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Annals of Economic and Social Measurement, 5/1, 1976 

FIML ESTIMATION OF RATIONAL DISTRIBUTED LAG STRUCTURAL 

FORM MODELS 

BY KENT D. WALL* 

The Rational Distributed Lag Structural Form (RSF) representation of an econometric model is 
introduced, and its associated FIML estimation problem formulated. When viewed as a nonlinear 
unconstrained optimization problem, FIML parameter estimates can be obtained via an application of the 
Davidon—Fletcher—Powell variable metric method. Simple first difference approximations are employed 
in place of the necessary gradients, thus requiring a minimum of effort on the part of the model builder by 
obv.ating the analytical derivation, and coding, of the gradient expressions. The feasibility of estimating 
such complicated model representations is demonstrated with a realistic example using a nine equation 
variant of the Fair short-term macroeconomic forecasting model. 

1. INTRODUCTION 

The rapid advances made in recent years in digital computer technology have 

provided the econometrician with computational capabilities unheard of scant ten 

years ago. Larger and more nonlinear econometric models are now treated as 

almost passé, especially with respect to forecasting and simulation. Similar 

developments are now taking place in the area of parameter estimation [3] and 

[10]. Systems of linear equations with linear parameterizations have been consi- 

dered, together with a relaxation of the uncorrelatedness of the error process to 

allow special first or second order autoregressive structure. In each case the 

parameter estimation was formulated as a maximization problem and the compu- 

ter used in conjunction with some sort of function minimization algorithm. 

However, more powerful and efficient function minimization algorithms are 

available; and nonlinear parameterizations yielding very general and more flexi- 

ble model representations can be employed without exceeding the computational 

capabilities of the modern digital computer. 

The primary purpose of this paper is to demonstrate the feasibility of 

estimating complicated (nonlinearly parameterized) econometric models when 

full advantage is taken of both the computational power of modern digital 

computers and the most efficient optimization algorithms. The expositional 

vehicle for this purpose is the Rational Distributed Lag Structural Form (RSF) 

representation; and its introduction and use may be viewed as a secondary 

purpose. This one representation (at the cost of a possible nonlinear parameteri- 

zation) encompasses all standard linear, stationary, constant-coefficient 

econometric models. In addition the RSF representation admits autoregressive- 

moving average error processes of arbitrary degree.’ 

* Research supported in part by National Science Foundation Grant GJ-1154X3 to the National 
Bureau of Economic Research, Inc. The author wishes to thank Ms. Sally Donovan and Mr. Berc 
Rustem, both of the Programme of Research into Econometric Methods at Imperial College 
(University of London), for their help in the initial coding and'testing of the computer program used in 
the example. 

"A detailed description of the relationship between the RSF representation and the more 
traditional forms of econometric models is given by the author in [14]. 
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There is nothing conceptually new in what is presented below. The contribu- 

tion of the paper is mainly methodological and is written much in the spirit of [3]. 

The Davidon-Fletcher—Powell function minimization algorithm employed here is 

not new; it just does not appear to be in as wide a use as it should be in 

econometrics. Perhaps the RSF representation may be considered new, but then it 

is just a multivariate extension of the univariate models first treated by Astrom 

and Bohlin [1] and Box and Jenkins [2]. Indeed, multivariate versions of these 

earlier models have already been considered by Hannan [9] and most recently by 

Zellner and Palm [16]. The true value of the present work is the idea of combining 

a very advanced minimization technique with a very general model representa- 

tion. 

2. THE RATIONAL STRUCTURAL FROM (RSF) REPRESENTATION 

Consider a general linear econometric model with G,, identities (definitional 

equations) and G, behavioural-(stochastic) equations. Let there be a total of K 

purely exogenous variables acting as inputs. Then each equation of the RSF 

representation takes the following form:* 

By(L) , 

‘ain aE Senet 
imi 

for 1<=i= Gj, and 

B,(L) 5, K; b,(L) D c(L) 
2 IP L 4 FE “Xie it k; 
sabi nn toe aay ag)” aay" 

j#i 

for Gjg+1<i=G=G,,+G,. Thus the i-th endogenous variable at time ¢, y;,, is 

related to G;(= G) other endogenous variables, y,,(i #j); K;(=K) exogenous 

variables, x;,; a constant bias or intercept term, k;; and, in the case of the last G, 

equations, a random disturbance or error, e;,. The relationships between all of 

these variables take the form of rational distributed lags in the “lag operator” L 

(i.e., L'z, = z,_,). Each rational operator is characterized by the following polyno- 

mials in L: 

(2.3) a,(L)=1+ajb+...+0%%L9 

B,(L)=By+Bil+...+B5’L 

a;(L)=1+ajL+...+a,L* 

b,(L) = b+ bil +. a 

¢(L)=1+c¢}L+...+c2L? 

d(L)=1+djL+...+d/L™. 

? As a matter of convention it is assumed that all the identities appear first in the system of G 
equations comprising the model. This ordering of the equation is also computationally convenient 
when solving the model for its residuals in the parameter estimation algorithm. 
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The exact form of each rational operator is quite arbitrary, being solely deter- 

mined by the degrees of each polynomial involved, i.e., by {p;;, 7%, 5}, {Rij Si, Dj}. 

{P,, Q,}. The leading coefficients of the a,(L), a,(L), and d,(L) are fixed at unity in 

order to satisfy the conventional normalization rule.” 

By “stacking” each equation of the model, as given in (2.1)—(2.3), on top of 

one another and resorting to vector-matrix notation, the RSF may alternately be 

written as* 

(2.4) T(L)y, = U(L)x,+ V(L)e,, 

I! 0 

ViL)= ty ro 

e'=[0 | e'], 

I = Gig X Gig identity matrix 

where y, is now a G X 1 vector of endogenous variables observed at time ¢, x, is a 

K X 1 vector of exogenous variables observed at time t, and e, is a G, < 1 vector of 

random disturbances at time ¢. The rational matrix operators T(L), U(L), and 

V(L) are dimensioned respectively as G x G, G x K, and G, x G,,. In view of (2.1) 

and (2.2), it is clear that the ij-th elements of these matrices are given by 

l i=j 
[T(L)]j = 

—B;(L) ne 

a, (L) ik 

»* b(L) Di * 
[U(L)]j; = adit” all i, j 

c;(L) 

d,(L) ae 

[V(L)]j = 
0 i Aj. 

3. THE FIML EstTIMATION PROBLEM 

The estimation of the parameters associated with (2.1)-(2.3) can be 

approached using the method of maximum likelihood by assuming that the 

additive random disturbances represent zero mean “white noise”’ with a jointly 

normal distribution, i.e., 

(3.1) e,~N(0,R) Efe,e;}=R-A,, 

> The leading coefficient in the c,(L) polynomial is not fixed at unity to satisfy any normalization. 
The constraint is imposed to allow the unique estimation of the residual variance-convariance matrix 
(see Hannan [7] and [8)). 

* In order to simplify the notation the constant terms, k,, have been eliminated from explicity 
mention in the model. It is assumed that they have been absorbed into the b,;(L) coefficients with aid of 
dummy variables. 
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where A,, is the Kronecker delta function and R is the symmetric positive definite 

variance-covariance matrix.” The likelihood function is then given by (see Wall 

[15] for details): 

T \det Ag] Lape 

where the equivalent “structure matrix” Ao is given by 

ek. Oe oD 

—B2, 1 ... ..7Bie 

Bor TA G2 I 

(If 5,40 then the ij-th location in 

Ap contains a zero since no contem- 

poraneous endogenous interaction 

occurs between the i-th and j-th 

endogenous variables.) 

and 

S=A,'R(A}).”' 

The unknown parameters (the coefficients of the polynomials in (2.3), say m in 

number, together with the unknown elements of R, G,(G, + 1)/2 in number) are 

collected into a vector © according to 

0'=[0' | 41 

where, 

6’ = contains all unknown polynomial coefficients,° 

*It is also assumed that the parameterization implicit in the particular lag structure being 
estimated is identified. The identification problem for ARMA versions of the RSF have been solved by 
Hannan [8], but identification conditions for the general rational form are yet to be derived—a possible 
approach, however, may stem from the work of Rothenberg [12]. A more complete list and discussion 
of all the assumptions upon which the success of the estimation depends can be found in [15]. 

° For convenience in computation, the ordering of the unknown coefficient parameters follows in 
an equation-by-equation scheme, i.e., if m,; denotes the number of unknown coefficients in the i-th 
equation and @;, is the m; X 1 vector of unknowns for this equation, then @ is constructed as follows: 

6’ =[0' 03...0G), 

9, =[(aij: k = 1, py; Bi: kK =1, 0); 7=1, G;; 
k k , 

(aj: k =1, Ry; bi: k =1, Sy); 7 =1, Ki; 

(ck: k=1, O,; dk: k =1, P,); kj], 

m, =) Ry +> (1+5S,;)+ P; + QO, + 1(k;)), 
i j 

where 1(k;) = 1 if k; is estimated and zero otherwise. 

For each equation, the ordering proceeds from one rational lag to another with the denominator 
coefficients appearing before the numerator coefficients. The rational lag parameters for the endogen- 
ous and exogenous variables are then followed by the rational lag parameters of the random error 
term, with the constant for the equation being positioned last in the subvector. This ordering is exactly 
that which is obtained by reading (2.1)-(2.2) from left to right, and then repeating the process for 
each i. 
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and, 

¢' = contains the G,(G, + 1)/2 unknown elements of R. 

The estimated one-step forecast errors, or residuals, e,,, are defined by e,,, = 

¥;— Yyr-1 With each component of y,,,_; computed from the right-hand side of 

(2.2) when e, is set to its expected value of zero. 

In terms of the actual computation of estimates for @, it is more convenient to 

work with the “scaled” version of the concentrated negative log likelihood 

function: 

(3.4) J(@) =In (det R) —2 In (det Aol) 

where 

sc dale, 
(3.5) R eo Cylye 

Thus the independent parameters @ have been removed from the set of 

unknowns, all constant terms not dependent upon @ subtracted out, and the 

log-likelihood multiplied by —2/T.’ The minimization of J(@) with respect to @ 

will produce the ML estimates of the coefficients in (2.3). This function minimiza- 

tion constitutes the core of the FIML estimation for the RSF representation: 

(P.1) Basic FIML Estimation Problem. Given a particular structure specifi- 
cation, determine the vector @ such that J(@) is minimized over 8, i.e., find 

' @=6 such that J(6) = J(@). The unknown parameters ¢ are then recovered 
with the aid of (3.5) using the estimated residual sequence {e,,,; 1=t=< T} 

evaluated at 0 = 8. 

4. NUMERICAL SOLUTION OF THE ESTIMATION 

The numerical minimization of the scaled negative log likelihood function 

with respect to @ has been considered earlier in the literature for some more 

standard representations of econometric models. Astrom and Bohlin [1] used a 

modified Newton—Rhapson algorithm, Box and Jenkins [2] employed a repeated 

relinearization coupled with a variation of the steepest descent algorithm, and 

Hendry [10] implemented a direct (grid type) search algorithm due to Powell. All 

of these numerical procedures possess certain advantages as well as disadvan- 

tages. These stem from the relative value of the numerical algorithms with respect 

to the dimension of 6, the initial guess for 6, the rate of convergence, and whether 

analytic or numerical expressions for the first and second partial derivatives of 

J(@) are available. Today there exists an algorithm, due to Davidon and improved 

upon by Fletcher and Powell, known in the literature as DFP which appears to 

capture the best characteristics of each of those mentioned above [4], [5]. The 

DFP algorithm represents a blend of the convergence rate of Newton—Rhapson 

techniques with the initial stability of descent methods. This algorithm also strikes 

a balance between the extensive computational requirements of Newton— 

Raphson and the very meager requirements Of direct search techniques like that 

of Powell. For these reasons the DFP algorithm is employed here. 

As noted by a referee, the comcentration of the likelihood function is not accomplished without 
some loss in generality since concentration rules out restrictions on the contemporaneous residual 
variance-covariance matrix. 
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The DFP procedure requires an initial guess for 0, denoted 6°, and an initial 

guess for the positive definite matrix H(0@°). Then for k =1, 2,... successively 

improved estimates are obtained for 6 via 

o**! = 9 + 50* = 6 —a“H(0")J,(0") 

where a“ is a scalar “step size”’, H(@*) an approximation to the inverse Hessian, 

Joo, evaluated at 6“, and J,(@*) is the gradient of J evaluated at 6". Each 

improvement of @“ constitutes an iteration, and these iterations proceed until 

convergence criteria are met, i.e., until 

|H(0*)J,(0* |< e, 

or, 

\|50*||= e>. 

The description of the exact details is beyond the scope of this paper and the 

interested reader is directed to works dealing solely with this algorithm [4], [5], 

[13]. The algorithm automatically computes a* and H(@“)—the user is only 

required to supply the convergence parameters €,, €2, and the expressions for J(@) 

and J,(@). 

The major demand placed upon the researcher by the algorithm is the need to 

evaluate J,(@). For simple models analytic expressions can be derived and 

programmed with ease, but the desire to estimate a general RSF makes such 

derivation and coding extremely involved. It is possible to generate the required 

gradient vector by numerical differencing, if care is taken in choosing the form of 

differencing and in the parameter perturbations so that numerical accuracy is 

preserved. A very rapid and trivially implemented gradient generation scheme 

can be obtained using a first difference approximation to the partial derivatives.” 

In particular, if dJ/d0, denotes the i-th component of J, then 

(4.1) aJ/ ae, =[J(e* +Ae") —J(0*)I/A,, 

where A; = 10-*|@*|+ 10°° and A@“ is defined as the m x 1 null vector with the i-th 

element replaced by A;. The nonlinearities of any parameterization of the general 

RSF representation now become immaterial to the generation of J,; thus this 

scheme can be used for all structure specifications. The implementation of the 

DFP algorithm, within the context of the estimation problem (P.1), now requires 

only a means of computing J(@*).” 

* A variety of practical applications of the estimation method using a central differencing scheme 
has indicated that the gain in accuracy is not worth the additional computational burden. The simple 
first differencing approximation to the gradient using the parameter perturbation suggested in the text 
has proven more than satisfactory. The firs‘ difference scheme has always given the same rate of 
convergence for the DFP algorithm as the central difference scheme. 

° This operation is straightforward although somewhat messy. Essentially each of (2.1) are solved 
for the identity outputs, and then these are used in solving each of (2.2) for the residual e,,,. The 
generation of these series involves some awareness of the lag structure of each equation so that starting 
values can be obtained directly from the data. Where no starting values are given (as wit® the residuals) 
these are set to zero in confidence that asymptotic behaviour will obtain, i.e. that the data sequences 
are long enough. The interested reaver is directed to Wall [15] for a detailed exposition. 
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5. AN EXAMPLE 

A reasonably realistic test problem is provided by the example considered in 

Chow and Fair [3] which represents a simultaneous block of seven stochastic 

equations and two identities."° Correlated errors are present requiring the 

estimation of additional parameters for the rational lags of the random distur- 

bance terms. Thus many of the complications found in applied econometric 

modelling are encountered in this example. The economic and structure specifica- 

tions were taken directly from Chow and Fair [3] with one exception: all the 

variables of the model were transformed to mean diviates of their first differ- 

ences.'' This insured stationarity and avoided the estimation of constant (bias) 

terms in many of the equations. 

The simultaneous estimation problem was initialized with the results 

obtained from estimating the RSF representation of each equation in isolation.'* 

The correlation structure for the errors of each equation was determined by 

examination of the residual autocorrelation functions produced when an equation 

was estimated assuming uncorrelated errors. In this respect, two of the equations 

were found to have moving average errors, perhaps as a result of the use of first 

differences, whereas Chow and Fair assume only autoregressive errors. The single 

equation estimates were as follows (with the estimated standard errors of each 

parameter appearing in parentheses): 

(5.1) AGNP, = ACD,+ACN, + ACS, + AIP, + AIH, + A’ V,— AIMP, + AG, 

(5.2) AZ,=ACD,+ACn, 

(5.3) ACD, =0.136 AGNP, + [0.137 +0.058L] AMOOD,_.,—2.593 Desa; 

(+0.016) (+ 0.049) (+0.048) (+ 1.323) 

+3.611 D,,, +{1—0.398L] e;, 

(+ 1.103) (+ 0.139) 

(+0.022) 

(5.4) ACN, =— 2/3 aGnp, -0.1047 AMOOD,..+—— 
:  1-0.67L (40.0857) 2°71 —0.677L 

(+0.118) ae 

(+0.014) (+0.029) 

0.073 —~0.029 1 
5.5 tea err 1-2+ 3t 

(5.5) ACS: =7—~ 9 7a SONP 0 6721, SMOOP.-2+ 7 era © 

(+0.067) 

"© The specification given in Chow and Fair [3] contains only the identity for GNP. However, their 
parameter constraints Bg2 = Bg; and Y¥6.10 = Yeo are equivalent to the addition of an identity aggregat- 
ing durable and nondurable consumption while retaining only Bg, and Bgo as unknown parameters. 

"! Since all the equations are linear, and assumed to adequately describe the phenomena in a 
linear fashion, this alteration of the data should not affect the final results. The only possible changes 
that could occur would be in the correlation structure of the error terms (which Chow and Fair assume 
to be first order autoregressive). 

? Like all nonlinear iterative optimization algorithms, convergence is significantly influenced by 
the initial chcice for 6. If easily computed, an initial consistent estimate of @ should be used. The author 
has had great success using as initial estimates those obtained by considering each equation separately. 
This corresponds to a LIML estimation procedure serving as a starting place for the complete 
(simultaneous) FIML estimation. 
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1 

1+0.034L “" 
(+ 0.0132) 

(5.6) AIP,=0.124 AGNP, + 0.416 APE2, + 

(+0.019) (+ 0.088) 

(5.7) AIH, = 0.0246 AGNP, +[0.061 + 0.088L +0.036L7] AHSQ, 

(+0.0151) (+0.011) (+0.013) (+0.013) 

1 fe 
1—0.290L °°” 
(+0.117) 

(+0.130)(+0.121) (+2.53) (+0.689) 

—0.235+0.547L +0.178 +7.404 
5.8 AV, = t t t 
(5.8) 1—0.612L 1-—0.612L 647 —0.612L > ° 

1 e 
bo 2 
1—0.612L °°” 
(+0.080) 

(5.9) AIMP, ad 0.1 15 AGNP, +0.085 Deaat po 1.251 D6s1; =a 1.003 Desar 

(+0.008) (+ 1.087) (+1.13) (+ 1.09) 

—4.428 Dey, +6.822 Door, +[1 —0.684L] e7.. 

(+ 1.29) (2: 1.085) (+0.065) 

The estimation of the entire 9 equation system, starting from the above 

estimates, took 56 iterations. Convergence of the DFP algorithm was considered 

achieved once the correction to each unknown parameter was computed to be less 

than 10~*, which in this instance corresponded to each element of the gradient 

vector being of the order 10°. The method averaged approximately two function 

and gradient evaluations per iteration, or 4,250 simulations of the system of 

equations defining e,, as a function of y, and x, Total central processor time 

amounted to less than 3 minutes on an IBM 370/168 computer. 

The iteration history of J(@) is depicted in Figure 1. The peculiar behavior of 

the minimization algorithm displayed during iterations 4, 5, and 6 is a conseque- 

nce of numerical errors in updating the approximate inverse Hessian, H. In certain 

instances, implementation of the standard updating formulas can lead to indefin- 

ite Hessians, and uphill searches. This problem has been recognized and over- 

come by altering the updating formula for H [13], but the particular DFP version 

employed in this work was derived from a “straight” coding of the original 

formulas and therefore did not exclude this difficulty. It is interesting to note that 

once the algorithm recovers from these initial problems it proceeds to reduce J(@) 

quite rapidly, achieving near-covergence by the 35th iteration. 

The final estimates for the seven stochastic equations corresponding to 

(5.3)-(5.9) were as follows: 

(5.10) ACD,=0.098 AGNP, +[0.057 + 0.065L] AMOOD, — 2.002 Desa: 

(+ 0.042) (+0.073) (+ 0.066) (+ 1.234) 

+2.977 Desi, +[1—0.340L] e,,, 

(+ 1.356) (+0.157) 

60 



SCALED NEGATIVE LOG LIKELIHOOD FUNCTION 
ITERATION HISTORY FOR FAIR MODEL 

1.0 4 

0.5 4 

0.0 T T 
40 50 10 

Figure 1 

(+ 0.038) 

(5.11) ACN sa EEE nap ~ 0.066 AMOOD,_,+——_._—— 
; 1-0.542L een 2eeeae 

(+0.122) eit (+0.126) 

(+ 0.034) (+ 0.035) 

0.071 0.036 

6.12) ac3,= 1—0.685L ae 1—0.685L &MO0D,...+ 1—0.685L ©?” 
(+0.103) 

5.13) AIP,=—0.055 AGNP, + 0.367 APE2, + Can 
sac (+0.135) (+0.146) 1—0:236L * pars (+ 0.286) 
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(5.14) AIH, =0.022 AGNP, +[0.055 + 0.087L +0.0241L7]AHSOQ, 

(+0.017) (+0.010) (+0.012) (+0.011) 

1 

*7+0.255L 

(+ 0.137) 

(+0.422) (+0.140) (2.443) (+ 2.538) 

0.121+0.475L 2.901 2.324 
. “oe ct ts maser! t 

G15) AMT -0asaE “+ {0.4840 PT —o.4gan 

(+0.112) 

1 

*7-0484L °° 

(5.16) AIMP, =0.147 AGNP, + 0.508 Deas, —0.975 Desi 

(+0.010) (+ 0.616) (+0.672) 

—0.822 Desa: — 4.407 Devs, + 6.647 Devo, 

(+0.758) (+0.770)  (+0.656) 

+[{1-0.713L]e>,, 

(+0.094) 

6. CONCLUSIONS 

An approach to the representation and estimation of linear, discrete-time 

econometric models has been presented which takes full advantage of the 

computation. ‘| capabilities provided by the combination of modern digital compu- 

ters and the latest nonlinear minimization algorithms. The difficulties attendant to 

the estimation of the generally nonlinear parameterization inherent in the RSF 

representation have been overcome by the use of a very efficient minimization 

algorithm which, while attaining quadratic convergence rates, still only requires 

gradient information. Practical experience has shown that even the derivation of 

analytical expressions for the first partial derivatives (the gradient vector) may 

also be dispensed with, and replaced by a simple first difference approximation. 

A numerical example has been presented demonstrating the practicality of 

the method when confronted with a realistic problem. A total of 33 parameters 

was estimated without experiencing any difficulties. The DFP algorithm achieved 

convergence well within the number of iterations and computation time to be 

expected in a problem of such size and complexity. 

The researcher in econometric modelling now has at his disposal advanced 

computational facilities and sophisticated optimization algorithms. By appropr- 

iate combination of these assets a very general class of estimation problems can be 

considered. One such combination has been presented in this paper; but other, 

perhaps more advantageous, combinations are certainly possible. It is hoped that - 

the exposition here will stimulate others in this direction leading to unified 

estimation methods for even wider classes of econometric models. 

NBER Computer Research Center 
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