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Annals of Economic and Social Measurement, 3/3, 1974 

OPTIMAL RESPONSE SURFACE DESIGN IN MONTE CARLO 

SAMPLING EXPERIMENTS* 

By JOHN CONLISK 

The theory of optimal experiment design is applied to the design of Monte Carlo sampling experiments. 
It is shown that prevailing practice in Monte Carlo sampling experimentation may lead to inefficient use 
of computer time. In particular, the practice of generating the same number of samples for each numerical 
specification of the target model is criticized. Alternative procedures are suggested. 

I. INTRODUCTION 

As Summers (1965) has pointed out, the increasing availability of computers 

argues for greater use of the “‘capital intensive’ Monte Carlo approach to dis- 

covering small sample properties of estimators.’ Of course, the capital should be 

used efficiently. Toward this end, Haitovsky and Jacobs (1972) presented in the 

initial issue of the Annals a general purpose program for efficient generation of 

Monte Carlo sampling data. Given such a program, further efficiency questions 

concern the number of Monte Carlo samples to generate, the sample size for each, 

the numerical specification of target model parameters, and related questions. 

These further efficiency questions may be linked with the statistical literature on 

optimal experiment design. This paper shows that efficient design of certain aspects 

of a Monte Carlo study may be viewed as a regression design problem. Application 

of regression design techniques suggests that some prevailing practices in Monte 

Carlo sampling experimentation use computer time inefficiently. 

A recent Monte Carlo study by Orcutt and Winokur (1969) makes a useful 

illustration. Though it will be argued that the authors used computer time ineffi- 

ciently, this may be no more than a trivial criticism of their study. Since their model 

was very simple, computer cost may have been a minor consideration. It is the 

simplicity and elegance of their model which makes it a convenient illustration. 

Nonetheless, computer cost is a serious consideration in many Monte Carlo 

sampling studies; and the points made carry over. Orcutt and Winokur were 

concerned with the autoregressive model 

(1) Y, = aY,_, +e,, where e, is NID(O, 1). 

Here Y, and e, are scalar random variables, and t indexes time. As the authors note, 

no generality is lost by normalizing the intercept of (1) to zero and the variance of 

e, to one. 

Orcutt and Winokur wished to know the small sample properties of alternate 

estimators and test statistics associated with the model (1), especially the first two 

* This research was supported by the National Science Foundation under grant GS-3201. Thanks 
are due to the editor and referees of the Annals for helpful comments on an earlier version of the paper. 

* Monte Carlo methods are treated in the statistical literature at a more basic level than in most 
econometric applications. See references in the Naylor et al. survey (1967). 
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moments of these statistics. For example, they were interested in the functions 

(2) E(a*) = F(a,N) and mse(a*) = G(a, N). 

Here mse(.) denotes mean square error, and «* denotes the ordinary least squares 

estimate of « based on an N-observation sample (Y,,..., Yy). Since the functions 

F and Gcould not be derived analytically, the authors estimated them empirically— 

that is, performed a Monte Carlo experiment. Their procedure can be described in 

terms of equation estimation (though the authors did not so describe the procedure). 

Corresponding to the functions (2) to be estimated are two estimation 

equations: 

(3) a* = F(a,,N,)+ up, and (a* — a,)? = G(a,,N,) + ug,, 

forr = 1,...,n. Here the u’s are error terms ; they must have zero means in view of 

(2). The subscript r indexes observations. ““Observation”’ needs explaining. The 7-th 

observation was generated by the authors in three steps. (i) They specified values 

for «, and N,. (ii) They generated by computer a sample time series for Y, of size 

N, using the autoregressive model with « = «,. (iii) They calculated an observation 

a* on the estimator «* (along with observations on all other estimators and test 

statistics under consideration). These three steps yield a value for the triplet 

(a*, «,, N,); repeating the procedure n times yields a sample of size n for estimating 

equations (3). 

Viewing the authors’ procedure in this way is useful in establishing a link with 

the experiment design literature. The authors had control over the independent 

variables a, and N, in the estimation equations (3). Their design problem was how 

to choose the n independent variable observations (a,, N,),...,(a,,N,). Such a 

choice problem is roughly speaking what the design literature is all about. Since n 

was a very large number (in the tens of thousands), the authors followed a standard 

design procedure by selecting a much smaller number, say m, of admissible values 

for a pair (a,, N,); and they then took repeated observations at each of these 

admissible pairs. Thus, the problem of choosing all 2n numbers (a,, N,),...,(@,, Nn) 

reduced to the more tractable problem of choosing only m numbers—the numbers 

of observations at each of m admissible pairs. Call these numbers of observations 

Ny,...,Mm 3 they sum to n. 

Some widely used terminology is useful. The variables which an experimenter 

controls (a and N in the Orcutt-Winokur context) are called design variables. 

Their space is called the design space. The m admissible sets of values for the design 

variables are called treatments or design points. The numbers of observations per 

treatment n,,...,7,, are called treatment sample sizes ; and a set of values for the n; 

is called a design. The functions to be estimated (like F and G from (2)) are called 

response functions. The object of a Monte Carlo sampling experiment is accurate 

estimation of the response functions ; and the design question is how to choose a 

design which best serves this object. The most common design used in Monte Carlo 

sampling studies, including the Orcutt-Winokur study, is the equal treatment size 

design defined byn, = ... = n,,.(Few exceptions to the equal treatment size design 

were found in the literature ; and these had no apparent optimal design rationaliza- 

tion.) It will be argued here that such a design uses computer time inefficiently. It 
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will be argued that the n; usually should be made systematically unequal, according 

to guidelines suggested below. 

An answer to the design question depends heavily on the functional form of 

response functions. Implicit in most Monte Carlo sampling studies is a disregard 

for the continuity of a response function. Orcutt and Winokur, for example, 

estimated the height of F(a,, N,) over each treatment point as the sample mean of 

the a* observed at that point. Thus, in estimating the height, they made no formal 

use of available information about heights over adjacent treatments, as if F had no 

continuity. The spirit of this approach is captured by the step function specification 

B, if («,, N,) falls at treatment 1, 

B, if (a,, N,) falls at treatment 2, 
(4) F(a,,N,) =4- 

B,, if («,, N,) falls at treatment m. 

In truth, a function like F is typically continuous ; possibly F could be well approxi- 

mated by the quadratic 

(5) F(a,, N,) = B, + B24, + B3N, + Baa? + BsN? + Boa,N,. 

The two functional forms (4) and (5) will be used in the illustrative calculations 

below. 

+ 
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Figure | 

Orcutt and Winokur ran several experiments, using up to 48 treatments. For 

simplicity, illustrative calculations here will use m = 20 treatments, as described 

by the points on the design space of Figure 1. These treatments cover the range of 

stationarity (—1 < a < 1) for the autoregressive model and a range of sample 

sizes (10 < N < 70) commonly faced in time series studies. 
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II. THE MONTE CARLO MODEL 

A source of confusion in this context is the presence of two statistical models ; 

they will be called the target model and the Monte Carlo model. The target model is 

the model of ultimate concern—the autoregressive model in the Orcutt-Winokur 

study. The Monte Carlo model is the estimation model—composed of equations 

like (3}—used to translate computer runs into inferences about the distributions of 

the target model estimators and test statistics. This section formally specifies the 

Monte Carlo model. Since each of the two models has its own parameters, 

estimators, and other components, one must continually delineate which model 

words like “‘parameter,” “‘estimator,” and “observation” refer to. Fortunately, 

the Monte Carlo model for the general case can t= specified without specifying 

the target model for the general case. 

In the Orcutt-Winokur illustration, there is a pair of design variables (a, N). 

For each Monte Carlo observation, the pair is assigned one of m admissible values. 

In the general case, let the target model have D — 1 parameters, which together 

with N, make D design variables. Further, let the m admissible values for the 

D-tuple of design variables be written as (1, D) row vectors z,,...,Z,;$80 the z; are 

the treatments. 

The Monte Carlo experimenter’s goal is to estimate a set of response functions 

using estimation equations like (3). For now, it is assumed that these equations 

satisfy the linearity and other assumptions of the following standard multi-equation 

regression model. The restrictiveness of this assumption, and how to relax it, are 

discussed in the next section. 

Y= XB + U, 

(6) E(U)=0, var(U,)=V@Q, 

O = GagWi,....67;...302,...,@) 
—-__---- , 
n, times n,, times 

This is the Monte Carlo model. Here Y is an (n, p) matrix of observations on 

dependent variables, where p is the number of response functions, or regressions. 

The columns of Y correspond to different response functions and the rows to 

different Monte Carlo observations. In the Orcutt-Winokur context, for example, 

two of the columns of Y are [a*,...,a*]’ and [(a* — «,)”,...,(a* — «,)*]’, which 

are the dependent variable observations for equations (3). 

The dependent variable matrix Y is composed of a systematic component XB 

and an error component U. In the assumptions (6) on the (n, p) error matrix U, 

var( . ) denotes “variance matrix of,” @ denotes Kronecker multiplication, and U, 

denotes the (np, 1) vector gotten by stacking the columns of U (first column on top, 

second column next, and so on). The assumptions on U say that U has zero mean, 

that its rows (observations) are uncorrelated, and that all rows have the same 

variance matrix V up to a scalar multiple which may vary by treatment. This 

variance multiple for the i-th treatment is a7; the a? allow a limited form of 

heteroskedasticity. As is apparent from (6), observations are assumed to be ordered 

by treatment from first treatment to last. 
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In the systematic component Xf of Y = XB + U, the matrix X is an (n, k) 

regressor matrix, where k is the number of regressors; and £ is a (k, p) matrix of 

regression coefficients. The elements of X are functions of the design variables and 

are thus subject to experimental control. The n rows of X correspond to the n 

Monte Carlo observations. The value of a given row of X depends on which treat- 

ment the observation is taken at and what the regression functional form is. A row 

of X taken at treatment z; will be given by some (1, k) row vector of functions of z,, 

call the function f(z;,). Thus, the regressor matrix X takes the form: 

f(z, ) | 

. n, times 

Stes) 

(7) X= ; 

Ff (Zn) 

: n,, times 

| Sm) | 

To illustrate the regression functional form f, the step form (4) above for the response 

function F can be represented by a dummy variable regression, with the i-th of 

k = mdummy regressors equal to one if the observation is at the i-th treatment (and 

zero otherwise). The implied f-function is 

(8) f(z, = [i-th (1, m) unit vector] (step form). 

As another illustration, the quadratic form (5) above leads to the f-function 

(9) f(z) = [(1,a,N,a?,N?,aN] with (a, N) = z; (quadratic form). 

There are no necessary relations in general among the number of design variables 

D, the number of regressor variables k, the number of treatments m, and the number 

of observations n; although D < k < m < nis common in practice. 

The best linear unbiased estimate B of B and its variance matrix are given by 

(10) B =(X'Q-'X)"'X’'Q-'Y,_ var(B,) = V@(X'Q"'X)". 

Here B, is the (kp, 1) vector gotten by stacking the columns of B. Derivations can 

be found for example in Goldberger (1964, pp. 201-12), though they must be 

modified slightly to allow for heteroskedasticity. In view of (6) and (7), var (B,) may 

be rewritten 

(11) var (B,) = V@ or nyo; * f(z) f(z). 

III. THE DESIGN MODEL 

The Monte Carlo experimenter’s goal may now be viewed as accurate 

estimation of the matrix B of Monte Carlo model parameters. He wishes to choose 

a design n,,...,n,, Which facilitates this estimation. The general experiment design 

literature suggests a choice procedure, called the design model here. The specific 
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formulation is that of Watts and Conlisk (1969), which builds on the work of many 

authors [see Fedorov (1972) and references there for a good entry to the literature]. 

There are two major components to the design model—the choice set and the 

choice criterion. 

The choice set. It is assumed here that the scope of the Monte Carlo sampling 

experiment is limited by a budget constraint )’jc;n; < C, where c; is the cost of one 

Monte Carlo observation at the i-th treatment and C is the available budget. The 

choice set is then the set of all non-negative m-tuples (n,,...,n,,) which satisfy the 

budget constraint. 

The choice criterion. The matrix var (B,) is a matrix measure of the experi- 

menter’s error in estimating the Monte Carlo model coefficients f by B. It is natural 

to specify a scalar error measure defined on var ( 3,) as the experimenter’s objective 

function to minimize. Some conventional specifications are the determinant 

(generalized variance), maximum eigenvalue, and weighted trace of var (B,) [see 

Fedorov (1972, 52-3) on these and other objective functions]. The discussion and 

illustrations here will use a weighted trace criterion, though one of the other 

standard criteria could easily be substituted. 

The experimenter is interested in estimating f. More specifically, assume he 

is interested in estimating the height of each of the p response functions over a 

representative sprinkling of points in the design space; and assume he specifies 

the treatment points z,,...,Z,, aS these representative points. The best linear 

unbiased estimate of these points is X)B, where Xq is the (m, k) matrix of rows 

I (z;),..-,f(Zm). The (i, jth element of X,B is the estimated height of the j-th 

response function over the i-th treatment point. The experimenter is assumed to 

select as an overall measure of estimation error a weighted sum of variances of the 

elements of X »B—specifically, )°;)' jw;t ; var [(X 9B),;). Here w,,..., W, are weights 

associated with treatments and 1,,...,/, are weights associated with response 

functions. The relative sizes of the w, and 1; reflect the relative importances to the 

experimenter of the treatments and response functions. In view of (11), this estima- 

tion error measure may be manipulated as follows, where W = diag(w,,..., w,,)s 

T = diag(t,,...,¢,), and a subscript v denotes the vector gotten by stacking the 

columns of the matrix on which the v appears. 

i=1 Yeas wit ; var [(X oB);;) = tr {(T @ W) var [(XoB),]} 

tr {(T @ W)(I @ Xo) var (B,)( @ X>)} 

(12) tr (I ® X(T @ W)(I @ X_){V@ Y™, no; 7 f(z) f(z)" '}) 

tr ((TV) @ {(Xo WX,)(D 1NjOj * f(z) f(z)" "}] 

tr* (TV) tr? {((XoWXo)[)7- 1NjOj ? f(z) f(z))- , }. 

This weighted trace function is assumed to be the experimenter’s choice criterion. 

Using it, he can rank alternative designs in the choice set. 
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The design model. In words, the experimenter wishes to minimize the choice 

criterion (12) over the choice set. In symbols the design model is this: 

minimize tr {XqW Xo} 7 ino; 7 f(z) f(z)\~' 

(13) mee 
subject to }' 7 ,cin; < C,n, > 0,...,n, > 0. 

This is a well behaved mathematical programming problem ; the objective function 

is convex and the constraints linear. Strictly speaking, (13) is an integer program- 

ming problem, since the n; are treatment sample sizes. If the sample is large, 

however, little will be lost by the conventional practice of treating the n,; as con- 

tinuous in solving (13) and then rounding off. The list of specifications required 

of the experimenter to apply the model are as follows: 

The treatment points z,,...,Z =e? 
The corresponding variance weights o7,..., 02. 

The corresponding costs per observations C1,---,Cm and the available 

(14) budget C. 

The corresponding treatment importance weights w,,..., We 

The regression functional form f (which together with the z; determines X o). 

It may be noted that only the relative sizes of the o7 are important ; a multiplicative 

change of scale would leave the solution to (13) unchanged. The same holds for the 

w;; and it holds for the c; plus C. 

Computationally, solution algorithms for (13) are made easier by the fact that 

there is only one constraint in addition to the non-negativity constraints. Let 

H(n,,...,",,) denote the objective function in (13) and H; its i-th partial. The 

foilowing iterative solution algorithm is based on the idea of ietting the relative 

sizes of the H,/c; determine how the n; shift up and down from iteration to iteration : 

1 = (C/c)(HAn',,..., n,)/C;)°/Z [H An},.--, ni,)/Cj\’- 

Here t indexes the iteration, and o is a positive convergence parameter to be set by 

the experimenter. My experience suggests setting o = | at first. If the n; do not 

bounce up and down from iteration to iteration, ¢ = 1 will do reasonably well. If 

the n; do bounce up and down, reduce o until the bouncing stops. This algorithm 

has been used to solve problems with m = 224 and k = 50 in less than half an hour 

on a CDC 3600. For initial n; set at n? = C/mc;, 50 iterations usually produced good 

convergence. The major computational effort of a given iteration is the summation 

and inversion of the cross products matrix in brackets in (13). Thus, one iteration is 

roughly equivalent to the work of running one regression with m observations and 

k regressors. In another context, Conlisk and Watts (1969) used a model identical 

to (13) except that there was more than one constraint in addition to the non- 

negativity constraints. This required a substantially more complicated solution 

procedure. A gradient projection algorithm programmed by Kreuser (1968) 

required about 45 minutes on a Burroughs 5500 to solve problems with m = 54, 

k = 13, and five constraints in addition to the non-negativity constraints. 

An explicit solution formula to the design model is available when f takes the 

step function form (8); in this case, X_ = I, and the matrix to be inverted in (13) is 
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diagonal. The solution formula is 

(15) cin/C = (wo7c,)"/?/¥ {wjojc;)'? (i = 1,...,m). 

When the w,, «7, and c; vary over treatments, the optimal n; computed from (15) 

will vary over treatments (except in the rare case when all the -v,0?/c; happen to 

coincide). As intuition would suggest, a larger treatment importance weight w;, or 

variance weight a? leads to a larger treatment size n;; and a larger treatment cost 

c; leads to a lower n;. 

Generalizing the criterion function. A convenient feature of the criterion 

function derivation (12) was that the magnitude tr( TV) factored out and could thus 

be deleted from the design problem (13). Since Tand V were the only components in 

(12) which reflected the existence of more than one response function, their deletion 

meant that the experimenter might as well have been working with only one 

response function to start with. The key assumptions in getting this simplification 

were—{i) that all response functions have the same functional form f ; (ii) that the 

variance matrices o7V,...,02,V associated with different treatments were identical 

up to a multiplicative constant; (iii) that the experimenter was interested in 

estimating response surface heights over the same design space points for every 

response function; and (iv) that the weights in the criterion function }';)'jwit; 

var[(XB);;] took the simple multiplicative form w;t;. More intuitively, these four 

assumptions say that the experimenter treats all response functions symmetrically ; 

so there is no reason for the multiplicity of them to alter the ranking of designs. 

The four assumptions are restrictive and may often be objectionable in 

practice. Fortunately, easy generalizations are available. For example, suppose 

asymptotic theory or other considerations lead the Monte Carlo experimenter to 

believe that different response functions, such as F and G in (2), have substantially 

different functional forms. He might then wish to specify a separate Monte Carlo 

model like (6) for each functional form, in which case he could define a separate 

sub-cbjective function like (12) for each functional form. Since each sub-objective 

would be a weighted sum of variances, it would be natural to define as grand 

objective function a weighted sum of the sub-objectives. Aside from the additional 

specifications and computations required, the generalization would be straight- 

forward. Subject to the same qualification, generalizations of the other three 

assumptions listed would also be straightforward. 

IV. OPTIMAL DESIGN ILLUSTRATION 

The Orcutt-Winokur context was described in the opening section; and 

treatments z,,...,Z29 were specified (Figure 1). To apply the design model, 

specifications are needed for the a?, the c;, C, and the w;. There is reason to specify 

unequal variance weights a7. The major dependent variables to a Monte Carlo 

experimenter will typically be estimators ; and, in contexts where analytical results 

are available, estimators often have variances inversely proportional (roughly) to 

the target model sample size N. For this reason, the a? were set equal to the inverses 

of the corresponding N-values in the illustration. For the budget constraint 

magnitudes c; and C, it was noted that a given Monte Carlo observation involves 
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generation and processing of a target model sample of size N. With this in mind, 

the cost c; for one Monte Carlo observation at the i-th treatment was made pro- 

portional to the corresponding N-value. The total budget C was set so that an 

equal treatment size design with all n; = 1,000 would just exhaust the budget. The 

design model has the property that the optimal ratios among the n;, are invariant 

to the size of C ; so C is not an important specification for the following discussion. 

The treatment importance weights w; should reflect the experimenters’ interests. 

The weights specified are presented on the first row of Table | ; they assume greater 

interest in positive a-values (positive serial correlation in the target model) than 

negative, and equal interest in alternate N-values. 

TABLE | 

OPTIMAL n; FOR ORCUTT-WINOKUR ILLUSTRATION 

a-Value 

N —1.0 —0.5 0 0.5 1.0 

Specification of w; All N 0.5 0.5 0.7 1.0 0.7 

Optimal Design for 10 3,460 3,460 4,094 4893 4,094 
Step f 30 1,153 1,153 1,365 1,631 1,365 

50 692 692 819 979 819 
70 494 494 585 699 585 

Optimal Design for 10 7,185 0 8,524 0 8,824 
Quadratic f 30 1,402 0 2,036 0 1,718 

50 674 0 1,555 0 864 
70 1,066 . Lina 0 = 1,300 

It only remains to specify the regression functional form f. Optimal designs 

are presented on Table 1 for two f-specifications, the step form (8) and the quadratic 

form (9). The optimal! step function design departs greatly from the equal treatment 

size design common in Monte Carlo studies; the reasons are apparent from the 

step function solution formula (15). The optimal quadratic function design departs 

even further from the equal treatment size design ; the reason is continuity. Since 

the quadratic function is continuous, inferences about response function heights 

over all treatments can be made even if there are no observations at some treat- 

ments ; so the model is free to put all stress on cheap or geometrically well placed 

treatments. The classic example of this phenomenon would occur if the response 

functional form was simple linear and the c; were equal; then the optimal design 

would allocate all observations to the corner treatments, for much the same reason 

that a table on a shaky floor will be stablest if the legs are at the corners. 

If Orcutt and Winokur felt confident that the functional flexibility of a 

quadratic was adequate to their context (and if they accepted the other illustrative 

specifications), the quadratic design would be appropriate. If they thought a 

quadratic was too restrictive, but still wished to exploit prior beliefs about con- 

tinuity, they might compute a design for a more flexible, but still continuous, /- If 

they felt uncomfortable with the restrictiveness of any continuity assumption, the 
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step function design would be appropriate. After the fact, it is possible to see from 

Orcutt and Winokur’s results that a quadratic f would have been reasonable for 

the response functions they were estimating. Of course, Orcutt and Winokur 

could not know this prior to their study. 

The question of how to specify fis typically a knotty one [see Conlisk (1973)}. 

However, the important point here is that no assumption about f is likely to lead 

to an equal treatment size design. Since the criterion function of the design model 

is a variance magnitude, the reiative efficiency of two designs in the usual variance 

sense can be measured by the ratio of the two criterion function values. When the 

step f is specified, the efficiency of the equal treatment size design relative to the 

optimum design is only 0.59, indicating that the equal treatment size design loses 

41 percent on the dollar of computer time. When the quadratic form for fis specified, 

this efficiency is 0.58. Similar low efficiencies for the equal treatment size design 

hold under other specifications of f. 

V. CONCLUSION 

Though Monte Carlo sampling experimenters seldom use optimal design 

analysis, the application is straightforward once the goals of a Monte Carlo experi- 

ment are formulated in terms of estimating response functions (whose dependent 

variables are usually the first two moments of target model estimators and test 

statistics). More specifically, if the response functions are treated as regression 

equations, regression design theory leads to optimal designs determined by the 

well behaved programming problem (13). In specifying the inputs (14) to the pro- 

gramming problem, the experimenter tailors the optimal design to his Monte 

Carlo context. 

A distinctive feature of Monte Carlo (and other computer simulation) 

contexts is the presence of multiple response functions [see Naylor et al. (1967), 

section 7.4]. Orcutt and Winokur, for example, table results for 16 functionally 

independent mean and mean square error response functions. As discussed in 

section III, the multiple response case collapses to the single response case under 

certain simplifying assumptions. Since the simplifying assumptions may often be 

objectionable, the generalization of the objective function discussed in section III 

may be needed. 

One often hears the comment that Monte Carlo results are no substitute for 

general analytical results, because Monte Carlo results apply only to the limited 

target model specifications chosen by the experimenter. The inappropriateness of 

this criticism is appar at once a Monte Carlo experimenter’s goal is seen as 

estimation of response functions like the mean function F(a, N) and mean square 

error function G(a, N) from (2). If analytical results were available, all they could 

give us would be functions like F(a, N) and G(«, N). But this is exactly what a Monte 

Carlo study can give us (subject to controllable approximation error). The fact that 

Monte Carlo observations on a function like F(«, N) can be generated for only a 

? For example, their Table V presents the (approximate) contours of six response functions—mean 
and mean square error functions [like F(a, N) and G(a, N) in (2) above] for three estimators of «. The 
table presents the heights of each response function over a 15 point grid of (a, N) combinations. Least 
squares fits of the quadratic f for each of the six functions yield six R’s ranging from 0.97 to 0.99. 
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limited number of (a,N) combinations does not prevent us from exploiting 

continuity to estimate the whole function F(a, N). 

The Orcutt and Winokur illustration (and others not reported) suggest that 

potential efficiency gains from optimal designing are sizable relative to the equal 

treatment design typically used in Monte Carlo studies. Four reasons for the 

inefficiency of the equal treatment size design can be listed. First, the costs per 

treatment c; will vary among treatments with varying target model sample sizes 

(N-values) and may vary for other reasons (as when a design variable being zero 

simplifies computations). Unequal c; promote unequal! n;. Second, the variance 

weights a? are likely to vary by treatment, since the response function dependent 

variables are likely to have variances which decline with target model sample size. 

Unequal c? also promote unequal n;. Third, the treatment importance weights w, 

are likely to vary by treatment, since a Monte Carlo experimenter will typically 

have greater interest in some ranges of target model parameters than others ; this 

also promotes unequal n;. Fourth, continuity of the regression functional form f 

promotes unequal n;. Even if the c;, o7, and w; were equal across treatments, a 

continuous f would promote unequal n;, since the model would seek outlying and 

other geometrically well placed treatments, often to the complete exclusion of some 

treatments (n; = 0 for some i). 

All of this should be qualified by consideration of the cost of implementing the 

design model. Solution to the programming problem (13) can be costly. If this 

solution cost is important, the experimenter might wish to use the optimal design 

for the step form of f, since the explicit solution formula (15) makes computational 

cost trivial in this case. Though the step f-form does not exploit continuity, it is a 

definite improvement over the equal treatment size design. 
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