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THE EFFECTS OF DISCOUNTED COST ON THE
UNCERTAINTY TIIRESHOLD PRINCIPLE*

By RicHARD KU, MICHAEL ATHANS AND PRAVIN VARAIVA

The optimal stochasiic control of a linear system with purely random parameters and with
respect 10 a discounted quadratic index of performance iy considered. 1t is shown thar if a
function involving the parameter variances and the discown fucior exceeds a certain threshold.
then the infinite horizon vprimization problem has ny sohaion. On the other hand. it is alvo
shown that the existence of opiima! infinite korizon ndes may not guarantee the stochastic
stability of the underlying teedback sysrem.

I. INTRODUCTION

In this paper we consider the problem of stochastic control of a linear
system with purely random parameters (i.c. uncorrelated in time) with
known statistics. Such a mathematical modei for uncertain systems has
been advocated by Chow [1]. {2]. [3] for economic applications: the ran-
domness of the parameters of the econometric model represent the un-
predictable future changes of key multipliers.

Apart from certain technical considerations, the optimal stochastic
control problem is well defined for such systems for finite horizon plan-
ning problems: see Chow [l] and Aoki [4]. However, if onc considers
the infinite horizon problem the results of the Uncertainty Threshold
Principle (UTP) (see Athans, Ku, and Gershwin [5], [6]) indicate that an
optimal solution will not exist if the standard deviations of the random
model parameters is large. In fact even for finite planning horizon prob-
lems the optimal cost-to-go undergoes exponential growth with increasing
planning horizon (N). In this paper we consider the effects of including
discount factors in the objective function. Traditionally. discount factors
have been used in economic problems to accentuate the near term worth
of the utility function as compared to the long-term one. One may then
suspect that the inclusion of discount factors in the objective function may
increase the threshold at which optimal decision rules for the infinite hori-
zon problem exist: this indeed is the case as it will be shown in the main
body of this paper.

However, the analysis of optimization problems involving systems
with random parameters and discounted quadratic performance indices
brings into the surface another curious phenomenon. One can determine
a quantifiable region, involving the statistics of the randem parameters
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and the value of the discount factor, in which optimal long range decisipn
rules exist but the underlying optimal closed loop system is unstable in 4

”It’{lﬂ-.S'l[!ll) 7e seHse. -
The implication of these results 1s that proper care muysi be ex.

ercised in the interpretation of results of optimization of uncertain sys.
tems when discount factors are present. The existence of optimal decision
rules does not guarantee the stochastic stability of the system. A separate

stability analysis must be carried out. -
These issues are demonstrated by the simplest possible scalar example

in the main body of this paper.

2. PROBLEM STATEMENT

in this section we summarize the problem statement. The notation
is consistent to the degree possible to that used in ref. [5).

Consider a first order stochastic dynamical system with state x(1).
control u(¢), and process noise £(1) described by the difference equation
(h X+ D) = a()x() + b(Du(t) + £t = 01,2,

We suppose that the purely random parameters a(t) and h(r) are
Gaussian and white (uncorrelated in time) with known constant means
@b and variances 2aa 2es TESpECtively. They may be also correlated
with (cross) covariance Y. More precisely, assume that

) Ela(0)} = a, E}b(0)} = b for all ¢

and that their variances are given by

(3) El@(n)} - a)(a(z) - @)} =X ..6(1 7)
E{(b(1) = BY(b(r) - b)] = Fui(t. 7)
El(a(t) ~ a)(b(r) - b)) = 3.,8(1. 1)

where 6(1,7) is the Kronecker delta Bi.7y =11f 1 = 1, 8(t,7) =0
if i = 7);and

4) 2aadmh-— Yo > 0

It is assumed that the means a. b and variances 2aas Lthr Yap are con-
stand and known a priori.

We assume that the process noise £(1) is zero mean, white (ie., un-
correlated in time), with vdriance

I

(5) ER(EG) = Za 1)

We further assume that the process noise £(1) is independent of the ran-
dom parameters a(t) and b(1).
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We consider the minimization of the discounted quadratic cost
functional
{ ~

(6) J=E HZ W ON 1) + Ru(1)
=0

where N is the planning horizon time and @ > 0. R > 0. The scalar a is
the discount factor. We assume that
N 0<acl

When « = 1. then we have the no-discount case discussed in ref [5].
We assume that the state x(¢) can be measured exactly.

3. PROBLEM SOLUTION FOR FINITE PLaNNING HORIZON

The solution can be obtained by standard stochastic dynamic pro-
gramming methods: the derivations represent a trivial exercise and hence
will not be given. We summarize the results below.

The optimal feedback control at each instant of time is given by a
linear transformation of the state. i.c.

(8) u(t) = -G()x(1)
The scalar linear gain G (1) is given by

aK(t + V)L, + ab]
R+ aK(t + D[ + b7

% G@) =
The scalars K (¢) are related by a Riccati-like recursive equation {(The UTP
equation {6]) by

(10) K() = Q + aK(t + (L + @)
K+ ) (Zw + 3H)

- Lo K(N) =0
R + ('!K(l + I)(be + b )
The optimal cost is given by
AN-t ]
an Jt = L{K(O)xz(O) £ attK (e + ”Ef
N (=0

4. Tue INFiNITE HORIZON CASE

The optimal solution stated above exists for all finite values of the
planning horizon time V. However. the solution to the optimization prob-
lem may fail to exist (in the sense that the optimum cost is infinite) for the
infinite horizon case. The precise result 1s stated as follows.
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Theorem 1
Let N -» = Define the wndiscounted threshofd parameter m |5), [6] by

R S DT
(12) m o= {2y + ) - . 3

Then the solution to the optimal infinite horizon problem exists if and

onlyif

(13) "W

Proof
Leta(r) 2 vaa(t) and R = R/a. Then after some alpebra, cquation
(10) reduces to
K+ 1N + ah)?

(1) = O+ K(t + IS + a7 — =1 s
(14) K() = @+ K(t + X R+ K+ DX+ 59

where the ~ quantities refer to the statistics of a(r). The structurg of
¢q. (14) is identical to that given in ref [5] and hence the result follows,
QED

The above result implics that it (13) holds then the limiting solution
of ¢q. (10) exists, is bounded and approaches a constant K i.c..

(15) Iim K() = K < =

N s
and it 1s the positive solution to the algebraic equation

KX + ab
R + aK (S + b9

(16) K=0+ akK(Z, + a) -

and, conscquently. the lincar gain G(1) of ¢q. {9) also approaches a
constant value
(17) G = lim Gy = A 2w + ab)

R+ aK[Tu + b7

On the other hand if

(18) m s L

«a

I.'m1 K({1) is not defined. and in fact K(r) grows exponentially as
(19) lim K1) = ¢
N o-x

Note that the more the future is discounted (o« -> ), the more un-
certainty can be tolerated in the rundom system parameters (reflected
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in the numerical value of undiscounted threshold parameter m) and still
have an optimal decision rule for the infinite horizon case. Thus in the
case that the solution exists (n < 1/a), the use of the optimum decision
rule (8) together with the optimal constant value of the gain G given by
eq. (17) will result in the following optimum evolution of state, according
to the stochastic difference equation (obtained by substituting (8) and (17)
into (11)

(20) X+ 1) = {a(r) - Gh()|x (1)

[ aK(To + ab) \
= - — | b X
La(') (R + aK(Ey + b)) (D) +(1)

5. STOCHASTIC STABILITY CONSIDERATIONS

One may suspect that the existence of an optimal decision rule in the
case m < |/a, vill cause the dynamic evolution of the state according to
eq. (2) to “behave ™ and to have certain stability properties. This is not the
case! In this section we shall demonstrate that the optimal closed-loop sys-

tem (20} is unstable in a mean-square sense in the region
(21) 1 <m < Va
in spite of the existence of an optimal decision rule in the range given

by (21).
Consider the stochastic system (1) and any linear control law

(22) u(t) = h(t)x(t)

Then the closed loop system will propagate according to the stochastic
equation

(23) x(t + 1) = {a(t) + h(O)b(D)]x (1) = c()x(t)
Since the ¢(¢) are uncorrelated in time, one can calculate the ratio

E{x*(c + D}

= EIWIEIC@ - El 0] 2
E{x*(1)} E{c*(DIETC () (D) 2 S()

24)
The value of S(1) is a measure of how the second moment of the state
propagates in time. The larger the value of S(r), the more variable the
state is. In particular, if

(25) lim S() — =

[+ x

the system (23) is unstable in a mean square sense.

The value of S(r) will be influenced in part by the value of the feed-
back gain A(r) in eq. (22). So one can seek the value of A(t) which will
minimize the ratio S(¢) given by eq. (24).
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Obviously, S(r) is minimized if each element of the product
(26) E\n)} = Ellat) + h(0)b(1))’}
is minimized by A(t). But
27N ElAN) = Ela () 1 Kby + 2h(Da(nb(r))
= Ela’ ()} + ROEB W) + 2h(DE a(n)b(1)}
Therefore, the best value of A(r). denoted by h*(1), is obtained from the

solution of

(28) 0 = M = 2h() EWB (1)} + 2h(1) Etla(nyb(n)}
dh(t)

which yields
Elab)} _ _ L + ab

=h*(l) = - ——— = — = constant
U E{b(1) Sew + b
Hence the minimum value of £{c(1)} is
(30) E{c'(Olma = Efla(t) + h*b(n))*)
o2 (Za + ab)
= - —— = 1
Zaa +a be N bz 1

where m is the undiscounted threshold parameter given by €q. (12).
It follows that

(31) S(Dmin = m*

and hence that

(32) m S()mm < = ifm < 1
i *x

Hence we have proved

Theorem ?

The stochastic system (1) is stabilizable by linear feedback in a mean
square sense if and only if the undiscounted threshold parameter m, de-
fined by eq. (12), is less than unity. In particular, the optimal closed loop
system of eq. (20) is not stable in a mean Square sense in the range | <
m < 1/a, where a is the discount factor.

6. Discussion

The implications of the above results are best understood by ref-
erence to Figure 1. The undiscounted threshold parameter m can be
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REGION A REGION B REGION €
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} : —
0 m =1 m=1/a m

O<a<{i Discount Factor

Figure | Behaviour of Solution as a Function of the Threshold Parameter m

. optimal infinite horizon decision rules exist

: optimal infinitc horizon decision rules do not exist
closed loop system stochastically stzble

: closed loop system stochastically unstable

cwzOo

thought of as a measure of the system parameter uncertainty since for any
given mean values a. b of the random (white) parameters a(r) and b(¢), m
increases monotonically with both parameter variances 3., and 35,. Note
that m is uniquely characterized by the stochastic system itself and is in-
dependent of the performance criterion employed. For any given discount
factor 0 < o < 1, if the system uncertainty is large enough (Region C in
Figure 1) no optimal decision rules exist for the infinite horizon case, and
the system is not stabilizable. If the system uncertainty is sufficiently small
(Region A in Figure 1) then optimal and stabilizing decision rules exist.

The curious (and surprising?) phenomenon occurs in Region B; note
that the size of this region increases as the future is discounted more and
more (a — 0). In region B optimal rules exist, but the resultant optimal
closed foop system is unstable in a mean square scnse. The existence of
optimal decision rules in this region is solely due to the inclusion of a dis-
count factor in the performance index.

The implication of the above remarks seem to imply that one has to
be careful on interpreting results obtained through the use of discount
factors for stochastic optimization problems, and that an independent
stochastic stability analysis should be carried out. In most linear-
quadratic stochastic optimization problems solved to-date optimality and
stability are not in conflict; optimal decision rules result in stable systems.
This is clearly not the case for uncertain systems in which the randomness
enters in a multiplicative rather than additive way (such as in the standard
Linear-Quadratic-Gaussian problem [7]).

491



By the above results we do nct imply.l.hul this paipcr is the only one
that p(')in:s out the interplay between Sla?hlh[.y and optimulity, whep dis-
cc;‘unl factors arc present. In the cconomics hlc.ralurc .ﬁuch problems have
received attention even in the delcr.nnmsuc cufc (sce for c.\:umplc‘ (8] and
[9]). Problems in capital accumulation and business c}..'clc.x 11.1\'l0|vmg state
dep.cndcnl noise have been treated recently h_\" Ma.gnll 11_()1 in the cop.
tinuous time framework. O'ur rcmz.lrks arc primarily oncmcd towards
lincar-quadratic problems. It lhc.ré is N0 parimeter uncertainty (o = g,
there is no conflict between Sl;lbl.lll_\' and optimality. independeny of the
magnitude of the additive uncertainty £(z).

Massachusetts Institute of Technoty -
Massachusetts Institute of Technol, ,g,';.
Vniversity of Califernia, Bert e,
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