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Annals of Econoniic and Social Measurement, 6/1, 1977

COVARIANCE OF ESTIMATED PARAMETERS IN
ARMA REGRESSION MODELS

By RICHARD HiLL

In this paper we derive the asymptotic covariance matrix of the maximum likelihnod esti-
mator for regression models with ARMA errors, we discuss some alternative sample estimates
of this covariance matrix, and we extend some of these results to Jforecasting.

1. INTRODUCTION

We begin by detining a general class of regression models, having gaussian
errors with unknown covariance structure. We derive the likelihood func-
tion and its derivatives, and specialize these to the case where the co-
vartance structure is that specified by an autoregressive moving average
process. Next we derive the asymptotic covariance matrix for the maxi-
mum likelihood estimator, and we discuss some alternative sample esti-
mates of this covariance matrix. Finally we extend some of these results
to forecasting.

II. THE MobreL

Let@bea &k x | vector of parameters. m a twice differentiable func-
tion m: R* — R", so that m(8) is ann x | vector. V(#) is an n x n sym-
metric positive definite matrix, whose elements are a function of the
p x | vector 8.

Our model is

(1-1 Y = m(B) + e,
where
e ~ N,(0, a2V(8)),
so that if
V(o) = [VVR[V'HO)),
(1-2) V'V2(8) ¢ ~ N,(0,dl,).

For example if ¥(8) = [,, we have the usual nonlinear regression model,
and if

m(p) = XB

then we have Y - X8 ~ N(0, o%1,) which is the usual linear regression
model. For convenience, we put f(8) = Y — m(8), so that f(8) is the
n x 1 vector of residuals. We let v = (§), the combined parameter vector.
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In our applications we will find that p, the dimension of 0, is much
smatler than 1, so that ¥(8) is unknown only up to few parameter values,
which we wish to estimate. For example, if ¥ were a zero mean time series,
we could take f(3) = ¥, and perhaps assume

( 1 oo - - . o)
¢ 10 - -0
vV ey=10 9 1 - . .

000 --- 0 9 |

This is a one parameter model, in which we are trying to estimate the cor-
relation between Y, and Y, ,, assuming that ¥, and Y, , are uncorre.
lated for 1 > 2. The ARMA models described in Box and Jenkins {1970
are special cases of (1-1). In fact, they can be written as

Yi—p Y, - prYip — oo - Pty =¢ - Breg = ee - bre, s,
(1-3)
where
€1, .., ¢, arei.id. N(0, ¢7) variables,

In cur notation

(1-4) P(p)Y = T(g)e,
where
p=(p..... P b = (d... ., 6,
! 0 0 0
e 0 0
~P2 -0, I 0
(1-5) P(p) =
TPa TPar Tp,os 0
0 —p, -p,, 0
0 0 —p, 0
0 0 0 )



and

1 0 0 0
~ b ! 0 0
S S— 1 0
(1-6) () =
—hy —Pa —tg, 0
0 —ds b 0
0 0 -9, 0
¢ 0 0 L/
Letting
(1-7) 0 =(p,.ccopandie .., dy)!
and
(18) V-iRg) = T7(4) Pp),
we have

V-1 @yy ~ N0, 0%1),

so that the Box-Jenkins models are indeed special cases of (I-1), with
m(B3) = 0 and V(#) given by (1-8). Throughout, we will let P(p) and
T($) be defined by the above matrices.

I1. THE LIKELIHOOD FUNCTION

We propose to estimate the parameter ¥ by using the method of
maximum likelihood. We can only observe the n x I vector Y, so we need
the likelihood in terms of Y

C det( V"”("”exp [ TGO

2 a?

2-1y L{/.B.0,0) =

g

where € is a constant (see Rao (1969) Section 8a.4).
For all out applications we will have det(V(8)) = 1, so we immediately
simplify things by assunting that

(2-2) det(¥V'2(8)) = |

for all values of . Hence
11




(2-3) logL(/f,8,0,0) = — %/"(/3) V-A3YS(B) - nlog o + (.

To maxmnze this we differentiate and set the derivatives to 0. (Recali thag

f(8) =Y — m(B). so for each 8. (B} is observable.)
N\
poel _ Lyigy v D8 -2 -0
go
or
1B VIS8 =
Hence
(2-4) 62 = LB VB f(B)

n

and we can treat ¢ as a constant throughout the rest of the discussion.
Note that we are now trying to minimize

1B Y0 £8).

Wewrite f(8) = (fi, ... f)" V-

dlogl _ -1 &

242

_ ! (Z

"(6) = (V) for convenience. Then

B, 247 38, (Zf uj)

% Vy VY f’L
p [0,3, URS/ a8,

-1 (7/
= 02 (Z EF ”j)
_ _—_ af(8) V-1oy £1an
- ( 98, ) (0) £(8).
dlogL _ -1 g ;
a4, 202 a8, (Z SV f)
- =l vy
202 (Zf' ad,, f’/)
- “” £(8).
Sothe & + pnormal equations are
%’ V-0)£(8) =
(2-5)
76 20 gy 2o

i12




Next, we compute the matrix of second derivatives. Omitting the de-
tails, we have:

PlogL _a/"B) df(ﬁ) 17(8)
g VO l, O f(B)
_ Ly dtlogL  af7(B) aV*(a) :
@8 = re = T T )
L dtlogL o 2K (6
20 o = B S ),

We summarize these results as follows:

" - VYV VR s
v s s

(v
f1vers

The primes denoting the appropriate derivatives.
The asymptotic information matrix I(y) is then given by

(29) i - £(% 1)
g

(2-7)

Holland (1973) described a method for carrying out the expectation in
2-9.Since o is considered fixed, we treat it as a constant. Then

E[L v iy -
g
- Liveg e yrveign = Ly,
0'2 g
since f'(B) = m'(B) was assumed fixed;
E[% [f']T[V-‘l'f] - Lirverien - o,
.a d
since f(B) = Y - m(B) ~ N(O,s*¥(8)), by I-1.
[
l =SV f] = ——"dw[E[f (V-1
= i# Etrace [fT[V ' [f] = i; E trace {[V-1"f7)
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o —
- ;I’i trace [E([V']"ff')} = 32 el ey

. v g | S RYY
= ~l~) trace [[V '] V] = 3 trace (V1))

S0 we have
'_2 TRUETE 0

g
(2-9) I(y) = ) e B
D race w2V .
2 \ 0,0,

We see that the ARMA coeflicient estimates are asymptotically yp.
correlated with the regression parameter estimates, and consequently the
design of the regression experiment does not affect the precision of the
estimate of the ARMA parameters.

We now specialize to a subset of (1-1) for which the expressions (2.9)
are easy to compute.

I, SPeciatiZATION To ARMA ERROR PROCESSES

We restrict ourselves to the subset cof (1-1) for which

(3-H Vie) = P ' (p)T(¢) [P~ (p) T(¢))"
so that
(3-2) V=12(0) = T-'(¢) P(0),

where T, P are given by 1-5 and 1-6.

The error process is now an ARMA error process. Using the fact that
both Pand 7 are Toeplitz matrices, it is possible to considerably simplify
the expressions 2-7 and 2-9. These computations are straightforward but
tedious, and they will not be given here. They are carried out in full in Hill
(1975). In particular, it can be shown that

! trace (V aZV—I) = trace [(T"P)& gfg{;ﬂ ((T"P)a ([‘.'"T)) TJ
auy

2 6010,,, ()0’"
(3-3)
and
(T-1py 0 i aP
(T P)—(pP )= - %L pa
(3-4) dp, dp
aT

1]

(T-'Py L (p-ipy
dp, -dpy
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Since the matrices ~-- 2L p-1, -1, . .
ip’ 9g, " And T arc readily computed in

closed form, these expressions simplify the comput
tien matrix (2-9). ) :
i) HT(¢p) =Tandp = 0,then g

ation of the informa-

n -1 0 0 0
0 n -2 0 0 :
”(0)= 0 0 n—~3 0
0 0 0 e om—p

This is a perfectly sensible answer, since it is well known that the estimate
for p; is essentially based on n — j observations. In particular, forp = |

; Yi Ya—~|

p=li o
21
w2

11} Furthermore, from formulas (3-3) and (3-4) we see that if either
P(p) =l or T(p) = I, so that we have only ¢’s or enly p’s to estimate,
the value of /() will depend only on the value of the ¢ or p vector, and
not on whether or not it is a ¢ vector or a p vector. That is, I(¢) = I(p)
whenever ¢ = p and, respectively, P(p) = [ or T{(¢) = 1.

This result is rather surprising: it says that the asymptotic variance
for the p’s is the same as that for the ¢’sif only g’s or ¢’s are present, even
though they represent quite different models: One is

Yi—pYoy--- _ppyi—p ~ N(0, %)
The other is
Yi~ &= dreii - —dpei,
where
€1,...,¢, ~ 11.d. N0, g,)

iii) Ifp = ¢, then I(¢) is singular, since it has the form (_:; _:)

This means that the parameters are not estimable, and this is reasonable
since our model is now

Y ~ N(0,a%1,)
and many choices of p and ¢ will give us this model.
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IV. APPROXIMATIONS TO THE COVARIANCE MaTRix

; 1oy P -l : .
Itis usual to assume that 7-'{(3) > I"'(y), and in fact Rao (1965)
shows that if £, is the distribution function of ¥ and G, is the di ’
function of a random variable distributed N(0, I-'(%)). then

lim [ F, - G,| =0,

Stribution

under suitable regularity conditions.
By the strong law of large numbers, and consistency, we alsy have

FHE) = Lin %00 sinee Eniy) - Ely),

(Note that it is not true that H(3) 4 I{7). in fact H(y) need net cop-
verge 10 /{y), as we will see later.)

On the basis of this result, it has been suggested that we yse H($)
rather than 7(¥) as an estimate of I{y). We point out some disudvamagcs
to this approach.

1) Suppose that f(8) = Y, and that p =
H(¥) is not necessarily singular: in fact, let p =

-

@, so that 1(y) is singutar,

Py

¢ =0,andp < 2 Thep

/ n n »
Z y? ) - Y, .Y

Hey - "
2 vt v, 2 e X vy

= 0= ] i3

i) Letf(8) = ¥ - B &k =1, T@)=Lp=1¢ = I. Then
/
H(O) _ n }l - Y,,
v v, 3oy,
i=2
Whereas
10) - (" 0 )
0 n— 1
The form for H (0) is most eastly derived by observing that here

HOBLUBD) = (Y- 8P 43 (0~ )~ pir, - oy
SO i=2

dlog L “
Fraa D D (/R RS R T
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d log i. - ;o S
R LA z);[(_,,‘ S TS AT,

_.-;__w%_l; = D (Y, - By
dp !

f’li _!_og I

K

I+ 2;, ) [ B R O XN Dy oy (N 1) p?

9
1 log 1. -
RIS D E IO

+ZKK~M~MK|~M(H

2

Zﬁh»ﬁ%ﬂZUh~m
2

Z (Y, ~ 1) 0—02()’. v )

= =B - (Yo =1, -y,

Clearly H(0) does not converge in probability (o HO): however, under the
assumption p = 0

i

Y, - ¥, - N@©.2).

n

.
2 ]

oY ~xl

=2

and
50 we see that

and

;,(; Yii-ny I) (),(;;).

In this case, however, 1(0) s the correct answer, so we see that #(0) is not
as good.

There is another approximation which is clearly superior to H (y):
. (v e 0
4- | Hiy) = ' - J:
o ! 0 Sy
This is obtained by climinating those components in (2-7) whose expecta-

17




tion is obviously 0. For the example we have

()\

>,

[

iH(0) =

which is still not as good as 7(0). H, also stll suflers from disaulvunlagc
i) above: in fact, the lower right corner of /1 is identical to that of 4.
We conclude that the variance of the #°s (ARMA coetlicients) shoulg

not be estimated from H(¥). but from /(y). since the two can differ sig-

nificantly: a memerical example follows,
We generated ¥ by taking 100 points from a normal (0, b K'Nrnbu

tion, so that ¥ ~ N,{0.7). Then we it the model (1-1) with mi(g) - 8,
where g is a scalarand # = (:/) cso that we fit a first order moving average,
first order antoregressive process. (Le.cboth Pand Tare present, but eych
depends only on one parameter.) We found

.I353()\

y ={ ~.36 .

-.3125
009328 0004706 .0()()33()‘\

H (y) = 347967 J345833 3
.35()4()4/
009319 0 0
I"\(y) = 30134 316488
3.22633
Since admissibility requires [p] < 1. ¢ < 1. this last expression
means that p and ¢ are essentially inestimable,
[t1s to be noted that the large observed variances for i and $ are not
accidental: if we had found 5 = - 36, $ = -.36. then 1(¥) would have

Been singular, and the variances wonld hive hun infinite. In fact. il we fix
Aat -36 and vary ¢ we get a smooth progression from reasonable
variance estimates to absurdiy large ones.

¢ Estimated variance of ¢
0 D787

~.2 RR]

-3 2.06

118



A LT T Mt R !

One might conclude from this example that the estimated variances given
by H ~'(¥) are absurd.

In this context Wall (1973) has suggested looking at the estimated
correlation matrix for p and ¢, this is

(i .9904|) for H'(y)
1

and
(I .99859) for I-'(y).
1
This indicates at once that the estimates for p and ¢ are unreliable, since e
they are so highly correlated. We could 2lso look at the condition number by
for the covariance matrix of p and ¢. For H-' the eigenvalues are o

0033505, .695021, the condition number 207: for /- 00448, 6.33525 and
1,414 The condition numbers for the correlation matrives are 208 for H-!
and 1,417 for /~'. So we see that in fact the cstimated covariance matrix
ts nearly singular, for H~"as well as /-*; this indicates that the parameters
are “‘nearly inestimable™. That is, we can reasonably conjecture that the
estimated variances given by H~' are much too small.

This example points out that blind acceptance of variances estimated
from H~', without examination of correlation coeflicients, eigenvalues or
condition numbers, can be quite misleading for this class of problems.

V. VARIANCE OF FORECASTS

The results of section Il and 111 are easily extended to the forecasting
case, if we take the view that the forecasts merely usc additional unknown
parameters to be estimated via maximum likelihood. We maintain the
notation of section I, but we now assume that L N LA
are unknown, and to be estimated. Formally, the expression 2-3 still
holds, hence 2-4 and 2-$ are still correct, with the understanding that
Prv o Paisr must be used in the computation of £(8).

We now have the additional t normal equations

o T,
(5-1) ?#V"](ﬂ)f(ﬂ)_—_O.qz(),....l—- I:
In-gq
T,
(5-2) [Note that from 1-1 %[_@ = (0,0...1 E—OI 4
yn—q q _.
entries
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{

N -

/ 2 e :
/ (5-3) Q_IOE_L = fj_,@ Vi@ gﬁ@
. Ay, .08, Jp, v, .,

#log L af By av-'0)
5-4 - 7
(>-4) Ve 000 va, op. B
Flog L af"p)y | af(B)
5-5 —_— 2\ Yoy L2
( ) a_yn»-qa)'n-! d."ll*(] 4 (0) (7'1',, r

./ The additional second derivative terms are given by

We note that (5-4) has expectation 0, and (5-3) and (5-5)

chastic. In particular, recailing (5-2), we see that

(5-6) 3 log L _

yae-qn-r 0
(').Vn - qa,vnv r ( )

The expression (2-9) must now be modified to take into account the
- t observations; essentially this
»Vn-i and, with thig

that we have only »
estimates for # and v are only based on Y,,. ..
proviso, (2-9) is still correct, so we have

|
I‘P[f'lrl’"'f' 0
N 1 ,ay-!
(5-7y 1(v) = 0 5 trace ( ) 0;)
at 1
P o (/'] 0 .

For simplicity, we now assume that m(83) =

L’ [/ )Ty~ L
o* O,
0
_2Vn—q,n—r J

are not sto-

fact
means that the

0, so the variance of a fore-

cast is given by inverting the appropriate segment of J -1,

In particular, for the pure autoregressive case, ¥ !

from 1-5 that
Var(5,) = o1,

ift < 1.
always o2, regardless of the order of the
once from (1-3), since, asymptotically, we know pi,s. ..

= PTP 50 we see

That is, the one step ahead asymprotic prediction variance is
process. This result follows at
. Po €Xactly.

\ Similarly, the two step ahead asymptotic covariance matrix is given
y
'+ pl —pp? I iy
0’2 = 02
~-p ! ol +p
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So the two step ahead variance is o*(1 + p?). This also follows
from (1-3).

Similar results can be obtained for the moving
the expressions quickly become more complicated, )

One drawback of the asymptotic formula (5-7) is that the variance of
the estimated -y parameters is not taken into account. We may use the §
method (see Rao (1965)) to derive approximations which include the 1/n
term due to the variability of 4 and which are conditional on y, y
We illustrate the general approach with two examples. In the hrst or"d_clr
autoregressive case we have

al once

average case. hut

j;i = ﬁyi-ls
and hence
(4-3) (Pi—») = ﬁ}’.-l = PVici — €& =y, ((p ~ p) — €.

Since y; is not observed, it is not used in estimating 4, and so 5 and € are
independent. Thus

Var(§; — y;) = o® + yi_\ Var ().
From the results of section 3, we have
(59 Var(y;i - y) = o’
1

+ i _
I n-—D+ -2+ n-3p*+ .. 4 p2(n-2»
If p = 0, this reduces to
2
(5-10) Var (), - y) = o* + —y'_'—l.
n—

For the two step ahead predictor we have

Pi = BPior = byioa,
and hence
(-1 (P = ¥ = Pyica — Bica — Peicy - &
So
(-12) Var(§ — y) = o’(1 + p?) + yl,Var(p’ - p?).

Since p? converge to p? in probability at rate 1/4/n, we may write the
expansion

A =0+ (p — P20 + 0,(1/Vn).
So
(-13) E(3? - %) = Var (3* - p?) = 4p* Var (p).
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Substituting (5-13) into (5-12). and using the results of section 3 we fing
Var (§ — ») = o1 + p?)
bt — *
(n— 1)+ (n — 2),,‘ + g pzta»z;
If p = 0, this reduces to
(5-14) Var (5 - ») = o1 + p?).

and we note that the I/n term docs not appear. This oceurs becayse P
converge to p’ at a rate greater than /N ifp = 0.

Similar results can be derived in more gencral cases. by appropriate
linearization and substitutions, but the more general expressions are dif.
ficult to interpret, and are not presented here.
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