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Annals of Economic and Social Measurement, 5/4, 1976 

RECURSIVE MODELS WITH QUALITATIVE 

ENDOGENOUS VARIABLES 

BY G. S. MADDALA AND LUNG-FEI LEE 

The paper discusses the estimation procedures and identification problems for some simultaneous 
equations models involving underlying continuous unobservable variables for which the observed 
variables are qualiiative. It also discusses the formulation of recursive models in the logit framework with 
an illustration of a five equation model. 

1. INTRODUCTION 

Models with qualitative endogenous variables have received a lot of attention by 

econometricians in recent years. Broadly speaking the models fall in two 

categories: those that start with a multivariate logistic distribution (see Goodman 

[2], Nerlove and Press [6]) and those that postulate certain underlying continuous 

response functions. In the latter class of models if y* is the underlying continuous 

variable, we observe a qualitative variable y which (assuming it is binary) takes the 

value 1 if y*>0 and 0 if y*<0. When it comes to generalizations to many 

variables, models with underlying continuous variables are computationally more 

cumbersome than models considered by Nerlove and Press [6].* It is fruitful to 

investigate these models because the underlying causal structure is easier to 

understand, at least for econometricians used to thinking about recursive and 

non-recursive models and different types of simultaneous structures. Further, the 

extensions to models with discrete and continuous cases become more logical and 

easy to comprehend. In section 2 we present a set of simultaneous equation 

models involving underlying continuous unobservable variables for which the 

observed variables are qualitative. We consider the estimation procedures and the 

identification problems in these models. Some models are more convenient to 

present in a two equations framework (which is also useful to fix ideas on the 

nature of the problems involved) and hence we consider them in a two-equation 

framework. In section 3 we discuss the formulation of recursive models in the logit 

framework. The logit model has been discussed by Nerlove and Press [6] in the 

more general simultaneous framework where all endogenous variables are mutu- 

ally interrelated. However, there will be many problems where one needs to 

postulate some special type of causality (in particular a recursive model). In 

section 4 we consider a logit model with such a causal structure. It is a five equation 

model analyzed earlier by Brown et al. { 1] but we take into account the fact that 

some of the endogenous variables are qualitative. The final section presents the 

conclusions. 

+ Financial support from the National Science Foundation is gratefully acknowledged. We would 
like to thank Forrest Nelson for helpful comments on an earlier draft. 

* Such continuous models have been considered by Heckman [3, 4]. 
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2. SomME Mopets WITH UNDERLYING CONTINUOUS VARIABLES: 

In this section we will present three different models and discuss the problems 

of their logical consistency, identification and estimation. Models 1 and 2 are 

recursive models and model 3 is a particular type of simultaneous model. For ease 

of exposition we will discuss the first two models in a two-equation framework but 

model 3 is discussed in a general framework. This should not be interpreted to 

mean that models 1 and 2 are special cases of model 3. These three types of models 

are logically consistent models to analyze problems involving underlying continu- 

ous variables. It will be argued later that some other alternative formulations lead 

to logical inconsistencies. 

Model 1—A Simple Recursive Model with Qualitative Variables 

Consider the two equations model: 

yt =XB,—€, 

y3 = XB2+ yy1— £2 

where €;, €2 have zero mean, unit variances and are serially independent, X is a 

vector of exogenous variables.’ In general, at least one exogenous variable in 

equation 1 does not appear in equation 2 to guarantee the identification of B2 and 

y. If €, and €2 are independent, the exclusion of one exogenous variable in X; is 

not necessary. Also in this model, y7, y} are not observable. Only the dichotom- 

ous variables y,; and y, are observable. We assume that there exist constants py, 

and 42 such that 

yi,=1 iff XB,—e,=p i.e. in XB,—p,=€}, 

y,=0 iff X8,—p,<e, 

and 

y2=1 iff XB2+ yy1 — M2 = 2 

y2=0 iff XB2+ yy; —w2<&>. 

Denote the joint distribution function of (¢,,¢2) by F. The probability 

function of (y;, y2) can easily be written down. 

Py, = P(yi=1, yo= 1) = F(XB — 1, XB2+ y — M2) 

Pio = P(y; = 1, y2 = 0) = F(XB — 1, —XB2— y + M2) 

Po: = P(y, = 0, y2 = 1) = F(—XB, + wi, XB2— M2) 

Poo = Ply; = 0, y2 = 0) = F(—XB, + 41, —XB2+ M2). 

We get this simplified expression by assuming that ¢,, €2 are symmetrically 

distributed. (This assumption is used to simplify the notations only). 

" ¢, and £2 need not have unit variances but since y*¥ and y* are not observable, these variances 
are not identified and 8; are identified only up to a proportionality factor o; — (i = 1, 2). 
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The likelihood function to be maximized is 

L(B,, Bo, Y> Mi MX, Y1> Y2) 

= TLP?1”2pyx0-¥2) py dvapt 7 ~Y2). 

As with the identification problem in the ordinary logit or probit analysis, if X has 

a constant term, the coefficients of the constant terms are not identifiable since py, 

and yw are unknown constants. 

For this model, consistent initial estimates for all the parameters are not easy 

to get. Except for the parameters 6, which can be estimated consistently by 

applying the probit (if ¢, is assumed to be standard normal) or logit analysis (if e, is 

assumed to have the logistic distribution), the initial consistent estimates of the 

other parameters are not available. So what we can suggest is to use the consistent 

estimate 6, derived by the probit or logit analysis as an initial estimate for 8, and 

try various values for the other parameters, study the values that they converge to 

and choose the one which maximizes the likelihood function. However, if the 

likelihood function involves numerical double integrals for some specified dis- 

tributions for the error terms, the maximization procedure is expected to be 

difficult. 

If ¢, and e, are independent, then the likelihood function reduces to 

L =| (Fi(X61-w4) "11 -Fy(X8,-p 

x [] [F2(XB2+ yy: — #2) P2[1 — Fo(XB2+ yyi— M2)” 
y2 

and maximizing L is equivalent to maximizing the likelihood functions for the first 

and second equations separately (as in a truly recursive model). In this case there 

will be no computational difficulty for the maximum likelihood procedure. 

The extension of the two equations model to models with more equations is 

straightforward. The likelihood function can be written down theoretically but if it 

involves numerical multi-integrals, the computation will be intractable. 

Model 2—A Recursive Model with Qualitative and Continuous Variables 

Consider the model: 

yi” = XB, —€&; 

y2 = XB2+ yyiter 

where €,, €2 are assumed to have zero mean and are serially independent, X are 

exogeneous variables, y, is an observed dichotomous variable, y. is an observed 

continuous variable ahd y? is an underlying continuous variable. In fact, 

yi=1 iff y¥>0 or iff XB, =e, 

yi=0 iff XB, <e).. 

Here we assume also that at least one exogeneous variable appears in equation 1 

but not in equation 2 to guarantee the identification of the parameters 8, and y. If 

€, and €, are independent, the condition is unnecessary. 
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The joint density function of y,, y2 in this case is 

XB, 

gyi=1,y)= | fl€1, yo— XB2- y) de, 

and 

g(:=0, y.)= | flé1, y2— XB2) de, 
XBi 

where f(€,, €2) is the joint density function of (¢;, €2). The likelihood function to 

be maximized is 

L(B,, B2, y|X, yi, Yo) = TL gly: =1, y2)"*g(y1 = 0, y2)'™ 
yiy2 

If €, and €, are independent, the likelihood function reduces to 

L =] [Fi(XB,) "(1 — Fi(XB,))' ™ [1 fo(y2— XB2— yy) 
y1 y2 

and thus maximizing L is equivalent to maximizing the likelihood functions for 

both equations separately. In the case that ¢, and ¢, are normally distributed, the 

maximum likelihood procedure is equivalent to estimating the first equation by 

probit anaiysis and the second equation bv ordinary least squares. 

As for the maximum likelihood procedure for the case when ¢, and €, are not 

independent, we have to get some good initial estimates to start the iteration. For 

this model, we can get the initial consistent estimates easily if (€,, €2) are assumed 

to be normally distributed, i.e., 

1 5 
(es, €2)~N(0,| ref 

O12 G2 

Since the first equation is a standard probit model, 6, can be estimated 

consistently by probit analysis. Rewrite the second equation as 

Y2 = XB2.+ yFi\(XB,) + €2+ y(yi — Fi(XB;)) 

= XB. + yF\(XB,)+@ 

where w = y(y, —F\(XB;))+e2. Since E(w) =0 and w is uncorrelated with the 

regressors, we can estimate B, and y by regressing y, on X and F,(XB;). Since B, 

is a consistent estimate of B,, under some general conditions, it can be shown that 

the estimates B> and ¥ of B and y are consistent estimators. Denote the estimated 

residual of the second equation by é, i.e 

E2= y2— XB2— Yy1. 

Then the variance a3 can be estimated consistently by 3 where 

63= $ y &3, (Tis the sample size). 
t=1 
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Finally it remains to find some consistent estimates for a2. Rewrite the two 

equations into a switching regression model. 

y2= XB.+ y+ e2 iff XB, >e, 

y2= XB2+ €2 iff XB, =e). 

With these specifications, it can easily be shown that 

E(y2— XB2- ylyi = 1) = E(y,€2)/F\(XB) 

- orf foe oe] / xp, 

and 

E(y.— XB2ly, = 0) = E((1—y,)e2)/[1— F,(XB,)] 

"3 ox — ne ororrl /t1 ~F,(XB;)]. 

Thus o 2 can be estimated consistently either by using the sub-sample corres- 

ponding to y, = 1 and regressing 

“ a 1 ne 3b 2 a 
y2— XB2—¥ on |-zee ae | /Fyuxés) 

wT 

or by using the subsample corresponding to y, = 0 and regressing 

— 1 ll S 2 A 
y2— XB, on |-zee _— | /o - F(x). 

V2 

or by combining these two sub-samples. Thus, we can use these consistent 

estimates as the initial estimates to start the iteration for the maximum likelihood 

procedure. 

In the above model, the observed dependent variable is dichotomous in the 

first equation and the observed dependent variable is continuous in the second 

equation. In the reverse case we have the model: 

yi =XB, +e, 

y3 = XB2.+ yyi-€2 

where €;, €2 are serially independent with zero means and variances o,,, 722 and 

covariance o>. Here now y, is the observed continuous. variable and y} is 

unobserved but the dichotomous variable y2 is observed. 

y2=1 iff ys =0 or XB2+ yy; = €2 

y2=0 iff XB2+ yy: <&2. 

Under the rank condition that at least one of the exogeneous variables appears in 

the first equation but not the second one, we can show (the proof can be found in 

529 



Model 3) that only 

q 22 G12 
> 

TC 
> > 

al Qe ‘J 
Bi, 011, 

are identifiable” where a” = var (ye, — 2). 

In this model, the joint densities are 

XB2+YY; 

sy.y2=1)=| flyi— XB, €2) der 

and 

co 

gi. y2=0)= | fly: — XB, €2) der 
XB2+yy1 

The likelihood function to be maximized is 

L(B;, Br, yly, X)= TI (g(y1, yo= DPg(y1, y2 =O). 
y1,y2 

Again if the residuals are independent, maximizing L amounts to estimation of 

each equation separately. 

If the residuals ¢€, and €, are normally distributed, the consistent initial 

estimates can be found as follows. The first equation is a standard regression 

model, so B, and a, can be estimated consistently by the ordinary least squares 

estimators 8B, and @,;. Rewrite the second equation into a probit model, 

* 
Y2 _ yB2, Vg) 2% 
o o oa a 

where w = yX (B, — B,)+(€2— ye). It is easily shown that w/o is asymptotically a 

standard normal variable, so B2/a, y/o can be estimated consistently by the 

probit analysis. As for the parameters o),/c, 22/07, we can use the relation 

&2— Ye eb ta d 
E(e€,y2) = cov (c,, 22-7 ts [+e RBd/eriviorX0.P/a] 

oT V2 

= ”) zx | 1 “HtBafodeaLoBP/af 
=1\" /911-——_]| ~ =e 
(2 o 4'V2a7 

or equivalently 

1 2X (B,/0)+(9/e)XB,)?/2 | 

, Y o V24 
E(e,\y2=1)= [Zor -22 

rie) 

to estimate o,2/o0. Regress the product of the least squares residuals and y, on 

1/V 2a e *2/)*0/)¥8)"/2 and use this least square estimate and (7/a)é,, to 

* Though the likelihood function involves 5 parameters 8), 0;, Bi2/o, y/o, and 02/0 and it 
appears as though only these parameters are estimable, it should be noted that o~ = var (ye, —€2) = 
YO 4, — 2042+ OF (y*/o7)o;; —2(y/a)(012/0)+022/07 = 1 and hence 02/0” is also estimable. 
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solve for &,2/a. Finally since 

o* = E(ve,—€2)" 

2 
= ¥°011—2yo12 + G22, 

it implies (0/07) = 1—(y/o)’o;;+2(y/o)(o12/0). Hence we can estimate 

ox/o° by 1—(9/a)'61;+2(F/7)(G12/c). Thus this gives the initial consistent 

estimates for 2il the identifiable parameters and they can be used to start the 

iteration of ihe maximum likelihood procedure. 

Model 3—Simultaneous Model with Unobservable Continuous Variables: 

This qualitative model with simultaneous continuous and unobservable 

endogeneous variables has the following specification, 

BY, +TX, - En 

where ¢, is serially independent, has zero mean and covariance matrix &, B is a 

G*XG non-singular matrix with unitary diagonal elements. Here 

y: = (yi, V3 s49 You VGi+1n .e*9 Yor) 

is a vector and yG,+»---, YG, are observable continuous endogeneous variables, 

Yin--->¥G, are unobservable variables but the dichotomous variables 

Yin «++» ¥Gyr are Observed such that 

Yu = 1 <> yz =O 

=0 <— yi <0. 

So this model is a simultaneous model with continuous and qualitative variables 

when 0< G,<G and it is a simultaneous model with only qualitative variables 

when G, = G. 

This model is quite similar to the usual simultaneous structural equations 

model. As in the probit model, the model has its identification problems. In this 

section, we will consider which parameters can be identifiable under the usual 

conditions for the inclusion and exclusion of the variables in the simultaneous 

system. Other prior information can of course give the identification of the 

unknown parameters. 

Consider the reduced form for this system which is 

y,=-BTX,+B'e, 

=ILX, +», 

where 

v, = Be, and i= —B'T. 

It follows that the covariance matrix 12 of », is 

0=B TB 
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Denote 

g% ; 

D\0 1 

[S| Ol! G1. 
4 

— ‘LY 

a GX G diagonal matrix where oj = var (v;,), i=1,..., G. 

For the parameters of the reduced form of the system, it can be shown easily 

that AIT, AQA are identifiable but not I: and 2 without any further assumptions. 

Now let us consider the identifiability of the parameters of the structural 

equations by the equations 

BIl+T=0 

BOB'=*. 

To simplify the notation, we will show the identification of the parameters for the 

whole system. For the identification of the parameters in any single equation, it 

follows immediately. First let us consider the parameters B and T. 

BII+T=0 (BA ')(ATI) +P =0. 

Since A is a diagonal matrix, the usual rank conditions for II are applicable for AI. 

However the normalization rule 6;; = 1 for the first G, structural equation has no 

effect in the identification of BA™' and I. To see this, write the matrix B in a 

partitioned form. 

Bi, ria 
B-| 

Br, By 

where B,, is a G, X G, matrix, B,. is a (G—G,)x(G—G,) matrix, B,, is a 

G, X (G—G,) matrix and B,, is a{G—G,) X G, matrix. Thus 

pa=[B — n> hag mi 

By, By 0 I B,D" By? 

It is easy to see now that the first G, x G, elements in the diagonal elements of 

BA‘ are not unitary elements any more but rather the unknown parameters 

1/o;,...,1/o¢,. Hence each row of [B,,D~*, B,.] is identifiable only up to a 

proportion. However, if we insist that the coefficient of y# in the ith structural 

equation must be unity, we can normalize them by dividing the corresponding row 

of [B,,D~', B,2] by 1/o;. Thus we have 

(ABA~')(ATI) + AT =0 

where ABA‘ has unitary diagonal elements. Hence ABA“ and AT are identifi- 
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able if the rank condition holds for each structural equation in the system. Also’ 

>= BOB' 

> Z=(BA')(AQA)(A“'B’) 

> AZA=(ABA™')(AQA)(ABA™'Y 

Thus, under the rank conditions ADA is identifiable. By the same arguments, if the 

rank condition holds only for some structural equations, it follows that the 

corresponding parameters in ABA‘, AT and AA will be identifiable. 

The identification of the structural parameters can also be improved upon if 

more information is available in the system. Instead of a constant threshold for the 

unobservable endogeneous variables, if some extraneous variable thresholds are 

available the identification of the parameters in the corresponding structural 

equation will be improved. Without loss of generality assume that there exist some 

extraneous variables z;, for the first G2(G2= G,) equations such that 

Ye =1 yn=Zie 

Vie = 0, otherwise,i=1,..., ace ™ Eeanle 2. 

where z;, (i= 1, ..., G2) are uncorrelated with errors e,. In this case, if the rank 

conditions hoid for all structural equations, we have 

-ABA™', AT and ASA 

are identifiable where now 
ry = 

1 0 

1 
°G2+ 1 

A= 

nl 
"Gy 

0 i. 

L 1 

Finally, if the extraneous variables z;, are available for alli=1,..., G,, Ais 

an identity and hence B, IT and & are all identifiable. 

Heckman [3] has recently proposed to use the full information ML estimation 

for this kind of system. Also he has suggested some initial estimates for the 

~arameters when the disturbance terms are assumed to be normally distributed. 

However, if the system has many structural equations and G, > 2, there will be G, 

multi-integrals involved in the density function and the estimation procedure will 

be intractable. A feasible alternative to the: FIML method is to estimate the 

unrestricted reduced form equations separately by Probit analysis and use a two 

stage least square analogue to estimate the structural equations. The test for the 

significance of these parameters can also be developed. 
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Rewrite the system with all the coefficients to be identifiable. The system is: 

Kon + AT x, = Ae, 

where y** = Aj,. With these y** as the unobservable continuous endogeneous 

variables, it characterizes y, in the same way as y, does, i.e., 

Yn = 1 ya* >0 

= 0, otherwise, 

for all i=1,...,G,. The reduced form of the system is 

y?* = All x, + Av,. 

The first G, equations in this reduced form system are the usual Probit models and 

the last G — G; are the ordinary regression equations. Thus AII can be estimated 

consistently by ATl which are derived by the Probit analysis and the least squares 

procedures. As for the estimation of the parameters ABA™' and AT itis sufficient 

to illustrate the procedure by the first and the G, + 1th equation. 

Written down explicitly, the first equation has the following expression 

4 Fi2%2 ok 4 8iG,2%, ** Bic,+1 **K 
yi in re eat. YGut YG,+1¢ 

C7; ai 

Bic Yu Y12 Yik Er 
+... tS yR 4+ —— x1, ta, +... tx. 

a; O71 O71 a7; a7; 

Denote y** = AIIx, and substitute for y** into the structural equation, it becomes 

+e B 1202 Pt an Bic,%c, a ses _ Biay+1 ee 
Pa > hee ee ek eet ~ VGrsit 

a7 a; a7 

Bic axe  Y11 Y12 Yik 
s Yat Xitg X2--- Xke + Wit 

a; C7; O71 a7 

where w;,, can be shown to have the same distribution as v,,/a, is asymptotically 

and hence asymptotically standard normal. Thus the maximum likelihood proce- 

dure for the Probit model can be applied again to this equation. Thus we can 

estimate the structural parameters 

Bi202 Bia, Bicy+ Bic ¥u1 Yix 
peeeg ’ gerry ° > 

CO; O71 0; GO, GO, Oj 

consistently. It follows that the asymptotic f test can also be developed for the test 

of the significance of these parameters. 

The G, + 1th equation is 

SEN a a 
Yo.+1,4¢ = —Ba 41,191 it — - - «BG, 41,6,9G, Y Gut B G141,6142Y G42, 

= — Bo,+1,GYGr-Vor41,1% 10 + + + — Voy 41 bXke + EG, 416 

Substitute §7;* for y#* (i=1,..., G,) in the equation and apply the ordinary 

least squares procedure. The parameters 

Boy 41,191, re) Bo. +1,6,%6;,B.G,+1,6;+2, sey Bo,+1,6 and VGit1,19 +++» VGy+1k 
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can be estimated consistently and the usual ¢ test for the significance of the 

parameters can also be applied. 

Models of the type 1, 2 and 3 considered here are well-defined. But in the 

class of qualitative simultaneous equations models, some models are not valid. 

For example, the model 

yi =xBit+ay2+e; 

Y2= xB2+ ary; +&2 

is not valid. 

It leads to logical inconsistencies* because it results in an equation of the form 

y*=xy+dy+u 

where the unobservable variable y* is related to the dichotomous variable y 

through another relation of the form 

y=1 if y*>0 

=0 if y*<0. 

Other models of the form 

and 

yi =xB, +a,yo-& 

y3 =XxB2+a2y,—€2 

are also inconsistent. To show the inconsistency of the last model, it is easy to 

check in general that 

» Ply, y2)#1 
y1,y¥2 

whenever a, £0 and a, #0. 

All these inconsistent models have a common feature that the reduced forms 

are not defined. Thus the endogenous variables can not be explained by the 

exogeneous variables and the disturbances. 

Hence we can conclude that all the simultaneous equations models with 

qualitative endogeneous variables can be broadly divided into the category of the 

recursive type of models as model 1, model 2, or their combination, and the 

category of the model 3. 

4 
3. SIMULTANEOUS vs. RECURSIVE MODELS IN THE LOGIT FRAMEWORK 

Nerlove and Press [6] discuss a logit model where the endogenous variables 

are all completely interrelated; for instance, if there are three such variables y,, y2, 

y3 then y, influences y, and y3, y2 influences y;and y,, and y; influences y, and y>. 

> The inconsistencies of this model have been recently discussed by Heckman [3]. 
* This section is based on the discussion in Maddala and Nelson [5]. 
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This type of mutual independence may not always be desirable and we should be 

able to analyze models that have any causal structure we desire. 

For illustrative purposes we will consider the case of three dichotomous 

variables y;, y2, y3, and a set of exogenous variables to be denoted by x. 

Let Pi, =Pr(Y,=i, Y2=j, Y;=k) i,j,k =Oor 1. 

We can then write 

Pooo = 1/D 

Prop = €°"*/D 

Poo = e®*/D 

(1) Poo = e®*/D 

Pyy9= e®*/D 

Pros =e°*/D 

Poi, =€°"/D 

Pi4,=e°"/D 

where ; 

D=1 +z ef 

These equations imply the following relations: 

Pi00 _ Bix Poi0_ B4x Poo1 a= » thx 
oe aa oe. ae 
Pooo Poo Pooo 

Pri _ (B4—B2)'x Piro = pe Bs-B,)'x Prot = g'Bs—B,)'x = eC =< 
Poo Pi00 Pi00 

Pros = ¢8s-B3)'x Poi — »(8.—B3)'x Pou — »(8¢—B2)'x 
—_— =_— —s 
Poot Poo Poio 

Pi — »(87—Be)'x Pin — _87—-B;)'x Pi — ,(B7—B,)'x 
= ee -_— ome >... 
Pou Pros Pii0 

These reactions can be written as 

P(yi= ly2ys) _ amy ~B.—B.) 8 Py, = Olyzys) Bix +(B4—B2~—B,)' xy2+(Bs—B3—B)'xy3 

+(B;—B.—Bs—B4+B3+B2+B,)'xy2y3 

(2) Log PW2= Hysys) 
P(y,= Olysys) = 82x +(B,—B2—B;)'xy: + (Bs—B3—B2)'xy3 

+(B,—B.—Bs—B4+B3+B2+B:)'xyiys3 

P(y3=1 Log Fes — pix + (Bs—Bs— B29 +(Bs5—B3—B2)'xy2 

+(B,—B.—Bs—B4+B3+B2+B,)'xyiy2. 
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Note the symmetry in the coefficients of the equations (2). This symmetry was 

discussed by Nerlove and Press [6]. To simplify the model we can impose: 

(3) (B4—B2—B,)'x =Bi2 

(Bs—B3—B1)'x = Bi; 

(8<—B3—B2)'x = Bs 

(B7—Bs— Bs— Bs—B3—B2+B,)'x = y. 

We can get this model if the first element of x is 1, all but the first elements of the 

vector B, are equal to the sum of the corresponding elements of B, and B,, with 

similar conditions holding for B; and B,, and for B; all but the first element are 

equal to the sum of the corresponding elements of B,, B. and B;3. 

Thus, an important consequence of the multinomial logistic model (1) is that 

we get the well defined conditional distributions (2). In actual practice, if there are 

a number of categories, the complete multinomial model (1) involves too many 

parameters. That is why Nerlove and Press suggest estimating equations (2) by the 

logit method treating the right hand variables as exogenous. One can get consis- 

tent estimators for the parameters by this procedure (though these are not fully 

efficient because they ignore the cross equation constraints). This procedure 

reduces the number of parameters to be estimated considerably. Further reduc- 

tion can be achieved by making some simplifying assumptions like (3). If we 

further impose the restriction B;—B,—B;—8,+83+B2+8,;=0 we can also 

eliminate the product terms involving y,y2, y2y3, ¥3y1 in equations (2). 

Unlike the usual simultaneous equations model where it is not possible to 

interpret each equation as a conditional expectation (except in a recursive system) 

the specification (1) permits well defined conditional probabilities (2). Also, it 

looks as if we cannot have causal chains in simultaneous equation logit models. 

This is indeed not so. Consider a situation where the causal relations between 

¥i¥2y3 are as shown in Figures 1 and 2. 

yi @ Pr y2 yi + ——_ 

y3 

Figure 1 Figure 2 

Suppose that y, and y, are variables that do precede (in time or in some other 

sense) variable y,. Then a relationship as in Figure 2 obviously does not make 

sense and it is a relationship as in Figure 1 that we should be considering. It might 

be thought that the symmetry conditions in equations (2) imply that if y, depends 

on y;, then the reverse must be true with the same effect. This is of course not true. 

What the symmetry conditions imply is that if y,; depends on y, and y, depends on 

y, then the two effects should be equal. We have to interpret the conditional 

probability equations (2) as depicting the nature of the causal relationships 

between the variables. For the model in Figure 1 these causal relationships can be 
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written in the following form 

Pr (y; = Aly2, x) ’ 
= byo+ajx 

®Pr(yi:=Oly,x) ? 

© Pr(y2=Oly:,x) | 

Pr (y3= Alyi, yox) 

Pr (y3=Oly:, yox) 
=Biyit+Boyrt+ ax. 

Note that the symmetry conditions have been imposed only for the first two 

equations in (4) since y, and y, are jointly determined. One can estimate 6, a,, a2 

from the joint probability distribution of y, and y,. These joint probabilities are: 

Pi, = ea tae)'s +310 

Po, = e°*/A 

Pio=e*"/A 

Poo=1/A 

where 

(S) A=1+e% +622 4 elartaryx+5 

As for the third equation in (4) its parameters are estimated separately. This 

equation implies 

Pin ' 
(6) Log = Bi +B2+a3x 

P10 

Poi 
L = B2+ ae B2 3X 

P 
Log 5 = Bitasx 

P. 
Log pe = asx 

and equations (6) in conjunction with (5) will enable us to estimate the joint 

probabilities P;;, for any goodness of fit tests. If we assume the causal relationship 

in Figure 2, the conditional probabilities will be given by equations (2), with any 

appropriate zero restrictions, and the joint probabilities will be given by (1), again 

with the appropriate zero restrictions. 

Given any specification of the conditional odds ratios as in (2) one can deduce 

the joint probabilities (1). The ML estimation procedure based on the implied 

joint probabilities (1), has been called the full information ML procedure by 

Nerlove and Press [6]. They argue that it is computationally less cumbersome to 

estimate the conditional equations (2) and that in practice these should be 

adequate. 
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In the case of a recursive model, of course, as in the usual simultaneous 

equations context, the estimates from the conditional equations (2) would be fully 

efficient. As an illustration consider the causal model: 

yi=f(x) 

y2 = f(x, yi) 

where y,and y, are binary. ’ 

Bix 
(7) Pr(y. = = Te 

eh 

Pr (y2= I|y,)= [aot 

These give the joint probabilities 

(8) P,, = F(B\x)F(B2x + y) 

Po, = F(B2x)[1— F(B}x)] 

Po = F(B\x)[1— F(B2x + y)] 

Poo =(1— F(B)x) [1 —F(B2x)] 

where : 

z 
e 

1+e* 
F(z)= 

The separate estimation of equations (7) and the joint estimation of equations (8) 

are the same. 

4. AN APPLICATION 

The model we analyze here is a model analyzed by Brown et al. [1] on the 

effectiveness of the neighborhood youth corps programs (NYC program). We 

estimate here a model somewhat simpler than theirs.” The model consists of five 

endogeneous variables and ten exogeneous variables. 

Endogeneous Variables 

y, Heard of the NYC, a dummy variable, 1—yes, 0O—no. 

y2 Dummy variable for participation in NYC program, 1—participated, 

0—not participated. 

y3; Dropout from high school a dummy variable, 1—dropout, 0—not 

dropout. 

y4 Proportion of time involuntary unemployed in post-high school period. 

ys Current (or most recent) wage level of the individual ir. cents/hour. 

* We are grateful to Stanley Horowitz for supplying us the data. 

539 



Exogeneous Variables 

x, Constant term, x, =1. 

X2 Western, Southern U.S. or else dummy variable 1—western or southern, 

0—-else. 

x3 Rural area, small city or medium city, big city dummy variable 1—rural 

area or small city, 0O—medium or big city. 

x4 Family size while in high school. 

xs Family income during high school. 

X« Father’s education. 

x7 Age of individual. 

xg Sex of individual, a dummy variable, 1—male, 0—female. 

X9 Race of individual, a dummy variable, 1—white, 0—nonwhite. 

X19 Number of friends of individual who dropped out of high school. 

The NYC program is expected to influence the lives of its participants. It 

might be expected to affect their decisions about finishing high school, participat- 

ing in the labor force, wage level and so on. In addition to the NYC, other factors 

may influence these activities and also their enrollment in NYC. We build a five 

equation recursive model to study the NYC participation and assess the ¢ffects of 

the NYC program on the individual’s activities. The exogeneous variables x>, x3 

differentiate the regions and communities in which the individual may live. 

Variables x4, xs, X¢ quantify factors of the home environment experienced by the 

individual while he was in high school. x7, xg, x» measure the individual charac- 

teristics that are expected to be important determinants of the person’s activities 

and opportunities. The last variable captures the group status that might influence 

his activities. The structure of the model is given in Table 1. Table 2 presents the 

OLS estimates and Table 3 presents the 2SLS estimates. 

TABLE 1 

THE STRUCTURE OF THE MODEL 

Y¥1 Y2 Ys Ya Ys %1 X22 Xx Xe Xs Xe X7 Xg XQ X10 

yi v i J Vv 

Yo ov Vv v vo v 

y3 Vv + 4 a ee v 

Y4 v v voev v 

Ys br eee CAE td v vod 

1.€., 

V1 = Hyg FQ y1X3 FQ 12X4tQ13XstQyqX7 t+ QisXot €} 

V2 = Baryi t+ @29 + 21% 4+ Q22X% 6+ A23X7 + Ar4Xot E2 

¥3 = Bai Y2+ 30 + 3X2 + 32X35 + 33% 6 + A34X7 + A35Xgt Az6Xi0 + €3 

¥4 = Ba1Yr2t Bays + 40 t+ @43X3 t+ A g2X ot A43X7 t+ AggXot E4 

Ys = BsiY2t Bs2y3t+ Bs3y4t Qsot Gs1X2 t+ Gs2X3t+As3X6 +As4XgtAssXot+€s 
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As is evident, even for the recursive‘models considered in section 2, the ML 

estimation involves bivariate integrals unless the residual’s are independent. 

Extension to more variables involves higher order integrals. We could have used 

the methods outlined in section 3 which are straightforward adaptations of the 

Nerlove-Press procedure. However we chose to estimate our model by the 

following computationally simpler procedures. First we estimated the model by 

using the logit method separately on each equation treating all the right hand 

variables as exogeneous (which is valid if the residuals are independent). Next we 

used a 2SLS analogue which we call here logit 2SLS. In this method the 

endogenous dummy variables are replaced by their estimated values obtained by 

the application of the logit method to the reduced form. These estimates are 

presented in Tables 4 and 5. 

If the NYC program is effective we would expect 83; and 6,4, to be negative 

and £5; to be positive. Also B42 is expected to be positive and Bs. and 6.3 are 

expected to be negative. The OLS estimates reported in Table 2 have some wrong 

signs (84; and B;,). The 2SLS estimates reported in Table 3 have the correct signs 

for the coefficient of y2 but none of the coefficients are significant and 842 has the 

wrong sign (though the coefficient is not significant). The single equation logit 

estimates reported in Table 4 still indicate that the NYC program is not effective. 

The logit 2SLS estimates reported in Table 5 indicate a stronger effect of the NYC 

program—particularly on the dropout rate out of high school, though it has no 

additional effect on the post high school rate of involuntary unemployment and 

the wage rate earned. It appears to influence these variables only through its 

’ influence on the dropout rate. 

5. CONCLUSIONS 

The paper presents some models where some of the endogenous variables are 

unobserved continuous variables for which the observed variables are discrete, 

and discusses the identification and estimation problems in these models. The 

paper also discusses the formulation of simultaneous and recursive models in the 

logit framework. An empirical example concerning the effectiveness of the 

neighborhood youth corps program is presented. The model consists of five 

endogenous variables, and has a particular causal structure that resembles a 

recursive model in the simultaneous equations literature (or more precisely the 

matrix of coefficients of the endogenous variables is triangular). The 2SLS method 

where the discrete nature of the endogenous variables is taken into account leads 

to the conclusion that the neighborhood youth corps program has a significant 

effect on the rate of dropping out of high school, whereas the ordinary 2SLS 

method, where the discrete nature of the endogenous variables is not taken into 

account, showed no significant effect of the program. 

University of Florida 

University of Minnesota 
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