section 1 develops the stochastic restrictions
and a measure of the marginal cost of the restriction. Section T reports
some test results from applving the restrictions using the MPS model as
a constraint.

*] wish to thank James Berry and Momca Fnar ol the Board of Goscernors ol the
Federal Reserve System for their belp in computing these solutions, and the referces tor
therr comments.

FThis is equizalent to Shiller's distributed lag estimator,
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. EQUIVALENCE OF POLYNOMIAL AND DibrpryNey
' RESTRICTIONS ON THE CONTROI

The technique McCarthy and Palash suggest is 1o restrier the time
path of the control,* (1) 1o the & degree polynoniial,

(1) u(t) = ): at’. L= 0. r
7-0

where 1 is the (™ time period in the controi horimn and the g, yre the
parameters of the polynomial. When the dc"grcc of the polynomiyl k. is
less than the length of the control horizon 7. onlv &k 4 | parameters (the
a;) are needed to determine the 7 + 1 controls. In essence 'lhc controls
are the @; and the u(r) are simply ':molhcr endogenous variable in the
model. As a result the dimensions in the control problem are reduced
from7 + ltok + lorby 7T — k.

An alternative way to impose the same restriction is to force the
k + 1* difference of the control to be zero. For example. the & ¢ 1% g1,
ference of the control 1s:

k+l
k41
) At () =Z< ;L )(_l)luu - ).
j=0 .

Substituting the &£™ degree polvnamial for u(r - j)gives:

i+ l\ + 1 k
3) Ay = Z( ' >(—|)’ 2. air - =0

j=0 Y i=0

That is, restricting the & + 1* time-difference of the control path to zero
is equivalent to constraining the control path 10 lie on a & degree poly-
nomial function of time. Setting equation (2) equal to zero and rearrang-
ing gives the entire control path as a function of the & + 1 initial con-
ditions.

J' AN ‘
) u(t) = -,Z’( j )“”"“&/): L=k + 1., 1
L u*(0) L= 0.k

The control problem is again reduced to & + | dimensions. except using
(4) the parameters which must be found are the first & + | vilues of the
control, ¥°(r).

The diflerencing procedure may have two trivial advantages over
polynomial restrictions in computing openlaop solutions to nonlincar

IThe technique eusily generalizes 10 a vector o

! C feontroly with each control restricted to
4 pelynomial which can ocof different degree.
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control problems using gradient techniques: (1) the “guesses’ for the ini-
tial control values are likely to be closer to the iterated solution values
th:in the guesses for the unituitive polynomial parameters,’ and (2) since
the difference equation is recursive in the parameters (lagged values)
while the polynomial is not  A{A + 1)/2 time periods of model simula-
tion can be saved each time a gradient is computed.

H. “STOCHASTIC RESTRICTIONS

The major advantage to writing the restriction in difference form
(whick was pointed out by Shiller)® is that the restrictions can be easily
transformed to a stochastic form by not forcing the restriction to hold
exactly. Adding an error term to (4) gives

(%) A () = e,

Shiller assumes the error is distributed with a zero mean and constant
variance o. In the deterministic control problem the error is not stochas-
tic: instead it is the deviation from a smoothed path or an error from
approximating the true minimizing control function with a low-order
Taylor series expunsion.
The stochastic restriction can be added to the original loss function
L(u) as:
I
(6) LY = Lo + w 2 (3w
=0
The restricted loss function forces the k& + | difference of the controls
to lic in a band around zero: the larger the penalty weight. w. the smaller
the band width. Each element of the control vector is still independent.
however, since the restriction only concentrates the loss in the & + |
parameter space of the difference equation but docs not reduce it to
exactly & + 1 dimensions.
The marginal cost of the constraint.

(7
.
di® aL  du(t) ket 2 adu(r) dull)
= —— —— + (A 0y + 2w —= —|>0
dw 0o [(m(:) dw ( u(t)) " du(t) dw
shows the slope of the loss surface evaluated at & given weight w® The

3Schiller argues akse that our priors are better about the desired smoothness of the
process than they are ahout the degree of the polynomial restriction.

4Shiller proposed this technique to estimate distributed lag weights.

5The marginal cost of the constrainl can be approximaied numerically by

{min I,R(W + Aw) — min I_R(W))/Aw.
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marginal cost should not be large unless there is an economic stification

for not relaxing the constraunt.,
[11. CoMPARISON OF RESUT 1S

This section presents the results fromy test runs wsing exac difer.
ence or stochastic restrictions. . | o

The restrictions were tested using a0 quadratic loss function tha
penalizes positive devintions in unemployment (1) from the “naturap
rate of 4.8 pereent and deviations in tfm inflation rate (p - the rate of
change of the GNP deflator) from 2.5 percent over the twelve-quarter

[3

horizon 691 711V,

N
) L= 2u>d87 +(p— 25

=631
The MPS (1970 version} quarterly cconometric model was used as a ¢op.
straint. The exogenous variables were set at their historical values® exeept
for the control vartable. the jog of MT which was chosen 10 minimige the
loss furiction (8) subject to the exact or stochastic restrictions. We used
a conjugate gradient algorithm’ te determine the direction and » linear
scarch to find the best step-size at cach iteration in the optimization.

Table | shows the solution times® and iterations. Table 2 shows the

TABLE |
CPLi Time fos

Restriction [terations Min. See. [rget Control
LM = history 113,77
ATLMIE =0 16 2 36 90.10
A3LMIE =0 12 2 03 103.61
wlA2LMI)? ALMI
w = 100K 02 4 54 933§ 245
W= 75K 10 4 20 90,34 474
w = SOK 12 5 )2 EANN] 0813
w o= 25K [ 2 16 3946 i
w=|K 24 1) 16 710 0.67
wo= () 13 5 39 7024 0.2]
w(A3LMI)2 A3LMI
w = 75K 25 {0 BREA 9283 0.61
w = 30K 10 4 12 Yl1.37 7.01

W= () 16 6 Jyeee

014

*Started from smoothed log M1 path: all others started from historical M1 path.

"Smaller maximum step-size and perturbation for derivative caleulation.
***Stanted from solution path of run w = 100,

SN0 residunis were used,
Mmoo o .
Forexample, see Kowalik and Oshorne.
BAI caleultions were done on an EBM 370 model 168

96

Sy -




R

TABLE 2
Growil Rate or M1

Restriction TSR(AZLM 2 SOK(ALMI)? none
ime
691 - 2.4 S48 2249 - 20.67
69l 7.74 583 7.93 314,65
69511 . 5.60 7.53 3217
691V . 8.58 715 RN
701 . 6923 6.27 5.96
7011 5.3 3.9 203
70111 417 1.93 8.68
701V 3181 3.4 7.79
711 s.11 3,64 1.88%
7111 6.53 614 1.65
AV 1 7.38 6.33 0.32

AT AY 7.74 781 615 REE!

controt path for the growth rate of M1, The exact restrictions are that
the sccond or third difference of log of M! (ALMI. A'LMUY) is zero
which implics a constant money growth rate or a constant rate of change
of the money growth rate. The stochastic restrictions consist of a weight
(w) on the second or third difference of log(M1) which penatizes deriva-
tions from a constant money growth rate or a constant rate of change in
the money growth rate.

The results are close to what was anticipated. On average the exact
restrictions took less CPU timec since the computation of the gradient at
each iteration took less time.” The lower dimension of the gradient did
not reduce the number of iterations, however, as it would have in a lincar-
quadratic problem where the maximum iterations is given by the dimen-
sion of the control vector."

Relaxing the constraint by lowering the weight (w) generatly reduced
the loss; furthermore, the marginal cost of the constraint was very fow
across a wide range of weights - weights between 100K and 25K gave
very similar solutions- as long as the constrant was binding. This 1s
encouraging because within this range the solution scems reasonable.
Removing the constraint produces a large drop in the loss, but a pohti-
cally unacceptable solution (column 4, table 2) and a solution which
probably drives the mode! into an unreliable region.

The tables do not indicate dominance by cither technique. in fact,
there are 4 number of inconsistencics which again show that one must be
carcful when applying gradient techniques to large nonlfincar (and non-

9There 4 fixed set-up time for cach gradient calculation and siace the problem is non-
lincar the convergenee is not uniform so that the CPU times varies between iterations.
W0See Kowalik and Osborne. p. 40,
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convex) problems. The algorithms may converge r;_npidly, hu.[ to a local
minimum (¢.g. w = S0K) or they may l.md a direction in Wh',Ch the loss
function is very steep and converge rapidly to the proper minimum (e..g_
w = 25K, w = 100). Consequently average performances are a better jp.
dicator than any singie run. _

The inconsistencies also peint to some numerlca?l_problems, Relux-
ing the constraint by increasing the degree gf the dlﬂcljchC restrictior
(from two to three) resulted in an increase in thc loss in two of three
cases." For the stochastic restrictions the solutions were very close to
the comparable second difference runs. Since the marginal cost of the
restriction is low for weights in this region (25Kto 100K) not much im.
provement--but, not a decrease in performance- —shoulq have been ex.
pected. In the case of the exact restriction the increuse in the loss was
substantially larger, and we only found a convergent solution after con.
siderable experimentation'? which is an indication of numerical problems.

The numerical accuracy of solutions were tested using a zero func-
tion."” We chose the solution paths from the exact second-order difference
restriction {constant money growth) run as a target path and tested
whether the different restricted experiments could “zero™ this loss func-
tion (theoretically they could). The stochastic restrictions and the exact
second difference restriction reached @ minimum of 0.02 while the loss
from the exact third difference restricticn was around 2.2, confirming our
suspicion of numerical difficulties.

IV. Concrusions

The results presented here suggest that constraints on the control
path. either exact or stochastic, reduce the time required to compute a
control solution; and what is probably more important, they constrain
the solution to the region in which the model is a better approximation
of the true economic structure. However, the results also indicate that
neither technique can be applied mechanically with much hope of obtain-
ing reasonable results. The exact restrictions appear (o be more sensitive
to numeric probiems, but cheaper to compute.

University of California, Berkeley

"'Since the original runs we tried a Davidon. Fletcher. Powell algorithm with the hope
that information in the Hessian would eliminate some of the mconsistencies Unfortunately
the results essentially parailel the results in tabie 1.

PTo find a solution we smoothed the starting puth and suceessively reduced the maxi-
mum step-size and perturbations sjze for the gratient caleulation until the algorithm con-
verged, and still it converged to the relatively poor minimum. Cutting the step-size and
perturbations further also gave explosive solutions.

See Ando. Norman_and Palash for more detail.
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