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Annals of Economic and Social Measurement, 3/4, 1974 

ESTIMATION AND INFERENCE IN NONLINEAR STRUCTURAL 

MODELS* 

BY E. K. BERNDT, B. H. HALL, R. E. HALL, AND J. A. HAUSMAN 

Maximum likelihood and minimum distance estimators are specified for nonlinear structural econometric 
models. A theorem is proven which insures convergence to a local maximum of the respective likelihood 
function and distance function. Techniques of inference are developed for both estimators. The maximum 
likelihood theorem and algorithm are based on the fundamental statistical relation that the covariance 
matrix of the estimator is equal to the covariance matrix of the gradient of the likelihood function. The 
algorithm requires much less computation than previous algorithms and, unlike previous algorithms, is 
guaranteed to converge. 

Econometric methods of structural estimation generally assume linearity of the 

model in both variables and parameters. On the other hand, many contemporary 

models of economic behavior are both nonlinear and simultaneous. Modern 

demand analysis, for example, starts from a rich specification of individual tastes 

for a variety of goods and deals with the structural relation it implies among prices, 

quantities, and income. This relation is nonlinear in both variables and parameters 

in all but the simplest cases. Similarly, models of production with many factors 

are invariably nonlinear in their variables, and are frequently nonlinear in their 

parameters as well, especially when trends in productivity are present. In this paper 

we deal with the practical issues that arise in estimating nonlinear structural 

models. We review the statistical theory of estimation in these models and draw 

attention to some important recent advances. We also summarize some useful 

results from the theory of maximization. Our main contribution is a set of algo- 

rithms for estimation and inference in nonlinear structural models. These carry out 

statistical procedures with known desirable properties, embody modern numerical 

techniques, and are organized to conserve both computation and storage. 

1. MODEL AND STATISTICAL THEORY 

Throughout we are concerned with estimation and inference in the multi- 

variate structural model, 

(1.1) F{y,, B) = &. 

Here y, is a 1 x M row vector of jointly dependent variables, F, is a twice-differ- 

entiable function whose value isa 1 x M vector,and¢,isal x M vector ofrandom 

disturbances, assumed to be distributed according to the multivariate normal 

probability law, with expectation zero and variance-covariance matrix £. The 

model may involve exogenous variables as well, but these are subsumed under 

* The authors are grateful to J. E. Dennis and D. W. Jorgenson for helpful suggestions at several 
points in this research. Proofs of theorems are omitted due to space constraints but are available from 
the authors upon request. The authors’ affiliations, in the order in which their names are listed above, 
are as follows: University of British Columbia, Harvard University, Massachusetts Institute of Tech- 
nology, and Massachusetts Institute of Technology. 
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the dependence of F, on the time index, t. The model contains a K x | vector of 

unknown parameters, 8. We make no assumptions about the assignment of 

parameters to the M elements of F,, so, for example, the same parameter may 

appear in more than one equation. We assume that f is identifiable; see Fisher 

(1966), Chapter 5, for a discussion of identification problems in nonlinear structural 

models. 

We discuss two estimators of 8: maximum likelihood and minimum distance. 

Problems of estimation and inference are well understood for maximum likelihood, 

but the estimator has received little use in econometric work because of the 

apparent complexity of the calculations it requires. Previous discussions of 

maximum likelihood (Eisenpress and Greenstadt (1966) and Chow (1973)) do not 

employ a numerical method of maximization that guarantees convergence. 

Further, their use of Newton’s method requires the formation and calculation of 

an enormous number of third derivatives of the model, effectively restricting their 

method to small models. We show in this paper that the third derivatives are both 

unnecessary and dangerous. By eliminating them we bring about a great simpli- 

fication of the computations and at the same time achieve a method whose con- 

vergence is guaranteed. 

Minimum distance methods have formed the basis of most practical work to 

date on simultaneous estimation of linear structural models. Three-stage least 

squares is a minimum distance estimator. Recently Amemiya (1974) has extended 

the theory of minimum distance to nonlinear models. We discuss the application 

of his method in simultaneous estimation. The minimum distance estimator is 

substantially easier to compute than is maximum likelihood, but is not generally 

statistically efficient. However, the estimates are consistent and asymptotically 

normal, so the method can form the basis for a complete approach to estimation 

and inference in nonlinear structural models. 

2. GRADIENT METHODS FOR MAXIMIZATION 

In this section we review results on numerical methods of maximization that 

are familiar to applied mathematicians but have been overlooked in most statistical 

work. Our essential point is that methods are available whose convergence to at 

least a cfitical point is guaranteed in theory. A serious defect of many applica- 

tions of the method of scoring and other statistical maximization procedures is 

their failure to use methods with assured convergence. 

In general we deal with the maximization of the scalar function V(x) of the 

vector x of length K. We assume that V is twice continuously differentiable and has 

compact upper contour sets. The starting point for our analysis is the 

Gradient Theorem 

Consider the gradient of V at x, g = 0V(x)/0x. Then any vector, d, in the same 

halfspace as g (that is, with d’g > 0) is a direction of increase of V(x), in the 

sense that V(x + Ad) is an increasing function of the scalar A, at least for small 

enough A. 
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This classical result in maximization theory is proved, for example, in Jacoby et al., 

(1972), p. 97. , 

A successful method chooses a direction at each iteration that lies in the 

halfspace defined by the gradient. In general, each iteration consists in computing 

the gradient, g, deriving from it a direction, d, and then finding a value of / that 

maximizes V(x + Ad). Any method following this procedure is assured of con- 

vergence. 

The set of directions, d, that are in the gradient halfspace consists precisely of 

those that can be derived from the gradient by multiplying it by a positive definite 

matrix, say Q. Alternative gradient methods are specified succinctly by providing 

rules for forming Q at each iteration. In general, convergence is speeded by a choice 

of Q that is close to the inverse of the Hessian matrix of second derivatives of V(x), 

especially in the neighborhood of the optimum where the use of the Hessian 

makes final convergence quadratic. If V(x) is concave, then the inverse of the 

Hessian matrix itself can serve as Q, and we have Newton’s method. Even in that 

case, convergence is guaranteed only if a suitable method is employed for search- 

ing for A at each iteration. In most statistical applications, however, the objective 

function V(x) cannot be relied upon to be concave, and Newton’s method is 

unsuitable. Dependence on Newton’s method is a shortcoming of the work of 

Eisenpress and Greenstadt (1966) and of Chow (1973) on nonlinear structural 

estimation. 

In statistical work, it is usually convenient to choose Q in a way that makes 

it approximate the variance-covariance matrix of the estimates. Since the latter is 

necessarily positive definite, it is eligible as a choice of Q. Later in the paper we 

will derive easily computed Q’s that serve as well as variance-covariance matrices 

for the maximum likelihood and minimum distance cases. It is necessary, however, 

to rule out the possibility that Q approaches a singular matrix as the process 

iterates. For this purpose we state the 

Restriction on Q 

Let « be a prescribed positive constant less than one. At each iteration we 

require 

dg. 
(2.1) y= Td > a. 

If r drops below « on a particular iteration, we should replace Q by a matrix with 

larger diagonal elements. Note that the restriction can always be satisfied by 

Q = I, which is an admissible choice. 

All gradient methods require a “‘A-search” after de.ermining the direction, d. 

The choice of method for selecting A involves some subtle issues—not every method 

yields guaranteed convergence. For example, trying out decreasing values of A 

until one is found that gives a higher value of V(x + Ad) is inadequate; it can 

generate an infinite sequence of iterations that do not converge to a point where 

g is zero. However, a choice of 1 that maximizes V(x + Ad), while guaranteeing 

convergence, often imposes an unacceptable computational burden (Powell, 

1971). Convergence is assured in the class of problems we consider under the 
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Criterion for Choice of i 

Let 6 be a prescribed constant in the interval (0, 3). Define 

_ V(x.+ Ad) — Vix) 
(2.2) W(x, A) mn Ad'g . 

If y(x, 1) > 6, take A = 1. Otherwise, choose / to satisfy 

(2.3) 6 < yp(x,A)< 1 - 6. 

Under our assumptions about V(x), a A satisfying this criterion will always exist. 

Now we can state the 

Convergence Theorem 

Assume V(x) is twice continuously differentiable and is defined over a com- 

pact upper contour set. 3 

Consider the sequence x", x, ..., where 

(2.4) x@+D — pO 4 Yg@ 

(2.5) d® = Qg 

and Q obeys the restriction (2.1) and A“ satisfies the criterion (2.3). Then 

lim g = 0. 
i--a@ 

The proof of this theorem follows Goldstein (1967), page 31, generalized along the 

lines he suggests on page 36. 

Not every critical point of V(x) is a local maximum. If the iterative process 

chooses a value of x where V(x) has a local minimum or a saddle point, the iterative 

process will stall, as g = 0 at such points. Since the process moves intentionally 

toward a critical point only if it is a local maximum, stalling elsewhere is only 

a very remote possibility. The safeguard against this possibility is precisely the 

same as against convergence to a local maximum that is not a global maximum: 

choose several initial values of x. If they do not all lead to convergence to the 

same point, investigate the actual shape of the function with care until the globai 

maximum is located. 

3. ESTIMATION AND INFERENCE BY MAXIMUM LIKELIHOOD 

Maximum likelihood estimates are known to be statistically efficient; see, 

for example, Rao (1965), pp. 299-302, and Hausman (1975), who discusses regularity 

conditions ‘for the structural model. Further, the likelihood ratio test provides a 

powerful and general method of inference. In structural estimation, however, 

maximum likelihood has seen little practical use to date because of the apparent 

complexity of the computations necessary to find the maximum of the likelihood 

function. Until Hausman’s recent work (1974, 1975), maximum likelihood seemed 

impractical even for linear structural models. Hausman demonstrates that 
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iteration of an instrumental variables estimator with suitably chosen instruments 

converges to maximum likelihood if it converges at all. However, he does not 

establish that his method converges.’ Further, it is still unclear how his method 

could be extended to models that are nonlinear in both parameters and variables. 

In this section we develop a practical approach to maximum likelihood 

within the framework of gradient methods. Our approach has two substantial 

advantages over the application of Newton’s method advocated by Eisenpress 

and Greenstadt (1966) and Chow (1973). First, its convergence is assured. Newton’s 

method uses a Q matrix that may not be positive definite and thus fails to confine 

the direction vector to the gradient halfspace. Second, our method requires the 

evaluation of derivatives of the model up to second order only, while Newton’s 

method requires certain third derivatives. The sheer number of third derivatives 

makes Newton’s method suitable only for small structural models. We eliminate 

the third derivatives by taking advantage of a fundamental statistical relation: 

the asymptotic variance-covariance matrix of a maximum likelihood estimator is 

equal to the variance-covariance matrix of the gradient of the likelihood function 

(Kendall and Stuart (1967), Vol. II, p. 9). As we remarked earlier, it is natural and 

convenient to use a variance-covariance matrix as the Q matrix in a gradient 

method. The relevance of this statistical relation to numerical maximization of 

likelihood functions in econometric applications has apparently not been pointed 

out before. 

We need to maximize the concentrated log-likelihood function of the co- 

efficients, B: 

1 
(3.1) L(B) = k + }/log|det J,| — = log det F' F. 

t 

Here k is an inessential constant, and J, is the Jacobian matrix of the transformation 

from the underlying disturbances to the observed random variables, y,, 

_ OF{y,, B) 
(3.2) J,= Tee 

The gradient is 

OL 0 1 é 
re ne —~-—logdet ) FiF,=p-— q. (3.3) 5 Dap losidet J. 2 ap 08 e p> ‘F.=p-—q 

The variance-covariance matrix of the gradient is 

OL\ {éL\’ oe mph = oa whe 4 

Our strategy is to replace the expectation by a statistic with equal expectation. 

’ However, the use of an appropriate j-search guarantees convergence of Hausman’s procedure 
in the case of linear structural models. His method is related to ours, but he is able to simplify the 
expression for the gradient by using the linearity of the model. 
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The natural choice is the sample variance-covariance matrix of the gradient. We 

define 

6 ; 
(3.5) P, = ap csldet J,| 

~1 9S en a J’)y- 3 
X dC oe op 

and 

3.6 hs oF, > F. a 
( : ) q,; = op . es ie 

Then we define R; as the sample covariance matrix of the gradient multiplied 

by T?: 

(3.7) Ry =T > (p, a 4.) (P, 4.) 

It is not hard to show that 

> 1 . l , 
(3.8) plim <-3 Rr = fim E70 — qy(p - ai). 

Thus R;' is a suitable choice for Q in a gradient method. We summarize our 

proposed approach in a 

Theorem on Computation of Maximum Likelihood Estimators and Their 

Covariance Matrices 

Consider the following iteration: 

(3.9) per ‘a po ee AOR®)- 1(p® = q”) 

where 4 is computed by the method of Section 2, R{? from equation (3.7), and p” 

and q“ from equation (3.3). Then 

(i) the method converges to a stationary point of the likelihood function as 

i— oOo, 

{ii) the method is close to Newton’s method in that 2; converges to the 

Hessian matrix of the likelihood function as T > o0, and 

(iii) (1/T)R;* is a consistent estimate of the variance-covariance matrix of 

the estimated parameters. 

Note that the assumptions on V(x) place no important restrictions on the 

likelihood functions encountered with nonlinear structural models. 

The following appiication of the theorem yields the maximum likelihood 

estimate and a consistent estimate of the associated variance-covariance matrix : 

Maximum Likelihood Algorithm 

1. Compute the variance-covariance matrix of the residuals from equation 

(1.1) using the estimated parameter values from the previous iteration. 
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For the first iteration, arbitrary initial values may be used. 

2. Over each observation, compute the Jacobian term, p,, and the “‘sum of 

squares” term, q,. Update R, p, and q. 

3. Calculate the new direction vector, d = R~ '(p — q). 

4. Check for convergence, defined as 

id;| 
ee 

i max (1, \B;\) 

5. Search for A and update f using equation (3.1) and equation (3.9). Return 

to step 1. 

6. Report f and its estimated variance—covariance matrix, (1/T)R~'. 

<_ prescribed tolerance 

The maximum likelihood algorithm may be modified at Step 2 by recalculating 

R only after several iterations have been carried out. Convergence of the modified 

algorithm is also assured, and the computational effort in forming R will be reduced. 

In many cases, however, most of the effort will be consumed in forming p, and q, 

at each iteration, so it is probably better to use the best available approximation 

to the curvature of the likelihood function. 

Likelihood ratio tests are the natural method of inference when maximum 

likelihood estimates are available. These tests are known to have many desirable 

properties (Kendall and Stuart, 1967, Vol. II, pp. 224-247). Briefly, if L* is the 

maximum of the likelihood function of a structural model which is nested in a 

larger structural model with maximized likelihood L, then the statistic 

(3.10) —2(log L* — log L) 

is distributed asymptotically as 7”, with degrees of freedom equal to the difference 

in the numbers of parameters in the two models. 

We conclude our discussion of maximum likelihood with the remark that 

iteration of our algorithm is not required to achieve any of the known desirable 

properties of the resulting estimator, provided that the initial parameter values 

are consistent estimates. The asymptotic equivalence of maximum likelihood 

estimates and estimates obtained from one iteration of Newton’s method is well 

known.” Since the matrix R in our procedure converges to the matrix of second 

derivatives, it follows that one step of our method is asymptotically equivalent to 

maximum likelihood as well. The step requires much less computation than one 

step of Newton’s method. This justifies the 

One-Step Efficient Estimation Algorithm 

1. Use the minimum distance algorithm of Section 4 to obtain consistent 

parameter estimates, 8”. Use these to evaluate p, and q, and thus to form 

R, p, and q. 

2. Calculate the direction vector, d = R~ ‘(p — q). 

? See, for example, Zacks (1971), pp. 250-251. The equivalence was pointed out by Rothenberg 
«ind Leenders (1964) for the linear structural model. 

659 



3. Calculate the efficient estimates, 

(3.11) B= pM? +d 

Note that A is taken as one. 

4. Calculate the variance-covariance matrix (1/T)R~* using B, and, if needed 

for inference, the value of the likelihood functions. 

Inference is again based on likelihood ratio tests as described earlier. 

4. ESTIMATION AND INFERENCE BY THE MINIMUM DISTANCE METHOD 

The maximum likelihood method discussed in Section 3 yields efficient 

estimates and powerful tests. These properties are achieved at the computational 

cost of evaluating second derivatives of the structural model arising from the 

presence of the Jacobian matrix in the likelihood function. In an important recent 

paper, Amemiya (1974) has developed a class of estimators for nonlinear structural 

models that requires the minimization of a quadratic distance function. The 

distance function contains instrumental variables but no explicit Jacobian matrix. 

In the linear case, Hausman (1975) shows that a particular set of instruments 

substitutes exactly for the Jacobian and thus he provides an interpretation of 

maximum likelihood in terms of instrumental variables. The relation between 

Amemiya’s instrumental variables estimator and maximum likelihood is less clear 

in the nonlinear case. Amemiya demonstrates only that for arbitrarily chosen 

instruments, the minimum distance estimator is consistent and asymptotically 

normal. 

It is easiest to deal with Amemiya’s prodedure in a “stacked”’ version of the 

model: 

(4.1) fly, B) =e 

where f, y, and e are T- M x 1 vectors. His estimator minimizes the distance, 

(4.2) A(B) = f(y, B)Y Df (y, B) 

where D is defined as* 

(4.3) D = (S~' @ IH(H(S~* @ INH)" 'H'(S~* @ J), 

Sis an arbitrary M x M symmetric positive definite matrix, and H isan MT x N 

matrix of instrumental variables. Amemiya proves that the value of f that mini- 

mizes the distance is a consistent and asymptotically normal estimator of the true B, 

provided the instruments, H, are independent of the structural disturbances, «. It 

is not, in general, an efficient estimator. If fis linear in both y and 8, if S is a con- 

sistent estimator of the structural variance-covariance matrix &, and if H consists 

of all of the exogenous variables in the model (all of the derivatives of f with respect 

to B that do not involve y), then the minimum distance estimator is three-stage 

least squares and is known to be asymptotically efficient. No precise information 

about efficiency is available when fis nonlinear.* Presumably S should be as close 

3 Amemiya deals with the univariate case where D has a simpler form. We start from an obvious 
multivariate generalization of his results. 

* Hausman (1975) does prove efficiency of his instrumental variables estimator in the case of a 
model that is nonlinear in parameters but linear in variables. 
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as possible to & and the instruments should reremble the derivatives of f with 

respect to p. 

The gradient of the distance function is 

(4.4) g = GDf 

where G is the matrix of derivatives of f with respect to 8. Again, we seek a point 

where g = 0. Amemiya demonstrates that the asymptotic variance-covariance 

matrix of the minimum distance estimator is (G’DG)~ *. As before, this is a suitable 

choice for the Q matrix in a gradient method: it is positive definite, and its compu- 

tation is necessary in any case at the conclusion to provide an indication of the 

sampling dispersion of the estimates. It is possible to show that G’DG converges in 

probability to the Hessian matrix of the distance function, so its use gives a Newton- 

like method. We summarize our conclusions about the minimum distance esti- 

mator in a 

Theorem on Computation of the Minimum Distance Estimator and Its 

Variance-Covariance Matrix 

Consider the following iteration: 

(4.5) Bit) = BO — 207GODG®)- 1g 

where 4 is computed by the method of Section 2 and G, D, and g are as defined 

above. Then 

(i) the method converges to a stationary point of the distance function as 

i— 00, 

(ii) the method is close to Newton’s method in that G’'DG converges to the 

Hessian matrix of the distance function as T — 00, and 

(iii) [G'DG]~' is a consistent estimate of the variance-covariance matrix of 

the estimated parameters. 

Practical application of the minimum distance estimator for models of any 

size requires careful organization of the computations. It is desirable to avoid 

recomputing the distance function after the calculations begin, but the matrix D 

as defined in equation (4.3) is much too large to store in memory. Our approach 

is based on two preliminary transformations. We premultiply the instruments by 

the matrix square root of S~' @ I and postmultiply by the matrix square root of 

H'(S~' @ IH (the second transformation has the effect of orthonormalizing the 

instruments). Then at each iteration we perform the first of these transformations 

on the derivatives of the model and on the residuals. This process is described 

more precisely in the 

Minimum Distance Algorithm 

1. Calculate a consistent estimate of £,S. Calculate the square root or 

Choleski factorization of S~', W: 

(4.6) S-'=ww’. 



2. Form H'(S~' @ J)H and calculate the Choleski factorization: (H'(S~' @ 

I)H)~' = VV’. Form transformed instruments, 

(4.7) A =(W' @ HV. 

3. At each iteration, form the matrix G of values of the derivative of f. 

4. Form the transformed derivatives and residuals as 

(4.8) G =(W' @NG 

(4.9) f=(W @Uf. 

5. Calculate the direction, 

(4.10) d = (G'AA'G) ' GAAS. 

6. Check for convergence. 

7. Search for A, update B, and return to Step 3. 

The reader should have no trouble verifying that the expression for d in terms of 

transformed G, H, and f is the same as that specified in the theorem in equation (4.5). 

Inference for minimum distance estimators is based on the asymptotic 

normality of the estimates. We consider the following rather general class of non- 

linear null hypotheses : 

(4.11) BO = OB). 

Here f) is a vector of length n and f” is a vector of the remaining K — n param- 

eters. We assume that ® is an analytic function; often it will be linear or even 

constant. The statistic in the sample corresponding to equation (4.11) is 

(4.12) z = b® — Ob") 

which will be close to a zero vector if the null hypothesis is true. The statistic is 

asymptotically normal (Malinvaud, 1970, Chapter 9), with variance-covariance 

matrix 

yi.2) (4.13) V(2) = V2 — youn] oo } a | a® 

ab) ~ lam 

0d O® |\' 
+ (sa a | 

where V“) are the blocks of the asymptotic variance-covariance matrix of b, 

Then inference is based on the quadratic form, 

(4.14) F = z[V(z)]"*z 

which is distributed asymptotically as y?(n) under the null hypothesis. 

Computation of the test statistic appears a formidable task, but in fact a 

method exists for computing it as simply as the likelihood ratio statistic for maxi- 

mum likelihood. F is equal to twice the increase in the distance function when the 

null hypothesis is imposed as a constraint on the parameters in the way described 
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in the algorithm below. This method is familiar to econometricians in the linear 

regression model, especially in the form of the “Chow test”’, but its applicability to 

simultaneous estimation apparently has not been noted previously. 

Algorithm for Computing the x? Test Statistic from the Minimum Distance 

Estimator 

1. Estimate the parameters of the unconstrained model corresponding to the 

maintained hypothesis by the minimum distance algorithm. Let A be the 

value of the distance function at the minimum. 

2. Substitute the constraint b(7) = ®(b") into the model. 

3. Starting from the value of b") from Step 1 and, using the same variance- 

covariance matrix S as in Step 1, take one additional iteration. Set A = 1. 

4. Let A* be the value of the linearized distance function: 

(4.15) A* = 4f'Df 

where f are the residuals around the linearized model: 

= 0 of o® 
(4.16) f = fy, b) + son + ge sare (b*) _ pO) 

and b and b* are the estimates from Steps 1 and 3, respectively. 

5. Calculate F as 2(A* — A). 

Inference by this methdd requires no additional computations beyond those 

of estimation except for the calculation of the linearized distance. 

It is difficult to compare the power of this test relative to the corresponding 

likelihood ratio test. Since the minimum distance estimator is not generally 

efficient, the test based on it is probably usually less powerful than the likelihood 

ratio test. However, the minimum distance estimates are consistent, so the y? test 

is consistent as well—the probability of rejecting null hypothesis approaches one 

as the sample becomes large. 

5. APPLICATION TO NONLINEAR MULTIVARIATE REGRESSION 

Multivariate regression is an important special case of the general structural 

model. In the case of regression, the derivatives of the model with respect to the 

parameters do not depend on the endogenous variables, y. This has two implica- 

tions for our methods. First, and most important, the Jacobian determinant J, in 

the likelihood function of equation (3.1) equals unity and the troublesome term 

~ log |det J,| disappears from the equation. The gradient of the log-likelihood 

function is just 

oL 1 é 
' — = -q = —= = logdet > F/F,. 

It is not hard to show that 

ati 

(5.2) q= (FF (<-' @Nf. 
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The true (not sample) variance-covariance matrix of the gradient is then 

(5.3) R = E(qq’) = e| (7 | @HF (= ' OD 7. 

The second implication of the nonstochastic nature of 0f/0B is that we can pass 

the expectation operator through to the middle of this expression: 

(5.4) r-(F 5) @ NE f')(Z-* @ no 

al 
- (Fle a5 

Since this can be computed exactly, while the alternative R; of equation (3.7) is 

Only an estimate, it appears a better choice of the Q matrix in a gradient method 

and a better estimate of the variance-covariance matrix of the maximum likelihood 

estimator. This choice of Q is well known in univariate nonlinear regression as the 

Gauss-Newton method. For multivariate regression, the theorem on maximum 

likelihood estimators and the maximum likelihood algorithm in Section 3 continue 

to apply if R is substituted for R;. 

When the minimum distance estimator is applied in the case of multivariate 

regression, the matrix of instrumental variables, H, is superfluous and the distance 

matrix should be taken as 

ap 

(5.5) D=S"'@l. 

Malinvaud (1970, Chapter 9) has studied the minimum distance estimator in 

considerable detail. He has shown that for an arbitrary positive definite S$ the 

estimator is consistent and asymptotically normal, and further, that if S is any 

consistent estimator of £, the minimum distance estimator is asymptotically 

efficient. 

With the redefinition of D given above, the theorem on the computation of 

minimum distance estimators and the minimum distance algorithm of Section 4 

apply without change. 

Aithough the maximum likelihood and minimum distance approaches yield 

asymptotically equivalent estimators, they are not generally numerically identical 

in finite samples. Maximum likelihood updates the estimate of Y at each iteration, 

while minimum distance holds S constant. At the conclusion of maximum likeli- 

hood, £ is exactly the sample variance-covariance matrix of the residuals, but 

minimum distance lacks this consistency between § and the residuals. If the mini- 

mum distance algorithm is modified to update § at each iteration, it becomes 

precisely the same as the maximum likelihood algorithm. 

The one-step efficient method, using R from equation (5.4), proceeds as before. 

An initial consistent estimate can be obtained by applying univariate regression 

separately to each equation, or by minimum distance.° Then a single iteration 

5 If there are no parameter constraints across equations, minimum distance with S = / is exactly 
the same as univariate regression applied separately. 
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with A = | provides estimates that are asymptotically equivalent to full maximum | 

likelihood. 

Finally, inference in multivariate regression follows the rules set out at the 

ends of Sections 3 and 4. For maximum likelihood, the likelihood ratio is 

1 | 
(5.6) —2(log L — log.L*) = det pur - det —U'U. 

For minimum distance, the difference between the linearized constrained distance 

and the unconstrained distance is again x” with n degrees of freedom under the 

null hypothesis. Asymptotically the two methods of inference are equivalent, but 

will differ in finite samples because S will not be the sample variance-covariance 

matrix of the residuals in the minimum distance case. 
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