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Annals of Economic and Social Measurement, 3/1, 1974 

UNCERTAINTY AND THE STABILITY OF THE ARMAMENTS 

RACE* 

BY D. L. BRiTO AND M. D. INTRILIGATOR 

The paper investigates the dynamics of an armaments race in a model of resource allocation. The pre- 
ordering of weapons space in the allocative model is constructed from a strategic dynamic model of a 
nuclear war. The strategic model incorporates uncertainty in the effectiveness of weapons and lags in 
their impact. It was shown that an equilibrium level of armaments exists and the Cournot solution would 
be stable at this equilibrium. 

1. INTRODUCTION 

Models about armaments fall into two classes: simple analytical models that 

derive from the Richardson tradition and very complex computer simulation 

models. The first class of models cannot address many of the problems that are of 

interest to policymakers; in particular they cannot address problems that involve 

interaction of technology, strategy and crisis stability within the context of an 

armaments race. The second class of models is very useful for simulating particu- 

lar situations such as an encounter between a submarine and an ASW taskforce or 

the problem of finding an optimal targeting pattern of the Minutemen force. These 

models are very useful at the micro-level but are often very complex and ad hoc. 

This paper explores the interaction between technological and strategic 

considerations in a potential nuclear war and the implied dynamics of an arma- 

ments race. It extends the previous work of both authors in the general area of 

strategy and arms races [1], [2], [3], [4], [5], [6]. It presents an analytical model of the 

dynamics of a nuclear war which incorporates both time lags and uncertainty. In 

particular, it investigates the effect of the dynamics of a potential nuclear war that 

incorporates uncertainty on the stability of an armaments race. 

2. INTERACTION BETWEEN WEAPONS CHOICES AND STRATEGIC CHOICES 

The interaction between weapons choices and strategic choices is a funda- 

mental element of the arms race. The strategic options open to a nation depend, toa 
great extent, on its weapons systems, while, conversely, the weapons systems a 

nation procures depend largely on its strategic goals. The strategic concepts 

adopted by the various armed services in the recent period, for example, have been 

choices based to a large extent on the weapons available to the individual services. 

Thus the Air Force during much of this period advocated a counterforce strategy, 

according to which prime targets should be enemy military installations, perhaps 

because its bombers and land based missiles were well suited to such targets. At 

the same time the Navy advocated a countervalue strategy, according to which 

prime targets should be enemy cities, perhaps because its submarine based missiles 

were well suited to such targets [4]. 

* This research was supported in part by a grant from the National Science Foundation (GS-36358) 
and the Mershon Center at Ohio State University. 
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Both political and military authorities participate in choices of weapons and 

choices of strategies. Typically the political authorities decide on the allocation 

of resources to procure weapons while the military authorities decide on the 

specific types of weapons procured: As to strategic choices, the political authorities 

typically bear responsibility for decisions regarding war initiation and war termina- 

tion while the military authorities decide on targets and rates of fire in wartime. 

The two sets of choices—weapons and strategy—and the two decision makers— 

political and military—are represented in the basic model [4]. The model is based 

on previous work by Brito addressed principally to the allocation of resources to 

procure weapons by the political authorities in the context of an armament race 

and on previous work by Intriligator addressed principally to the choice of targets 

and rates of fire in wartime by the military authorities. 

3. REVIEW OF PREVIOUS WorK 

Brito [2] studied the arms race in the context of a model of resource allocation. 

He considered a model with two countries denoted by 1 and 2 and indexed by i or j. 

Each of these countries was assumed to maximize 

(1) i} e- "U{C;, D({M;, M;)] dt Ld = La i Fj 
0 

subject to the constraints 

(2) M; = Z, — BM; 

and the j-th country’s reactions. The function U[C;, D(M,;, M;)] isa twice differenti- 

able strictly concave utility function, where C; is the consumption of the i-th 

country, M; is the weapons stock of the i-th country and D({M;, M)) is the index 

of defense, a technological and strategic preordering of weapon space. Z; is the 

net investment in weapons at time t, B;M; is the amount of resources consumed to 

maintain a weapons stock of size M ;, and Y, is the net national product of country i. 

Using (1), (2) and (3), Brito derived a dynamic model of an armament race and 

showed that finite equilibrium levels of armaments consistent with both maximiza- 

tions exist given appropriate assumptions about weapons technology. It was 

assumed that both indices of defense increase (decrease) at a decreasing (increasing) 

rate with one’s own (enemy) weapons. These assumptions are sufficient to ensure 

that both objective functions (1) will have a maximum, and hence that an equili- 

brium exists. 

The stability of an equilibrium level of armaments depended on more question- 

able assumptions. If it was assumed that the two countries behave in a myopic 

manner, there was no question thi.t the equilibrium is stable, as in the Richardson 

equation model. If, however, it is assumed that the two countries behave in a more 

sophisticated manner, for example using information about current armament 

levels and the rate of change of armament levels to predict future levels of arma- 

ments, which levels are used to plan current investment in arms, then the stability 

of the equilibrium is in question. 
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The Intriligator model is a dynamic model of a missile war which explicitly 

treats strategic choices made by both countries [3]. Assuming again that there are 

two countries, | and 2 indexed by i or j; that there is only one weapon, referred to as 

a “missile,” where M {t) is the number of missiles available to country i at time r: 

and there is an index of casualties in each country, where N {t) is the number of 

casualties in country i at time t, the dynamic model is summarized by the four 

differential equations 

(4) M,=-«,M,-a Mf, if =1,2: iFj 

(5) N, = a,M{1 — B,)v, ij=ei,2; ij. 

Equation (4) shows the time rate of change (decrease) in the missile stocks of 

country i as stemming from two considerations. First, country i decides to fire its 

missiles at a certain rate, designated «;, which can range between zero and some 

maximum rate, %;, assumed given and finite. Second, country i is losing missiles 

as they are being destroyed by counterforce missiles of country j. Of the missiles 

fired by j, represented by a;M;, the fraction B; are targeted at enemy missiles 

(counterforce) where f ; can range between zero (pure countervalue) and one (pure 

counterforce). The missiles fired counterforce by j destroy «;M jf f; of the i missiles, 

where f; is the counterforce effectiveness ratio, the number of i missiles destroyed 

by one counterforce missile. Equation (5) shows the time rate of change (increase) 

in casualties in country i stemming from countervalue missiles launched by j. 

Thus, of the aj,M missiles fired, the fraction (1 — B;) fired countervalue inflict 

a;M {1 — B,v; casualties, where v; is the countervalue effectiveness ratio, the 

number of i casualties inflicted by one j countervalue missile. 

Equations (4) and (5), in which all variables are time dependent, together with 

the boundary conditions stating that each country starts with a given stock of 

missiles and no casualties at the outset of the war at time 0, determine the evolution 

of the war over time. The payoff country i is assumed to depend on values of 

missiles and casualties at the end of the war, T, and optimal strategies are obtained 

for i by maximizing the payoff function. It is shown in [3] that the optimal strategies 

are switching strategies, with targets switching from pure counterforce to pure 

countervalue and rates switching from the maximum rate to the zero rate. 

Since the maximized value of the payoff function depends on the initial 

conditions, an index of defense similar to the D{ -- ) function above can be con- 

structed. This function depends on initial technological and strategic considera- 

tions. A more complete description of this synthesis can be found in [4]. 

4. THE ENLARGED MODEL 

The enlarged model of a nuclear war introduces two additional considerations 

to the analysis. First, it incorporates the significant lag between the time a missile is 

launched and the time it hits its target. As a consequence of this lag, if the other 

side detects the launch it has the option of launching its missiles before they are 

destroyed. Second, it incorporates uncertainty. As the war progresses with missiles 

being launched by both sides, unless the parties have perfect reconnaissance 

capabilities, each side does not know for certain whether a given missile site is 

empty. Clearly the probability that a given warhead will destroy a missile declines 
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as the probability that a given missile site is empty increases. These elements can 

be incorporated in an enlarged version of the basic model of a missile war. 

Using a notation slightly different from (4) and (5), let «({t) be the number of 

missiles the i-th country fires at the j-th country’s missiles at time t, and let B{t) 

be the number of missiles the i-th country fires at the j-th country’s cities, each 

measured as missiles launched per unit time.’ Let f; be the expected value of the 

number of the i-th country’s watheads that will be destroyed by one of the j-th 

country’s warheads given that the missile site attacked is not empty. f; is then the 

product of the probability that a given attacking warhead destroys a missile site 

and the number of warheads in the missile site. Let p; be the probability that a 

given missile has been fired and let L be the lag between the time a missile is 

fired and the time it strikes the target. The equation that describes the change in 

Mt) in the missile war is then 

(6) M; = —[a(t) + BAt)] — fll — pAdlaft — L). 

If we define v; to be the expected number of casualties inflicted on the i-th country 

by an attacking warhead then the equation that describes the change in the i-th 

country’s casualties Nt) is given by 

(7) Nt) = v,B At — L). 

The only equations necessary to complete the system are those for p(t). 

At this point it is useful to introduce three more assumptions. First, assume 

that at any point in time, t, the missiles fired are from sites that had not been 

attacked as of t = L and the missiles to be fired are selected from a uniform 

distribution ; second, assume neither side has perfect reconnaissance? capabilities ; 
and third, assume that targeting is one missile site per targeted warhead. These 

assumptions will be relaxed in future work. 

Define y(t) to be the number of warheads in the i-th country’s missiles sites 

that have not been attacked at time t; define z(t) to be the number of warheads 

that have been fired from unattacked sites in the interval (0, t). z(t) divided by the 

number of warheads in a missile site is then the number of empty unattacked 

missile sites. The probability that an unattacked site is empty is 

8 zit) 
(8) pit) = yA)" 

Since it is assumed that missiles to be fired are selected from a uniform 

distribution, the probability that at time r < ta missile from y(t) will be selected is 

y(t)/y(r). The number of warheads that have been fired from unattacked missile 

sites can thus be approximated by 

(9a) z(t) = { YAO) ar) + BAr)] dr, 0<t<T?, 
o yar) 

where T? is defined as 
T° 

9b adr) + Br) “i. 
J, yar) : 

‘ Note that «; and f; are not the same as the a, and f; that appear in equations (4) and (5). It will 
be assumed that a(t) + B(t) < k; where k; is a constraint on the rate of fire. 

? We are assuming that each side can monitor the other side’s rate of fire but cannot determine 
the exact source of attacking missiles. 
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that is, the time when all unattacked missile sites are empty. The probability that a 

given unattacked missile site is empty is then 

(10) pit) = { ahr) + Pi), = Oct T?. 
0 yAr) 

Differentiating (10) yields 

(11) pat) = MOF BO cre Te. 
yit) 

The boundary conditions for (11) are 

(11a) p{0) = 0 

pdt) = 1 for t > TP. 

Equation (11) gives the change in the probability that a missile site in country i 

will be empty as a function of the current rate of fire of country i and its remaining 

unattacked missile sites. The boundary conditions state that at the outset of war 

none of its missile sites are empty and at and after the time when all unattacked 

missiles have been fired the probability is one. 

The number of remaining unattacked missile sites, yt), it itself determined by 

the rate of fire of the other country. 

(12) Ydt) = —aft — L), 

i.e., the decrease in unattacked missile sites is exactly the rate of fire against missiles, 

with a lag of length L. The boundary conditions for (12) are clearly 

(12a) y{0) = M0), 

i.e., at the outset of war all missile sites are unattacked. 

Equations (6), (7), (11) and (12) summarize the dynamics of a missile war. 

Following the scenario described in detail in (4), the military authorities in each 

country use these equations to choose optimal contingency strategies. The values 

of these optimal contingency strategies are then communicated to the political 

authorities. 

The optimal contingency strategy will be worked out for one important case. 

Consider the case in which country | initiates the war; country 2 reacts with a lag 

L, and country 1 assumes that country 2 is choosing its strategy in a manner that 

will minimize the value of the country 1 objective function’ The last assumption, 

which is a zero-sum assumption, is not as objectionable as it might seem at first 

glance since the discussion involves contingency strategies, which can be considered 

a “worse case” analysis. 

The military authority is given an objective function by the political authorities 

of the form: 

(13) V, = mtM,(T) + m§M,(T) + n¥N,(T) + n¢N(T) 

where m* and n* are the values assigned to Mt) and N{T) by the petitical authori- 

ties. To compute the contingency strategy the military authorities in the first 

3 Note that lag L, is a reaction lag, not the technical time of flight lag introduced above. 
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country maximize (13) subject to each country’s missile, casualty and probability 

equations (6), (7), (11) and (12); initial conditions, and the constraint : 

(14) a(t) + B(t)=0 for0<t<Ly. 

The solution to this probem is V#(M ,(0), M ,(0)). To solve this problem, let p; be the 

costate variable associated with y;; y; with p;; A; with M;; and yp; with N;. The 

Hamiltonian is given by: 

(15) H(N, M,v, P, 7,2, 0, B) = —pyaalt — L) + 7, aed 
1 

+A,{—[a,(t) + B,(t)) — f2[1 — py(oJa.(t — L)} 

+ p,v02B,(t = L) + p2a,(t az L) 

a(t) + B,(t) 

mal y2{t) 
| + Az{—[a2(t) + B2(0)) 

—fi{l — pr(t)ja,(t — L)} + w2v,B,(t — L). 

Since there are no lags in the state variables the costate equations are 

a(t) + PAt) 

U6) 0 = TOE 

3, = frat — L) 

A, = 0 

ji; = 0. 

Assume in this example that the solution is in the interior. (If the solution 

were to be on a boundary the dual variable associated with the nonnegativity 

constraint would appear in the transversality conditions). The transversality 

conditions are 

(17) p(T)=0 A,(T) = m* 

y(T) =0 A(T) = m3 

pAT)=90 y,(T) = nf 

yA(T) =O yp,(T) = n3 
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Integrating the differential equations of the costate variables for the appropriate _ 
boundary conditions results in 

(18) 

A, = mf 

A, = m3} 

My = nt 

M2 = n} 

“e "0 as(r) + By(r) 

10 De 

T 
°a(*) + B2(r) 

= ——+———d 
00 = a 

T 

it) = fauglr — L)dr 

T 
yxt) = } f,a,(r — L)dr. 

t 

Let t + L = 6, the military authority in country 1 will pick at each point in time 

a(t) and B{t) in a manner that will maximize (see [7]) 

(19) H(0) + H(t). 

Assume the military authorities in country 1 are operating under the assump- 

tion that the military authorities in country 2 are choosing «,(t) and £,(t) in a 

manner that minimizes (19). Let 6,(t) be the Lagrange multiplier constraint associ- 

ated with the constraint «,(¢) + 8,(t) = k, and 6,(t) be the multiplier associated 

with the constraint «,(t) + B,(t) = k,. The Kuhn—Tucker conditions for the i-th 

country’s control variables are 

yi(t) 

yi(t) 

y7(0) | 
— = 0 

yan | 

rT) 
$v, — mf + —— — df(t) < O n3v, — mt + yet) 1(t) 

(20) —m3f,{1 — p2(6)) — mf — p36) + — df(t) < 0 

xt(t) - méf,[1 — px(0)] — mt — pX(6) + 

T(t 
pr ntv, — mp + - an | =0 
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and for the second country 

(21) —mt fall — py(6)] ~ m3 ~ ptt0) + 22) — aye) > 0 

oX() | mt fal — p,(9)} — mz — pt(@) + a — d3(0) \. 

ntv, — mt + — as () >0 

pr(0| nto, 3 i” 2 | - 

The star (*) on the control variable designates an optimal solution. 

From the Kuhn-Tucker conditions it follows that if «,(t) + B,(t) > 0 then 

the control chosen and switch points depend on the sign of the switching function 

(22) {—m3f,[1 — p(@)] — p2(6)} — nZv, 50. 

As long as a(t) + Bt) # 0,i = 1, 2, (22) will not be an equality almost everywhere ; 

strategies will then be corner solutions. We can thus define {ti ,}k = 1,m,t*, in (0, T) 

as strategy switch points for the i-th country. That is to say the points where the i-th 

country changes from counterforce to countervalue or vice-versa. 

Proposition 1 

If country 1 at some time employs a counterforce strategy and at another time 

employs a countervalue strategy, then country 1 will initially employ a counter- 

force strategy, making a single switch to countervalue strategy, i.e., for country 1, 

at(t) > 0 for some t and f¥(t) > 0 for some t imply that «*(t) = k, for t in [0, t,,] 

and BF(t) = k, for t in [t,,, T — L}. 

Proof. It is clear from the definition of p3(t) that if p3(t,) > 0 for some ft, in 

(0, T) then p3(t) > 0 for all t in (t,, T). Second if a#(t) = O for t in (t,, 3) then p3(t) 

is non-decreasing in (t,,t3). Finally 6, => 0 so p} is non-decreasing. The control 

chosen and switch points thus depend on the sign of (22). If at t= ¢ the term in 

braces is larger than n¥v, , then a,(t) = k,, ifit is smaller then B,(t) = k, , and ifit is 

equal, then / is a switch point. Att = Othere are two interesting possibilities : first, if 

the expression given by (22) is negative, then the first country will initially choose a 

countervalue strategy and since the term in braces is non-increasing then B ,(t) = k 

for all tin (0, T — L), and second if (22) is positive then the first country will initially 

choose a counterforce strategy. There are then two possibilities: first, (22) will be 

positive for all t in (0, T — L) and a,(t) = k for all t in (0, T — L); second, (22) is 

zero for some ths in (0, T— L) then B,(t) = k for t in (¢;,,, t). But since the term in 

braces is non-increasing in (t';,, 7), 2 = T— L). This proves the proposition. 

Define t;. as the time the i-th country ceases fire, that is a(t) + B{t) = 0 for all 

t > t,,. 

Proposition 2 

If country 2 ceases firing before country 1 has switched to countervalue 

then country 1 will not switch to countervalue until all country 2 missiles have 
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been targeted, ie., t,. < t,, implies a,(t) =k, for all ¢ in [t,.,M(0)/k,] where, 

M ,(0)/k, is the time at which all of the second country’s missile sites have been 

attacked. 

Proof. The change in the sign of inequality (22) depends only on p,(@) and 

p2(9) where 6,(0) = 0 and p, = 0 if «a, + B, = 0. Thus if the inequality (22) is 

positive at t = f,, then the inequality will remain positive for all t in [t,., M ,(0)/k,]. 

5. EXISTENCE AND STABILITY OF AN EQUILIBRIUM 

This section gives sufficient conditions for the existence and stability of an 

equilibrium level of armaments in the enlarged model. With these conditions, if the 

dynamic equations for the arms race are given by 

(23) M, = F,(M,, M3) 

M, = F,(M,,M>) 

then there exists equilibrium levels of missile stocks, M, and M,, such that 

(24) F,(M,,M,) =0 

FM, ’ M,) =0 

Let us approach the proof by first solving a simpler problem. Let us suppose 

that Mis fixed at M;. 

The current value Hamiltonian for maximizing (1) given (2) and (3) is given by 

(25) U{C;, D{M;, M;)] + qAZ; — B,Mj) + ALY; — Z; — C)). 

The i-th country wants to pick Z; and C; in a manner that will maximize the 

Hamiltonian for the q; on the trajectory of a solution to the differential equation 

' OU; OD, 
(26) qi = ~ OD, aM, + [r + Bia; 

and the transversality conditions 

(27) lim e~"g{t)M{t) = 0. 
t-@ 

Let q*(M;, M,) be the set of prices that solve the optimization problem in the sense 

given M; = M,, maximizing the Hamiltonian with respect to q; = q{M;, M)) will 

result in an optimal solution assuming this optimal solution exists. 

If we use the Kuhn-Tucker Theorem to maximize the Hamiltonian, we have 

as the saddlepoint conditions, 

oU; OU; 
28 ne. I . pe Tee (28) a a 0 ol 5 | 0: 

qi — 4,59; Zilqi — Ai] = 9. 

C, cannot be zero since the marginal utility would then be infinite. Therefore 

oU; 
9 — =A, 
” 6C; : 
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The strictly concavity of U, -, - )implies, using the Implicit Function Theorem, that 

(30) C; = C{A,;,M,, M)), 

and we can show 6C;/0/, < 0, C,/8M; > 0, 6C,/AM, < 0. Also either Z; = 0 or 

qi = Aj. Letting 

G1) q(My.M;)= Se] 

the differential equation for M; is given by 

(32) M; = ¥,— Cfg(M,,M,))— BM, — ifqi> 4 

and 

(33) M; = — BM; if q; < qj. 

These equations can also be written as 

(34) M; = F({M,, M)) 

Let M; be the solution to F(M;,, M,) = 0. Itisclear that if M, > Othen F(M;, M,) = 

0 implies that ¢(M;, M,) = 0, and that Z; = B,M;: so q; = A; and 

dU 
(35) ac, = 0, 

ou; oD; =? 
dD; 6M; Seo 

Combining these two oe to eliminate the multiplier we have 

OU OD; 
(36) hd + Bi) = aD, OM, 

and 

(37) C; = Y¥, — BM 

Lemma 1 

If 

6D{M;,M)) _ 

6D{M,,M) _ 5 

6M; 

6?D(M;,M A) 

ae cee 

._ 07D(M;, M)) 
lim ——_ . 
aaa, =. 

288 



Then there exists M; < M;, such that a solution exists for the optimization and for, 

all M; > M;, equations (36) and (37) can be solved such that M; = g{M)} y and 

g{M,) = 0. 

Proof. A sufficient condition for a maximum to exist is that U[C;, D(M;, M,)] 

is strictly concave : Given the assumptions about U( -, - ) the only difficulty can be 

caused by D(M,, M,). The Hessian is 

@U; 6U; aD, 

6C? 6C,0D; 6M; 

6?U, OD; 8U; 4 Ui 67D; 

8C,eD, 6M, sos * 2, 6M? 

and the only ambiguity in the sign of the second minor is introduced by the term 

6?U; 67D; 

6D; 6M? 

By assumption there exists M¥ such that the ambiguity disappears since 

6? D,/@M? can be made arbitrarily small or negative. The second part of the lemma 

can be shown by differentiating equations (36) and (37) with respect to M j and 

solving for dM;/dM, where F(M,, M,) = 0. 

- (re 6D; OD; , aU, aD, wie & 6U, @D, 

(39) dM; _ eD?2 ‘OM; 6M; oD; 6M 0M, ‘ODOC; 6M; 

dM; 0U;, 8D; , WFD, + py out 0?U, OD, 

“6D? 6M; ‘@D, 6M? 8C,aD, 6M, 
2 

of EUs 201 « gt) 

Given the assumptions about U(C;, D;) and D{M;, M ;) the ambiguities in the sign 

of dM /dM , are caused by 0U;/0D; 67D,/8M? and aU,/aD, 6” D,/0M 0M j. Again, by 

assumption there exists an M#* such that the ambiguity disappears. Let M; = 

max [M}, M?*). 

Lemma 2 

M; = gAM)) < Y;/B; for all M;. 

Proof. The lemma follows from the assumption that the marginal utility of 

zero consumption is infinite. But if consumption is positive then Z; < Y;, implying 

M; < ¥//B;. 

Proposition 3 

If the preordering of weapon space for the political authorities D,{M (0), M {0)] 

is a positive linear combination of V, - , - ), defined above as the solution to maximiz- 

ing (13), treated as a function of the initial missile stocks, then the preordering will 

satisfy the following conditions 

@D(M (0), M {0)) 

6M 40) 
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ai} dD {M{0), M{O) 

6M) 

_ .62D[M{0),M,0)) _ 

‘ elmer 7 ag 

2 
ae fim 27 DEMAO), MAO) _ 

M(0)+a OM{0)0M{0) 

Proof. V{ - ,- )is linear in M {é), and M {?),? = max [t;,, t;,], So the proof involves 

determining the sign of 6M {(tj,)/OM{0), 7M {t,)/0M (0)*, 07M {t;,)/OM <0) 6M {0) 

for all t < min [t;,, ti]. 

Since, from (6) and Proposition 1 

(44) Mi) = M{O) ~ ket - I [1 — pis\l fk, ds 

OMit) _ Ops) 5 

(45) 0M {0) +f Sik jaM (0) (> 

The assumption that the contingency strategies are optimal requires that 

6M {t)/OM{0) > 0. p{s) is defined for all t < min [t;,, t;.] from (10) and (12) as 

k, dS kL 

>) _ Pas) = f MAO) — k{S = L) * MAO) 

Ops) —k;dS kL 

~ aM,0) -f (Mi) —k(S— DP? Mo? 

0 pis) ° 2k(M (0) — k{S — L) 2k,L 

ame?” |), ima —e op + MOF 

From (22) it follows that 6t,,/0M{0) > 0 so 0 < 6M{tj,)/0M{0) < 1, and, 

since 67M {t)/OM{0)? is strictly positive, this implies that 

_ 67M {(t) - 

M«0)+0 OM{0)* 

To show that 0M {t;,)/OM {0) < 0, note from (22) that ift;, < ¢;. then t ;,/0M 0) = 

and thus 67M((t;,)/0M7(0) = 0; ift,, = t,, then Ot,,/0M; (0) > 0 and hiss vine 

< 0. 

Finally for all 

(49) 

67M (0) 
M; > min [M tj, > tjel, 8M{0)6Mj0) — i J 

Proposition 4 

There exists an equilibrium level of armaments. 

Proof 

Let n= fot Malm, <M, <7. My <M, <5} 
1 2 
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where M, and M, are chosen such that g{M j)) exists and gi(M ) > 0. Define 

(Mj) 
(50) g(M;, M;) = ¥ af 

AM)) 

Because of Lemmas 1 and 2 g:A — A and therefore using the Brouwer Theorem a 
fixed point M,, M, exists. 

Proposition 5 

The equilibrium point is stable if each country attempts to behave in a 

myopically optimal manner. 

Proof. Suppose M; > g{M }), q*(M;, M,) a solution to the optimization prob- 

lem implies that g*(M;,M,) < q¥[g{M,), M;). This in turn implies 

Ci{pi(M ;,M,;),M;,Mj;) > Ci\pFlg{M)j), M |), 24M), Mj} 

and thus F({M;, M;) > Oif M; < g{M_)). If we examine the resulting phase diagram 

for M, and M, we see that the equilibrium point is stable. See Figure 1. 

Ohio State University 

University oj California at Los Angeles 

M, <0 M, =0 

Figure | 
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