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Annals of Economic and Social Measurement, 4/2, 1975 

MULTISTAGE PRICING UNDER UNCERTAIN DEMAND 

BY CHEE-YEE CHONG AND Davip C. CHENG 

The optimal pricing policy of a monopolistic firm facing random demand and maximizing its expected 
prefit over a period of several stages is considered. The demand function is assumed to be time invariant 
but unknown. A special case when the cost is certain and the demand is a linear function of the price is 
investigated. This is formulated as a stochastic control problem. It is found that when both the intercept 
and slope of the demand function are unknown, the optimai pricing policy does not correspond to optimal 
prices for each individual stage. Approximate methods are used to find the optimal policies. Simulation 
results are given. 

I. INTRODUCTION 

There have been a growing number of studies of the behavior of the firm under 

uncertainty. Most of the existing work is concerned with the single-period analysis 

of the impact of uncertainty, e.g. Mills (1959), Hymans (1966), Smith (1969), 

Horowitz (1969), Zabel (1970), Baron (1971) and Leland (1972). The dynamics 

and the learning behavior of the firm facing unceriainty have largely been ignored. 

In the work of Clower (1959), Day (1966) and Hadar and Hillinger (1969), some 

dynamic adjustment processes are introduced to characterize the adaptive 

behavior of firms. Under certain conditions, they are shown to give rise to 

convergent time paths of output and price, which are related to optimal price and 

output decisions under certainty. However, these processes are ad-hoc measures, 

and the adjustment coefficients have not been derived from optimization pro- 

cedures. Nevins (1966) conducts simulation studies of dynamic price-setting and 

quantity-setting policies of a monopoly model. As in the other studies (except 

for the certainty-equivalence assumption), no consideration has been taken into 

account to allow for learning about uncertainty. 

Dreze (1972) suggests that “full optimization would call for taking into 

consideration the expected value of the information generated by the decisions, 

in addition to the expected value of the direct consequences of the decisions. 

To be concrete, a monopolist may wish to depart from the price which maximizes 

expected profit, simply to learn more about his demand function.” This dual 

aspect of decision-making was first investigated by Feldbaum (1960) under the 

title of dual control. Interesting approximations to the optimal solution of dual 

control problems are suggested recently by MacRae (1974), Tse, Bar-Shalom and 

Meier (1973) and Tse (1974). 

Since learning plays a crucial part in dynamic economic behavior under 

uncertainty, dual control is a powerful tool of analysis. Chow (1973) and Aoki 

(1973) and (1974) are among the first to apply dual control to economics. They 

have been able to shed more light into the complexities of optimizing behavior 

in dynamic and stochastic economic models. 

An attempt has been made to study from the viewpoint of dual control the 

effect of uncertainty upon the behavior of the firm over time. To highlight the 
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role of learning in intertemporal decision-making, we study a special model of a 

monopolist which carries no inventory, sets the price and produces instantaneously 

according to demand. Even though the monopolist tries to maximize his expected 

profit over a finite horizon, this model is essentially static if no learning is taken 

into account. The intertemporal optimal pricing policy simply consists of optimal 

prices for the individual stages. This will no longer be the case when the monopolist 

utilizes the extra data generated by his pricing strategy to learn more about the 

uncertain demand curve. 

A simple model of the firm is introduced in Section II. In Section III, the 

equations governing the solution are presented. A special case which can be 

solved exactly is discussed in Section IV. Three methods to approximate the 

solution for the general case are given in Section V. Section VI contains some 

simulation results using two different methods. 

IT. THE MopDEL 

We assume that during any period k a monopolist faces the following demand 

curve. 

(2.1) q{k) = ap(k) + B + Ok) 

where 

p(k) is the price charged by the monopolist in period k 

qk) is the quantity demanded 

a, are parameters characterizing the demand curve 

a <0, B>0O 

O(k) is the error term (noise) in the demand equation. 

The monopolist knows that the demand is linear with constant but unknown 

parameters a and f. A Bayesian assumption is used, ie., the monopolist has 

available to him prior statistics of the parameters a and f as well as of the noise 

0(k) affecting his demand. For instance, these can be obtained from standard 

econometric models using past data. We assume « is normal with mean & and 

covariance o2. B is normal with mean f and variance oj, and @(k) is normal with 

zero mean and covariance ©. The random variabies are all independent. 

The monopolist produces a homogenous product in each period and his 

objective is to maximize the expected profit over N period. Thus his utility 

function is linear in risk. We also assume that once he selects a price p(k), he can 

produce, and supply the quantity demanded according to equation (2.1). 

The profit for each period is 

(2.2) P{k)q(k) — cq(k) 

where c is a known and constant marginal cost. 

The expected profit over N periods is thus 

N 

(2.3) J= e| d plkyatk) — cat} 
k=1 
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and the monopolist has to choose optimal prices p(k), k = 1,..., N in order to 

maximize his expected profit. 

The model we study is one that is frequently used. Although assumed time- 

invariant here, « and f can be relaxed to be time-varying. The normal distributions 

are assumed for convenience but are not overly restrictive. Most of the existing 

work dealing with uncertain demand treats static cases with the monopolist 

optimizing his expected utility. Differences between price setting and quantity 

setting were illustrated (e.g. Leland, etc.). In this paper we try to reflect the fact 

that most monopolists do not choose their price only once but can in effect vary 

it from time to time. If his objective is to maximize the expected profit over several 

periods, then the pricing strategy which maximizes the expected profit of each 

period may not be the one to use. The intertemporal optimal strategy has to take 

into account the fact that learning is possible, and thus should be adaptive in 

nature. Some related results along this line have been obtained by Aoki (1973) 

and (1974). 

III. OPTIMAL PRICING STRATEGIES 

In principle, the solution to our problem can be found using dynamic pro- 

gramming (Aoki, 1967). The following equation has to be solved recursively to 

obtain the optimal p(k). 

(3.1) JUMk — 1),k)= max E{ p(k)q(k) — cq(k) + J(I(k), k + 1k — 1} 
p(k) 

with 

(3.2) E{J(I(N — 1), NIN — 1)} = E{p(N)q(N) — cq(N)I(N — 1}. 

I(k — 1) is the information availiable to the monopolist up to the beginning of 

period k and consists of all the past prices and the quantities demanded, i.e., 

(3.3) I(k — 1) = {p(0),..., p(k — 1), g(O),...,q(k — 1}. 

The past stream of profits is also information available to the monopolist. 

When the cost of production c is assumed to be known, this information is redun- 

dant since profit is given by p(k)g(k) — cq(k). When c is not known exactly, then 

the past profit will be useful in determining the optimal pricing policy. 

It is well known that all the information in J(k — 1) can be replaced by the 

following estimates (Athans, 1974) of a and B which can be generated recursively. 

Let 

11} 
ola 

(3.4) i(k) ral ’ ; 

(3.5) rk) 4 cov lel H we. 
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Then 

ak + 1)] _ | &k) p(k + 1) 
(3.6) (k + | mez “ed + X(k + »| ' | 

x O- (qk + 1) — p(k + 1)a(k) — Bik) 

(3.7) Yk + 1)= (X27 *(k) oF be i Jott + 1),1))"? 

a0)| [a fags 

-» — GB)-G} [2 3] 

This result is obtained by applying the standard Kalman filtering algorithm 

to the filtering problem given by the trivial difference equation 

a a(k+1)} | afk) 

ce ks + Hl * So 

with measurement 

a(k) 

B(k) 

Equation (3.9) is a statement that the parameters « and # are constant. The details 

of this can be found in (Athans, 1974). 

Note that in general the estimation error £(k) of the parameters will depend 

on the past policies p(k). However, when « is known, then the estimation error of 

B no longer depends on the decisions of the monopolist. As we shall see in the 

next section, the pricing strategy then becomes very simple. 

(3.10) g(k) = (p(k) uf | + 6(k). 

IV. A SPECIAL CASE: « IS KNOWN 

When « is known, only the intercept of the demand curve is uncertain. 

Under such circumstances the error covariance of the parameter B becomes 

(4.1) Lg(k + 1l)= (Zp *(k) + @-*)"!. 

This is independent of p(k). 

Atk=N 

(4.2) J(B(N — 1), N) = max E{p(N)q(N) — cq(N)\B(N — 1)}. 

Maximization of this gives 

1 
(4.3) p*(N) = 5, (BIN — 1) — ac) 

15 
(4.4) J(B(N — 1), N) = — 4, BN — 1) + ac)’. 
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Atk=N-1 

(4.5) J(B(N — 2),N -—1)= max E{p(N — 1)q(N — 1) — cq(n — 1) 
p(N-1) 

+ J(B(N — 1), N)|B(N — 2)}. 

But 

(4.6) E{J(B(N — 1), N)\B(N — 2)} = — 2 BIN — 2) + ac)? 

+ ZlZAN -— 1) - EN - 2)] 

is independent of p(N — 1). For details of this result, see Appendix. Thus 

1 
(4.7) p*(N — 1) = —5, (BIN — 2) — ac). 

a 

In general 

fe 
(4.8) p*(k) = ——(B(k — 1) — ac). 

2a 

This is the optimal pricing policy for the single period k if all the past prices and 

quantities are used to generate a better estimate of the parameter f. Except for 

the use of estimates instead of actual parameters, this policy is the same as in the 

static and deterministic case. Thus, although the monopolist is optimizing over 

N periods, the statistical assumption is such that all he has to consider is the 

immediate future. The optimal pricing policy for each period has the same form 

and is independent of the total number of periods. We may expect, however, that 

his estimate should improve with more measurements, and this may affect the 

actual prices used. 

V. GENERAL CASE: BOTH a AND f UNCERTAIN 

The relevant equation to be solved is given by (3.1). At k = N, the solution 

of this equation gives 

(5.1) p*(N) = pj bn — 1) — &N —)c) 
~ 2Q(N — 

where &N — 1) and B(N — 1) are as given in Section III. The pricing policy is 

similar to the static and deterministic case except for the use of estimates. This is 

expected since at that stage, the monopolist essentially faces a static problem. 

The expected profit is given by 

—1 
(5.2) J(I(N — 1), N) = aN = ON — 1) + &N — 1)c)?. 
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Atk = N — 1, we have to solve 

(5.3) JU(N — 2),N —-1)= pa Etp(N — 1)q(N — 1) — cq(N — 1) 

N-1 &(N — 1)c)?|I(N — 2)}. - aN ani ) + & e)|I(N — 2)} 

From Section III, we can see that the last term in this maximization depends 

on p(N — 1) and g(N — 1). Moreover, the dependence is nonlinear and not 

quadratic. An analytic solution is thus not possible. Various approximations have 

been suggested. 

(a) Open-Loop Feedback Optimal 

At any time k, an open-loop problem is solved which assumes that no addi- 

tional information will be available in the future. Thus the problem is to choose 

a deterministic sequence of prices 

(5.4) {p(k), p(k + 1),..., p(N)} 

to maximize the expected future profit 

N 

(5.5) EVD Pli)a(i) — cq{iI(k — of. 
i=k 

Only p(k) is used. Once q(k) is observed, the estimates on a and £ are updated and 

the problem is solved again. For the problem under consideration the solution is 

extremely simple. The optimal price is given by a certainty equivalence policy 

which is the same as that for a static one-period case. 

. k k — 1) — &k — 1)c). (5.6) p(k) = 5 re Tak — 1) (k — 1)e) 

This price policy does not take an active role in reducing the uncertainty. 

Since our model is uncoupled temporally except for the flow of information, the 

optimal pricing policy thus reduces to that of a one-period problem. 

(b) Wide-Sense Adaptive Dual Control 

In this approach (Tse, Bar-Shalom, Meier,- 1973), emphasis is placed on 

finding an approximate representation for the function J(I(k), k + 1) in equation 

(3.1) given an arbitrary price p(k). The expression in (3.1) is then solved numerically 

to obtain p(k). Specifically, we use the following method to approximate the 

expected profit. 

1. Assume a price p(k) has been chosen at time k. 

2. X(k), the error covariance of the parameters can then be found using 

equation (3.7). The predicted values of the parameters remain &k — 1) 

and B(k — 1) because of the special nature of our problem. 

3. A nominal pricing policy {po(k + 1), po(k + 2),..., Po(N)} is then chosen 

which depends only on the predicted values of &k — 1) and P(k — 1). 
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One possible candidate is the certainty equivalence type strategy described | 
in Section V(a). ee 

(5.7) poli) = — a Fe - 1)—@&k-1)e) j=k+1,...,N 

(5.8) gol j) = &k — I)pol) + Bk-1)  fj=k+1,...,N. 

The nominal profit function is 

N—-k 
(5.9) Jo(k + 1) = Fak nO — 1) + &k — 1)c)?. 

. A perturbation analysis is done about the nominal of equation (5.8) to 

obtain the model 

(5.10) 6q(j) = &k — 1)dp(j) + dapo(j) + 58 + Hj). 

The incremental expected profit about this nominal is 

(5.11) d3(k + 1) = JUI(k), k + 1) — Jo{k + 1) 

N 

- EY dX = Splidol i) + Pol Sai) — cdq( i) 
j 1 ink 

+ sp nba ie} 

Equations (5.10) and (5.11) define an optimization problem similar to the 

special case discussed in Section IV. In fact the optimal incremental price 

is given by 

(5.12) dp(j) = ae mak — 1 Oe - 1)pol J) + BU — 1)) 

j=k+1,...,N 

where the incremental parameter estimates are given by equations similar 

to those in Section III. The error covariances of the incremental estimates 

are, however, independent of the incremental price. 

Let 

(5.13) EA 4 cov {| f liu - uf. 

Then 

(5.14) Xo) =2o'-+Kl() jok+,...,N 

where 

(5.15) K(k) = ” “) @~"[po(), 1] 

is a constant matrix since po( j) given by equation (5.7) is constant for j > k 

k 
(5.16) Lok) = E(k — 1) + i" ]e-toe, 1}. 
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The optimal expected incremental profit from period k + 1 to N is 

—k 
(5.17) dJ(k + 1) = ~ Fa Hol + dB(k)? 

+ (N — k)[po(k) 5B(k) + 58(k)p3(k) 

—¢ — — c 6B(k)) 

+ wana =D: $3 (N —j — 1I)@olj + 1) — Lol H)Kolk). 

The quantity on the right hand side of equation (3.1) to be maximized can 

then be approximated by 

(5.18) E{p(k)q(k) — cq(k) + Jo(k + 1) + dJ(k + 1) M(k — 1}. 

Since J,(k + 1) is independent of p(k), the quantity to be maximized is then 

(5.19) J4(p(k)) = E{p(k)q(k) — cq(k)\(k — 1)} 

1 
——— tr[Z,(N — 1)+ 2,{N -— 2 Ais + fap"! of ) 0 )+ 

+ Zo(k)K(k) k=1,...,N—-1 

(5.20) —~ JAptk)) = E{plkq(k) — cq(kk — 1}, =k =N. 

5. After p*(k) is found, a new estimate of the parameters &(k), B(k) and their 

covariances £(k) are then updated. The whole process is then repeated to 

find p*(k + 1). 

In equation (5.19) except for k = N the quantity to be maximized consists of 

two parts. The term inside the conditional expectation is the expected profit 

influenced by the price for that stage. The second part consists of the error co- 

variances of the parameter estimates about the nominal. They depend on p(k) 

since X£,(k) depends on p(k). Since &k — 1) is negative, the maximization of this 

second part is equivalent to the minimization of the future error covariances of 

the estimates. The optimal p*(k) is neither the price which maximizes the profit 

for period k nor the one which minimizes the error covariances of the future. 

The dual nature of p*(k) is thus very clearly displayed. At the last stage, however, 

p*(k) will simply be the maximization of profit. 

(c) Approximate solution of equation (3.1) 

The method presented in Section V(b) is one which has to be done in real 

time. At each period k, the effect of the price p(k) on the expected total profit from 

that period to the final period is investigated by doing a perturbation analysis. 

This includes computation of all the incremental covariances Z,(k),..., X2o(N — 1), 

ana doing an optimization of a nonlinear and nonquadratic function. In the 

problem under consideration, this is a realistic way since there is usually sufficient 

time between the times when the price is changed. Moreover, the quantity to be 
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optimized is simple enough so that an optimization can be done easily using 

numerical techniques. Other methods are also available which approximate the 

solution to equation (3.1) (e.g. Chow, 1974). The optimal price p*(k) at each stage 

is then a precomputable function of the parameter estimates. This approach is 

more suitable for situations when p(k) has to be changed rapidly so that insufficient 

time is available for carrying out the optimization problem. 

Specializing to our problem, the following steps are necessary. 

1. A nominal price sequence is chosen to be {po(1), ... , Po(N)}- 

2. This gives rise to a nominal sequence of quantities demanded 

{qo(1),..-. do(N)}. 

and nominal estimates 

{@o(1),...,@o(N — 1)}, {Bo(1),.-.,Bo(N — 1)}. 

3. Starting at the final period N, equation (5.2) is approximated by a Taylor 

series expansion about the nominal, retaining only the linear and quadratic 

terms of p(N — 1),@(N — 2) and f(N — 2). 

4. Equation (5.3) can then be solved and will have a form dependent only on 

&(N — 2) and P(N — 2). 

5. This process is repeated until k = 1. A sequence of p(k) in terms of the 

estimates will have been obtained. 

6. p(k) can then be used to generate a new nominal and the steps | to 5 are 

then repeated. This can be done as often as possible. 

The main feature of this approach is that the resulting pricing policies are 

simple in structure. They will be of the form given by equation (5.1). However, 

the optimality of the method depends on how far away the actual values are from 

the nominal last used. 

VI. SIMULATION RESULTS 

To illustrate the ideas of this paper, a numerical example is used. The demand 

function is assumed to be 

(6.1) qk) = —2p(k) + 24 + Ok). 

Thus 

(6.2) a= —2 B = 24. 

The constant cost of production is 2. The number of periods N is assumed to be 

10 and 5. 

The monopolist has the following prior statistical information on « and f 

a= —2.5 o? = | 
(6.3) 

B = 20 a, =4 

@(k) has a covariance of 1 which is assumed known to the monopolist. 

319 



If the monopolist knows the exact values of « and £, his optimal price for each 

period will be 

(6.4) p(k)=7 k=1,...,N. 

His profit over ten and five periods will then have means of 500 and 250 and 

standard deviations of 50 and 25 respectively. 

The certainty equivalence (CE) policy in Section V(a) is compared with the 

wide sense adaptive dual control (WSADC) policy in Section V(b). The method 

in Section V(c) will be compared elsewhere. A linear search with quadratic inter- 

polation is used to maximize J {p(k)) in equation (5.19). Ten simulation runs are 

obtained for each policy. 

The results for N = 10, @ = —2.5, B = 20, «2 = 1, of = 4 are tabulated 

below in Tables 1 to 3. 

TABLE 1 
COMPARISON BETWEEN CE PRICING PoLicy AND WSADC POoLicy 

Average Profit Range of Profit Range of p(k) P(1) 

CE 476.02 457.12-496.78 5.000—-10.750 5.00 
WSADC 484.85 462.56—501.96 6.307— 9.605 6.30 

TABLE 2 
RESULT OF CE PoLicy FOR ONE SAMPLE RUN 

k p(k) q(k) &(k) Blk) Cumulative Profit 

1 5.000 14.157 — 1.390 20.888, 42.472 
2 8.511 5.935 — 1.842 22.213 81.116 
3 7.030 9.008 — 1.852 22.198 126.421 
4 6.993 10.539 — 1.816 22.268 179.040 
5 7.131 10.591 — 1.780 22.273 233.384 
6 7.256 10.314 — 1.753 22.242 287.599 
7 7.346 9.027 — 1.762 22.260 335.854 
& 7.316 8.851 — 1.774 22.280 382.906 
9 7.279 10.373 — 1.755 22.258 437.663 
10 7.341 8.575 — 1.771 22.289 483.461 

TABLE 3 
RESULT OF WSADC PoL.icy FoR ONE SAMPLE RUN 

k p(k) q(k) &(k) Bk) Cumulative Profit 

1 6.307 11.643 — 1.470 20.653 49.717 
2 8.031 6.896 — 1.703 21.268 91.304 
3 7.410 8.247 — 1.723 21.276 135.920 
4 7.384 9.756 — 1.580 21.269 188.449 
5 7.440 9.973 — 1.643 21.238 242.704 
6 7.486 9.862 — 1.617 21.203 296.765 
7 7.556 8.606 — 1.628 21.225 344.581 
8 7.521 8.442 — 1.640 21.246 391.185 
9 7.493 9.945 — 1.622 21.224 445.811 
10 7.543 8.170 — 1.637 21.257 491.099 
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Our results show that the WSADC policy always gives a higher profit than the 

CE pricing policy. On the other hand, the parameter estimates using CE pricing 

are better than those of WSADC pricing. The most dramatic difference between 

these two policies is in period 1. From Table 1, p(1) is 5.000 for CE and is 6.307 for 

WSADC policy. This is so because in the former case no use is made of the fact 

that information will be available in the future. Because of the nature of our 

problem, only the profit for that period is involved in the optimization. Thus 

p(1) is selected on the basis of a priori means & and B to maximize the profit for 

period 1. The result is a very poor performance for period 1 which contributes 

to the total profit. On the other hand, the WSADC approach takes into considera- 

tion the fact that more measurements will be available in future. The future and 

the present are no longer uncoupled. This results in a p(1) which is more optimal 

for the overall problem. p(1) gives a bigger profit for period 1 and also improves 

the estimates &(1) and A(1) leading to a better p(2). The reason that the future 

estimates &(k) and A(k) are not as good as those given by certainty equivalence is 

probably an accident. 

Other priori statistical data have also been used. If oj is modified to 16, the 

following results are obtained. 

TABLE 4 

N=10, a= -—25, B=20, oF=1, of = 16 

COMPARISON BETWEEN CE PRICING POLICY AND WSADC Po.icy 

Average Profit Range of Profit Range of p(k) P(1) 

CE 482.76 462.97-499.09 5.00-8.81 5.00 
WSADC 485.03 463.43-501.21 5.31-8.92 5.31 

The CE policy performs almost as well as the WSADC policy and the prices 

chosen at each period are almost identical. The parameter estimates are more 

accurate than those obtained previously. 

We also investigate how the time horizon affects the pricing policies. If the 

time horizon is cut by half, ie., N = 5 the prices used are almost the same as the 

first five used with a longer time horizon. With certainty equivalence policies 

this has been expected since the prices are independent of the time horizon. The 

similar results for the WSADC policy indicate that in this case the learning effect 

is not very strong. This may have to do with the assumption on the demand curve. 

Since the demand is assumed to be linear with constant slopes and intercepts, 

knowledge of two sets of prices and quantities will be sufficient to determine the 

demand function. It is probable that when the demand function is more com- 

plicated, e.g., with time varying parameters, the effect of learning will be more 

significant. 

VII. CONCLUSION 

In this paper we have discussed the behavior of a firm under uncertainty. 

A simple classical model of monopoly is chosen for study. The monopolist facing 
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unknown demand is assumed to have linear risk, constant marginal cost, finite 

planning horizon and instantaneous production capabilities. Without learning, 

this model is static in the sense that optimal pricing for each individual stage is 

also optimal for the whole planning horizon. However, active learning changes 

this picture. Except for the special case when the slope of the demand curve is 

known, the multiperiod nature of the problem has important effects on the pricing 

policy of the monopolist. The additional data collected by the monopolist can 

always be used to update his information on the demand curve. However, his 

policy also depends on the availability of future information. If he assumes that 

the future data are not available, the optimal pricing policy is essentially the same 

as the optimal one for each period. When future data are assumed to be available, 

this information will be used in his policy decision. Dual control methods are 

applied to find approximate optimal solutions. The simulation experiments indi- 

cate that by including uncertainty, we improve the performance of the monopolist 

though in some cases the improvement is quite insignificant. It is, however, diffi- 

cult to distinguish between the effects due to the inclusion of uncertainty and 

those due to the learning aspects of the algorithm. 

In this paper, we have concentrated on the effect of uncertainty on multi- 

period problems which are essentially static in nature except for the propagation 

of information. Natural extensions of this present research will be the investiga- 

tion of non-linear risk, the effect of risk aversion upon dual control strategy, the 

inclusion of the possibility of inventory accumulation, and the comparison between 

the price setting strategy and the output-setting strategy in the framework of dual 

control. 
Georgia Institute of Technology 

University of Alabama 
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APPENDIX 

E{J(B(N — 1), N)|B(N — 2)} 
I 2 

E}— LN — 1) + ac)? |P(N - ah 

1 
— 7 EL E((BIN — 1) + ac)*|P(N — 1)}|B(N — 2)} 

1 
— 4, FAB + ac)? — EN - 1)/B(N — 2)}. 

But &,(N — 1) is independent of BIN — 2) by equation (4.1). Thus 

| 

4a 
E{J(B(N — 1), N)|B(N — 2)} 

1 
E{(B + ac)*|P(N — 2)} + 5g 2hN - 0) 
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which gives equation (4.6). 


