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Annals of Economic and Social Measurement, 4/2, 1975 

A COMPARISON OF THREE CONTROL ALGORITHMS AS 

APPLIED TO THE MONETARIST-FISCALIST DEBATE 

BY ANDREW B. ABEL* 

This paper employs an optimal control framework to analyze the relative effectiveness of monetary and 
fiscal policies. The economy is modeled by a very simple two-equation linear dynamic model with the 
money supply and government expenditures as two instruments. Three control algorithms, which differ 
in their treatments of uncertainty and learning, are applied to this model to calculate optimal policies and 
minimum expected welfare costs. With minimum expected welfare cost serving as the criterion of effective- 
ness, it appears that fiscal policy is somewhat more effective than monetary policy with respect to the 
quadratic welfare function employed in this paper, although using both policies together is much more 
effective than using either policy alone. 

1. INTRODUCTION 

In this paper we shall use an optimal control framework to examine the relative 

effectiveness of monetary and fiscal policies for the purpose of controlling the 

major macroeconomic aggregates. In Section 2, we shall present a very simple 

linear macroeconomic model with additive Gaussian disturbances. After briefly 

describing three control algorithms in Section 3, we shall, in Section 4, apply 

these three control algorithms to our simple model. Monetary policy will be 

represented by the money supply and fiscal policy will be represented by govern- 

ment expenditures. In evaluating the effectiveness of a given instrument, we shall 

designate that instrument as a discretionary instrument and the other instrument 

aS a passive instrument, and then solve an optimal control problem. The values 

of the discretionary instrument are determined subject to feedback control, but 

the values of the passive instrument are constrained to change at a constant rate 

over the planning horizon. In addition, we solve the control problem with both 

instruments assumed to be discretionary. Comparison of the expected welfare 

costs in the three situations serves to evaluate the effectiveness of each discretionary 

instrument. 

Three different algorithms will be used to perform our analysis of the relative 

effectiveness of monetary and fiscal policies in order to determine whether our 

results are sensitive to the choice of control algorithm employed. The three 

algorithms presented in this paper differ in their treatments of learning. Method | 

is a certainty equivalence control algorithm formulated by Chow (1972). The 

assumptions of certainty equivalence preclude the possibility of learning by 

assuming that the parameters of the linear model are known with certainty. 

Method II, which is presented by Chow (1973a) recognizes the uncertainties in 

the parameters of the model but ignores the possibility of learning. Method III. 

which is a dual adaptive control algorithm presented by Chow (1973c). anticipates 

that learning will occur through the re-estimation of the unknown parameters of 

the linear model as additional observations are obtained with the passage of time. 

Method III is closest to being optimal and contains method I and method II as 

special cases. 

*1 would like to express my most sincere thanks to Professor Gregory C. Chow, my thesis advisor, 
for generously sharing his time and his ideas with me. 
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2. A SIMPLE MACROECONOMIC MODEL 

For the policy analysis of this paper, we shall employ a very simple aggregative 

model. It is based on real quarterly data covering the period from 1954/I to 1963/IV, 

which corresponds roughly to the period between the end of the Korean War 

and the beginning of heavy United States involvement in Vietnam. It consists of 

only two endogenous target variables, consumption (C,) and investment (/,), and 

two instruments, government expenditures (E,) and the money supply (M,). 

We assume that in the short-run, government authorities can control E, and M, 

in real terms since prices do not change rapidly enough to seriously offset their 

actions. Over the time period covered by our data, the rate of inflation was low 

enough to make this assumption plausible. 

Our model is based on a closed economy. Desired consumption is a linear 

function of GNP, and the realized period-to-period adjustment in consumption 

is subject to a partial adjustment factor : 

(2.1) C, = aC,_, + bl, + bE, + d. 

The structural equation for investment is based upon a modification of Samuelson’s 

private consumption accelerator. We posit that the desired level of the capital 

stock is a linear function of consumption and that the realized adjustment of the 

capital stock is subject to a partial adjustment factor. Since gross investment, /,, 

is defined as K, — (1 — D)K,_,, where D is the depreciation rate of the capital 

stock, we have 

(2.2) I, = eC, —(1 — DeC,_, + fl,-, +8. 

In addition, we assume that the level of gross investment is linearly related to the 

money supply in order to capture some of the effects of interest rates upon invest- 

ment: 

(2.3) I, = eC, — (1 — D)e'C,_, + f'l, + hM, + g’. 

The estimated reduced form equations corresponding to the structural equations 

are 

(2.4)  C, = 0.9266C,_, — 0.02031,_, + 0.3190E, + 0.4206M, — 63.2386; 

(0.0534) (0.0916) (0.1389) (0.1863) (25.7719) 

R? = 0.9958 

D-W = 1.7084 

(2.5) I, = 0.1527C,_, + 0.3806/,_, — 0.0735E, + 1.5389M, — 210.8994; 

(0.0781) (0.1339) (0.2031) (0.2724) —- (37.6899) 

R? = 0.8749 

D-W = 1.7582. 

Note that each of these estimated equations has a high value of R?. In addition, 

the Durbin—Watson statistic, although biased toward 2.0 because of the lagged 

endogenous variable, does not suggest significant serial correlation in either 

equation. 
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A criticism that may be raised against the above model is that it includes 

only the current values of M, and E, among the explanatory variables. However, 

concerning the lagged or delayed effects of M, and E,, our model implicitly 

assumes a lag structure with geometrically declining weights for M, and E, 

because the lagged endogenous variable appears as an explanatory variable in 

each equation. In this paper, we do not explore more complicated lag structures. 

3. THE ALGORITHMS! 

The three algorithms presented in this paper are applicable to linear stochastic 

discrete-time econometric models with unknown parameters and additive Gaussian 

errors. We shall write the model as a first-order linear difference equation 

(3.1) ye = Ayf_, + Cx, +b, + e,, 

where A, C, and b, are random parameters whose values will be estimated using 

the Bayesian techniques presented by Chow (1973a). The vector y* is a stacked 

vector containing values of the endogenous variables and the instruments, x, is a 

vector of instruments, b, is a vector which models the effects of the noncontrollable 

exogenous variables, and e, is a vector of random variables such that e, ~ N(0, 2). 

The e, are assumed to be serially uncorrelated and uncorrelated with the random 

parameters A, C, and b,. 

The objective of each of our three control algorithms is to minimize the 

expected value of the following quadratic welfare cost function 

T 

(3.2) W=t) (yt - a) K(y¥ — a), 
t=1 

where T is the length of the planning horizon, a, is the target value of y*, and K, 

is a weighting matrix. Observe that (3.2) may be rewritten as 

T T 
(3.3) W=3) y*'Ky* + ¥ yy'k, + constant, 

t=1 t=1 

where k, = — K,a,. We solve this problem using the method of dynamic program- 

ming, Let E,_ ,w, denote the expected welfare cost from period { up to and including 

period T, with the subscript t — 1 indicating that the expectation is conditional 

on information available at the end of period t — 1. We first minimize E;_,w, 

with respect to x,. Letting Hy = K, and h; = k,, we obtain 

(3.4) E,_,wy = Ey_,Gyf'Hry} + y#hz) + constant’. 

Substituting (3.1) into (3.4) and partially differentiating with respect to x;, we 

obtain the following feedback control equation, which yields the optimal value 

of xr, 

(3.5) XS, = Gryf-, + 81; 

' A more complete discussion of these algorithms is presented in Andrew B. Abel, “A Comparison 
of Three Optimal Control Algorithms as Applied to the Monetarist-Fiscalist Debate,’ Senior Thesis, 
Princeton University; Department of Economics, 1974. 
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where 

Gy = —(Ez_,C'H,zC)- '(E7_,C'H,A) 

and 

87 = —(Ez_-,yC'H,;C)” ‘(Er - 1C’Hybz) + (Ez_,C' phy). 

Note that the feedback control equation is not linear in y}_ , since the parameters 

G, and g, are functions of the posterior density of A, C, and b; at the end of period 

T — 1, which is a function of y#_,, yF_2,.... After substituting X; into (3.4) to 

obtain the optimal expected welfare cost W for the last period, we then approximate 

the function W, by a modified second-order Taylor series expansion to obtain 

T z 

(3.6) we 4) we Or ye + DY via + co.” 
t=1 t=1 

Using Bellman’s principle of optimality, we minimize E;_,w,_, with respect to 

X_, under the assumption that the optimal value of x,, i.e., %;, will be selected 

in period T. Hence, we seek to minimize 

(3.7) Ey .Wy_, = Ez_2(hy?_,Kr_,ye_-, + yo 1kr-1 + Wy) + constant”. 

Substituting the Taylor series approximation for w, and combining like terms in 

y}_, within the expectation operator, we obtain 

m 
(3.8) Ey_2Wr-, = Ez_23yt_-1Hr-iy7-1 + yF_shy_,) + constant”, 

”" 
where Hy_, = Ky_; + QP.:,h7_; + q}_,, and constant” absorbs those terms 

in (3.6) which are not dependent upon x;_, and y#_,. It should be observed that 

(3.8) is identical in form to (3.4). Hence, we may solve for X;_ , in the same manner 

that we solved for X;. This backward induction procedure is repeated until we 

obtain values for , and W,. This algorithm, which we shall call method III, is a 

dual adaptive control algorithm. It gives only approximate solutions since it 

involves a quadratic approximation about a somewhat arbitrary tentative path.* 

In the certainty equivalence algorithm (method J), it is assumed that the values 

of the random parameters, A, C, and b, are equal, with certainty, to their respective 

conditional expectations at time 0. ie.. A. C. and b,. Hence. the parameters of 

the feedback control equations are G; = —(C’H,C) \(C’'H;A) and g;= 

—(C’H,C)~'{(C’'H by) + C’hy]. The feedback control equation is strictly linear 

in y}_, and the function Ww, is truly quadratic in y¥_, . Therefore, there is no need 

to approximate Ww, by a second-order Taylor series expansion and thus the 

certainty equivalence solution to the control problem is exact. 

Method II, which is another special case of method III, takes account of 

uncertainty in the parameters but does not anticipate future learning. In method II, 

all conditional expectations are evaluated at time 0 so that the coefficients of the 

? In the calculations summarized later we employ a standard Taylor series with cross-partials, and 
(3.2) includes terms of the form (y* — a,)'K,,,(y¥ — a,). However, we let K,, = 0 for all t # s. 

3 In our calculations, we obtain the tentative path by using the certainty equivalence algorithm to 
determine &,, and then apply the estimated model, without random disturbance, to &,, to generate y*, 
for? = 1,.... T -1. 
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feedback control equation are G; = —(E C’H;C) \(EoC’H;A) and g, = 

—(E gC’H7C)” '[(EoC’H by) + (EgC')hz]. As in method I, the parameters of the 

feedback control equation are independent of y#_,, and hence %; is a linear 

function of yz_,. Thus wW, is truly quadratic in y#_, and method II yields an 

exact solution to the modified control problem. 

4. PoLticy ANALYsIS USING THE SIMPLE MODEL 

Studies of the relative effectiveness of monetary and fiscal policy often focus 

on the size of long-run and short-run multipliers of the monetary and fiscal 

instruments, e.g., Kmenta and Smith (1973). However, Brainard (1967) argues 

that an examination of the minimum expected welfare cost attainable with a 

given set of instruments is a more meaningful approach to the question of the 

effectiveness of the instruments than is an examination of the multipliers of these 

instruments. Indeed, from the point of view of maximizing social welfare, any 

relevant features of the multipliers will be reflected in the minimum expected 

value of the welfare cost function and hence multiplier analysis is unnecessary, 

if not misleading. In this paper we shall compare the minimum expected welfare 

cost attainable using only a discretionary monetary instrument with the minimum 

expected welfare cost attainable using only a discretionary fiscal instrument. 

However, before solving the control problem using only one discretionary 

instrument at a time, we solve the control problem using both M, and E, as 

discretionary instruments subject to feedback control. We rewrite the reduced 

form equations (2.4) and (2.5) as y* = Ay*_, + Cx, + b, + e,, where 

(4.1) y*’ = (C,,1,, E,, M)), 

isa 4 x 4 matrix containing the 2 x 2 matrix A,, 

Co 
c=(% 

| 

isa 4 x 2 matrix containing the 2 x 2 matrix Coy, 

x, = (E,, M,) 

ff 

is a 4-vector containing the 2-vector b,, and 

-( 

is a 4-vector containing the 2-vector ¢,. 

is the vector of instruments, 
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Before proceeding with the application of the control algorithms, we must 

specify the following parameters of the welfare function: (1) T, the number of 

periods in the planning horizon; (2) a,, the target values of y*; and (3) K,, the 

weighting matrices. We shall solve the control for a 6-period planning horizon, 

i.e., T = 6. In order to select appropriate target growth rates for C, and /,, we 

examine the historical percentage growth rates shown in Table 1.* It should be 

noted that the growth rate for J, for the 11 quarters ending with 1963/IV is much 

higher than the growth rate for the 40 quarters ending with 1963/IV because 

investment was near a cyclical low in 1961/II. With these historical growth rates 

in mind, we somewhat arbitrarily choose target growth rates of 1.25 percent per 

quarter for C, and I,. 

TABLE | 
QUARTERLY GROWTH Rates (%) 

Period C, £ 

1954/1 to 1963/IV 0.91 1.14 
1961/II to 1963/IV 1.10 2.61 

For the weighting matrices in the welfare function, we set 

K, = aro fe t)...;7, 

where J is the 2 x 2 identity matrix. Note that since the instruments are assigned 

zero weight in each K,, they do not explicitly appear as arguments of the welfare 

function. Since the ultimate objective of our analysis is to compare the relative 

effectiveness of monetary and fiscal policy in reaching given targets over time, we 

shall examine the welfare cost net of the costs directly associated with the instru- 

ments. We will, however, examine the stability of the instruments in each solution 

to make sure that they do not fluctuate excessively. 

Method I is applied to the two-instrument, two-target control problem, with 

t er —0.0203 2 | Prin 

sone — 210.8994 0.1527 0.3806)’ : 

and 

| 0.3190 0.4206 

°~ \~0.0735 1.5389] 

Then method II and method III are applied to the same problem. For the quadratic 

approximation of method III, a deterministically generated tentative path derived 

from the solution of method I is used. The solutions to this problem by the three 

algorithms are presented in Table 4. 

In order to investigate the effectiveness of one instrument alone, we shall 

assume that the instrument under consideration is a discretionary instrument 

* Since E, and M, have zero weight in the welfare function, it is not necessary to specify targets for 
these variables. 
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the values of which are chosen by the policy maker subject to feedback control. 

It is assumed that the values of the other instrument are determined by a passive 

policy of a constant percentage change per quarter. In the notation of (3.1), the 

discretionary instrument is represented by the scalar x, , and the passive instrument 

is modeled as a noncontrollable exogenous variable which is absorbed in the value 

of b,. The solution to the control problem will be sensitive to the values of b,. 

t = 1,..., 7, and hence the values of the passive instrument must be chosen 

judiciously. To determine the values of the passive policy variable. we solve the 

six-period, two-instrument control problem in which each of the instruments is 

constrained to change at a constant rate throughout the planning horizon. The 

solution to this problem, calculated under the assumption of certainty equivalence, 

is shown in Table 2. There is no a priori reason to believe that the growth rate 

obtained in this manner for each instrument will be optimal when the values of 

the other instrument are chosen subject to feedback control. A better approach 

to selecting an optimal growth rate for the passive instrument would be to solve 

the control problem repeatedly with one discretionary instrument and one passive 

instrument, allowing the growth rate for the passive instrument to vary in succes- 

sive computations of the solution. The optimal growth rate for the passive instru- 

ment is the growth rate for which the optimal expected welfare cost is minimized. 

TABLE 2 
CERTAINTY EQUIVALENCE SOLUTION TO CONTROL PROBLEM WHEN BOTH INSTRUMENTS ARE 

PASSIVE 
wr T a _ =—s — 

| —~Reriod l 2 3 4 | 5 6 Rate of Change 
Instrument ~ | per Period 

E, (billions) 110.9 112.4 113.9 115.4 | 116.9 118.4 +1.313% 
M, (billions) 143.6 143.4 143.3 143.1 | 142.9 142.7 —0.122% 

Note: This solution was obtained using the OPTCDIAG option of the certainty equi- 
valence program described in Douglas R. Chapman and Gregory C. Chow, “Optimal Control 
Programs: User’s Guide,” Econometric Research Program, Princeton University, Research 
Memorandum No. 141, May, 1972. Slight inconsistencies may appear above as a result of 
rounding since the program used a percentage growth rate with 6 decimal places. Also note 
that w, = 68.3074. 

In lieu of performing an extensive search to determine the optimal growth rate 

for each instrument when the other instrument is discretionary, we merely examine 

two other growth rates for each instrument to check whether the growth rates 

shown in Table 2 appear to be approximately optimal. The optimal welfare costs 

shown in Table 3 were obtained from the solution, by method I, to the control 

problem in which the passive instrument grows at the given rate and the discretion- 

ary instrument is determined by feedback control. Note that for each instrument, 

the value of #, obtained using the growth rate from Table 2, is smaller than the 

values of W, obtained using growth rates 0.1 percent larger and 0.1 percent smaller 

than the growth rate in Table 2. This result lends some credence to the assertion 

that, for each instrument, the growth rate in Table 2 reasonably approximates 

the optimal rate when the other instrument is determined by feedback control. 
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TABLE 3 
OPTIMAL EXPECTED WELFARE Costs (by Method I) WHEN ONE INSTRUMENT 

IS PASSIVE AND ONE INSTRUMENT IS DISCRETIONARY 

E, is passive M, is passive 

Growth rate of E, W, Growth rate of M, W, 

+1.213% 48.7176 —0.022% 48.8780 
+1.313% 48.0508 —0.122% 44.1556 
+1.413% 48.1178 —0.222% 48.6696 

The control problem is now solved using methods I, II, and III under the 

assumption that E, is a discretionary instrument and M, is a passive instrument 

exogenously set equal to the values given in Table 4.2. This procedure is then 

repeated with M, as the discretionary instrument and E, as the passive instrument. 

The results of the control computations for period 1 are presented in Table 4. 

Let w{P) be the optimal expected welfare cost function from period 1 to period T 

where ie {I, II, III} refers to the algorithm employed and P ¢ P* = {E,, M,} 

refers to the set of discretionary policy variables used in the application of the 

algorithm. Note that for each ie {I, II, III}, minp<p. w{P) = wA{E,, M,}), which 

is an illustration of the well-known fact that in a control problem with two targets, 

a lower optimal expected welfare cost is attainable using two instruments subject 

to feedback control than by using only one of these instruments subject to feedback 

control. More significant for our economic analysis, however, is the result that for 

each i, w{{E,}) < w{{M,}). Therefore, assuming that the economy of the United 

States is appropriately modeled by (2.4) and (2.5), fiscal policy as represented by 

E, is somewhat more effective with respect to the given welfare function than is 

monetary policy represented by M,. We note, however, that this difference is 

small, especially when we allow for uncertainty in method II. 

To study our solution more closely, the value of w,(P) can be decomposed 

into a deterministic welfare cost and a stochastic welfare cost. To compute the 

deterministic welfare cost, we first generate a deterministic time path for each of 

the endogenous variables by assuming that each parameter of the linear model 

(3.1) is equal to its point estimate at time 0, and that e, = 0, fort = 1,...,T. 

The deterministic welfare cost is weighted sum of squared deviations of the deter- 

ministic time paths of the endogenous variables from their respective targets. 

The stochastic welfare cost is due to the randomness in y* and results from the 

additive stochastic disturbance e,. Substituting the optimal value of x, from (3.3) 

into (3.1), we obtain 

(4.2) yy =(A + CG,)y*_, + Cg, + b, + e. 

Assuming that the covariance matrix of e, is £, for t > 0, it can be shown that 

the covariance matrix of y¥* is given by the recursive formula 

(4.3) E,p=(A + CG)E,. (A + CG, + E,. 
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The stochastic welfare cost is equal to 

T 

(4.4) w,=% >, tr(K,V), 
t=1 

where V, is the estimate of Z,, based on the estimate of ©, at the current time. 

In Figure 1 we present the target time path for C, and the deterministic time 

paths for C, using the instrument sets {E,} and {M,}. In addition to the deterministic 

time path for each instrument set, we present the values of C, one standard 

deviation above and below the deterministic time path of C,. For each time period, 

390. [ 

388 fF 

386+ —-— Target 

—---- Instrument set 
38h s 

Instrument set 

382 7 

380 Fr 

3765 

374 fF 

370 + 

(billions of 1958 dollars) 3664 

364 | 

3624 

360+ 

! 1 i \ ! ! 
1 2 3 y 5 6 Time t 

Figure 1 Expected Time Paths of C, with Standard Deviation Bands (Obtained from Certainty 
Equivalence Solutions) 
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the vertical distance between the deterministic time path of C, for a given instrument 

set and the target time path of C, essentially measures the square root of the deter- 

ministic cost attri*utable to C,.° Similarly, for each period, the standard deviation 

of C, around its deterministic time path reflects the stochastic cost attributable 

to C, in that period. Note that the deterministic time path of C, for the instrument 

set {E,} is generally above the target time path whereas for the instrument set 

{M,} it is generally below the target time path. If the deterministic cost comprised 

a major portion of the expected welfare cost, we might have to consider the given 

quadratic welfare cost function to be inappropriate because it assigns costs to the 

overachievement of the .argets for C, through the use of the instrument set {E,' as 

well as to the underachievement of the targets for C, through the use of {M,}. 

However, we note that for each instrument set, the standard deviation of the 

stochastic variation around the deterministic time path of C, far outweighs the 

deterministic “standard deviation”’ of the deterministic time path around the 

target time path. Hence, the adverse effects of assigning deterministic costs to 

expected positive deviations from the target values may be neglected since they 

appear to be unimportant. We also note that the standard deviation band around 

the deterministic time path obtained using {E,} lies within the standard deviation 

band around the deterministic time path obtained using {M,}, except for period 1. 

Hence, the stochastic cost attributable to C, is smaller for {E,} than for {M,}. 

Figure 2 is analogous to 1 except that the endogenous target variable is J,. As in 

Figure 1, we observe that the stochastic welfare cost is much larger than the 

deterministic welfare cost. 

Table 5 summarizes the results presented in Figures 1 and 2. In this table, 

the deterministic welfare cost is expressed as an average over the six-period 

planning horizon. The stochastic welfare cost for each target variable is the 

average variance of that variable around its deterministic time path. The last 

two columns of Table 5 present the square roots of the corresponding values in 

the first two columns of the table and represent deviations in terms of 1958 dollars. 

It is clear from Table 5 that the total cost attributable to /, is greater than the total 

cost attributable to C,, and the stochastic cost is much greater than the deter- 

ministic cost for each instrument set. 

Since the instruments receive zero weights in the welfare function, we shall 

briefly examine the dynamic characteristics of the time paths of the instruments 

(derived from method I) to determine whether they are highly volatile. We note 

that for the instrument set {E,, M,}, the period-to-period fluctuations of E, along 

its deterministic time path are all less than 1.3 billion 1958 dollars, and for {E,} 

all of the deterministic changes are less than 2.5 billion 1958 dollars. Furthermore 

for each instrument set, the standard deviation of E, around its deterministic 

time path remains fairly stable and is less than 5.3 billion 1958 dollars in each 

period. For each of the instrument sets {E,,M,} and {M,}, the deterministic 

period-to-period fluctuations of M, are all less than 0.1 billion 1958 dollars. 

The standard deviation of M, remains fairly stable at about 0.9 billion 1958 dollars 

for {E,,M,} and about 1.1 billion 1958 dollars for {M,}. Hence, it appears that 

for each instrument, neither the deterministic period-to-period fluctuations nor 

5 This expected welfare cost ignores the factor of $ in (3.2). 
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Figure 2 Expected time paths of I, with standard deviation bands (obtained from certainty equivalence 
solutions) 

TABLE 5 
AVERAGE WELFARE Costs PER PERIOD 

Variance (Welfare Cost) Standard Deviations 
(billions of 1958 dollars)? (billions of 1958 dollars) 

Instrument | Target 
Set Deterministic | Stochastic Total Deterministic | Stochastic 

{E,} C, 0.028 3.816 3.844 0.167 1.953 
,. 0.696 10.178 10.874 0.834 3.190 

Total 0.724 13.994 14.718 _ -- 

{M,} i 0.072 7.273 7.345 0.268 2.697 
f, 0.016 8.656 8.672 0.126 2.942 

Total 0.088 15.929 16.017 — 

{E,, M,} ” 0 3.775 3.775 0 1.943 
i, 0 8.074 8.074 0 2.841 

Total 0 11.849 11.849 _ — 

Note: Costs exclude factor of } which appears in (2.4) and (4.6). 
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the stochastic variation around the deterministic time path is large enough to 

present serious problems of implementation. 

We observe in Table 4 that for a given instrument set, the coefficients of the 

feedback control equation are subject to considerable variation across algorithms 

with the introduction of uncertainty and the anticipation of learning. However, 

it should be noted that the optimal values of the instrument do not appear to be 

very sensitive to the presence of uncertainty or to the anticipation of learning. 

In Table 6, we present the percentage variation across the three algorithms of the 

optimal first-period settings of the instruments for each of the three control 

problems. Note that when the policy maker treats both E, and M, as discretionary 

instruments, there is an extremely small percentage variation in £, across the 

three algorithms. This result suggests that for the purpose of determining the 

optimal values of E, and M,, it makes little difference whether the effects of 

uncertainty and learning are considered. 

TABLE 6 
PERCENTAGE VARIATION IN X ACROSS THE THREE 

ALGORITHMS 
] 

%, Variation Across | 
Instrument Set Instrument Algorithms 

{E,. M,} E, 0.09 
M, 0.03 | 

{ E,} E, 0.64 

'M,} | M, 0.06 | 

Note: The percentage variation is the ratio of the range 
of &, to the value of &, obtained for method I. 

5. CONCLUDING REMARKS 

we found that fiscal policy, represented by E,, is more effective than monetary 

policy, represented by M,, with respect to the given welfare function. Note, 

however, that this result does not imply that the policy maker should treat M, 

as a passive instrument not subject to feedback control. The results presented in 

Table 4 indicate that the minimum expected welfare cost is significantly lower 

when the policy maker selects the values of both E, and M, subject to feedback 

control than when E, is the only discretionary instrument. We also observed that 

the values of the instruments required to achieve the minimum expected welfare 

cost appear to be free from wild fluctuations over time and do not thereby present 

a difficult problem of implementation. 

In the evaluation of the relative effectiveness of the monetary and fiscal 

instruments, we allowed for uncertainty and the possibility of learning in the 

computation of the optimal control solutions and the associated welfare losses. 

By examining the effectiveness of policy within the framework of the three different 

algorithms and their different assumptions regarding uncertainty and learning, 

our analysis has a broader basis than if we had used only method I with its 

Using the very simple macro-econometric model presented in Section 2 
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restrictive assumptions of certainty equivalence. We noted that although the 

introduction of uncertainty may significantly change the coefficients of the feed- 

back control equation, the optimal first-period policy is rather insensitive to 

uncertainty in the parameters of the linear model. The implication of this result 

for policy formulation is that we may fairly accurately determine the optimal 

values of E, and M, by any of the three algorithms discussed in this paper. 

Massachusetts Institute of Technology 
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