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Annals of Economic and Social Measurement, 3/3, 1974 

TESTS FOR STRUCTURAL CHANGE AND PREDICTION 

INTERVALS FOR THE REDUCED FORMS OF TWO STRUCTURAL 

MODELS OF THE U.S.: THE FRB-MIT AND MICHIGAN 

QUARTERLY MODELS 

By T. MUENCH, A. ROLNICK, N. WALLACE AND W. WEILER* 

Prediction interval tests are applied to the reduced forms of two quarterly models of the U.S. (the “old” 
FRB-MIT model and the Michigan model). The results illustrate the range of tests one can perform on an 
estimated simultaneous equation model. In particular, the tests determine whether ex post forecast errors 
can be attributed to structural deficiencies of the models. The paper examines confidence regions and other 
aspects of forecast distributions—comparisons between mean forecasts and nonstochastic forecasts, 
comparisons between forecast variances from multiperiod endogenous simulations and those from one- 
period simulations, and comparisons between forecast variances and residual variances. 

I. INTRODUCTION 

In this paper we report the results of statistical tests for a variety of structural 

change in the coefficients of two quarterly models of the U.S. economy: the “old” 

FRB-MIT model and the Michigan model.! We test for structural change between 

two periods, the period over which each model was originally estimated and a 

post-sample period. Because the latter is very short, our tests reduce to prediction 

interval tests, analogous to tests for structural change in the coefficients of a single 

equation model when one of the comparison periods is short. 

As far as we know, prediction interval tests have not previously been applied 

to the reduced form of a simultaneous equations model, let alone to that of a large 

nonlinear model. There have been studies in which differences between actual 

outcomes and what we call ex post nonstochastic (reduced-form) forecasts (fore- 

casts generated from the point estimates of all parameters) have been compared 

across models including a variety of “naive” models, but those comparisons 

cannot offer statistical grounds for acceptance or rejection of a model. In contrast, 

the tests we perform determine in a probabilistic sense whether the magnitudes of 

ex post forecast errors can be attributed entirely to randomness in the economy 

and to uncertainty stemming from the size of the data set, or, must in part be 

attributed to structural deficiencies of the model, where structure includes a 

stochastic specification consistent with the particular estimation procedure 

employed. 

The paper is organized as follows. In section II, we give a brief description of 

the models we test and describe the class of test statistics we use. Our grounds for 

* T. Muench and N. Wallace are staff members of the Economics Department, the University of 
Minnesota, and Consultants to the Federal Reserve Bank of Minneapolis. A. Rolnick is an Economist 
at the Federal Reserve Bank of Minneapolis ; and W. Weiler is Assistant Director, Information Services 
Division, the University of Minnesota. All views expressed herein are the sole responsibility of the 
authors and should not be interpreted as representing those of the Federal Reserve Bank of Minneapolis 
which provided financial support. 

' The Michigan model is described in [6]. The version of the FRB-MIT model we test has not been 
published. Versions much like it are described in [2] and [3]. 
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employing these statistics and our associated distribution assumptions are pre- 

sented in Appendix I. The subsequent three sections are devoted to a presentation 

of resulis : section III to basic test results ; section IV to aspects of the confidence 

regions and to tests on linear functions of the variables; and section V to other 

aspects of the forecast distributions—comparisons between mean forecasts and 

nonstochastic forecasts, comparisons between forecast variances from muitiperiod 

endogenous simulations and those from one-period simulations, and comparisons 

between forecast variances and residual variances. 

II. SPECIFICATION OF THE MODELS AND DESCRIPTION OF THE TEST STATISTICS 

A. The Models 

As noted in the introduction, we test two models in this paper. The first, the 

Michigan model, is a relatively small model with 24 estimated equations. It has 

almost no financial sector and operates with the interest rate on 4-6 month 

commercial paper as its exogenous monetary instrument. The second model, an 

old version of the FRB-MIT model, has 75 estimated equations and a fairly 

elaborate financial sector which gives us a choice among possible monetary 

instruments.” We chose the money stock, because the model has most often been 

used that way, and, because that is consistent with the estimation procedure; the 

demand for demand deposits in the FRB—-MIT model was estimated with an 

interest rate as dependent variable and demand deposits as an independent 

variable. 

Both models are estimated on quarterly data, the Michigan model on data 

for the period 1954(1) through 1967(4), the version of the FRB—MIT model we 

test on post-Korean War data up through 1968(3). The Michigan model was 

estimated by two-stage least squares with a special adjustment for serial correlation 

in two of the equations. Many of the equations are in first-difference form. The 

FRB-MIT model was estimated by ordinary least squares. In a majority of the 

estimated equations first-order serial correlation coefficients were estimated, and 

partial differences taken. 

The models are noncomparable not only with regard to estimation period but 

also, and perhaps more importantly, with regard to what is taken as exogenous. 

In all cases we set the forecast-period values of the exogenous variables at their 

actual values. To do otherwise would mean specifying equations for those variables 

and, in so doing, venturing far from the reported base models. On balance, the 

FRB-MIT model takes fewer variables as given than does the Michigan model, 

which one might expect given their relative sizes. The differences are summarized 

in a rough way in Table 1. Note that the set of exogenous variables for FRB—-MIT 

is not simply a subset of that for the Michigan model. In particular, we should 

emphasize that we shall be examining reduced forms as functions of two quite 

different monetary instruments; the money stock in FRB—MIT, the commercial 

paper rate in Michigan. 

? We altered two equations in the FRB-MIT model, those for capacity utilization and the unemploy- 
ment rate. In both cases it was an alteration of form only, one that constrained the variables to their 
economically meaningful ranges, roughly speaking (0, 1). In both cases, residual standard errors for the 
variables themselves were lower for our forms than for those originally in the model. 
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TABLE 1 

PRINCIPAL EXOGENOUS VARIABLES BY MODEL 

Mich. FRB-MIT 

Narrowly Defined Stock of Money — x? 
Monetary Interest Rate on 4~6 Month Commercial 

Paper . x 2 

Ratio of Personal Tax Payments to Personal 
Income xX xX 

Fiscal Ratio of Corporate Tax Liability to Before-Tax 
Profits xX Y 

Transfer Payments to Persons xX Y 
Federal Government Expenditures xX xX 

Capital Consumption Allowances xX xX 
Exports xX xX 

[— es Pons State and Local Government Expenditures x 4 
Farm Investment Y x 

Gross Auto Product X Y 
Gross Farm Product xX xX 

Deflators Total Government Purchases xX Y 
Exports xX Y 
Imports xX xX 
Inventories xX Y 

* Not in the model. - 
>“X” stands for independent or exogenous. 
**Y” stands for dependent or endogenous. 
* In the Michigan model, net exports and its deflator are exogenous variables. 

In order to make a test for which statistical properties can (in principle) be 

determined, the models must be specified in stochastic terms. This means that for 

the types of tests we wish to make, more must be spécified or assumed about the 

models than has been reported. It follows that the model tested is, in effect, a 

composite between a base model reported by its originators and our addendum, 

which will be described in detail below. One point, however, deserves mention here. 

We assume that the structural equation residuals are independent across equations. 

This is consistent with both the reported estimation procedures and the lack of 

reported covariances. We admit, though, that abandoning that assumption could 

have far-reaching effects on test results. 

B. Estimation and Forecast Periods 

Since, in general, the specification (functional forms, variables included, etc.) 

of each model was not determined before viewing the base-period data, it seemed 

imperative to use a comparison period outside that used to estimate the model 

initially. Therefore, we identify the base period for test purposes with the reported 

estimation period and use for the comparison period a subsequent period which 

we refer to as the “forecast” period. Given the data available when we performed 

the computation, the result is a twelve-quarter forecast period for the Michigan 

model, 1968(1) through 1970(4), ard a nine-quarter period for the FRB-MIT 

model, 1968(4) through 1970(4). 
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As we shall see, a disadvantage of such a breakdown is that a wider class of 

tests could be performed if the “estimation” period was shortened and the 

“forecast’’ period lengthened enough to allow all parameters to be estimated from 

data for the ‘‘forecast”’ period alone. In particular, ‘a test of the hypothesis that all 

parameters changed—as opposed to tests that certain functions of the parameters 

changed—might then be possible. However, even then, tests of hypotheses similar 

to ours would still be of interest and the calculation of the statistics for them not 

any simpler. 

C. The Test Statistics 

In Appendix I we argue (i) that with a post-sample comparison period as short 

as ours, the structural change hypotheses that are testable are those equivalent to 

hypotheses about whether the observed values of the endogenous variables for the 

“forecast” period come from the distribution predicted by the model estimated 

from the sample period data, and (ii) that an appropriate test is a prediction interval 

test, where the rejection region is of the form 

D = [Cly — py [CEC] [Cy — |r = Fr, 5). 

Here y and / are nM-element vectors of actual and predicted values of the endo- 

genous variables in the forecast period, n being the number of endogenous variables 

and M the number of quarters in the forecast period. £ is the nM x nM estimated 

covariance matrix of y. C.is an r x nM matrix of constants of rank r. As described 

below, f and £ are computed conditional on the values of the endogenous variables 

during the estimation period. F (r,s) is the 1 — a percent point of an F distribution 

with r and s degrees of freedom, where s is a rough average of the degrees of 

freedom (in estimating the residual) for the structural equations of the model. For 

both models, we used a = .05 and s = 48. Since D is a positive-definite quadratic 

form in C(y — 9), the acceptance region D < F,{r, s) is an ellipsoid in Cy centered 

at Cf. ' 

If C is taken as an nM x nM identity matrix, we are asking for rejection if any 

detectable structural change took place. A detectable structural change is a change 

in an estimable function, estimable from the post-sample period data alone. The 

fact that our comparison period is “short” implies that there is, in fact, a set of un- 

detectable changes. These are parameter changes constrained so that they do not 

affect the predicted distribution of the endogenous variables in our comparison 

(forecast) period. 

By using different C matrices, we can attempt to delineate what type of change 

has taken place. The effect of C is to filter out certain subsets of detectable changes. 

By varying C, we can also make use of the fact that we can test for some types of 

change with greater power than others. This is because (with a fixed “‘normaliza- 

tion”’ for C) we can predict (if no change has taken place) some linear combinations 

of y with greater accuracy and, therefore, can detect smaller changes. 

D. Computation of the Statistic D 

Because the models consist of nonlinear structural equations, we compute 

D = (ir,---, Dims 9215--+>P2m>--+> Inu) and 2 by way of Monte Carlo experi- 
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ments. That is done by repeatedly drawing values of the structural parameters 

consistent with the estimation period mean and covariance estimates, and values 

for the forecast period residuals consistent with the estimation period residual 

variance estimates, and for each drawing generating an Mn element “observation” 

on y, with the estimation period values of the endogenous variables held fixed at 

the actual values. For each model we take 300 random drawings and take as § the 

(Mn-element) vector of averages of- those observations and as £ the sample 
(Mn x Mn) covariance matrix. 

The random parameters are generated one structural equation at a time.* 

Letting 4; stand for the column vector of random parameters of the i-th estimated 

equation, a priori sample values of &; are generated by the matrix equation, 

where @; is the estimation period vector of point estimates, v is a column vector 

of independent, mean zero, variance one, random variables generated by a random 

number generator* (drawn independently for different equations), and R; is a matrix 

such that R/R; equals the estimation period estimated covariance matrix of the 

point estimator. It follows, then, that &; generated by equation (1) has mean @, and 

covariance matrix R;R;, the estimated covariance matrix of the point estimator. 

The additive disturbance for each estimated equation is random both among 

runs and among periods in each run. It is chosen independently across time and 

equations according to 

(2) wij) = ow 

where w{ j) is the residual for the i-th equation at time j, ¢; is the estimation period 

residual standard error of the i-th estimated equation, and v is a random variable 

with the same properties as the v in (1). (Note that the v’s referred to in (1) and (2) 

are drawn independently.) 

Given (1) and (2), a single M-period simulation run may be thought of as 

generated as follows. First a random set of parameters is drawn for each estimated 

equation. Those drawings constitute the parameter values for the run. Then, 

residuals are drawn, one for each estimated equation. These are embedded in the 

equations, and a solution, y"’’ = y,,, y21,---, Yai, Obtained via the Gauss-Seidel 

iterative procedure. That solution is dependent on actual estimation-period values 

of ali variables and on actual forecast-period values of exogenous variables. Then 

a new set of residuals is drawn, again according to (2), and a solution, an observation 

on y®?, obtained. That observation is again dependent on actual estimation-period 

values of all variables and on actual forecast-period values of exogenous variables, 

and, in addition, is dependent on the previously solved for value of y"’). Proceeding 

in this way, observations on y®), y®,... , y™” are obtained. As noted above, for the 

3 This follows from the assumed independence of disturbances across structural equations. 
* The elements of v are drawn from a truncated normal distribution. Let x be a zero-one normal 

random variable. We draw values of x and accept only those for which |x| < 2. The accepted x’s have 
mean zero and variance (0.88), so that v = (1.137)x-has mean zero and variance one, the desired distri- 
bution. We choose v’s from a truncated distribution, because most parameters and disturbances do not 
a priori have infinite range. 

The above description applies to all parameters except first-order serial correlation coefficients in 
the FRB-MIT model. For their distribution, see Appendix II. 

495 



principal tests, we performed 300 such M-period endogenous simulation runs for 

each model.° 

III. Basic Test RESULTS 

Before turning to test results, it may be helpful to focus on some of the raw 

data. Figure 1 shows a number of single-quarter forecast distributions for real 

GNP from the Michigan model; while Figure 2 shows such distributions for the 

GNP deflator. Figures 3 and-4 show corresponding distributions from the FRB— 

MIT model. There is a clear-cut relationship between the forecast span and the 

variances of those distributions: the greater the forecast span, the greater the 

variance. We shall argue below that this arises mainly from the presence in the 

models of lagged endogenous variables and the fact that the greater the forecast 

span, the greater the number of those variables generated randomly within the 

simulations. Notice that in Figure 4, at each date the actual value of the deflator 

lies outside the estimated distribution of possible outcomes forecast by the 

FRB-MIT model 

We limit all our testing to a subset of the endogenous variables of the models : 

for Michigan, the 12 variables listed in Table 2, for FRB—MIT, the 16 variables 

listed in Table 3. This means that.the columns of C corresponding to all other 

variables have all zero elements. For Michigan, the list includes an exhaustive 

breakdown of the endogenous components of nominal GNP—variables 3, 5, 9, 

and 12—while for FRB-MIT it includes a similar breakdown except that imports, 

which are endogenous, are excluded. Tables 2 and 3 contain a variable-by-variable 

view of the output; for each variable and each date, we list the actual value, the 

actual minus the mean value (the means of distributions like those in Figures 1-4), 

and the standard error of forecast (standard deviations of distributions like those 

in Figures i-4). 

‘ To the extent that the structure embodied in each estimated model applies 

over the forecast period, the standard errors of forecast in Tables 2 and 3 measure 

the precision of single-date, single-variable forecasts made conditional on values 

of the variables assumed to be exogenous. For some variables, those standard 

errors seem quite large. For real GNP for the Michigan model, they range from 

almost 1 percent of the level for the first quarter of the forecast period to about 

5 percent for the twelfth quarter ; for the FRB—MIT model they range from about 

three-fourths of 1 percent in the first quarter to alinost 4 percent in the ninth 

quarter. 

For any variable at any date, the ratio of the forecast error (the second entry) 

to the standard error of forecast (the third entry) is a single-variable version of the 

D of section II and can be treated as a t statistic with 48 degrees of freedom, 

to.os(48) = 2.01. The F statistics in the last column are for each variable over all 

quarters of the forecast period. The relevant 5 percent critical values are 

> We performed checks on both the input and the output; the output was checked for oscillatory 
within-run behavior, while the input was checked for coding errors (see Appendix II). 

© In terms of the statistic D, the t? statistic for variable i in quarter j is found by using for C the 
relevant row of an identity matrix of order Mn: namely, the row with unity in the [(i-1)M + j]th 
column. The F statistic for the i-th variable is found by using for C the rows obtained by letting j = 1, 
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TABLE 2 

MICHIGAN: ACTUALS, FORECAST ERRORS, AND STANDARD ERRORS OF FORECAST 

1968-1 1968-2 1968-3 1968-4 1969-1 1969-2 1969-3 1969-4 1970-1 1970-2 1970-3 1970-4 (12,48) 
. Gross National 693.5 705.4 712.6 717.5 722.1 726.1 730.9 729.2 723.8 724.9 727.4 720.3 

Product ($1958) 2.4 7.0 13.7 18.5 23.0 26.2 29.6 26.6 22.5 20.5 18.1 12.4 45 (3.4) 8.2) (9.9) 2.7) 6.4) 0) BL) (21.9) (28.7) (28.2) (34.4) 38.) 

2. Implicit Deflator 120.4 121.7 122.9 126.3 125.7 127.2 129.0 130.5 132.6 1%.0 135.5 137.4 ‘ 
for GNP (1958=100) r a -.1 -0 a 5 1 1.7 2.5 3.3 4.2 5.8 2.25 (2) (4) (5) )) .” a.» (4) a.6) a.?) a.) (2.1) 2.2 

3. Consumption ($) 519.6 529.0 543.8 550.8 562.0 573.€ 582.1 592.5 603.1 614.4 622.0 627.2 7.2 6.1 13.3 16.1 19.3 22.6 23.0 25.8 27.7 28.2 28.0 4.7 1.06 .1) 6.3) (7.8) (9.4) (11.0) 43.0) 15.6) (19.0) (22.5) (25.8) (31.8) 35.5) 

4. Corporate Before- 86.7 88.6 88.4 2.3 93.0 93.4 89.9 88.5 82.6 82.0 84.4 79.2 Tax Profits ($) “2.1 al 2.5 3.4 5.0 5.9 5.9 2.3 -1.5 -.5 ~.2 -.2 so 
G.0) 4.0 4.8) 6.0) (6.7) 7.5) (8.5) @.5> 0.3) 1.5 3.8) «5.0 

5S. Business Fixed 88.4 86.4 88.3 91.6 95.7 97.5 101.5 102.7 102.6 102.8 103.6 101.3 - 
Investment ($) .6 -.3 1.7 3.6 6.4 7.8 11.6 13.4 15.0 17.4 19.9 19.0 2.02 a.s) (2.6) G.8) 6.» (6.9) @.5) G0.) 41.9) 3.7) 5.5) 7.2) (8.8) 

6. Private Nonfare 146.9 141.8 152.4 157.9 169.2 149.6 142.9 135.7 125.2 128.6 151.2 175.3 Housing Starts ~6.3 -14.3 6.7 ~6.6 6.7 -.1 4.2 3.9 = 5.1 18.7 26.4 8 (0,000 s) (8.0) = (20.5) (23.4) (S.0) 07.6) (21.2) (20.8) (22.2) 23.6) (287) (27.2) 27.) 

7. Corporate AAA 6.1 6.3 6.1 6.2 6.7 6.9 7.2 7.5 7.9 8.1 8.2 7.9 i. Interest Rate (2) 0 0 1 1 ae Al a 5 6 ? 2.27 
«) «) (2 «2 (.2) (2 (» <» (» 4) 4 4 

8. Unemploysent 3.7 3.6 3.6 3.4 3.5 3.6 4.2 5.2 5.8 Rate (2) -.4 -.5 -.8 -1.4 1.9 2.2 2.6 3.1 3 2.9 2.8 2.6 68 
<» cs) Gn 8) (1.0) a.2) a.3) a.s) a.n a.» (2.2) (2.5) 

9. Change in Business 2.6 10.4 8.2 %. ‘ ?. 11.3 2 6 3.1 5 3.6 
Inventories ($) ~6.2 2.5 2.0 5.4 4.7 ‘. 9.5 5 2.3 2.7 4.2 1.4 1.21 

Ga.) (3.5) G.7) (4.0) 4.5) (4.4) (4.4) 4.8) 6.0 4.8) (6.1) (6.3) 

10. Output Per Manbour 132.4 133.7 134.2 14.6 134.1 14.0 1%4.2 14.3 133 16.7 136.1 137.2 Nonfare Index -.5 -.8 -1.6 2.7 ~4.7 6.5 8.5 10.6 -13.8 -15.5 17.2 17.9 67 1957-1959=100 a.) a.s) a.9) (2.4) (2.9) G4) .1) 4.8) (3.7) (6.6) 7.3) (8.6) 

11. Employment Rate 97.7 97.8 97.8 98.0 98.1 98.0 9. 7.8 97.3 96.6 2 95.8 
of Males (20 Years 2 3 . 2 1. 2.1 2.4 2.9 2.8 2.7 2.7 34 
and Over (2) cD .3) 7) 9” a.4) a.2 a.4) a.6) a8) (2.0) (2.4) an 

12. Residential 28.8 30.6 29.9 3.7 33.0 33.9 31.0 29.1 28.4 29.2 32 
Construction ($) al E -.9 0 e 2.6 1.5 2.0 2.0 2.3 3.2 1.10 

(a.2) a.7) (2.2) (2.6) (3.0) G.5) G.7) (4.0) 4.2) 4.6) «4.9% 

Notes: (s) Forecast Error = Actual - Mean Forecast 
(>) The F statistics are by variable over 12 quarters. ind in subsequent tables, F values in excess of che relevant .05 critical values are starred. 

Fo o5(12, 48) = 1.96 for the Michigan model, and Fp, ..(9, 48) = 2.08 for the FRB- 

MIT model. For the Michigan model, F statistics for the GNP deflator, business 

fixed investment and the corporate AAA bond interest rate exceed the critical 

value ; for the FRB—MIT model, F’s for the GNP deflator, the two interest rates, 

nonresidential structures, and state and local purchases exceed the critical value. 

It is interesting that despite differences between forecast periods and exogenous 

variable sets, the models fail on roughly similar sets of variables : sets which include 

the GNP deflator, business fixed investment, and the long-term interest rate.’ 

In interpreting the F statistics in Tables 2 and 3, it should be noted that if the 

model predicted zero correlations among outcomes for the same variable in 

different quarters, the F statistic for each variable would equal the average of the 

squared t statistics for the variable. Some examples of the correlations among 

variabies are in Table 4 which contains a submatrix from the matrix of simple 

correlations between all pairs of the nM variables for the FRB—MIT model. The 

simple correlations between real GNP at different dates are given in the upper 

left-hand block ; those between the GNP deflator at different dates in the lower 

7 It may also be of interest to note that the FRB-MIT model does poorly predicting the corporate 
AAA interest rate, but does well predicting the dividend-price ratio, variable 4, even though the former 
is ati important determinant of the latter. 
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TABLE 3 

FRB-MIT: AcTUALS, FoRECAST ERRORS, AND STANDARD ERRORS OF FORECAST 

1968-4 1969-1 1969-2 1969-3 1969-4, 1970-1 1970-2 1970-3 1970-4 F(9 48) 
1. Gross National 721.8 722.0 726.2 730.7 729.3 723.6 724.7 727.3 720.5 Product ($1958) 9.8 11.8 8.9 9.0 8.6 2.2 -3.5 -5.5 -19.5 98 G.3) 10.1) (4.1) a6.9) 9.9) (21.8) (22.7) (24.0) (25.9) 

2. implicit Deflator 123.5 125.7 127.2 129.0 130.5 132.6 1%.0 135.5 in. e for GNP (1958100) 7 2.3 3.4 4.7 5.8 7.4 8.5 9.7 11.4 6.75 
(3) (.5) (.6) (.8) 1.0) a...) a.) qa.4) (1.6) 

3. Consumption (S$) 550.8 561.8 573.3 582.1 592.6 603.1 614.4 622.1 627.0 
3.1 6.7 10.4 11.5 16.6 19.8 21.8 20.8 17.5 7 (4.6) q@..) (8.7) . (10.5) (12.6) (13.9) (4.8) 6.5) 8.0) 

4. Dividend Price 2.9 3.1 3.1 3.3 3.6 4.0 4.0 3 Ratio (2%) -.3 -.2 2 = -.1 i 5 5 i 1.2 
(.2) «) 4.3) (.4) (.4) (.4) (.4) (.5) (.5) 

5. Commercial Paper 6.0 6.7 7.5 6.5 8.6 8.2 7 6.3 e Interest Rate (2) 8 1.6 2.3 2.6 3.2 3.6 3.4 1.8 2.45 
(.6) (.8) LD) q@.2) 41.2) a...) ai.t) (1.0) a.) 

6. Corporate AAA 6.2 6.7 9 71 7.5 8.0 8.1 8.2 7.9 e Interest Rate (.* 4 8 9 8 1.4 2.0 2.2 2.4 2.1 5.18 
(.2) (.3) «» (4) (.4) (4) (.4) G.5) Gs) - 

7. Deposits at 132.1 1%.1 135.3 1%.0 1%.2 136.8 1399.2 143.1 147.4 Séls (S$) 0 8 8 4 2 =. “1.2 . 3.0 -63 
a.0) @2.1) @.1) (4.0) (4.8) .5) (6.1) (6.7) a.) 

8. Corporate Before- 95.7 93.0 93.4 89.9 88.5 82.6 62.3 4.3 76.3 Tax Profits (S$) 8.7 10.9 8.6 6.1 ?. 2.2 3.1 2.4 - 82 
(4.8) a. (3.2) (9.8) ao.?) (10.9) «i1.0) (11.6) «22.7) 

9. Residential 1.7 33.0 33.9 n.0 30.4 29.1 28.4 29.2 32.2 Construction ($) 1.6 3.0 4.6 2.5 3.1 2.5 1.0 -.2 2 2.05 
a.o (2.4) G.9) (4.9) 5.3) (5.6) (5.8) (6.0) (6.7) 

10. Producer 61.3 63.1 65.2 66.3 67.5 66.9 67.5 68.6 66.6 Durables (S) -.6 1. 4.5 6.8 - 11.3 14.0 16.7 15.2 1.23 
a.) a.8) (2.8 (4.0) (5.1) (6.2) q.1) q7.7) (8.1) 

ll. Nonresident ial 30.3 32.6 32.3 35.2 35.1 35.7 35.3 35.0 %.7 e 
Structures ($) 1.2 3.4 3.1 6.1 6.2 7.2 7.2 7.5 ?. 3.40 

«.7) (.8) a.0) a.3) (1.8) (2.2) (2.6) G.0) Ga.) 

12. Change in Business 9.7 7.3 7.6 10.8 6.5 9 5.0 3.0 
Inventories (S$) 4 6 3.1 7.1 4.6 1.2 4.1 5.3 2.2 “a (2.7) (4.0) (4.9) (4.9) (5.4) (5.6) 6.5) (5.9) (5.9) 

13. State & Local 104.6 107.6 110.0 111.7 114.3 117.4 18 122.4 123.0 e Purchases ($) 7.5 10.4 11.3 11.4 1.4 11.6 7.7 11.0 ll. 4.01 
1.6) (2.1) Q.s) (2.8) ao. G.5) G.8) (4.1) (4.5) 

14. Employed Civilian 76.4 77.4 77.6 78.1 78.6 79 78.5 78.5 78.6 
Labor Force (wil.) 3 1.4 1.5 2.0 2.5 3.1 2.7 2.7 2.7 1.72 

(.4) (.8) (1.2) (1.6) (2.0) (2.3) (2.6) (2.8) G.0) 

15. Unempiovment 4 3.4 3.5 3.6 3.6 4.1 4.8 5.2 5.8 Rate (7) -.4 7 -.9 -1.0 -1.3 1.2 -.7 -.5 i) 1.07 
(.2) (.4) (.6) (.8) (1.0) (1.2 aD a.4) (1.6) 

16. Federal 187.0 197.2 202.5 200.8 202.0 195.9 196.6 1%.9 191.7 
Taxes (5S) $.6 17.7 19.4 17.2 18.2 17.2 15.2 16.7 10.8 1.63 G.4) (5.0) (6.9) (7.4) (8.2) (9.0) (8.9) (9.2) (9.7) 

right-hand block ; and those between the two variables in the upper right-hand 

block. The corresponding submatrix for the Michigan model (available upon 

request) is remarkably similar. 

In each case, the correlations between forecasts of a variable at one date and 

at another date are positive. Moreover, the correlations decline as the time span 

between the dates increases: namely, looking from the diagonal either across a 

row or up a column. More interestingly, holding the span between dates fixed, the 

correlations tend to increase with time: namely, looking down from upper left to 

lower right on other than the main diagonals. This occurs despite the fact that the 

variances in Tables 2 and 3 increase with time and implies that the within-path 

covariance increases even faster. In a sense, it suggests that individual forecast 

paths become increasingly smooth as the fixed initial set of lagged endogenous 

variables gets less and less important. 
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The similarity between correlation matrices for the two models extends to the 

off-diagonal block. The pattern of asymmetry is common to both models. Real 

GNP is negatively correlated with past prices and positively correlated with future 

prices, although the former gets weaker and the latter stronger the further one gets 

from the beginning of the forecast period. 

The positive correlations between real GNP at ¢t and at t + j help explain, 

for example, why the F statistic for the Michigan model for the vector of GNP 

outcomes is lowér than the average of the squared t’s, which is 1.32. The actual 

forecast errors for real GNP for that model are all of the same sign; the model 

underpredicts real GNP in every quarter. But because of these positive correlations, 

those errors cast less doubt on the model than would a sequence of errors of 

similar absolute magnitude but with randomly varying signs. An average of the 

squared t’s takes account only of the absolute magnitudes. In contrast, the F 

statistic credits the model for predicting correctly that forecast errors for different 

dates will be positively correlated: 

Table 5 contains joint test results across variables and time. For the Michigan 

model, tests are performed for variables 2—12 in Table 2 for the first quarter (m = 1), 

the first four quarters, the first eight quarters, and all 12 quarters. Real GNP is 

omitted, because an identity connects it to the deflator and the endogenous com- 

ponents of GNP. (The test statistics are virtually unaffected by including real 

GNP and omitting one of the other variables entering the identity. They would be 

completely unaffected if the identity were linear.) For the FRB-MIT model, tests 

re performed on all 16 variables in Table 3 for the first quarter, the first four, the 

first eight, and all nine. Given the variable-by-variable tests in Tables 2 and 3 and 

the seemingly large standard errors of forecast exhibited there, these results are 

somewhat surprising. They suggest that neither model’s structure is adequate 

during the forecast period, although that result comes through less strongly for 

Michigan than for FRB-MIT. Loosely speaking, if these results are put along side 

Table 2 and 3 results, they suggest that although the models predict fairly well the 

correlations over time between forecasi errors for single variables, they do not 

correctly predict the correlations among forecast errors for different variables. 

IV. ASPECTS OF THE CONFIDENCE ELLIPSOIDS AND TESTS ON LINEAR FUNCTIONS 

OF THE VARIABLES 

As indicated above, the tests which we perform correspond to examining 

ellipsoids. In the last section, we to some extent examined 2 and performed tests 

TABLE 5 

JOINT TEST RESULTS 

Michigan FRB-MIT 

m F(11 m, 48) m F(16 m, 48) 

1 ha 1 3.89* 
a 2.62* 4 4.63* 
8 2.26* 8 5.81* 

12 3.90* 9 5.79* 

504 



L400- 60°0 800 £10- 100 $00 L10- 67'0 Iso- 99'°0 9€°0- €10 700'0 

970 

- 

6r'0 

9r0- 

seo 

L70- 

870 

870- 

sto 

z10 

slo- 

€10- 

£70 

700'0 

60°0 

610- 

L10 

700 

- 

870 

—- 

vs'0 

0r'0- 

L10 

810- 

700 

- 

vr'0 

8f0- 

7000 

910- I€'0 zwe0- L10 £10 se0- v7'0 910 e£0- 600 v0'0 Is 0- £00°0 

vl0 

€70- 

600- 

Lv0 

Is 
0- 

z10 

Iv'0 

8f0- 

600 

- 

I¢0 

600- 

900 

- 

. 
000 

L70- vr'0 600 br'0- 100- 870 010 Iso- 170 970 00°0 svT0- v00'0 

vl0o- 

910 

~. 
= 
«6610 

=~ 

st0- 

st‘0 

9r'0 

60°0 

svo- 

ve0- 

£70 

cr'0 

900°0 

Le0- 

110 

6$'0 

910 

cro 

se0- 

z~0'0- 

970 

97°0 

10'0- 

10- 

LV0- 

L00°0 

070 200- 070 - 670- bl 0- 610 v0 60 60°0 tc0- Ig0- tvo- 1100 

Or'0 

110 

70- 

Le0- 

0r'0- 

970- 

100- 

IZ70 

re'0 

ce 

v0 

170 

£700 

sv0- 

ve'0- 

110- 

$00 

v7'0 

I¢'0 

ve'0 

se0 

se0 

0£°0 

170 

v10 

6800 

6r'0 

9v'0 

8£'0 

ve'0 

I¢0 

97°0 

70 

810 

st0 

110 

L0°0 

y0'0 

Svs'0 

a 

II 

Ol 

6 

8 

d 

9 

¢ 

v 

€ 

A 

I 

WINS 

94} 

jo 

uoloely 

& 
SB 
}00Y 

TA
GO

W 
NV
OI
KS
IP
, 

IH
L 

WO
Ud

 
SL

IA
OU

d 
XV

] 
-I

NO
AT

G 
AL

VA
Od

UO
D 

AO
 

XI
ML

VP
 

JO
NV

IA
YV

AO
D 

FH
L 

4O
 

SH
OL
OI
A 

AN
V 

SL
OO

Y 
OL

LS
IM

AL
OV

AV
HD

 

9 
AT

AV
L 

505 



which involved choosing for C those matrices consisting of different sets of rows 

of the identity matrix of order nM. In this section we shall examine the shapes 

of the ellipsoids for certain subvectors of y and shall perform tests on linear 

functions of them: first, tests suggested by the shapes of the ellipsoids ; and then a 

test of interest, a priori. 

We are interested in the shape of the ellipsoid as a means of summarizing the 

forecast distributions. Thus, if y is a a vector and > is its j x j covariance matrix 

with characteristic roots 4, > A, >..., > A; and corresponding unit vectors 

V1, 02,.-.,0;, then v, is to the length-c -one vector such that the variance of vy is a 

maximum equal to J, . In a sense, then vy is the linear combination about which 

the model! has least to say. Similar interpretations can be given to vy, v3y,..., vy, 

where v’y is the linear combination with minimum variance. We are also interested 

in how well the model actually predicts these linear combinations. 

We begin with results for the M vector of deviations of each variable for the 

different dates of the forecast period. It turned out that the shape of the M- 

dimensional ellipsoid is almost the same for every variable in both models. That 

allows us to illustrate the results by presenting the M roots and the corresponding 

vectors for any one of the variables. 

As illustrated by the vectors in Table 6—those a a randomly chosen 

variable—the general pattern of characteristic vectors is that those associated with 

lower variance exhibit higher frequency oscillations. In each case v,, the vector 

associated with the highest variance component, exhibits cycles with a period 
much greater than the forecast period (i.e., frequency near 0), while v, and v,; 

exhibit periods with frequency close to the length of the forecast period. The vector 

associated with the lowest variance typically has a period of two quarters. A 

second feature of the canonical form is that the first one or two components account 

for a very large percentage of the variance. 

We have also computed for each root the test statistic for the corresponding 

linear combination. In Tables 7 and 8 we give for each variable the M roots 

(ranked from largest to smallest and expressed as a fraction of the sum) and above 

it the corresponding test statistc, [vy — §)]*/A;, which can be evaluated using an 

F(1, s) distribution.* Note that the F statistics in Tables 2 and 3 are simply averages 

of these. Although we do not discern any clear pattern from these tables directly, 

by splitting the characteristic vectors into high and low variance groups, certain 

features can be noticed. 

For each variable, we have divided the M-dimensional space into a space of 

high variance linear combinations (in a sense, those about which the model has 

little to say) and a space of low variance linear combinations (those about which 

the model has a lot to say). The test results for each subspace are given in Tables 9 

and 10. The parameter k, which is the dimension of the high variance space was 

determined as follows. Given that the roots are ranked from largest (A, )to smallest— 

= 4ifA,4/A, > 0.05,k = 3 ifd4/A, < 0.05 and A;/A, > 0.05,k = 2if1,/A, < 0.05 

and A,/A, > 0.05, whilek = 1ifA,/A, < 0.05. Given the value of k for each variable, 

the high variance test statistic for that variable is the average of the corresponding 

8 This statistic is a special case of D, since if C is chosen to be a subset of the characteristic vectors 
of Z, then CXC’ is a diagonal matrix with the corresponding roots as diagonal entries. (Fy 9<(1, 48) = 
4.04.) 
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10. 

12. 

first k test statistics in Tables 7 and 8, while the low variance test statistic is the 

average of the remaining M — k. The former can be treated as F(k, s) and the latter 

as F(M — k,s). Since the results for the FRB—-MIT model (Table 10) are clearer 

Gross National 
Product ($1958) 

Implicit Deflator 
for GNP (1958=100) * 

Consumption ($) 

Dividend Price 
Ratio (%) 

Commercial Paper " 
Interest Rate (%) 

Corporate AAA 
Interest Rate (%) 

* 

Deposits at 
S&Ls ($) 

Corporate Before- 
Tax Profits ($) 

Residential 
Construction ($) 

Producer 
Durables ($) 

Nonresidential 
Structures ($) 

Change in Business 
Inventories ($) 

State & Local, 
Purchases ($) 

Employed Civilian 
Labor Force (mil.) 

Unemployment 
Rate (%) 

Federal Taxes (S$) 

49. 
- 88 

ll. 
-63 

22. 
-77 

* 
41 

-75 
- 86 

-13 
+72 

* 
37 

- 60 

-01 
- 88 

+13 
-62 

14 
-67 

. 
-14 
-90 

- 
-53 
-85 

-02 
-40 

. 
-28 
-82 

-28 
+91 

-37 
-85 

. 
«ll 
-70 

1. 
-13 

13. 

84 

-02 
-08 

+12 
-08 

-76 
«15 

-10 
-18 

-60 
-08 

-06 
-09 

-27 
-22 

-01 
-07 

* 
+32 
-07 

-66 
-06 

+64 
ell 

+14 

TABLE 8 

FRB-MIT: Test STATISTIC AND ROOT 

-02 
-03 

-02 

-28 
-03 

«47 
-16 

+14 
-08 

-90 
-05 

-02 

18 
-07 

-50 
-06 

-00 
-O1 

-03 

-17 
-09 

-03 

-02 
-01 

-05 

AS A FRACTION OF THE SUM 

* ,87 
-01 

-88 
-01 

-68 
.01 

-82 

-02 
-03 

+17 
-00 

-68 
-01 

-ll 
-00 

-04 
-01 

-00 
.07 

-01 
-02 

- 26 
-00 

-18 
-01 

than those for Michigan, we discuss them first. 
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-00 

-60 01 

-59 
-01 

-59 
-01 

+53 
-02 

-07 
-02 

44 
-00 

34 
-00 

5) 

-04 
01 

-08 
- 06 

-94 
-01 

54 
-00 

-23 
-00 

+24 
-02 

3.81 
-00 

-00 
-01 

-01 
-01 

-23 
-02 

-02 

-02 
-00 

-02 

-00 

-88 
-00 

-66 
-01 

-05 

-21 
-O1 

-81 
-00 

-00 

-04 
-02 

+03 
-01 

-59 

+22 
+02 

-46 
-00 

-39 
-01 

-23 
-00 

-09 
-00 

14 
-01 

-04 
-04 

* 
-47 
-01 

+74 
-00 

-62 
-00 

59 
-02 

- 06 
-00 

12 
-00 

84 
-01 

+62 
-01 

-05 
-01 

-33 
-00 

+02 
-01 

* 
-75 
-00 

-O1 
-00 

* 
-30 
-01 

-08 
-04 

+24 
-01 

-83 
-00 

-02 
-00 

-17 
-01 

-01 
-00 

-49 
-00 

-17 
-00 

-54 
-01 

44 
-01 

-46 
-01 

+22 
-00 

-42 
-01 

73 
-00 

-27 
-00 

-07 
-00 

-03 
-03 

.04 
-01 

* 
-09 
-00 

-03 
-00 

+04 
-01 



For the FRB-MIT model, variables 2, 5, 6, 11, and 13 did not pass the nine- 

period test. None of these variables pass the joint test of the high variance linear 

combinations, but all of them except variable 6 pass the joint test of the low 

variance linear combination. Thus the actual data seem to exhibit a low frequency 

component with higher variance than the model itself. This can be interpreted 

to mean that the real world differs from the model in the direction of a naive 

model. Another way of stating this result is that the model tends to compensate 

sufficiently for high frequency autocorrelation but not for low frequency auto- 

correlation. 

For the Michigan model where variables 2, 5, and 7 did not pass the twelve- 

period test, variabtes 2 end 7 fail the joint test of the high variance (low frequency) 

combination and pass the joint test of the low variance (high frequency) linear 

combination. 

We also examined the ellipsoid generated by several variables jointly. In 

particular, we examined the characteristic vectors and values for the covariance 

matrix for real GNP, the GNP deflator, and the unemployment rate.’ It would 

have conveniently fit with our interpretation of the eigen vectors of single variables 

as frequency components if the joint eigen vectors could have been described as 

the components of the (3 x 3) correlation matrix for each frequency, with 

(approximately) distinct frequencies uncorrelated. This, alas, was not the case. The 

components of the single variables are obviously correlated across components. 

For example, the highest variance (joint) component had (roughly) the same form 

as in the single-variable analysis for the GNP and unemployment partitions, but 

the price partition behaved in a manner similar to the second and third single- 

variable components. Indeed, we were not able to find any useful general inter- 

pretation of these joint components. 

This completes our examination of linear combinations suggested by the 

forecast distributions themselves. We now examine annual averages, a set of linear 

combinations which might be considered of interest, a priori. 

We present joint test results for all the variables for which quarterly forecasts 

were tested in Tables 2 and 3. For the Michigan model, we test annual forecasts for 

the first year, the first two years jointly, and all three years jointly. For the FRB 

MIT model we omit the first quarter of the forecast period and test annual averages 

for 1969, and for 1969 and 1970 jointly. In each case, the test statistic is computed 

using the relevant matrix C. The results are given in Table 11. 

As a forecaster of annual averages, the Michigan model fails the test for the 

whole forecast period, but passes it for one- and two-year horizons. While the 

relative standing of the model for different horizons is the same as in Table 5, the 

model is more consistent as a forecaster of annual averages. The same kind of 

comparison cannot be made for the FRB—MIT model, because all joint tests on 

quarterly forecasts were inclusive of 1968(4). Nevertheless, the poor showing of 

FRB-MIT as an annual forecaster over 1969 and 1970 is not entirely surprising. In 

the quarterly tests, the model did better forecasting only 1968(4) than it did 

forecasting for any longer period. 

° For these computations, each variable was expressed as a ratio to its corresponding mean fore- 
cast, so that variances become coefficients of variation, etc. 
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TABLE 9 

MICHIGAN: HIGH AND Low VARIANCE TEST STATISTICS BY VARIABLE 

High Variance Low Variance 
k Test Statistic Test Statistic 

1. Gross National Product ($1958) 2 1.86 0.17 
2. Implicit Deflator for GNP (1958 = 100)* 2 4.18* 1.84 
3. Consumption ($) 2 1.40 0.97 
4. Corporate Before-Tax Profits ($) 2 0.36 0.53 
5. Business Fixed Investments ($)* 1 1.21 2.09* 
6. Private Nonfarm Housing Starts (000’s) 3 0.35 0.79 
7. Corporate AAA Interest Rate ( %)* 2 4.34* 1.85 
8. Unemployment Rate (%) 2 2.19 0.38 
9. Change in Business Inventories ($) 4 0-75 1-44 

10. Output Per Manhour Nonfarm Index 
1957-1959 = 100 1 5-07* 0.27 

11. Employment Rate of Males (20 Years ~ 
and Over (%)) 2 1.62 0.33 

12. Residential Construction ($) 3 0.12 1.43 

TABLE 10 

FRB-MIT: HIGH AND Low VARIANCE TEST STATISTICS BY VARIABLE 

High Variance Low Variance 
k Test Statistic Test Statistic 

1. Gross National Product ($1958) 2 0.92 1.00 
2. Implicit Deflator for GNP (1958-100)* 2 24.72* 1.61 
3. Consumption ($) 2 0.93 0.21 
4. Dividend Price Ratio (%) 3 0.79 1.47 
5. Commercial Paper Interest Rate (%)* 4 3.91* 1.28 
6. Corporate AAA Interest Rate (%)* 3 9.03* 3.24* 
7. Deposits at S&Ls ($) 2 0.04 0.80 
8. Corporate Before-Tax Profits ($) 4 1.05 0.64 
9. Residential Construction ($) 3 0.35 2.89* 

10. Product Durables ($) 2 2.07 0.99 
11. Nonresidential Structures ($) 2 8.92* 1.82 
12. Change in Business Inventories ($) 4 0.32 0.54 
13. State and Local Purchases ($)* 2 12.43* 1.60 
14. Employed Civilian Labor Force (mil.) 2 0.97 2.00 
15. Unemployment Rate (% 2 1.50 0.93 
16. Federal Taxes ($) 3 3.54* 0.68 

V. OTHER PROPERTIES OF THE FORECAST DISTRIBUTIONS 

A. Nonstochastic Point Forecasts and Their Relationship to Mean Forecasts 

We computed nonstochastic point forecasts, those minus mean forecasts, and 

the standard errors of the mean forecasts, which we take to be the standard errors 

of forecast in Tables 2 and 3 divided by the square root of 299—299 is the number 

of Monte Carlo replications minus one. The nonstochastic point forecasts for each 

model are obtained from a single endogenous simulation over the forecast period 
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TABLE 11 

ANNUAL Joint Test RESULTS 

Michigan FRB-MIT 

Forecast Span F Forecast Span F 

1968 1.67 . 1969 8.26* 
1968-69 1.26 1969-70 8.41* 
1968-70 2.12* 

with parameters and residuals set at their means: the parameters at their point 

estimates, the residuals at zero. (These data are available upon request.) 

For both models, there are some large discrepancies between points and 

means. A single joint test for each model—to determine whether all the dis- 

crepancies could arise from sampling error attributable to the Monte Carlo 

experiment—yields an F statistic equal to 4.85 for the Michigan model, and one 

equal to 5.55 for the FRB—MIT model, in each case exceeding the relevant 5 percent 

critical value. In a statistical sense, at least, points do not adequately represent 

means, which is what one expects to find for any model other than one consisting 

of estimated linear reduced-form equations. Of course, despite the high values of 

the test statistics, one might still want to use the nonstochastic estimates because 

they can be obtained more cheaply. The important point, thoug!: is that such a 

judgment would be hard to make before appraising the kind of discrepancies that 

result for each model. 

B. A Sequence of One-Quarter Forecast Distributions 

The variation over time of the standard errors of forecast in Tables 2 and 3 

could, in principle, be traced to two different sources. One involves the presence in 

both models of lagged endogenous variables: the greater the forecast span, the 

greater the number of lagged random disturbances affecting forecasts by way of 

their effects on the values of lagged endogenous variables. The other involves 

changes in average initial conditions : each standard error of forecast is a function 

of the fixed values of the predetermined variables conditional on which the forecast 

is being made. By analogy with linear models, we expect standard errors of forecast 

to be larger the more distant are the values of the predetermined variables from 

their sample period means. And since most variables in these models are stated in 

terms of levels, deviations of predetermined variables from their means can be 

expected to increase with time during the forecast period. 

In order to draw some inferences about the importance of each source of 

variation, we computed standard errors of forecast from sequences of one quarter 

simulations in which lagged endogenous variables are each quarter set equal to 

actual values.'° These standard errors of forecasts vary only because average initial 

conditions change. Unlike those in Tables 2 and 3, they tend to increase only 

'® These data are available upon request. Because we were missing data for many of the endogenous 
variables for the FRB-MIT model for the period 1969-2) through 1970-4), we performed one-period 
simulations for that model only for the first three quarters of the forecast period. 
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slightly as a function of time. Thus our suggestion that most of the increase in 

variance in Tables 2 and 3 is attributable to the presence of lagged endogenous 

variables seems largely correct. 

C. Residual Standard Errors 

For a single linear equation, the forecast variance can be split into a sum 

consisting of the residual variance and the variance of the mean forecast, where the 

latter is attributable entirely to parameter estimate variance which approaches 

zero as the sample size increases. The forecast variances we have computed cannot 

be split up in this way because structural parameters and residuals enter the reduced 

form nonlinearly. Thus, if we had computed the variances of mean forecasts from 

a set of simulation experiments in which only parameters were drawn randomly 

and added them to the corresponding residual variances computed from experi- 

ments in which only residuals were drawn randomly, we would not expect the sum 

to equal the forecast variance. Nevertheless, it is of interest to examine the residual 

variance, because it provides an estimate of the part of the forecast variance that, 

in principle, is independent of the amount of data available and that can be reduced 

only by altering the specification of the model. 

Therefore, we computed the ratio of each residual standard error to the 

corresponding standard error of forecast from Tables 2 and 3.'' For both models, 

the ratios tend to decline with time although the pattern is more consistent and 

far more pronounced for the Michigan model. For example, consider the results for 

real GNP in the ninth quarter of the forecast period for both models. While the 

standard error of forecast is about 25 billion for both models (see Tables 2 and 3), 

for the Michigan model only about 50 percent is directly attributable to the structure 

of the modei and would remain no matter how large a data set had been available; 

for the FRB—MIT model about 75 percent is attributable to the structure of the 

model. The models differ more in this respect than in almost any other we have 

examined. 

VI. CONCLUDING REMARKS 

As we hope is evident, our goal has not simply been to “test” two models. 

Rather, it has been to illustrate the range of tests one can perform on an estimated 

simultaneous equation model and the kinds of implications one can draw. It is 

also our goal to provide something of a rationale for those tests and, hence, to 

convince others they are worth performing. Since we have dealt throughout with 

the situation of a post-sample period too short to allow for separate post-sample 

estimation of the parameters, the only data requirement is that there be some post- 

sample data. 

In closing, we would like to add one last caution about interpreting the results 

of the kinds of tests we have performed. Passing such tests is more impressive the 

more different is the forecast period from the base period in terms of the regimes 

‘! The residual variances were calculated from a set of simulation experiments similar in all 
respects to those underlying the statistics in Tables 2 and 3, except that parameters were held fixed at 
their point estimates. The data are available upon request. 

512 



generating the variables taken to be exogenous. If there are no grounds for 

supposing those regimes to be different, the fact that a model passes such tests does 

not imply a similar validity of its policy evaluation implications. 

APPENDIX I. PROPERTIES OF THE STATISTICS 

A. With our particular models and small sample sizes, there are no available 

tests with known optimality properties (in terms of power). Therefore, in choosing 

both the general form of the test statistic, and the particular estimates and modifi- 

cations used, along with the distribution used to define the critical region, we have 

been guided by known results for more simple models and asymptotic results for 

a general class of models which include ours. 

We have chosen to use a test which is a (modified) special case of a general class 

of tests for which the rejection region is given by 

2's >rF{r,s) 

where 

(i) g is an r-vector of estimable parameters of the joint distribution of the 

endogenous variables y, 

(ii) the null hypothesis can be stated as g = 0, and 

(iii) and £ are sufficiently good estimates of g and £, respectively, made 

without the null restrictions. 

For the normal linear model with scalar covariance matrix, this is the classical 

F-test which is a UMP invariant test. For the normal linear multivariate regression 

model, a statistic of this type can be derived as the sum of invariant statistics; 

however, only in special cases does a UMP invariant test exist. Lehmann [7] and 

Rao [8] provide thorough treatments of these linear finite-sample-size models. 

Wald [9} has shown that in an asymptotic sense, the above test statistic yields 

a UMP invariant test for a wide variety of models and hypotheses including the 

multivariate model. The main requirements are that the estimates of g be maximum 

likelihood (or asymptotically equivalent to m.|.) and that £ be the estimated 

asymptotic covariance matrix. Normality as such is not required. In the limit, 

the statistic has a F(r, 00) or x?(r)/r distribution under the null hypothesis which 

is used to set up the critical region. 

Despite these results, we are painfully aware that our models are too distant 

from the simple models (for which there are finite sample results) and our samples 

too small to provide any rigorous justification at this time. Nevertheless, in our 

jucgment there are enough favorable indications to justify use of a modified form 

of the above statistic if the alternative is a nonstatistical test. We now describe the 

modified form. 

B. The general hypothesis we wish to test is that the structural coefficient 

values are the same in the “estimation” and “forecast” periods. The alternate 

hypotheses are that those values are different in the estimation and forecast periods. 

In both cases we assume, and we emphasize this, that the distribution of the 

structural disturbances remains the same. Thus, we would like to test the hypothesis 

g = B, — B, = 0, where B, and f, are the structural parameters valid in the 

estimation and forecast periods, respectively. However, in our case the forecast 
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period is too short to allow estimation of the whole set of coefficients for that period. 

Only certain functions of the parameters can be estimated. 

We would like to find the maximum set of (functionally) independent functions 

of the coefficients (including perhaps some parameters of the distribution of the 

residuals) which are estimable. By estimable we mean that the equations obtained 

by setting the first derivatives of the likelihood function (for the forecast period) 

with respect to the new functions equal to zero have a solution and a negative 

definite Hessian. 

We know of no systematic and practical way of determining such a maximal 

set of estimable functions. However, three possibilities come to mind. They are the 

conditional expected values of the endogenous variables in the forecast period 

conditioned on the values of the endogenous variables (a) before the estimation 

period, or (b) before the forecast period, or (c) before each time for which a mean is 

sought. These correspond to three different “reduced forms,” different because we 

are dealing with a system of difference equations. We chose (b) for reasons we will 

discuss below. 

We can now restate the hypothesis we wish to test as g = h(B,) — h(B,) = 0 

where h is the conditional mean vector computed on the basis of (b). Defined this 

way, the functions in h(f) are estimable and if functionally independent are maximal 

since they make use of all the forecast-period data. We suspect that functional 

independence hinges largely on whether any of the structural equations can be 

estimated on forecast-period data alone. If none can be, the functions in h() are 

functionally independent ; if some can be, there are dependencies.'? 

A reasonable, in fact, unbiased estimate of h(f,) is the vector of actual values in 

the forecast period so that g = y, — h(B,), where h(8,) is simply the vector of 

reduced-form “mean forecasts’”’ made on the basis of (b) using the estimation 

period parameter estimates.'? 

A further consequence of the shortness of the forecast period is that we cannot 

estimate the covariance of g. The covariance matrix of h(B,), which is a reduced- 

form covariance, depends on the structural covariance matrix of the residuals 

(which we assume is unchanged and which can be estimated from the estimation 

period) and on values of the coefficients 8, which are not estimable. We sidestep 

this problem by computing the covariance matrix using the null hypothesis. This 

gives us a type of prediction interval test. 

There is one important consequence of using the null hypothesis to compute 

the covariance of g. Let & be the covariance under the null hypothesis and V that 

under the alternate hypothesis B, # B,. Also let A = h(B,) — h(B,) and assume for 

the moment that h(f,) is an unbiased estimate of h(8,) with negligible variance. 

'2 Fora linear structure, we can prove the second part of the statement. For any structural equation 
that can be estimated (with sufficient degrees of freedom to make it “worthwhile”), the elements of 
g(B) corresponding to the L.H.S. variable for that equation should be replaced by the parameters 
themselves, with, of course, the required changes made in the covariance matrix. 

‘3 As described in section II, we actually use as an estimate of h(8,) an expected value of h(8,) 
where the expectation is over the distribution of B,. This differs from hp, ) only because in our case h 
is non-linear in £. Given this difference, the expectation seems more consistent with our view of the test 
as a type of prediction-interval test. 
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Then, the expectation of our test statistic, 

E(y. — h(B,) ¥~ (y2 — W(B,)) 

= Eltr Y~“(y. — h(B2) + A)(y2 — h(B2) + AY] 

=try~ (V+ AA). 

Since B, is not estimable, there are a large number of £, 4 £, for which A = 0. 

Among these are almost certainly some for which V is very small, thus, implying 

tr )~'V « r. This means that our test is biased in that there are values of B, 4 B, 

for which the null hypothesis is more likely to be accepted than for B, = B,. 

However, the presence of the AA’ term means that values of 8, for which the test is 

biased and which lie in the direction of increasing A are in a bounded region of B, 

(independent of V). For values of B, which lie in a direction which leaves A un- 

changed, no bound can be given. 

With regard to the choice among estimable functions conditioned on values 

of the endogenous variables (a) before the estimation period, or (b) before the 

forecast period, or (c) before each date for which a mean is sought, since the test 

statistic is essentially a probability density function, if it were based on (a), it could 

be written as (an integral of) a product of density functions: one based on (b), i.e., 

conditional on the estimation period; the other giving the distribution of the 

initial conditions at the end of the estimation period. Thus, it would seem that basing 

the test on (a) rather than (b) would only add noise and lower the power of the test. 

And, since we view the test as a prediction interval test, computing it based on (b) 

seemed easier and more consistent. 

Our choice of a distribution to compute the critical region was based on the 

behavior of the simple and asymptotic cases mentioned above. An F distribution 

for finite samples is consistent with a y? asymptotically. In addition the simple 

models indicate that an F might be an appropriate way to take account of the fact 

that the covariance matrix must be estimated.'* 

As an approximation to the “denominator” degrees of freedom we use a 

rough average number of degrees of freedom for our equations in the “estimation” 

period. Because of our assumption of independence of residuals across equations, 

we did not attempt to subtract the additional degrees of freedom due to inverting 

an estimated covariance matrix as suggested by the multivariate simple model. 

C. Computing our prediction interval test involves solving a large system of 

simultaneous equations many times. Could not the test be done more simply 

equation by equation? We think not. 

'* We could have proceeded, in a sense, nonparametrically, by generating a distribution of the 
statistic D under the null hypothesis, finding the 0.95 percentile point of the distribution, and rejecting 
if D computed at the actual value of y exceeds that point. For each different test, this would require 
computations using the entire distribution of the solved-for y’s rather than simply the mean and 
covariance matrix. 

At the prompting of our colleague, Professor Sims,,we did examine certain one-variable-at-a-time 
distributions, those plotted in Figures 1-4, to determine whether 5 percent critical regions determined 
nonparametrically are very different from those based on normality and whether any conclusions would 
be different. We found no systematic differences between critical regions and in none of the cases 
examined would our conclusions have been different. 
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Consider a single equation from a set of simultaneous equations, which, to 

simplify the exposition, we assume to be linear and without lags: 

n K 

S&B. Y) = Yur + > Bix + 7 VeXke = Uy- 
k=2 k=1 

Let B, ? be the estimation period coefficient estimates, #, = f(8,), and @ be the 

vector of fi,’s from the forecast period, and consider a test statistic of the form 

ay 'a 

with an appropriate )°. 

In order for a test based on this statistic to have good properties, we might 

require Ea ~ 0 and ) = Eff’, with the expectations conditioned on some 

appropriate observations. 

If we condition on the current values of the endogenous variables other than 

y;, then, in general, Ea # 0. The idea is that conditioning on some endogenous 

variables implies conditioning on some reduced-form residuals, which, in general, 

are functions of u. 

If, alternatively, we condition on the values of the endogenous variables in the 

estimation period, we do have Efi = 0. But then we must estimate Y > Eft’ with 

the expectation conditioned on estimation-period values not current values. 

Assuming, as an approximation, that f and 9 are unbiased and independent of u, 

the (t, t') element of Efi’ is, then, 

o(t, t’) = H(t, Eu? + tr[V(Ez(t)z(t’y)] 

where z(t) = (y2;,--+5 Yut>X1rs+++> Xx, V is the covariance matrix of (8, 9) and 6 is 

the Kronecker delta. But, since Ez(t)z(t’)’ is, then, an expectation conditional on 

estimation period values not current values, it depends on the whole system of 

equations. We are thus led back to the same computations we set out to avoid. 

APPENDIX II. ADDITIONAL COMPUTATIONAL DETAILS 

A. Check for Strange Runs 

The models we deal with are nonlinear. The solution procedure, the Gauss- 

Seidel iterative routine, finds a solution, but it may not be the only solution. As 

illustrated by Friedman [4], there is no guarantee that quarter by quarter the 

solution is not switching, say, between alternative roots of a quadratic equation. 

The procedure outlined below is designed to discover such anomalies. It identifies 

runs in which the path over time of any variable exhibits unusually large jumps or 

oscillations. 

Let yt) be the solved-for value of the i-th variable at date t in a particular 

simulation run. Let x(t) = y(t) — pt) — Ly{t — 1) — pdt — 1)] where y{0) = 9,0) 

—the actual value of the i-th variable in the last quarter of the estimation period— 

and where for t > 0, ¥,(t) is the mean forecast of the i-th variable at the t-th quarter. 

The variance of xt) is V(t) = S{t,t) + S(t — 1,t — 1) — 2S{t,t — 1), where 

S{a, b) is the covariance of the i-th variable between quarters a and b. We compute 

the ratio 

R(i, t) = |xA0)\/[ Vo] 
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which we expect to be large for runs for which the solution routine is oscillating 

quarter by quarter between different multiple solutions. 

Since for Michigan we examine results for 12 variables over twelve quarters 

and for FRB-MIT results for 16 variables over nine quarters, and since for each 

model we performed 300 simulations, there are 43,200 observations on R for each 

model. The distribution of R for each model is summarized below along with what 

would be implied by normality for R. 

Frequency 

Interval Michigan FRB-MIT Normality 

0-2.0 41,272 41,237 41,271 
2.0-3.0 1,811 1,814 1,853 
3.0-4.0 103 140 74 
4.0-5.0 8 9 2 
5.0-6.0 6 0 0 
6.0- 0 0 0 

Since the results are closely in accord with what we would expect from a 

normal distribution for x, we concluded that there were no “strange runs” among 

our simulations. 

B. Coding Checks 

Since the computer programs that were written to solve the Michigan and 

FRB-MIT models were not designed for our computations, it was necessary to 

add a significant amount of new coding. Our computations required two major 

programming additions: the first was to include a stochastic residual in each 

structural equation which was consistent with the form of the estimated equation ; 

the second was a subprogram that generated random coefficients and residuals 

consistent with the distributions implied by estimation. 

To check our residual coding and the randomization procedure, a program 

was written to generate for the estimation period 100 sets of stochastic predictions 

of the dependent variables and a nonstochastic set. For each equation we generated 

predictions using actual values of right-hand side endogenous variables and then 

calculated two statistics : a residual variance 

6? =() — yi - y)(N — k) 

and the ratio 

100 

R = —— S _ oy. — 9/42 
100N p> (9: — VO — Se 

where y is the (N x 1) vector of actual values of a dependent variable, over the 

estimation period, ) the corresponding vector of nonstochastic single-equation 

predicted values, and §; the vector of stochastic single-equation predicted values 

generated using the i-th set of random coefficients and residuals. N and k are the 
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number of observations used in estimating the equation in question and the number 

of independent variables, respectively. If the original coding was correct, 6? should 

equal the residual variance reported in estimation. If our new coding is correct, 

the ratio R can be treated as F[(100)N, N — k]. 

In both models these statistics proved helpful in detecting and locating 

numerous errors that were bound to occur in a project of this size. For example, in 

a number of equations the residuals were improperly coded causing R to range as 

high as 1000. 

C. Random Values of the Serial Correlation Coefficient 

In the FRB—MIT model, a number of equations were corrected for serial 

correlation by taking partial first differences using an estimated first-order auto- 

correlation coefficient. Therefore, just as with all other estimated parameters, it 

was necessary to pick values of the autocorrelation coefficient consistent with the 

distribution implied by estimation. 

Hildreth [5] has shown that the maximum likelihood estimator, /, is asymp- 

totically uncorrelated with all other estimated parameters, is asymptotically 

unbiased, and has asymptotic variance (1 — #”)/N, where N is the number of 

observations. Based on that result and on the constraint that p lies in the interval 

(0, 1), we constructed an approximate distribution for p as follows. 

Define 

1 

mT em 

where X is distributed normally with mean zero and variance one. Clearly, p* is 

confined to the interval (0, 1). The problem is to find values of A and B such that, 

E(p*) = p and V(p*) = (1 — f?)/N. To approximate such values, we used a series 

approximation to p*, denoted r*; where r* consists of the first two terms of a 

Taylor expansion of p* about the mean of X: 

1 Be4 B*e“(e4 — 1) “= “2 x 
"T4+e! Gee * M+ 

Since X is normal, 

> B*e“(e4 — 1) 

1 + e4 21 + e4)°? 

(Be*)? Be4(e4 on 1) 2 
*) — 
= a+ | a1 + e4)3 | 

E(r*) = 

Setting E(r*) equal to the estimated mean, f, and V(r*) equal to the estimated 

variance, (1 — f7)/N, the resulting equations can be solved for A and B. 

The approximation was checked for different f’s by drawing samples of 

500 p*’s and calculating sample means and variances. It was found that for f close 

to one, the approximation was poor; for f’s greater than 0.9, the sample variances 

exceeded (1 — f”)/N by more than 20 percent. That led us to try a third-order 

Taylor expansion for p*. With the third-order approximation, for f less than 0.98, 
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sample means and variances differed from the actuals by less than 5 percent. 

However, for f’s greater than 0.98, the approximation was still poor. Therefore, 

for the two equations with f’s in excess of 0.98, we assumed zero variance as one 

would if first differences had been taken. 
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