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Annals of Economic and Social Measurement, 3/4, 1974 

FULL INFORMATION INSTRUMENTAL VARIABLES ESTIMATION 

OF SIMULTANEOUS EQUATIONS SYSTEMS 

BY J. A. HAUSMAN 

Three full information estimators—3SLS, FIML, and full information instrumental variables (FIIV)}— 
are compared, based on an instrumental variable interpretation of FIML. In a test of the estimators on 
Klein Model I, 3SLS is used to form the instruments for FIIV, and the latter is iterated to compute the 
FIML estimates. An algorithm is specified for ensuring an increase in the likelihood function at each 
iteration of the FIML estimator. 

1. INTRODUCTION 

Full information estimation of simultaneous equation models makes use of all 

a priori information and thus provides consistent and asymptotically efficient 

estimates of the parameters of the model. Under suitable regularity conditions the 

method of maximum likelihood applied to such models attains the Cramer-Rao 

lower bound as the sample size becomes large. This estimator, the full information 

maximum likelihood (FIML) estimator, in general requires the iterative solution 

of a set of nonlinear equations. Therefore other estimators have been proposed, 

requiring less computational effort but providing equivalent asymptotic properties. 

Zellner and Theil [11] proposed the method of three-stage least squares (3SLS), 

and recently Lyttkens [5], Dhrymes [2], and Brundy and Jorgenson [1] have all 

proposed full information instrumental variables (FIIV) estimators which are also 

consistent and asymptotically efficient. Extending my previous work [3], in this 

paper I investigate the relation of all three estimators by examining their properties 

in the form of instrumenta! variables estimators. 

After specifying the standard linear simultaneous equations model in the next 

section, in Section 3 I develop an instrumental variable interpretation of FIML (as 

in [3]). This interpretation of FIML permits easy comparison of other estimators 

with FIML,; it does not require asymptotic expansions that have previously been 

necessary. Also, 3SLS and the full information estimator are compared with FIML 

by determining how their instruments differ from the FIML instruments. Lastly, 

the asymptotic covariance matrix of the FIML estimates is easily determined due 

to the instrumental variable form of the estimator. 

In Section 4 the recently proposed FIIV estimators are shown to be one step 

of the basic FIML iteration when it is begun with a consistent estimate. The 

instruments are identical, so that if these estimators are iterated and converge, the 

resulting estimate will be the FIML estimate. The iterative property does not hold 

for 3SLS, and I show that the essential difference is that 3SLS ignores overidenti- 

fying restrictions in formation of the instruments. Although by the usual first- 

order definition of efficiency this difference vanishes asymptotically, in finite 

samples there seems no reason to ignore a priori information. 

In Section 5 the properties of the three estimators are tested on Klein Model I, 

a well-known, three-equation econometric model. The 3SLS estimate is computed 

first and then used to form the instruments for the FIIV estimator. The FIIV 

estimator is then iterated, and the FIML estimates computed. As expected, the 
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FIIV estimates lie “between” the 3SLS estimates and FIML estimates. Even for 

the small Klein Model I the point estimates of the three models differ substantially. 

The FIML estimator as computed here has one severe drawback: it lacks 

the “uphill property” of ensuring an increase in the likelihood function at each 

iteration. The uphill property holds only when a certain matrix is positive definite. 

Therefore in Section 6 I propose an approximation to the matrix which would 

yield the uphill property when the matrix is not positive definite. The approxima- 

tion is asymptotically equivalent to the original matrix and is easily computed. 

Further experiments will be required to ascertain its properties in relation to other 

commonly used numerical procedures. 

In the concluding section I refer to the obvious need for the extension of these 

techniques to find efficient estimators for nonlinear simultaneous equations 

models. I have made this extension for the special case of nonlinearity in the 

parameters, but the case of nonlinearity in the variables remains to be solved. 

Consistent estimates of the parameters can be found; but as consistency is a weak 

property, it would be desirable to have asymptotic efficient estimators. 

2. SPECIFICATION AND ASSUMPTIONS FOR THE LINEAR CASE 

The standard linear simultaneous equations model is considered where, 

without restricting generality, all identities are assumed to have been substituted 

out of the system of equations: 

(1) YB + ZIT =U. 

Here Y is the T x M matrix of jointly dependent variables, Z is the T x K matrix 

of predetermined variables, and U isa T x M matrix of the structural disturbances 

of the system. The model thus has M equations and T observations. It is assumed 

that B is nonsingular, rk(Z) = K; that all equations satisfy the rank condition for 

identification; and that the system is stable if lagged endogenous variables are 

included as predetermined variables. Further, an orthogonality assumption, 

E(Z'U) = 0, between the predetermined variables and structural errors is required ; 

and the second-order moment matrices of the current predetermined and endog- 

enous variables are assumed to have nonsingular probability limits. 

The structural errors are assumed to be mutually independent and identically 

distributed (iid) as a nonsingular M-variate normal (Guassian) distribution : 

(2) U ~ NO, @ I) 

where = is positive definite almost surely, and no restrictions are placed on &. 

Thus for the present we assume the presence of contemporaneous correlation but 

no intertemporal correlation. The (row) vectors of U are thus distributed as multi- 

variate normal, U; ~ N(0, X). 

Now the identification assumptions will exclude some variables from each 

equation, so let r; and s; denote the number of included joinity dependent and: 

predetermined variables, respectively, in the i-th equation. Then rewrite (1) after 

choice of a normalization rule: 

(3) y; = Xb; + U; (i= 1,2,...,M) 
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X, = (%Z] 

ff 

so that X; contains the t; = r; + s; — 1 variables whose coefficients are not known 

a priori to be zero. It will prove convenient to stack these M equations into a 

system : 

(4) y= Xd+u 

where 

Yj xX, 0 "ad U, 

y=|-|, X= ce , b=] - u=|- 

Ym 0 Xu om U yg 

3. AN INSTRUMENTAL VARIABLE INTERPRETATION OF FIML 

The technique used to derive an instrumental variable interpretation of 

FIML is similar to, but not identical with, a proposal by Durbin in an unpublished 

paper. While not deriving Durbin’s result from the likelihood function, Malinvaud 

states the estimator, which he calls ““Durbin’s Method” [7, pp. 686-7]. The in- 

strumental variable interpretation of a maximum likelihood estimator, while 

known in the case of nonsimultaneous equations models, is here extended to the 

case of FIML.; this extension gives an integrated method in which to interpret the 

many estimators proposed for econometric models. 

Given assumption (2), the likelihood function of the sample is 

(5) C(B,, =) = (211)~™7’? det (£)~ 7/2 det (|BI)? 

-exp[—3tr(YB + ZD)Z~ ‘(YB + ZT)). 

Taking logs and rearranging, we derive the function to be maximized 

(6) L(B,T,2) = C + 5 log det (X)~' + T log det (|B}) 

r 
ee? uf pe ‘(YB + ZT)(YB + zn)| 

where the constant C may be disregarded in maximizing the likelihood function. 

Since no restrictions have been placed on the elements of £, the usual procedure 

is to “‘concentrate”’ the likelihood function by partially maximizing the function 

with respect to £. This procedure sets £ = T~'(YB + ZT)(YB + ZT), thus 

eliminates £ from the likelihood function, and leaves a function L*(B,T) to be 

maximized. Our procedure instead concentrates on the presence of the Jacobian 

det |B in the likelihood function, which differentiates the simultaneous equations 
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problem from the Zellner [10] multivariate least squares problem. For if the 

Jacotian of the transformation from U to Y, 0U/0Y, were an identity matrix, the 

maximum likelihood estimator would be the generalized least squares estimator. 

To maximize the log likelihood function L(B,T, ), the necessary conditions 

for a maximum are the first-order conditions obtained by differentiating (6) using 

the relation @ log det (A)/@A = (A’)~ '. Note that the a priori restrictions have been 

imposed so that only elements corresponding to nonzero elements of B and T 

are set equal to zero: 

oL 

OB 

aL. 
or 

aL t 
(9) spat: TE - (YB + ZT)(YB + 21) =0 

(7) : T(B)"'— Y'(YB + ZT)=~' =0 

(8) —Z(YB + ZT)z"' =0 

Concentration of the likelihood function follows from solving for Z in equation (9); 

here we solve for T using equation (9). Since the M-variate distribution has been 

assumed nonsingular, from equation (2) = is positive definite almost surely and so 

from equation (9) 

(10) T-] =(YB + ZT)(YB + ZT)z"'. 

Substituting this result for the first term in equation (7) yields 

(11) (B’)" (YB + ZT)(YB + ZN)=~' — Y(YB+ ZI)z"' =0. 

The first term in (11) represents the presence of the non-identity Jacobian, but this 

term can be simplified by rearranging to get 

(12) (BBY + (BY 'T'ZT[YB + ZTJZ~* — Y(YB + ZT)Z~* = 0. 

Noting that in equation (12) the first and last terms are identical with opposite 

sign, we have the desired first-order condition 

(13) (B)'T’Z(YB + ZI)z~' =0. 

Therefore equations (8) and (13) must be solved, and “stacking” them together 
yields the final form of the necessary conditions where the included variables 

correspond to the unknown parameters in B and T’: 

—Z’ 
(14) = jive + ZT)z~' =0. 

(B’) I'Z’ 

Rewriting equation (14) in the form of equation (4), the FIML estimator 5 of the 

unknown elements of 6 in instrumental variable form is: 

(15) 5 = (W'x)'W, 

where the instruments are 

(16) W’ = X(S @ I,)™'. 
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The elements of W’ are then 

(17) RX = diag(X,,X%,,...,Ry), 8%, =(ZB-'), Z 

and from equation (9) 

(18) S = T~ (YB + Zfy(yYB + Zf). 

The instrumental variable interpretation of- equations (15) and (16) is immediate 

since the second-order moment matrices exist and are nonsingular, and by the 

orthogonality assumption E(Z’U) = 0. In the instrumental variable interpretation 

of generalized least squares where only predetermined variables appear in X, the 

instruments are all the predetermined variables W’ = Z'(S @ I)~' while here the 

included endogenous variables are replaced by consistent estimates which are then 

used as the instruments. 

Equation (15) is nonlinear since both X and S$ depend on B, f, which are 

elements of 5 and would therefore be solved by an iterative process (““Durbin’s 

Method’’) 

(19) 5,41 = (WX) 'Wiy, 

where subscripts denote iteration number. 5*, the limit of the iterative process 

(if it converges), is the FIML estimate with asymptotic covariance matrix 

(X*(S* @ I,)~'X)~' since asymptotically 

(20) JT(6 — 5) ~ N(O,V~') 

where V = lim,_.,, E[(1/T)5?L(@506']. Thus equation (15) extends the concept of 

instrumental variables to the maximum likelihood estimation of simultaneous 

equations models, so that very simple comparisons with other proposed estimators 

are possible. 

4. THE RELATIONSHIP OF FIML TO RECENTLY PROPOSED INSTRUMENTAL 

VARIABLE ESTIMATORS 

Three recent papers have proposed new instrumental variable estimators for 

linear simultaneous equations systems. Here all these estimators are shown to be 

particular cases of the basic FIML iteration developed in equation (19). Lyttkens 

[5], and Dhrymes [2], and Brundy and Jorgenson’s [1] estimators all have the 

following form: 

(i) Construct a consistent estimate of the structural parameters (6, ). 

These initial consistent estimates may be obtained by the use of consistent, 

but possibly inefficient, instrumental variable estimators using the format 

of equation (3). This procedure is always possible so long as T > r; + s; —1 

for all i= 1,...,M. When Wj, the instruments for equation (i), are 

constructed, to ensure consistency it is necessary to include all s; pre- 

determined variables from equation (i) as instruments. The remaining 

r; — 1 instruments can be constructed by regressing the r; — 1 jointly 

dependent variables in equation (i) om a subset of all the excluded pre- 

determined variables. By the orthogonality assumption, 2(Z'U) = 0, 

the estimates 5, will be consistent but, in general, not efficient estimates. 

This procedure is followed for all M equations; and S, a consistent 
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estimate of &, is derived from the residuals of the structural equations 

in the usual manner.' 

(ii) Construct system instrumental variables W using the form of equation 
(16), W’ = X(S@I 7) '. Consistent estimates of X are provided from 

the first step of the procedure, since by definition 6, = [Bf] and from 

equation (16) X; = [Z(f'B™~'),Z;,]. Note that this estimate imposes all! 

a priori restrictions to estimate the instrumental variables W’; whereas 

k-class and 3SLS ignore a priori restrictions in following the instruments 

W’', as shown in equation (22). 

(iii) Estimate the structural parameters as in equation (19), 6 = (W'X) 'W’y. 

If desired, compute efficient estimates of £ and the reduced form param- 

eters, fl = —fB-' and Q = B-''sB-'. 

Brundy and Jorgenson stop at this point and have efficient estimates, since 

their estimates converge in distribution to the FIML estimates. Lyttkens and 

Dhrymes propose an iterative process between steps (ii) and (iii) while unaware of 

the properties of the final estimates. But since this procedure is in every way 

identical to equation (19), by the earlier derivation if the iteration converges the 

estimates (6*, S*) are the FIML estimates! Thus these iterated instrumental pro- 

cedures will be numerically identical to FIML if both use identical initial consistent 

estimates. Thus Dhrymes’ [2] question of the effect of the initial estimates used in 

step (i) is answered for small samples ; and for large samples even without identical 

initial estimates, under the usual regularity conditions the Cramer-Rao theorem 

can be invoked to ensure a unique maximum likelihood estimate almost surely. 

Also, note that the so-called limited information procedure proposed by 

Brundy and Jorgenson is misnamed. The procedure is identical to Lyttkens in 

using the identity matrix as an estimate of the contemporaneous correlation 

matrix L. This procedure is not limited in‘ormation since it utilizes all the a priori 

restrictions on the 6; in estimating the instrumental variables of step (ii). Thus any 

error of misspecification will be propagated throughout the entire system rather 

than being confined to the equation in which it occurs, as in true limited information 

methods. Since the a priori restrictions are being imposed, FIML or its one- 

iteration special case might as well be used to provide fully efficient estimates 

rather than only consistent estimates which the Brundy-Jorgenson “limited 

information” procedure gives. 

The last full information instrumental variable estimator which will be dis- 

cussed is three stage least squares. In instrumental variable form as first expressed 

by Madansky [6], 3SLS has the form 

(21) buss => (W'X)"'W'y 

where the instruments are 

(22) W = X(S~' @Z(Z'Z)"'Z’. 

'Lyttkens’ method does not compute S, but rather uses the identity matrix. Thus his estimator 
is consistent but not generally efficient. 
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The elements of the instruments matrix W are 

(23) X = diag (X,,...,Xy), X; = [YZ] 

and S is the consistent estimate of © derived from the residuals of the structural 

equations estimated by 2SLS. A comparison of 3SLS and FIML is made in 

Hausman [3] ; the main difference is that 3SLS fails to use all the a priori restrictions 

in forming the instruments W. Thus while multicollinearity often makes it extremely 

difficult to compute the unrestricted instrumental variables, W, in 3SLS, this 

problem will no longer exist since FIML and the FIIV estimators use fully restricted 

estimates of W. In the finite sample case, the other two estimators might well be 

preferred to 3SLS since they impose all restrictions in estimation. However, these 

differences will probably be more serious in medium and large models. Since most 

empirical studies of full information estimators have concentrated on testine 

performance of small models, further evidence on larger models should be valuable 

in evaluating their respective finite sample properties. 

5. A NUMERICAL COMPARISON OF 3SLS, FIIV, AND FIML 

For purposes of comparison the three proposed full information estimation 

techniques—3SLS, FIIV, and FIML—are applied to the often studied Klein 

Model I. The model consists of six equations, of which three are identities. The 

first equation is the consumption function 

(24) C, = 01,(W, + Wi) + ay 2P, + %y3P_) +10 + &, 

where C, is aggregate consumption, P, and P,_ , are current and lagged total profits, 

W, is the private industry wage bill, and W; is the government wage bill. The next 

equation is the investment function 

> 
(25) T, = 42,7 + %22P,-1 + %3K,_1 + O29 + 2, 

where /, is net investment, P, and P,_ , are again current and lagged profits, and K, 

is the capital stock. The last stochastic equation is the wage equation 

(26) W, = %31Q, + %32Q,-1 + &33(t — 1931) + a39 + 3, 

where W, is the wage bill, Q, and Q,_, are current and lagged private output, and 

t is the time trend variable. The model is then closed by the three identities 

(27) K, = K,_, + I, 

Q,=C, +1, + G, 

P.=Q2,-W-T, 

where the additional variables G, and T, are nonwage government expenditure and 

business taxes, respectively. 

In estimation the three identities are deleted and therefore we are left with 

three equations having 12 unknown structural parameters. Three of these param- 

eters are the constants corresponding to «,9, %29, and «3,, and of the nine remain- 

ing parameters five correspond to predetermined variables. The time variable t 

along with the lagged variables P,_,, K,_,, Q,-,; are predetermined while 
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(W, + W)), P,, and Q, are all endogenous. The estimation is done over Klein’s 

original sample 1921-1941, so there are 21 annual observations. 

While 3SLS and FIIV are linear in the sense of only solving a set of linear 

equations, FIML as shown in equation (15) is nonlinear since the elements of W 

depend on elements of 5 and therefore an iterative procedure is needed, Now as 

equation (19) makes clear, the ijull information instrumental variables efficient 

(FIVE) estimator proposed by Brundy and Jorgenson is merely the first step of the 

iterative process where the initial guesses are derived from a consistent estimation 

procedure. If equation (19) is iterated, which corresponds to the Dhrymes estimator, 

and if it converges, then the resulting estimates are the FIML estimates. This 

iterative procedure is not being advocated as an efficient computational procedure 

for FIML since it lacks the “uphill property’ (to be discussed later), but this 

experiment is merely to show that Dhrymes’ estimator is identical to FIML while 

the Brundy-Jorgenson estimator corresponds to one iteration of a FIML proce- 

dure and when iterated yields FIML. 

The 3SLS estimates need no further explanation since the instruments W’ 

are formed by using all the predetermined variables while neglecting overidenti- 

fying constraints in forming W’ in equation (22). These initial consistent estimates 

are then used to form the instruments for the first stage of the FIML iteration. 

Here in forming W’ all the overidentifying restrictions are used. The structural 

parameters corresponding to the first iteration 5, are then the FIIV estimates. 

Alternative efficient estimates can be obtained by other initial consistent estimates 

but all such estimates have identical asymptotic properties. Equation (19) took 41 

iterations to reach the convergence criterion of 

—§ 
a < 0.0005 

a 

where the norm used is the maximum change in an element of the 5 vector. 

The final estimates (with asymptotic standard errors) are shown in Table 1. 

The FIIV estimates in the consumption equation (24) and wage equation (26) are 

reasonably close to the FIML estimates while the investment equation (25) “‘still 

has a long way to go”. However, an examination of the covariance matrix presented 

below shows that the investment equation has by far the largest variance, which, 

in fact, exceeds the variance of the investment series over the 1921-1941 data 

period. Therefore it is not suprising that the point estimates of FIML differ 

markedly from the point estimates of the other estimators. The FIML estimates 
agree to three significant digits with the FIML estimates of the same model pre- 

sented by Chernoff and Divinsky in Hood and Koopmans [12], page 284. The 

maximum of the log likelihood function (6) is — 0.54815. 

To complete structural estimation for Klein Model I, the asymptotic co- 

variance matrix, S, for each estimator is presented. These estimates all follow from 

equation (18), which leads to the estimate of the covariance matrix, S= . 

T~ ‘(YB + ZIT)(YB + ZT). Along with the coefficient estimates, the covariance 

estimates provide asymptotic sufficient statistics for the normal distribution of 

equation (2). If desired, the reduced form coefficients and covariance matrix can 

then be calculated from fl = —fB-' and & = B-'’SB-'. The covariance 
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TABLE | 

3SLS, FITV, AND FIML Estimates oF KLEIN Mopez | 
(Asymptotic standard sirors in parentheses) 

Equation Parameter Variable 3SLS FIIV FIML 

Consumption (24) Oy W, + W;’ 0.79008 0.80145 0.80183 
(0.03794) (0.03496) (0.03589) 

O12 P 0.12489 —0.17713 — 0.23214 
(0.10813) (0.21225) (0.31165) 

a3 a 0.16314 0.35691 0.38557 
(0.10044) (0.16370) (0.21720) 

ao 1 16.441 17.897 18.341 
(1.305) (2.149) (2.858) 

Investment (25) Mo, p — 0.013079 — 0.71470 — 0.80067 
(0.16190) (0.36873) (0.49099) 

>> Br. 0.75572 1.0274 1.0517 
(0.15293) (0.28989) (0.35224) 

O53 . — 0.19485 — 0.15044 —0.14811 
(0.03253) (0.03299) (0.02986) 

X26 1 28.178 26.676 27.263 
(6.794) (8.026) (8.668) 

Wage (26) Os, Q, 0.40049 0.24264 0.23415 
(0.03181) (0.04557) (0.04882) 

O52 -. 0.18129 0.28337 0.28465 
(0.03416) (0.04341) (0.04521) 

M33 t-1931 0.14967 0.22686 0.23483 
(0.03416) (0.03286) (0-03450) 

30 1 1.7972 5.3582 5.7939 
(1.116) (2.034) (2.229) 

estimates for the three estimators are: 

0.89176 

L —0.39362 0-40305 0.52003 

1.9859 7 

Senv = | 3.0973 10.900 

| 0.29126 3.3799 1.6650 

T 2.1026 7 

0.48080 3.8558 1.8007 J 

No unique accepted method exists to evaluate the three estimators. While all 

three have identical asymptotic properties, the p2rameier estimates and covariance 

estimates differ substantially. To evaluate the parameter estimates, the quadratic 

loss function R = (6 — 5)'Q(5 — 5) is used, where Q is the weighting matrix and 6 

the vector of true (unknown) parameter values. Then the measure of asymptotic 
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expected loss is tr(QV~'), where V~' is the estimated covariance matrix of the 

structural parameters. Two weighting matrices are used, an identity matrix leading 

to the trace of V~' and a matrix consisting of ones leading to the sum of the 

elements of V~'. The results for this experiment on Klein Model I are: 

Expected Loss 3SLS FIIV FIML 

tr(V~') 56.8 73.5 88.8 

tr(QV~*) 43.4 96.4 122.5 

These results are not surprising since 3SLS can be derived as the solution to the 

programming problem 

min [(y — Xd)(S~* @ Z(Z'Z)*Z'\(y — X94) 

where S~' is the consistent estimate of covariance matrix from 2SLS. Thus, 3SLS 

minimizes the generalized distance of the errors when projected onto the subspace 

spanned by the predetermined variables. FIML, on the other hand, “trades off” 

the value of the Jacobian, det (B), against a generalized distance term. The FIIV 

estimator, as expected, falls between the two others. Thus although 3SLS seems to 

produce a “tighter” estimate, this result may be an illusion due to the different 

objective functions being maximized. The “true” parameter values would have to 

be known to make a valid comparison among the three estimators. 

6. COMPUTATION OF FIML ESTIMATES 

While it was shown that iterating equation (19) led to the FIML estimate and 

is equivalent to iterating the FIIV estimator, this procedure is not a very efficient 

method of computing FIML estimates. An easy way to see the problem is to re- 

write equation (19) in the form of a change in the 6 vector 

(28) Ads 1 = bn — 8 = (WX) Wy — X46) = (WX) Wu, 

where u, is the vector of calculated residuals using 5,. The maximum likelihood 

estimate is then attained when Aéd,,, = 0. The problem which arises is that 

(WX) is not in general positive definite and so one cannot hope to prove that the 

likelihood function will increase at each iteration. This monotonicity property is 

the “uphill property”’ referred to in the last section. Since equation (14) shows that 

W)u, is a gradient of the likelihood function, any vector in the same lialfspace as 

the gradient will be in a direction of increase for the likelihood function. Therefore 

for A, a scalar, small enough the new estimate 

(29) 5,41 = 5, +4 - Ad, 4; 

will give an increased value of the likelihood function provided that (W;,X) is 

positive definite. This property is very desirable since, in principle, convergence is 

guaranteed.” In practice, it also is an advantage since the procedure does not 

become stopped at a point where Ad,,, is not zero although the likelihood 

function is not increasing in the calculated direction. 

? To actually prove guaranteed convergence, one must show that 4 does not become “‘too small”, 
e.g., that A is bounded away from zero. 
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An obvious way around this problem is to use asymptotically equivalent 

approximation to (W;,X) when it is not positive definite. A possible procedure is to 

check whether WX is positive definite ; and if not use 

(30) W'X = X(S @1,)'X 

where X = diag (X,, X,,...,Xy), X; = (ZF B™"),Z,], and S is the estimate of 

the covariance matrix. Since f and B are consistent estimates of T and B, the 

matrix W,X is asymptotically equivalent to the matrix W;X. Furthermore, S is 

positive definite so WX will be positive definite, and the iterative procedure of 

equation (30) has the monotonicity property with respect to the likelihood function. 

Many other iterative procedures are possible. The Newton-Raphson pro- 

cedure has often been used. Since the likelihood function is not concave in general, 

this method, when not in the neighborhood of the optimum, often encounters 

difficulty choosing directions of increase. A wide class of algorithms based on the 

Davidon variable metric procedure does guarantee the monotonicity property 

and has other computational advantages. The choice of a general procedure to 

calculate FIML estimates will require further experimentation—especially in 

larger systems, for which almost no results have been reported. The procedure 

outlined here has desirable asymptotic properties, but its use in actual calculations 

remains to be evaluated. It does have the computational advantage of not requiring 

second derivatives, but instead using the vector of instruments used in computing 
the gradient. This algorithm is the analogous procedure to the Gauss-Newton 

algorithm for nonlinear least squares. Since the Gauss-Newton algorithm (or 

minor modifications of it) have proved extremely effective, the algorithm proposed 

here, with the uphill property modification in equation (30), might also prove 

effective in computing FIML estimates. 

7. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH 

An instrumental variable of interpretation of FIML has been developed 

which permits easy comparison with other proposed instrumental variable 

estimators such as 3SLS, and the FIIV estimators recently proposed by Lyttkens, 

Dhrymes, and Brundy and Jorgenson. The exact role of overidentifying constraints 

becomes clear, and 3SLS is seen to differ from the other full information estimators 

in failing to use all overidentifying restrictions in forming the instruments. While 

this difference vanishes asymptotically, it may be of importance in finite samples 

where the constraints can be expected to hold only approximately. 

The instrumental variable interpretation also provides an algorithm (called 

“Durbin’s Method” by Malinvaud) to compute the FIML estimates. This algo- 

rithm is tested on Klein Model I and provides acceptable estimates. These estimates 

are compared to the 3SLS and FIIV estimates, using 3SLS to provide the initial 

consistent estimates. The algorithm’s main shortcoming—lack of the uphill 

property—is discussed and a technique is proposed to overcome this problem by 

a positive definite approximation when the (W’X) matrix is not definite. This 

altered “‘Durbin’s Method” may prove computationally valuable since it has the 

uphill property and does not require computation of second derivatives. Further 

expericnce is required before a judgement can be made in its computational 

efficiency. 
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For future research the greatest need is ihe extension of asymptotically 

efficient methods to nonlinear models. In Hausman [3], I propose two new 

estimators, nonlinear 3SLS and a nonlinear instrumental variable estimator for 

the special case of nonlinearity in the parameters. This use covers the common 

situations of serial correlation and partial adjustment models. Further work needs 

to be done to find efficient estimators for the case of significant nonlinearity in the 

variables. A Gauss—Newton procedure like equation (30) seems promising for 

FIML but will be more complicated because the Jacobian is not constant as in the 

linear case and second derivates are therefore involved. As FIML will still be time- 

consuming to compute in the nonlinear problem, less time-consuming nonlinear 

methods would permit convenient full-information system estimation of non- 

linear models currently in use. Then the econometric model builder could use 

efficient estimates to test his various models. 

Massachusetts Institute of Technology and NBER Computer Research Center 
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