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Annals of Economic and Social Measurement, 3/4, 1974 

ON THE ROBUST ESTIMATION OF ECONOMETRIC MODELS 

BY Ray C. Farr* 

The computational aspects of obtaining robust estimates. of a general nonlinear econometric model are 
described, and some results of estimating a particular model are presented. When robust estimators are 
considered as weighted-least-squares estimators, it clearly appears feasible, by a combination of solving 
unconstrained optimization problems and iterating, to obtain robust estimates of econometric models. 
In estimating the particular model, the robust estimaters performed well in terms of prediction accuracy. 

Most of the work that has been done on robust estimation techniques has been 

concerned with the estimation of a small number of parameters.' This paper 

considers the use of such techniques for the estimation of econometric models. 

The computational aspects of obtaining robust estimates of a general nonlinear 

econometric model are described, and then some results of estimating a particular 

model are presented. The particular model, described in Fair [4], is nonlinear in 

both variables and parameters, and the version used here consists of 11 stochastic 

equations and has 61 unknown parameters to estimate. 

1. THE COMPUTATION OF ROBUST ESTIMATES OF ECONOMETRIC MODELS 

Write the g-th equation of the model to be estimated as: 

(g = 1,...,G) 
(1) PAV its ++ +s VGrs X10s +++» Xe» By) = Us, a 

where the y;, are endogenous variables, the x;, are predetermined variables, f, is 

a vector of unknown parameters, and u,, is an error term. 

It will be useful to consider first the estimation of the model by full information 

maximum likelihood (FIML). The FIML estimates of the unknown parameters 

in (1) are obtained by maximizing 

T 
(2) L = —4Tlog|S| + > log|J,| 

t=1 

with respect to the unknown parameters,” where 

| 3 gam Agi) oT Napeirgte 
(3) S= (Sei); Soh = 7, Ug Un: 5 J, = OY nn » N= 1,..-; G. 

If G — M ofthe G equations are identities, then Sis M x M, but J, remains G x G. 

* Research supported in part by National Science Foundation Grant GJ-1154X2 to the National 
Bureau of Economic Research, Inc. The author is indebted to David Belsley, Gregory Chow, David 
Hoaglin, Paul Holand, and Edwin Kuh for helpful comments, and to David Jones and Rod Gretlin 
for research assistance. Computations reported here were performed in part on the TROLL system. 

1 See, for example, the studies of Andrews et al. [2], Andrews [1], and Hughes [9]. 
2 See, for example, Chow [3]. 
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The maximization of L in (2) is a computationally difficult problem, and few 

nonlinear models of any size have been estimated by FIML. There has, however, 

been recent progress in the development of algorithms for solving unconstrained 

optimization problems. Some of these algorithms were tested and compared in 

Fair [5] in the context of solving optimal control problems; the results indicate 

that large unconstrained optimization problems can be solved. One problem of 

239 unknown parameters was solved, and problems of 100 parameters were solved 

routinely. Another encouraging aspect of these results is that analytic derivatives 

were never used. If an algorithm required first or second derivatives, the derivatives 

were always obtained numerically. The advantage of not having to compute 

analytic derivatives is the human effort saved. When numeric derivatives are used, 

the only human effort needed to set up the problem (other than acquiring the 

algorithm programs) is to write a program to compute the value of the objective 

function for a given vector of parameters.* The three main algorithms considered 

in [5] were the 1964 algorithm of Powell [11], which does not require any deriva- 

tives ; a member of the class of gradient algorithms considered by Huang [8], which 

requires first derivatives; and the quadratic hill-climbing algorithm of Goldfeld, 

Quandt, and Trotter [7], which requires both first and second derivatives. These 

are the algorithms that were used to obtain the FIML estimates for the results in 

Section 2. 

Consider next the estimation of a single equation of (1) by the least-absolute- 

residual (LAR) technique, a type of robust estimator. The LAR estimates are ob- 

tained by minimizing 

T 

(4) Q= > lug! 
t=1 

with respect to the unknown parameters. Since in general u,, is a nonlinear function 

of the unknown parameters, Q cannot be minimized through the solution of a 

linear programming problem. An attempt was first made in this study to minimize 

Q for the results in Section 2 by using the approach and algorithms discussed above, 

but this attempt failed. The algorithms were not in general successful in finding 

global optima. Often they converged to different answers from different starting 

points, and many times different algorithms converged to different answers from 

the same starting point. 

LAR estimates can, however, be obtained, at least approximately, by con- 

verting the problem into a weighted-least-squares problem. Rewrite Q as: 

> (ugs)” 
(5) Q=> 

t=1 |ue,| 

The problem of minimizing Q in (5) is merely a weighted-least-squares problem 

if the denominator is known. An iterative procedure can thus be used to mini- 

mize Q. Initial estimates of the residuals are first obtained, say by ordinary least 

3 For the FIML problem, derivatives are, of course, involved in computing J, in (2). In most cases 
of this type it is probably better to obtain analytic expressions for the derivatives that are involved in 
the direct computation of the objective function, rather than to compute these derivatives numerically 
as well. 
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squares, and are then used as weights to obtain new estimates of the parameters , 

and residuals by weighted least squares. These new residual estimates are then used 

as new weights to obtain new parameter and residual estimates, and so on. If u,, 

is a nonlinear function of the parameters, then a nonlinear optimization problem 

has to be solved to obtain the weighted-least-squares estimates for each iteration. 

This type of a nonlinear optimization problem is, however, usually easy to solve. In 

the iterative technique just described some account has to be taken of zero or near 

zero residual estimates.* The easiest way to handle this is to set residual estimates 

that are less than some small number ¢ in absolute value equal to «. For the work 

in Section 2, ¢ was taken to be 0.00001, and the program was allowed to run for 

four iterations. The estimates were usually changing only slightly after the first or 

second iteration following the initial ordinary-least-squares estimates. Because of 

the e-treatment of small residuals, the estimates obtained by the procedure just 

described will not be exactly LAR estimates, but for practical purposes they should 

be quite close. The estimates obtained by this procedure will be called WLS-I 

estimates. 

Many other robust estimators can be considered as weighted-least-squares 

estimators ; two of these were used for the work in Section 2. The first is a combina- 

tion of ordinary-least-squares for small residuals and LAR for large residuals. For 

this estimator the denominator in (5) was still taken to be |u,,| if |u,,| => k, but was 

taken to be k if |u,,| < k. The value of k was taken to be a robust estimate of the 

standard error of the regression, namely m/0.6745, where m is the median of the 

absolute value of the estimated residuals.° The WLS-I estimates were used as 

starting points, and the program was allowed to run for four iterations. The median 

of the absolute value of the residual estimates was reestimated at each iteration, 

and the value of k was changed from iteration to iteration. This estimator will be 

called WLS-II. 

The second of the other weighted-least-squares estimators weights each 

residual as® 
= 2712 ; 

and 0 otherwise, where 

This estimator is attributed to John W. Tukey by Andrews [1]. Values for k, of 

both 6 and 9 have been proposed, and the value of 6 was used for this study. The 

value of k, was taken to be m/0.6745, where again m is the median of the absolute 

value of the residuals. The WLS-I estimates were used as starting points, and the 

program was allowed to run for four iterations. The value of k, was changed from 

iteration to iteration. This estimator will be called WLS-III. 

“In the linear case, the true optimum will, of course, correspond to k of the residual estimates 
being exactly zero, where k is the number of parameters estimated. 

5 See Andrews et al. [2] for a use of this estimator. 
© The weights used for this estimator are to be compared to 1 /lu,| for the WLS-I estimator and 

1/\u,,| or 1/k for the WLS-II estimator. 
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Both WLS-II and WLS-III also require that a nonlinear optimization problem 

be solved for each iteration if u,, is a nonlinear function of the parameters; but 

again this type of problem is usually easy to solve. 

The robust estimators considered so far are single-equation estimators and 

do not take into account the problems associated with estimating systems of 

equations. Nevertheless, when robust estimators are considered as weighted-least- 

squares estimators, it is easy to modify, say, the FIML estimator to be a robust 

estimator. Consider, for example, the WLS-I estimator, which in the single- 

equation case weights each residual by 1/|u,,|. The natural extension to the FIML 

case is to consider maximizing 
T 

(6) L* = —}Tlog|S*| + > log|Jj, 
t=1 

where 

1 rt Us Un 
(7) S* = (Sis = pL 7 Bh = 1,...,G, 

, 7 T nell |u| [Us| 

and where J, is the same as in (3). Given an initial set of residual estimates to be 

used as weights, L* can be maximized with respect to the unknown parameters. 

In the maximization process each residual is weighted by one over the square root 

of the absolute value of the initial residual estimate. Weighting schemes other than 

the one used for WLS-I can, of course, also be used, which merely changes the 

computatior, of s*, in (7). One can also iterate, if desired, in the same manner as 

described above for the single-equation estimators. In this case, each iteration 

corresponds to the solution of one weighted FIML maximization problem. 

The same algorithms that were used to maximize L in (2) can be used to 

maximize L* in (6). The only change needed in the program that computes the 

objective function is to change the computation of s,,. The advantage of using 

computational procedures that do not require the use of analytic derivatives is 

obvious in the present case, where it would be laborious to modify the analytic 

derivatives for each new weighting scheme tried. For the results in the next section 

only the WLS-I weighting scheme was combined with FIML. The weights were 

taken from the WLS-I residual estimates, with residual estimates of less than 

0.00001 being set equal to 0.00001. Because of cost considerations, no iterations on 

the weights were performed. In other words, L* was only maximized once, and the 

new residual estimates from this solution were not used to construct new weights 

to be used for a second maximization, and so on. This estimator will be called 

FIMLWLS-I. 

Any other estimators of simultaneous equations models that are based on 

minimizing a function of the residuals can likewise be modified to be robust 

estimators by weighting the residuals in different ways. One obvious way to modify 

the two-stage least squares estimator, for example, is to run the first-stage regres- 

sions in the usual way, replace in the usual way the actual values of the right-hand- 

side endogenous variables in the structural equation being estimated with the 

resulting fitted values, and then run a weighted-least-squares regression for the 

second stage. One could iterate, if desired, in the same way as described above. 
Again, the availability of optimization procedures that do not require analytic 
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deri: atives should greatly increase the number of modifications of a particular 

estimator that it is feasible to consider. 

2. AN EXAMPLE 

The model used for the results in this section is described in [4] and will not be 

discussed in any detail here. For present purposes, the monthly housing starts 

sector in the model has not been used, and housing starts have been taken to be 

exogenous. Imports were also taken to be exogenous. The period of estimation 

was 1960 II—1973 I, a total of 52 observations. Dummy variables were added to a 

few of the equations to adjust for the effects of two auto strikes.’ Adjusting for 

strikes in this way is, of course, already a form of robust estimation in the sense 

that one has adjusted for large residuals that occur because of the strikes. 

The model was estimated using six different estimators : ordinary least squares 

(OLS), FIML, WLS-I, WLS-II, WLS-III, and FIMLWLS-I. All but one of the 

equations were estimated under the assumption of first-order serial correlation of 

the error term. For each of the six estimators, first-order serial correlation was 

handled by transforming each equation into one with a non-serially correlated 

error term and then treating the resulting equation as nonlinear in the parameters. 

If, for example, the equation to be estimated is: 

(8) 1 aa, b, + bx, + b3y,-1 + U,, 

where 

(9) u, = pu,_; + Er, 

€, not being serially correlated, the equation can be written: 

(10) Yr = PYr-1 + b,(1 . p) + bA(x, rn pX,—4) + b3(y,-; — PY,- 2) + Er, 

which is a standard nonlinear equation in the parameters. This is a convenient 

way of handling serial correlation in the present context, since the only complica- 

tion it introduces is to make what might otherwise be a linear equation in param- 

eters into a nonlinear one. 

The model has the computational advantage that it decomposes into two 

blocks : a linear, simultaneous block and a nonlinear, recursive block. This means 

that J, in (3) can be factored into two parts: one that is a function of some param- 

eters but not of time and one that is a function of time but not of any parameters. 

Consequently, in the computation of the FIML and FIMLWLS-I estimates, the 

determinant of J only had to be computed once per evaluation of L or L*, rather 

than the T times required for the more general case. In computing the FIML 

estimates, estimates were first obtained for the two blocks separately, using the 

ordinary least squares estimates as starting points, which required estimating 38 

and 23 parameters, respectively. FIML estimates of all 61 parameters were then 

’ Aside from treating housing starts and imports as exogenous and adding a few dummy variables, 
two other small changes were made to the model in [4]. The price equation was taken to be linear with 
a length of lag of 20, and in equation (9.12) E, was replaced by M, + MA, + MCG,. See Table 11-4 
in [4] for the original model. Dummy variables were not used for the work in [4], and strike observations 
were merely excluded from the sample period. 
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obtained, using the FiML estimates of the two blocks as starting points. 

FIMLWLS-I estimates were obtained in a similar manner. In contrast to the 

work in [5], no systematic attempt was made in this study to compare the various 

optimization algorithms, and so no comparisons of alternative algorithms will be 

presented here. Powell’s no-derivative algorithm was usually used first to obtain 

an answer, and then this answer was checked by starting t 1e gradient and quadratic- 

hill-climbing algorithms from the answer to see if a larger value of the likelihood 

function could be found. In some cases a larger value was found using the other 

two algorithms, and in some cases the quadratic-hill-climbing algorithm found a 

larger value than did the gradient algorithm. In general it appeared that the 

FIML and FIMLWLS-I computational problems here were not as well behaved 

and as robust to the use of different algorithms as were the optimal control prob- 

lems in [5]. 

The six sets of estimates are available from the author on request. The two 

sets of FIML estimates tended to differ more from the other four sets of estimates 

than the other four sets of estimates differed from each other. There were no 

important cases of sign reversals among the different estimates of the same 

parameter. 

The six different sets of estimates are compared in Table | in terms of within- 

sample prediction accuracy. Each set of estimates was used to generate static and 

dynamic predictions of the endogenous variables. Root mean square errors and 

mean absolute errors for five variables are presented in Table 1 for each set of 

estimates, The comparison here is similar to the comparison in Fair [6], where 

ten estimators were analyzed. The study [6] dealt only with the eight-equation 

linear subset of the model in [4], however, while this paper considers the nonlinear 

part of the model as well. The results in [6] indicate that accounting for first-order 

serial correlation of the error terms is important, and for this reason all the esti- 

mators have been modified to account for serial correlation here.® 

The five variables in Table 1 are GNP in current dollars (GNP,), the private 

output deflator (PD,), GNP in constant dollars (GNPR,), private nonfarm em- 

ployment (M,), and the level of the secondary labor force (LF ,,). The errors for the 

six variables are not independent of one another in the sense that, for example, 

large errors in predicting GNP, are likely to lead to large errors in predicting the 

other variables. GNP, is determined in the linear, simultaneous-equations block 

of the model, and the other variables are determined in the nonlinear, recursive 

block. The four variables presented in Table | from the recursive block are the 

four most important variables in the block. The estimates of the serial correlation 

parameters were used in the generation of all the predictions from the model. 

The results in Table | are fairly self-explanatory. Consider GNP, first. OLS is 

obviously the worst, being last on all grounds except the one- and two-quarter- 

ahead predictions, where it is better than FIMLWLS-I. WLS-I is better than 

WLS-II and WLS-III for the three-quarter-ahead predictions and beyond, beating 

them on all counts, although not by much for the three-quarter-ahead prediction. 

For the one- and two-quarter-ahead predictions, the results are close. FIML does 

® To be consistent with the notation in [6], “AUTO1” should be added to the name of each 
estimator in Table 1, but since all estimators considered in this section are “AUTO1” estimators, this 
will not be done. 
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well for all but the simulation over the entire period, where it falls down somewhat. 

FIMLWLS-I is the best for the simulation over the entire period, but is not 

particularly good for the other predictions. 

Consider PD, next. The two FIML estimators are the worst, which turns out 
to be caused in large part by different FIML and FIMLWLS-I estimates of the 

constant term in the PD, equation. The results for the other four estimators are 

close except for the simulation over the entire period, where the ranking is 

WLS-I, WLS-II, WLS-III, and OLS. This ranking is the same as that for GNP, 

for the simulation over the entire period, which is explained by the fact that for 

the simulation over the entire period the predictions of GNP, have an important 

effect on the predictions of PD,. 

For GNPR,, OLS is again the worst, being last on all grounds. WLS-I is 

better than WLS-II and WLS-III on all grounds. FIML does better than WLS-I 

for the one- and two-quarter-ahead predictions, even considering the poorer 

FIML predictions of PD,, which are used in the computation of the predictions 

of GNPR,, but the opposite is true for the three-quarter-ahead predictions and 

beyond. FIMLWLS-I is the best for the two- through five-quarter-ahead pre- 

dictions, but falls down slightly for the other two. 

For M,, the results are fairly close except for the simulation over the entire 

period, where the RMSE ranking is WLS-I, WLS-II, WLS-III, OLS, FIMLWLS-I, 

and FIML, and the MAE ranking is WLS-I, WLS-II, FIMLWLS-I, FIML, 

WLS-III, and OLS. For LF ,,, the FIML estimators get worse as the period ahead 

lengthens. For the simulation over the entire period, OLS is best by a slight amount. 

The following is a tentative list of conclusions drawn from the results in 

Table 1. 

1. WLS-I appears better than WLS-II and WLS-III, and all three appear 

better than OLS. It is not just the treatment of large residuals that appears impor- 

tant, since WLS-II, which is a combination of OLS for small residuals and WLS-I 

for large residuals, does not do as well as WLS-I. The different treatment of small 

residuals by WLS-I compared with OLS appears also to be important. 

2. For the predictions of GNP,, FIML is obviously better than OLS, which 

is the same conclusion reached in [6]. For the other variables, which are not 

determined simultaneously, FIML is not always better. In other words, more 

gain appears likely from using FIML over OLS when the model is simultaneous 

than when it is recursive. 

3. Among WLS-I, FIML, and FIMLWLS-I there is no obvious winner since 

the rankings differ depending on the variable predicted and the number of periods 

ahead for which the prediction is made. Overall, however, WLS-I probably has 

an edge, especially if emphasis is put on the results for the variables in the recursive 

block, where FIML and FIMLWLS-I do not in general do particularly well. 

4. For the one-quarter-ahead (static) predictions, the results are all fairly close, 

which means that if one is only interested in static predictions, the choice of an 

estimator may not be too important (assuming the estimator accounts for first- 

order serial correlation). 

Predictions were also generated based on WLS-I estimates obtained after the 

first iteration from ordinary least squares (rather than after the fourth iteration as 

above). The results were better than the OLS results, but not as good as the 
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TABLE 2 
OuTSIDE-SAMPLE PREDICTION ERRORS 

Estimation Period: 1960 II-1968 IV Prediction Period: 1969 I-1973 I 
(Error measures for the simulation over the entire prediction period only) 
RMSE = Root Mean Square Errors MAE = Mean Absolute Errors 

RMSE MAE 

OLS WLS-I OLS WLS-I 

GNP, 13.48 9.84 10.76 8.22 
PD, 0.85 0.82 . 0.72 0.69 
GNPR, 8.23 7.46 6.64 5.81 
M, 421. 468. 355. 429. 
LF,, 2276. 2230. 2109. 2067. 

WLS-I results based on four iterations. Iterating more than once clearly improved 

the prediction accuracy of the estimator. 

One final comparison was made here to see if the superiority of WLS-I over 

OLS also held for outside-sample predictions. The model was reestimated by 

WLS-I and OLS only through 1968 IV. Predictions for the 1969 I-1973 I period 

were then generated based on these two sets of estimates. In Table 2, error measures 

for the simulation over the entire prediction period (17 observations) are presented 

for the same five variables presented in Table 1. For GNP,, WLS-I outperforms 

OLS. Of the other four variables, which are determined in the recursive block, 

WLS-I is better for all biit one (M,). Overall, WLS-I appears to outperform OLS,?° 

although the superiority of WLS-I here does not appear as pronounced as it was 

for the within-sample comparisons. This same conclusion also emerged from 

examining in more detail the predictions for the period 1969 I-1973 i (e.g., by the 

number of periods ahead predicted) and from examining predictions for the 

period 1970 III—1973 I based on estimates through 1970 Ii. 

3. CONCLUSION 

The purpose of this paper has been to discuss the computational aspects of 

robust estimates of econometric models and to present a few results of estimating 

a particular model. When robust estimators are considered as weighted-least- 

squares estimators, robust estimates can be obtained by a combination of solving 

unconstrained optimization problems and iterating. The unconstrained optimiza- 

tion problem for unweighted or weighted FIML estimates is likely to be by far the 

most expensive to solve for a given model, but even in this case it now appears 

feasible to estimate models of up to about 50 parameters. Certainly the computa- 

tions involved in obtaining robust, single-equation estimates appear feasible for 

any model. Also, by using optimization algorithms that do not require derivatives 

or for which derivatives are obtained numerically, one greatly decreases the human 

effort involved in considering alternative estimators. 

° This conclusion is consistent with the results of Meyer and Glauber [10], who found the LAR 
estimator to be an improvement over ordinary least squares in terms of outside-sample, single-equation 
prediction accuracy. 
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The conclusions in Section 2 are clearly tentative. The comparisons among 

the estimators are based only on the criterion of prediction accuracy, and the 

model used for the comparisons has some special features that are not character- 

istic of other models. Nevertheless, the robust estimators do predict well, and the 

results should at least provide encouragement to further work in this area. 

Yale University and NBER Computer Research Center 
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