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Annals of Economic and Social Measurement, 3/1, 1974 

STUDIES OF ECONOMIC PROBLEMS 

OPTIMAL POLICIES FOR MONETARY CONTROL* 

BY ROBERT S. PINDYCK AND STEVEN M. ROBERTS 

This paper will present some optimization experiments using a linearized version of the Federal Reserve 
Board’s monthly money market model, which was designed primarily to study the impact of policy instru- 
ments on monetary and financial targets. Using linear-quadratic optimal control, we calculated optimal 
policies for a single instrument, unborrowed reserves, with the objective of forcing monetary aggregates and 
interest rates to follow desired paths. There is a conflict between the choice of policy target, i.e., there is a 
trade-off between the control of monetary aggregates and the control of interest rates. By calculating a set 
of optimal policies using different objectives, that trade-off can be demonstrated. The optimal strategies are 
also calculated using closed-loop control so as to correct for random disturbances. It is shown how the 
existence of random disturbances modifies the target trade-offs between monetary aggregates and interest 
rates, and requires greater flexibility in the movements of the control variable. 

1. INTRODUCTION 

Recent applications of optimal control theory to economic stabilization policy 

problems have usually involved calculating time paths for one or more “global” 

policy variables so as to minimize some macroeconomic cost functional.' The 

aim of these exercises has been to indicate how policy objectives relating to GNP, 

employment, prices, and the balance of payments might best be attained. The 

policy variables which can be manipulated might include tax rates, the level of 

government expenditures, and the money stock. Tax rates and the level of govern- 

ment expenditures are subject to rather direct control. However, the money stock 
cannot be controlled directly by the Federal Reserve: the Fed can however, 

manipulate other variables which in turn affect the money stock.” 

The ultimate concern of monetary policy-makers is with the real economy 

and how policy involving monetary (e.g., the money stock) and financial (e.g., 

interest rates) variables can best be used to attain the desired levels of GNP, 

employment, prices, and the balance of payments. The inability to directly control 

these policy “instruments”’ has resulted in a two-stage optimization process in 

which these instruments are in fact “intermediate” targets and the true policy 

instruments are those variables over which the Fed has direct control, e.g., required 

reserve ratios, the discount rate, ceilings on interest payments on bank liabilities, 

and the use of open market gperations to affect either unborrowed reserves or the 

* This paper does not necessarily reflect the views of the Board of Governors of the Federal 
Reserve System or its staff. We wish to express our appreciation to Franco Modigliani, James Pierce, 
William Poole, Thomas Thomson, and Peter Tinsley for their helpful comments. We would like to thank 
Walter Davis and Lucy McCurdy for their programming assistance and Nancy Wilson for her expert 
typing. Revised July 1973. 

' See, for example, recent work by Chow [6], [7], Friedman [10], Livesey [14], Pindyck [15], [17], 
and Sengupta [18]. 

? During the past few years, there has been a controversy over the ability of the Federal Reserve to 
control monetary aggregates. For a discussion of some of the issues, see Pierce and Thomson [15], Davis 
[8], and Andersen [1]. 
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Federal Funds rate.* This, in fact, is essentially the way monetary policy is formu- 

lated and executed. Several times a year, objectives for GNP, employment, prices, 

and the balance of payments are specified. Then a menu of possible monetary 

policy courses and the consequences of each is analyzed and nominal intermediate 

target paths are chosen for one or two quarters ahead (on a monthly basis). At 

more frequent intervals, e.g., every three or four weeks, current money market 

conditions and prospects for economic activity are analyzed at meetings of the 

Federal Open Market Committee (FOMC). The nominal paths for the control 

instruments are frequently revised on the basis of this current information, particu- 

larly if the monetary and financial target variables have deviated from their 

nominal trajectories by a significant amount.* 

This paper will study the problem of how a monetary authority can best 

manipulate the policy instruments which it can directly control in order to reach its 

intermediate target objectives. We recognize that in some sense an intermediate 

target strategy may be less optimal than approaching the problem of economic 

stabilization directly. However, given that monetary policy is currently formulated 

using intermediate targets and that more frequent information about real economic 

variables is needed to solve the stabilization problem directly, we feel justified 

in exploring ways to improve the intermediate target variable approach. Our aims 

are rather modest. We seek to examine only two problems which seem to be 

fundamental to the realization of any optimal monetary policy plan. These are as 

follows: 

First, given a set of chosen intermediate target paths (““optimal”’ or otherwise) 

for the money stock and market rates of interest, we would like to indicate how the 
Federal Reserve might best manipulate those policy instruments which it can 

direct control.* In other words, what is the Fed’s optimal policy given that it 

would like the money stock, and other variables, to track as closely as possible 

some specified time path? This optimal control problems will be treated in a 

linear quadratic framework, applying the solution derived by Pindyck [16], [17] 

to a linearized version of a monthly money market model constructed at the 

Federal Reserve Board. Optimal policies for monetary control will be calculated 

using several different cost functions, for both deterministic and stochastic 

cases. 

3 Recent articles by Holbrook and Shapiro [11], Waud [21], and Kareken, Muench, and Wallace 
[13] discuss the use of intermediate targets in monetary policy formulation. They indicate that if 
information about movement in targeted variables, ic., GNP, employment, etc., were available in- 
stantaneously it would be more optimal for policymakers to relate the instruments over which they have 
direct control to their primary targets. They do not claim to know how suboptimal the intermediate 
target strategy may be. However, given that information about real economic variables is available only 
quarterly or monthly but monetary and financial data is available weekly, daily, and even hourly, the 
use of an intermediate target strategy. since it uses all available information, may be better than making 
policy decisions only when information about real variables becomes available. 

* For a discussion of monetary policy formulation, see Axilrod [4, 5]. The day-to-day execution of 
monetary policy is handled primarily by the Open Market Desk, which faces yet another control 
problem: that of manipulating its portfolio of government securities in a way which will minimize the 
deviation of the primary control instrument from its specified path. For a discussion of this problem, see 
Holmes [12]. 

> In the model which we use in this paper, the discount rate and either unborrowed reserves or the 
Federal Funds Rate are instrument variables. We have chosen unborrowed reserves rather than the 
Federal Funds Rate as an instrument. 
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Second, since the set of intermediate targets may not be completely compatible, 

and therefore, the objectives of the monetary authority may not be mutually 

obtainable, we would like to know what the trade-offs are between these different 

targets. This, of course, depends on what the targets are and on the relative import- 

ance assigned to each of them. The objective, for example, of controlling only the 

money stock or only some short-term market interest rate might be feasible, at 

least after a few months’ lag. The Fed, however, may have more than one inter- 

mediate policy objective, e.g., it may wish to reach target values for both the money 

stock and an interest rate simultaneously. This may be impossible. Even in a 

deterministic world there may be a required trade-off between objectives. 

One of the goals of this paper will be to derive a “trade-off curve” which 

relates the minimum achievable root-mean-square deviations from the target 

path for the money stock to that for the interest rate. This trade-off curve would 

depend not only on the dynamic structure of the monetary sector, but also on how 

“incompatible” the two target paths are which were chosen by the policy makers. 

In a stochastic world the trade-off would probably be worsened. Then, even a 

single target would probably not be reachable ¢ xactly. We will examine the sto- 

chastic case in this paper by calculating optimal monetary policies, and plotting 

a “trade-off curve” using closed-loop stochastic control under the assumption of 

certainty equivalence.® 

In the next section of this paper, we will briefly discuss the monthly money 

market model developed at the Federal Reserve Board. We will present our 

linearization of that model, and its re-specification in state-variable form.’ Next, 

we will describe the deterministic optimization experiments performed with that 

model. Optimization experiments were designed to indicate the characteristics of 

optimal monetary "olicies, and also to illustrate the inherent trade-off between a 

monetary and a financial target variable. Stochastic optimization experiments will 

be presented in the next section. Residuals from an historic simulation are used as 

random shocks, and optimal policies are calculated by applying the deterministic 

control law to the model in a closed-loop fashion. Again, a trade-off curve is 

calculated, and this, as well as some individual optimal instrument paths, are 

compared to the deterministic case. 

2. THE MODEL 

The model is a reestimated version of the Federal Reserve Board’s monthly 

model of the U.S. money market.*® It was designed to provide insight into the 

short-run behavior of the money market and also to serve as a basis for predicting 

the consequences of alternative monetary policies. The version presented here has 

ten estimated equations and eight identities.? The main instrument of control in 

© We consider only additive error terms that are uncorrelated. Under the certainty equivalence 
theorem (the “‘separation theorem” in the control literature), the deterministic control law is optimal 
wien used in a closed-loop fashion. See Theil [19], Chow [7], and Athans [2]. 

” For a discussion of the state-variable form of a model, see Athans and Falb [3] or the Appendix of 
Pindyck [16]. 

8 The model is described in detail in its original version in Thomson, Pierce and Parry [20]. 
° The currency equation was dropped from the original version of the model, and currency was 

made exogenous. This was done because all of the arguments of the currency equation were exogenous 
anyway. 
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the model is the level of unborrowed reserves ; however, the Fed may also use the 

discount rate as a policy variable to influence bank borrowing behavior if it so 

desires.'° 

There are three sectors in the model: the private (non-bank), commercial 

banks, and the Government. The interaction of these sectors determines values for 

demand deposits, negotiable certificates of deposit, other time and saving deposits, 

public and bank holding of Treasury bills, excess reserves, borrowed reserves, and 

the rates on Federal funds, negotiable certificates of deposit, prime commercial 

paper, and corporate bonds. It is assumed that the public’s demand for money 

market instruments is constrained by wealth.'' Banks are constrained by total 

liabilities, i.e., deposits less required reserves. These constraints make the demand 

functions homogeneous in dollar values. 

A list of the model’s variables and their definitions is presented below : 

ENDOGENOUS VARIABLES 

. Mi—Money Stock (Currency plus Demand Deposits) 

DDMS—Demand Deposit Component of the Money Stock 

. OTS—Other Time and Savings at Commercial Banks 

CD—Negotiable Time Certificates of Deposits 

DEP—Deposits at all Banks less Required Reserves 

TTSC—Total Time and Savings Deposits at Commercial Banks 

TTSM—Total Time and Savings Deposits at Member Banks 

. BORR—Member Borrowings from the Federal Reserve 

. EXR—Excess Reserves 

10. TR—Total Reserves 

11. RR—Required Reserves 

12. RTB—Rate on Treasury Bills 90 Days 

13. RFF—Rate on Federal Funds 

14. RCDP—Primary Rate on Negotiable Certificates of Deposit 

15. RBaa—Moody’s Baa Corporate Bond Rate 

16. RCP—Rate on Prime Commercial Paper 

17. QTBP—Quantity of Treasury Bills Held by the Public 

18. QTBB—Quantity of Treasury Bills Held by Banks 

EXOGENOUS VARIABLES 

. $1—Seasonal Component—DDMS Equation 

. §2—Seasonal Component—OTS Equation 

. $3—Seasonal Component—CD Equation 

. S4—Seasonal Component—RFF Equation 

. §5—-Seasonal Component—EXR Equation 

. S6—Seasonal Component—QTBP Equation 

. PIi—Personal Income Almon lag—_DDMS Equation 

. P12—Personal Income Almon lag—OTS Equation 

CHIARA RWN 

OnDMN PWN 

10 We have chosen to normalize the model so that unborrowed reserves serve as the exogenous 
control. The model can also be normalized so that the Federal Funds Rate, rather than unborrowed 
reserves, is the main policy instrument. This is done by using an estimated equation for borrowings and 
an identity for unborrowed reserves. 

‘t A polynomial in personal income is used as a proxy for total wealth since a good measure of 
wealth is not available monthly. 
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9. PI3—Personal Income Almong lag—QTBP Equation 

10. ROTS—Savings Deposit Rate (7th District) Almon lag—OTS Equation 

11. IPI—Industrial Production Index Almon lag—RCP Equation 

12. CONS—Constant Term 

13. RRND—Reserves Required Against Non Deposit Items—RR Identity 

14. QTBT—Quantity of Treasury Bills Total—QTBB Identity 

15. CURR—Currency—M1 Identity 

POLICY VARIABLES 

1. UR—Unborrowed Reserves 

2. RDIS—Federal Reserve Discount Rate 

Let us present an overview of the model by considering the organization of its 

three sectors. The public sector of the model could be summarized by the expression 

given in (1): 

(1) | DDMS + CURR + CD + OTS + QTBP + (OAP — BL) = 

Here OAP is other asset holdings of the public and BL is loans from the banking 

system. Except for currency, which is exogenous, the first five terms in (1) are 

determined explicitly within the model. Thus, given a proxy for total wealth W, 

we could solve for the composite asset (OAP — BL). 

The banking sector is summarized by the expression given in (2): 

(2) RR + EXR + QTBB — BORR — DDMS — CD — OTS = (K — OAB). 

Required reserves are estimated from an identity which links the public sector to 

the banking sector through the components of the money stock, CD’s, and other 

time and savings deposits. Excess reserves is determined explicitly in the model and, 

when added to required reserves, determines the total reserves (TR) held by the 

banking system. Total reserves less unborrowed reservés, which are determined 

by the Federal Reserve, yields the amount of borrowings from the Federal Reserve 

as given by 

(3) BORR = TR — UR. 

The total quantity of Treasury Bills outsanding (QTBT) is controlled jointly by the 

Treasury and the Federal Reserve so that the quantity of Treasury Bills held by 

banks is given by 

(4) QTBB = QTBT — QTBP. 

Thus, one may calculate the composite item for the banking system (K — OAB) if 

desired. 

2.1. The Model’s Equations 

The estimated equations of the model are presented below, with f-statistics in 

parentheses. The variables S1,, S2,, etc. refer to seasonal variables. The variable 

U_, refers to the Cochrane—Orcutt correction term used in the estimation. 
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Demand Deposit Component of the Money Stock (DDMS) 

4 9 
(5) DDMS = Y a,Pl,_,; + ¥ BRTB,_;PI, + Sl, + 0.9944U_,. 

i=0 i=0 

ALMON DISTRIBUTED LAG WEIGHTS 

t t-—1 t—2 t—3 t—4 t—5 

PI 0.066924 0.053548 0.040168 0.026784 0.013394 

(4.013) (13.81) (7.230) (3.106) (1.966) 

RTB — 0.000059 —0.000208 — 0.000323 —0.000403 —0.000449 — 0.000460 

(—0.3039) (—1.497) (—3.063) (—4.218) (-—4.491) (-—4.354) 

t —6 t—7 t—8 t—9 

RTB — 0.000437 —0.000379 —0.000287 —0.000161 

(—4.146) (—3.959) _ (—3.807) (—3.684) 

PI Almon is 2nd degree Constrained toOatrt — 5 

RTB_ Almon is 2nd degree Constrained to 0 at t — 10 

R? = 0.9988 S.E.=657M!'? D.W. = 2.307 MEAN DDMS = 177.9B 

S.D. DDMS = 19B_ SI, = Seasonal Coefficient, - PI, 

Seasonal Coefficients 

Feb. —0.009089 (—28.65) June —0.010191 (— 18.18) 

Mar. —0.009539:(—21.98) July —0.010051 (— 17.98) 

Apr. —0.005811(—11.47) Aug. —0.011879 (—21.70) 

May —0.012162(—22.27) Sep. —0.009597 (— 18.41) 

Oct. —0.007969 (— 16.50) 

Nov. —0.006350 (— 15.17) 

Dec. —0.001178 (—3.728) 

Other Time and Savings Deposits at Commercial Banks (OTS)'* 
4 11 

(6) OTS= ¥ a,PI,_,+ ¥ BRTB,_;-Pl, + 
i=0 i=0 

8 
y;ROTS,_; - PI, + S2, 

=0 

+0.9786PI,U _,. 

ALMON DISTRIBUTED LAG WEIGHTS 

t t-—1 t—2 t—3 t—4 t-—5 

PI 0.028727 0.046555 0.053039 0.047737 0.030205 

(1.455) (2.734) (8.971) (3.342) (1.686) 

RTB —0.001482 —0.001322 —0.001170 —0.001024 —0.000884 —0.000751 

(—6.111) (—7.419) (-—8.749) (—9.080) (—7.874) (—6.203) 

ROTS 0.000316 0.000916 0.001667 0.002437 0.003092 0.003499 

(0.3089) (0.6474) (1.233) (2.328) (3.744) (3.522) 

12 M refers to millions of dollars, and B to billions of dollars. 
'3 This equation and equation (8) were originally estimated in ratio form, which is why the co- 

efficients of the Cochrane—Orcutt term are so large. 
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t—6 t—7 t-—8 t-—9 t—10 t— 1} 

RTB — 0.000624 — 0.000504 —0.000390 —0.000283 —0.000182 — 0.000088 

(—4.834) (—3.839) (-—3.120) (—2.588) (—2.183) (—1.866) 

ROTS 0.003526 0.003041 0.001910 

(2.735) (2.230) (1.922) 

PI Almon is 3rd degree Constrained to 0 att + l andt — 5 

RTB ~ Almon is 2nd degree Constrained to 0 at t — 12 

ROTS Almon is 3rd degree Constrained to 0 att + landt —9 

R? = 0.9877 S.E.= 743M D.W. = 0.9814 MEAN OTS = 170B 

S.D. OTS = 6.6B S2, = Seasonal Coefficient, - PI,. 

Seasonal Coefficients 

Jan. 0.001357 (2.935) May 0.002429 (2.929) 

Feb. 0.001934 (3.174) June 0.001217 (1.477) 

Mar. 0.002846 (4.001) July 0.000980 (1.246) 

Apr. 0.002827 (3.571) Aug. 0.000748 (1.016) 

Sep. 0.000892 (1.336) 

Oct. 0.001116 (1.954) 

Nov. —0.000172 (—0.905) 

Negotiable Time Certificates of Deposits (CD) 

(7) CD = 0.72947 CD_, — 0.00150 RTB- PI + 0.00225 RCDP - PI 

(14.61) (— 2.667) (6.903) 

0.00128 RBaa - PI + 0.00154(RBaa — RCP)- PI + S3, 

(— 2.453) (2.929) 

R? = 0.9995 S.E.= 582M D.W. = 1.642 MEANCD =21B 

S.D.CD = 6.7B $3, = Seasonal Coefficient,- PI, 

Seasonal Coefficients 

Jan. 0.01057 (2.886) May 0.00952 (2.656) Sep. 0.01113 (2.986) 
Feb. 0.00977 (2.768) June 0.00971 (2.659) Oct. 0.01179 (3.167) 

Mar. 0.00974 (2.279) July 0.00163 (3.137) Nov. 0.01117 (3.016) 

Apr. 0.00916 (2.607) Aug. 0.01208 (3.265) Dec. 0.01147 (3.086) 

Quantity of Treasury Bills Held by the Public (QT BP) 

4 4 a 
(83) QTBP = ¥ aPl,_;+ ¥ B,RCP,_;-Pl,+ ¥ y,RTB,_;- Pl, + $6, 

i=0 i=0 i=0 

+0.9910PI,U_,. 

ALMON DISTRIBUTED LAG WEIGHTS 

t t—1 t—2 t—3 t—4 

PI 0.008315 0.013229 0.014888 0.013199 0.008228 

(0.5220) (1.029) (7.759) (1.043) (0.5214) 

RCP — 0.000545 —0.000719 —0.000751 —0.000642 — 0.000392 

(—0.7339) (—1.614) (—1.656) (—1.388) (—1.213) 
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RTB 0.001078 0.001436 0.001508 0.001292 0.000790 

(1.646) (3.043) (3.030) (2.685) (2.436) 

PI Almon is 3rd degree Constrained to 0 att + landt — 5 

RCP Almon is 2nd degree Constrained to 0 at t — 5 

RTB_ Almon is 2nd degree Constrained to 0 at t — 5 

R? = 0.7481 S.E.=710M D.W. = 1.705 MEAN QTBP =38B 

$.D. QTBP = 3.6B_ S6, = Seasonal Coefficient, - PI,. 

Seasonal Coefficien‘s 

Jan. 0.000756 (2.069) July —0.002381 (—3.485) 

Feb. 0.003407 (6.793) Aug. —0.000354 (— 5.499) 

Mar. 0.003619 (6.149) Sep. —0.00841 (—1.451) 

Apr. 0.002627 (4.118) Oct. —0.00773 (—1.582) 

May 0.002817 (4.250) Nov. 0.00464 (1.320) 

June 0.000214 (0.3086) = 

Rate on Treasury Bills (RTB) 

4 6 

(9) RTB = 1.1608 + 28.139 QTBB/DEP + Y a,RFF,_; + Y B,RTB,_; 

(8.436) (3.803) i=0 i=0 

+0.7684U _,. 

ALMON DISTRIBUTED LAG WEIGHTS 

t t-—1 t—2 t—3 t—4 t-—5 t—6 

RFF 0.36399 0.26614 0.18083 0.10803 0.04715 

(5.266) (6.680) (3.586) (1.984) (1.244) 

RTB —0.05045 —0.08095 —0.09337 —0.08690 —0.07153 —0.04104 

(—0.9505) (— 1.226) (— 1.634) (—1.888) (—1.511) (—1.043) 

RFF Almon is 2nd degree Constrained to 0 at t — 5 

RTB_ Almon is 3rd degree Constrained to 0 att + 1 andt — 7 

R? = 0.6295 S.E. = 0.2475% D.W. = 1423 MEAN RTB = 5.254% 

S.D. RTB = 1.067% 

Excess Reserves (EX R)'* 

(10) EXR = 0.001433 DEP — 0.000764 DEP- K1+ 0.096884 AUR 

(16.541) (—12.128) (— 2.010) 

—0,090868 ARR + S5, + 0.3153 U_, 

(—1.775) 

; prior to 1968-10 

~ 1 after 1968-10 

'* After September 1968, as a result of a change in Regulation D, required reserves are based on 
deposit levels two weeks earlier. As a result, the dummy variable K 1 is introduced to capture the effect of 
this structural change. 
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R?=09175 S.E.=67M D.W. =2.100 MEAN EXR = 285M 

§.D. EXR = 97M _ SS, = Seasonal Coefficient, - DEP,. 

Seasonal Coefficients 

Jan. —0.0001117 (— 1.200) July —0.0002221 (—2.136) 

Feb. —0.0000577 ( --0.497) Aug. —0.0001048 (— 1.002) 

Mar. —0.0001132 (— 1.057) Sep. —0.0001380 (— 1.372) 

Apr. —0.0002581 (— 2.515) Oct. —0.0001419 (— 1.484) 

May —0.0000647 (—0.6217) Nov. —0,0000064 (—0.0732) 

June —0.0001156 (— 1.091) 

Rate on Federal Funds (RFF) 

BORR UR 
(11) RFF = —0.37139 + 239.785 Sep + 0.69062 RDIS — 18.749 Es 

2 
+ >} aRTB,_; + S4, + 0.8646U _,. 

i=0 

ALMON DISTRIBUTED LAG WEIGHTS 

t t—% t—2 

RTB 0.280090 0.240233 0.146870 

(3.227) (4.418) (2.569) 

RTB_ Almon is 2nd degree Constrained to 0 att — 3 

R? = 0.7748 S.E. = 0.2067% D.W. = 1.989 MEAN RFF = 5.469% 

S.D. REF = 1.535% S4, = Seasonal Coefficient. 

Seasonal Coefficients 

Jan. 0.026738 (0.319) May 0.339200 (2.256) 

Feb. --0.C 9530 (—0.086) June 0.396140 (2.727) 

Mar. —0.069757 (—0.554) July 0.268329 (1.937) 

Apr. 0.207777 (1.501) Aug. 0.322428 (2.491) 

Sep. 0.253465 (2.186) 

Oct. 0.247266 (2.463) 

Nov. 0.169825 (2.255) 

Primary Rate on Negotiable Certificates of Deposit (RCDP)'* 

(12) RCDP = 0.95390 RTB- NORUN + 0.13632 (RBaa-RTB)- NORUN 

(20.764) (3.035) 

il 
— 13.000 (CD/DEP)- NORUN + a,RCDP,_;- NORUN 

(— 1.733) i=1 

+2.192- NORUN + 1.000 RQCD:- RUN 

(3.616) 

1.0 if no Run-off occurs 
NORUN = : 

0.0 otherwise 

RUN = 1.0 — NORUN. 

1S The variables NORUN and RUN refer to the effect of Regulation Q ceilings on the CD market. 
If the rate on CD’s is driven to the ceiling by market forces, no new CD’s will be issued and a run-off 
occurs. This is explained further when we discuss the linearization of the model. 
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ALMON DISTRIBUTED LAG WEIGHTS 

t-—1 t—2 t—3 t—4 t-—5 t—6 

RCDP —0.00120 —0.00373 —0.90713 —0.01093 -—0.01466 —0.01786 

(—0.1985) (—0.4143) (—0.7416) (—1.252) (—1.985) (—2.443) 

t—7 t—8 t-—9 t—10 t-—11 

RCDP —0.02008 —0.02083 -—0.01967 —0.01611 —0.00971 

(—2.333) (—2.023) (-—1.764) (—1.576) (—1.440) 

RCDP Almon is 3rd degree Constrained to 0 at t and t — 12 

R? = 0.9994 S.E.=0.1523% D.W.= 1.121 MEAN RCDP = 5.697% 

S.D. RCDP = 0.732% 

Rate on Price Commercial Paper (RCP) 

x 3 
RCP = } a IPI,_,/IPI, + >) B,RTB,_; + 0.24097 RCDP + 0.9198 U_,. 

(13) = — (2.180) 

ALMON DISTRIBUTED LAG WEIGHTS 

t t-—1 t—2 t—3 t—4 t—5 

RTB 0.409337 0.235571 0.109426 0.030903 

(5.404) (6.443) (2.770) (0.9389) 

IPI 1.15744 1.54797 1.33531 0.707351 —0.12391 —0.92230 

(1.695) (1.987) (2.033) (1.379) (—0.2932) (—1.835) 

t—6 t—7 t-—8 

IPI — 1.42753 —1.35516 —0.39662 

(—2.006) (—1.707) (-—0.4702) 

RTB_ Almon is 2nd degree Constrained to 0 at t — 4 

IPI Almon is 4th degree Constrained to 0 att + 1 

R? = 0.9270 S.E. =0.1756% D.W.=1.611 MEAN RCP = 6.156% 

S.D. RCP = 1.300%. 

Long Term Rate—Moody’s Baa Corporate Bonds (RBaa) 

(14) ARBaa = 0.19631 ARTB + 0.33852 ARBaa_, + 0.0783 U_, 

(4.580) (3.678) 

R? = 0.4079 S.E.=0.1018% D.W. = 1.985 MEAN RBaa = 7.02% 

S.D. RBaa = 1.46%. 

Money Stock (M1) 

(15) M1 = DDMS + CURR. 

Required Reserves (RR)'® 

(16) RR =(K,B,)M1 + (K,B,)M1 + K,CD + K,OTS + RRND. 

16 K,,K,,K3,and K, are the required reserve ratios against demand deposits at Reserve city and 
country banks, CD’s, and other time and savings respectively. Bl and B2 are the ratios of demand 
deposits to M1 at Reserve city and country banks respectively. 
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Total Reserves (TR) 

(17) TR = EXR + RR. 

Deposits Less Required Reserves (DEP) 

(18) DEP = DDMS + TISC — RR. 

Total Time and Savings Deposits at All Commercial Banks (TTSC) 

(19) TTSC = OTS + CD. 

Total Time and Savings at Member Banks (TTSM) 

(20) TTSM = 0.7787 TTSC. 

Quantity of Treasury Bills Held by Banks (QTBB) 

(21) QTBB = QTBT — QTBP. 

Member Borrowings from the Federal Reserve (BORR) 

(22) BORR = TR — UR. 

The model imposes market clearing in both the reserves and the bills markets. 

Interest rates adjust to equilibrate exogenous supplies with quantities demanded. 

The Treasury bill rate is determined explicitly using the quantity of bills held by 

banks. The Federal Funds Rate, which clears the reserves market, is estimated to 

depend upon both the amount of bank borrowings from the Federal Reserve and 

the amount of unborrowed reserves available. Three additional interest rates are 

determined endogenously: the primary rate on CD’s (RCDP) is estimated as a 

supply relationship; a reduced form equation is used to determine the rate on 

prime commercial paper (RCP); and a simple Koyck type term structure equation 

is used to estimate a long term rate, the rate on Moody’s Baa Corporate Bonds 

(RBaa). The other identities give variables needed to close the model. 

2.2. Strengths and Weaknesses of the Model 

The design of the model, its monthly time frame, and its focus on the U.S. 

money market, makes it possible to observe and to some extent isolate the sources 

of fluctuations which influence intermediate monetary control. The use of budget 

constraints in the public and banking sectors provides some insights into the 

reaction of the money market to exogenous shocks from the real sectors of the 

economy. The use of polynomial distributed lags makes it possible to avoid the 

estimation problems produced by the use of lagged endogenous variables. They 

also provide information regarding lags in the transmission of monetary policy. 

Finally, the use of non-seasonally adjusted data avoid the problems of possible bias 

built in by seasonal factors. 

The model does have a number of shortcomings which if corrected would 

increase its ability to provide insights into the operation of the money market by 

adding structural information, and, in turn, additional channels for the transmission 

of monetary policy. The model does not differentiate between the behavior of 

banks of different sizes which are subject to different reserve requirements against 
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demand deposits. Nor does it have a mechanism for handling cash drains or inflows 

to the banking system. In fact, except for the quantity of treasury bills held by 

banks, excess reserves, and required reserves, the asset side of the banking sector’s 

balance sheet is not explored. Thus, banks’ portfolio adjustments with respect to 

loans and long term U.S. Government Securities are not developed ; these relation- 

ships are not easily identifiable with monthly data. 

2.3. The Linearization 

The model as estimated is almost linear in its original form. Nonlinearities 

do arise for two reasons. First, the desire to have the model homogeneous in 

doliar values makes it necessary to impose restrictions through budget constraints, 

and this implies weighting interest rates and seasonal dummies by either personal 

income or deposits. Second, the CD market is nonlinear because of the existence 

of interestrate ceilings imposed by Federal Reserve Regulation Q. The nonlinearity 

manifests itself in the dummy variable describing the run-off phenomenon in the 

CD market, as will be described below. 

The nonlinearities which arise from the homogeneity of the model were 

overcome by multiplying the coefficients of endogenously determined independent 

variables by the mean value of the particular weighting variable calculated over 

the control period of interest.'’ For example, in the DDMS equation, the Treasury 

bill rate coefficients are multiplied by the mean of Personal Income calculated 

over the twelve months of 1971. Thus, in that equation the linearization results in 

9 

(23) > 
9 — 

BRTB,_;PI, = > (6,PDRTB,_; 
0 i=0 

The seasonal variables are handled somewhat differently. For example, since PI 

is exogenous, we can form a series for the seasonal variable from the following 

relationship: 

(24) S1, = Seasonal Coefficient, - PI, 

which is an entirely exogenous series. Calculation of the linearized exogenous 

variables are shown in Table 1. 

The nonlinearity in the CD market is shown explicitly in the equation for 

the CD primary rate. When the equation was estimated, a test for the occurrence 

of a CD run-off was made and if no run-off occurred we set RUN = 0 and 

NORUN = 1.!8 In 1971, the period which we will be using for the control 

experiments, we know that no run-off occurred. Therefore, we set NORUN = 1 

and do not include the dummy variable which pertains to run-off periods. 

In order to evaluate the performance of the linearized form of the model, we 

ran a twelve-period simulation of both the linear and nonlinear forms of the model. 

The root mean squared errors (RMSE) for the 10 stochastic equations used in 

‘7 An alternative method is to allow the coefficients to change in each period, i.e., the coefficients 
would be multiplied by the actual value of the weight variable in each period rather than the mean. This 
would involve specifying Ao,, A;,, B,,, and C,,,t = 1,..., i 

‘8 The test compares the secondary CD rate with the exogenous Q ceiling for CD's. If the secondary 
rate is higher than the Q ceiling, it is assumed that a run-off is occurring. For an explicit description of 
how the CD market works, see Farr, Roberts, and Thomson [9]. 
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TABLE 1 

LINEARIZED EXOGENOUS VARIABLES 

Variable Equation 

1. Si, = SEASONAL, . PI, (DDMS) 
2. $2, = SEASONAL, . PI, (OTS) 
3. $3, = SEASONAL, . PI, (CD) 
4. S4, = SEASONAL, - (RFF) 
5. $5, = SEASONAL, . DEP, (EXR) 
6. S6, = SEASONAL, . PI, (QTBP) 

4 
7. Pll, = > a; PI,_; (DDMS) 

i=0 
7 

8. P12, = y a, Pl,_, (OTS) 
i=0 
a 

9. P13, = Y a, Pl,_; (QTBP) 
i=0 

8 
10. ROTS, = > a, ROTS,_; . PI, (OTS) 

i=0 
8 

11. IPI = 3 a; IPI, _,/IPI, (RCP) 
i=0 

TABLE 2 
MopeL Error ANALYsis—1971 

(1) (2) (3) (4) 
Linearized Non-Linear 

Standard Model Model Ratio of 
Variable Error RMSE RMSE Column 2 to 3 

DDMS 657 3,130 2,284 . 1.37 
OTS 743 5,291 3,644 1.45 
CD 582 1,012 887 1.14 
QTBP 710 1,357 1,647 0.81 
EXR 67 35 39 0.90 
RFF 0.207 0.453 0.421 1.07 
RTB 0.248 0.481 0.460 1.05 
RCDP 0.152 0.475 0.467 1.02 
RCP 0.176 0.471 0.453 1.04 
RBaa 0.102 0.397 0.406 0.98 

the model and the estimated standard errors are shown in Table 2. In simulation, 

the forecasting performance of the model depends on the initial conditions, so 

that the results shown would be different if a different starting point were chosen. 

A twelve-period simulation was chosen because in the control experiments we 

are interested in the 12 months of 1971. If a shorter time frame were used in the 

simulation, the RMSE would probably be lower. This is especially true of the 

linearized version of the model which uses the mean levels of personal income 

and deposits as weights in some of the equations. 

In three of the ten equations (the quantity of bills held by the public, excess 

reserves, and the rate on Baa bonds), the linear version has lower RMSE than the 

219 



nonlinear version. In five of the other equations, the differences in RMSE are less 

than 15%, the nonlinear version having lower RMSE’s. Only two equations, the 

demand deposit component of the money stock, and other time and savings 

deposits at ali commercial banks, have an RMSE substantially larger in the linear 

version of the model. This result is due to the high elasticity of DDMS and OTS 

with respect to personal income. Consequently, the weighting of coefficients by 

mean personal income causes large RMSE’s in these equations. 

2.4. State-Variable Form of the Model 

Before optimization experiments can be performed, the model must be put 

in the state-variable form: 

(25) Xj+1 = Xj = Ax; + Bu; + Cz; 

with known initial condition x 

(26) Xo = ¢. 

x; is a vector of endogenous variables, u; a vector of control variables, and z; a 

vector of uncontrollable exogenous variables. New state variables must be defined 

to replace those variables that appear in the model with lags greater than one 

period. The definitional equations of these variables are then appended to the 

model. 

We will assume that the actual values of the control variables RDIS and UR 

are the results of, and equal to, the desired levels that were specified by decision 

makers in the previous period. This will make them true control variables. The 

control variables as they appear in the Federal Funds Rate and excess reserves 

equations and in the borrowings identity are lagged by one month. 

Another problem which we recognize but shall not deal with at this point is 

that of the Cochrane—Orcutt serial correlation adjustments which were employed 

in the estimation. These terms will be omitted in the present formulation of the 

model since their basic function is to give more efficient estimates of the coefficients 

in the estimated equations. However, in simulation they are quite important as a 

mechanism for keeping the equations on track. At a future time, we will experiment 

with incorporating them into the model. 

The state variable form is completed by adding 28 new state variables and 

their definitional equations to the model. We define the following variables : 

RTB1 = RTB_, RCDP1 = RCDP_, 

RTB2 = RTB_,; RCDP2 = RCDP_, 

RTB, = RTB_, RCDP3 = RCDP_, 

RTB4 = RTB_, RCDP4 = RCDP_, 

RTBS = RTB_, RCDPS = RCDP_, 

RTB6 = RTB_, RCDP6 = RCDP_, 

RTB7 = RTB_, RCDP7 = RCDP_, 
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RTB8 = RTB_, RCDP8 = RCDP_, 

RTB9 = RTB_, RCDP9 = RCDP_, 

RTB10 = RTB_o RCDP10 = RCL:P_j5 

RFF1 = RFF_, RCP1 = RCP_, 

RFF2 = RFF_, _ RCP2 = RCP_, 

RFF3 = RFF_, RCP3 = RCP_, 

RBaal = RBaa_, : URI = UR_, 

The new model is now in this form: 

(27) xX; => Aox; + A\%X;-1 + Byu,-, + Cz, -1- 

There are a total of 46 state variables (18 endegenous variables and 28 new state 

variables), two control variables, and 15 exogenous and uncontrollable variables. 

3. DETERMINISTIC OPTIMIZATION EXPERIMENTS 

3.1. Formulation of the Problem 

The linear-quadratic tracking problem involves the minimization of the 

cost functional : 

N 

(28) J=}4 Y {(x; — )’Q0x; — &) + (u; — &)’R(u; — &))} 
i=0 

subject to the constraints of the economic system 

(29) Xi+d — xX; = Ax; + Bu; + Cz; 

with initial condition x) = & Equation (29) is just the state-variable form of the 

econometric model; x, is the vector of state variables, u; the vector of control 

(policy) variables, and z; a vector of uncontrollable exogenous variables. Equation 

(27) can be expressed in the form of equation (29) by setting its coefficient matrices 

equal to: 

(30) 1+ A=(I — Ao) 'A, 

B = (I — Ao) 'B, 

£; = U = Aa “©. 

In order to conserve space, the Ap, A,, B, and C, matrices of the model are not 

presented here but are available on request. 

The vectors %; and i; represent the nominal (ideal) state and control vectors 

that we would like to track as closely as possible, and we assume that they have 

been specified for the entire planning period. The matrices Q and R determine the 

relative penalties for deviations of the target and control variables respectively 

from their nominal paths. Typically, Q and R are diagonal matrices, although this 

is not necessary. Varying the weights on the diagonal of Q allows us to place more 

or less emphasis on monetary versus financial variables. 
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The nominal trajectories used in the experiments were chosen to reflect a 

smoothing of the growth paths that actually occurred for monetary aggregates 

over 1971 with interest rates, excess reserves, and borrowings held constant. This 

condition was set forth because it was felt that policy makers would like smooth 

long term growth in the aggregates, and stationary interest rates. Over 1971 the 

money stock grew at approximately 6 percent, a figure which has generally been 

interpreted as a long-run target of FOMC policy. 

It should be noted that the growth rates which policymakers talk about are 

for seasonally adjusted data. The model which we use is structured in terms of 

non-seasonally adjusted data so that the nominal trajectories will not look smooth, 

although the trajectories for the underlying seasonally adjusted data are construc- 

ted assuming smooth growth paths. The nominal trajectories are presented in 

Table 3. The demand deposit component of the money stock, seasonally adjusted, 

expands at a 6 percent annual rate compounded monthly. This and all other series 

are transformed to non-seasonally-adjusted levels using the ratio of non-seasonally 

adjusted (N.S.A.) to seasonally adjusted (S.A.) data. M1 is formed by adding 

actual N.S.A. currency to the N.S.A. DDMS nominal path. The nominal paths 

for other time and savings deposits at commercial banks and negotiable certificates 

of deposits grow at seasonally adjusted annual rates of 17.5 and 25 percent respec- 

tively. These growth rates are close to the actual rates of growth over the historic 

12-month period, and are assumed to be compatible with the 6 percent growth 

in DDMS. TTSC’s r »minal path is the sum of OTS and CD. The nominal path 

for total reserves is based upon a growth rate for seasonally adjusted data of 8.25 

percent. 

The nominal paths for BORR, EXR, RTB, RFF, and RBaa are constant as 

mentioned above.'® A constant level of BORR given the nominal path for total 

reserves yields the nominal path for unborrowed reserves, the major control 

instrument. The level of nominal borrowings and nominal excess reserves are set 

near the actual averages for the period. The nominal paths for the interest rate 

variables which the policy makers are most concerned with are kept stationary 

because it is felt that in our experiments such an “ideal” strategy would be neutral 

in its effect on the money market. The same is true for the discount rate, the minor 

control instrument.?° The nominal discount rate is above the nominal short term 

rates, and the Treasury bill rate is set below the Federal Funds Rate. This ordering 

makes the discount rate a true penalty cost, the discount window a true lender of 

last resort, and Federal Funds an attractive alternative to Treasury bills. 

Although we have specified nominal paths for 11 endogenous variables only 

a subset of those will have non-zero weights specified in the Q matrix. When a 

zero weight is assigned to a variable in the Q matrix it does not enter into the 

objective function (equation (28)). All of the nominal paths are presented here 

for completeness. 

‘® During 1971 none of these variables exhibited a definite trend, therefore, their nominal paths 
were set at their means. 

?° In the experiments that follow, the discount rate is forced to follow its nominal path. This is 
done by assigning a very high weight to the corresponding coefficient in the R matrix. We did not make 
the discount rate an uncontrollable exogenous variable because in some experiments (which are not 
reported here) a lower weight was assigned to it, allowing it to deviate from Its nominal path. 
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TABLE 3 

NOMINAL PATHS 

DDMS OTS CD 
Ml TTSC 

S.A. N.S.A. N.S.A. S.A. N.S.A. S.A. N.S.A. NS.A. 

1971 1 166,000 172,304 221,442 207,800 206,883 26,600 26,932 233,815 
2 166,808 165,319 214,419 210,611 210,116 27,099 27,00i 237,117 
3 167,620 165,941 215,441 213,461 214,246 27,608 27,510 241,756 
4 168,436 170,018 220,118 216,349 217,429 28,126 27,418 244,847 
5 169,256 165,734 216,234 219,276 220,260 28,654 27,749 248,010 
6 170,080 168,326 219,326 222,243 222,638 29,192 28,199 250,837 
7 170,907 169,254 221,154 225,250 225,350 29,740 28,859 254,209 
8 171,739 168,524 220,424 228,297 228,701 30,298 30,691 259,392 
9 173,575 171,999 223,899 231,386 231,488 30.867 31,355 262,843 

10 =173,415 173,217 225,412 234,517 234,415 31,446 32,311 266,726 
11 174,259 175,649 228,449 237,690 236,364 32,036 33,528 269,893 
12 175,108 180,888 234,388 240,906 239,581 32,637 33,126 272,707 

1972 1 175,960 182,658 235,258 244,165 242,950 32,350 33,751 276,701 
2 176,816 175,227 227,827 247,468 246,861 33,874 33,674 280,534 
3 177,677 175,899 229,099 250,817 251,834 34,510 34,407 286,241 
4 178,542 180,220 233,820 254,210 255,440 35,158 34,246 289,685 
5 179,411 175,646 229,646 257,650 258,883 35,817 34,633 293,516 
6 180,284 178,500 233,100 261,135 261,547 36,490 35,211 296,758 

TR 

S.A. N.S.A. BORR EXR RTB RFF RBaa RDIS UR 

1971 1 29,390 29.488 370 279 4.505 4,253 8.74 4.875 29,958 
2 29,585 29.865 450 200 4.375 4.759 8.50 4.875 29,415 
3 = 29,781 29.688 450 200 4.375 4.756 8.50 4.875 29,238 
4 29,978. 29,872 450 200 4.375 4.750 8.50 4.875 29,422 
5 30,177 30,268 450 200 4375 4.750 8.50 4.875 29,818 
6 30,377 29,875 450 200 4.375 4.750 8.50 4.875 29,425 
7 30,578 30,486 450 200 4.375 4.750 8.50 4.875 30,036 
8 30,781 30,493 450 200 4.375 4.750 8.50 4.875 30,043 
9 30,985 30,715 450 200 4.375 4.750 8.50 4.875 30,265 
10 = 31,190 = 31,168 450 200 4.375 4.750 8.50 4.875 30,718 
11 = 31,397 = 31,380 450 200 4.375 4.750 8.50 4.875 30,930 
12 31,605 31,689 450 200 4.375 4.750 8.50 4.875 31,239 

1972 1 31,815 32,909 450 200 4.375 4.750 8.50 4.875 32,459 
2 32,026 32,336 450 200 4.375 4.750 8.50 4.875 31,886 
3 = =32,238 =32,126 450 200 4.375 4.750 8.50 4.875 31,676 
4 32,451 32,359 450 200 4.375 4.750 8.50 4.875 31,909 
5 32,667 32.649 450 200 4.375 4.750 8.50 4.875 32,199 
6 32,883 32,366 450 200 4.375 4.750 8.50 4.875 31,916 

3.2. Deterministic Policy Experiments 

The Federal Reserve Board may, as part of its objectives, try to reach target 

values for both the money stock and some interest rate simultaneously. This may 

be impossible even in a deterministic world, and in fact a trade-off curve could 

be derived which relates the minimum achievable root-mean-square deviation 

from the target path for the money stock with that for the interest rate. In the 

first set of experiments, a trade-off curve will be derived for the objectives of 

controlling the money stock (M1) and the Treasury bill rate (RTB). The trade-off 
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will be measured using the root-mean-square deviations as defined in equations (31) 

and (32) below, where a star refers to an optimal path. 

a 1 N 1/2 
(31) RMSDy, = [— y [Mis - wi?) 

t= 

1 N oe 1/2 
(32) RMSDpra = Li > [RTB* — 7B 

t=0 

We will calculate these root-mean-square deviations only over the second 

six months of the planning period. There are two reasons for this. First, we would 

like to allow six months for the target variables to get ‘‘on track,”’ because of the 

lags inherent in the transmission of monetary policy. Second, even though we allow 

the optimal control program to run for 18 months, we ignore the iast six months 

of results because of possible end-point problems that are inherent in a finite 

horizon optimization problem. - 

A single trade-off curve is obtained by performing several optimization 

experiments in which different weights are placed on the Q matrix coefficients 

for the money stock and the interest rate. All of the other coefficients in the Q 

matrix are set to zero. In the R matrix, a very high cost is associated with the 

discount rate, but almost no cost is attached to the level of unborrowed reserves, 

so that this variable is allowed to move freely. For any particular combination of 

weights on M1 and RTB, the optimal solution will give us one point on the trade-off 

curve. ; 

The trade-off curve for the first set of experiments is shown graphically in 

Figure 1. The corresponding results are presented in Table 4. Let us examine 

some of the more obvious aspects of these results. First, note that it is very difficult 

to come close to the nominal path for the money stock; however, it is not so 

difficult to hit the interest rate exactly. This can be seen in experiments A and F 

respectively. In experiment A, a very high cost is attached to the money stock, 

and no cost to the interest rate. Nonetheless, the root-mean-square deviation for 

the money stock is 713 million dollars. In experiment F, however, where a high 

cost is attached to the interest rate and no cost is attached to the money stock, we 

find that the root-mean-square deviation for the interest rate is less than two basis 

points. 

Second, note that when a high cost is attached to the money stock, the trajec- 

tories for variables other than M1 behave wildly. Interest rates, borrowings, and 

unborrowed reserves all oscillate between extreme values that are sometimes even 

negative. This may in part be a limitation of the linearized model, but it seems to 

indicate that it is rather difficult to force the money stock to follow its nominal 

path exactly, at least on a month-to-month basis. All of this seems to bea preliminary 

indication that (within the context of this model) it might be preferable for the 

monetary authority to focus more attention on interest rates rather than on the 

money stock. 

The results that occurred when large relative costs were attached to the 

money stock seemed to us to be unreasonable. Therefore, we ran a second set of 

experiments in which some penalty is imposed when borrowings deviates from 

its nominal path. It was felt that this modification would make the results more 
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TABLE 4 
RESULTS OF TRADE-OFF BETWEEN MI AND RTB 

Root-Mean-Square Deviation 

Experiment Q(M1) Q(RTB) Mi RTB BORR UR RDIS 

A 1 x 10° 0 713 86.934 523,228 623,991 0.017 
B 2 x 10* 1 x 10° 1,494 . 10.815 62,019 72,215 0.001 
* 2 x 10° 1 x 10° 1,958 5.076 12,488 15,706 0 
D 200 1 x 10° 2,478 3.115 5,796 6,968 0 
E 20 1 x 10° 2,848 1.654 2,921 3,660 0 
F 0 1 x 108 4,501 0.017 467 430 0 

Note: In each experiment R(UR) = 1.0 and R(RDIS) = 1 x 10''. Root-Mean-square deviations 
for M1, BORR, and UR are in millions of dollars, while those for RTB and RDIS are in percent per year. 
In experiment D, M1 and RTB are weighted equally (after adjusting for their mean values). 

RMSE (M1) 
™] 4700 

x 

— 3700 

l 2700 

— 1700 

| | | l 700 
fe) 20 40 60 80 100 120 
RMSE (RTB) 

Figure 1 Trade-Off Curve Between M1 and RTB 

realistic since the Federal Reserve Banks do administer the discount window, 

setting limits both on the quantity and the frequency of member bank borrowing. 

The results for this second set of experiments are presented in Table 5 and 

Figure 2. In these experiments, the cost coefficients for M1, RTB, UR, and RDIS 

are the same as they were before, but now a relatively low cost is also attached to 

the level of borrowings (about 5 percent of the costs attached to M1 and RTB). 

In examining these results, we first note that attaching a cost to borrowings 

seems to, at least in part, clear up some of the strange results that occurred in 

experiments A, B, and C before. Overall, the controllability of M1 does decrease 

somewhat, but this is expected. The interest rate, borrowings, and unborrowed 

reserves all follow their nominal paths much more closely than they did before. 
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TABLE 5 

RESULTS OF TRADE-OFF BETWEEN M1 AND RTB (witH Q(BORR) = 5,000) 

Root-Mean-Square Deviation 

Experiment Q(M1) Q(RTB) Mi RTB BORR UR RDiS 

A 1 x 10° 0 1,967 5.533 12,162 11,321 0.629 
B 2 x 10* 1 x 108 2,826 2.828 4.942 6,105 0.253 
Cc 2 x 10° 1 x 108 3,453 1.597 2,538 3,141 0.132 
D 200 1 x 10° 5,067 0.210 474 424 0.025 
E 20 1 x 10° 5,514 0.192 62 62 0.003 
F 0 1 x 108 5,572 0.222 11 229 0.000 

Note: R(UR) = 1.0 and R(RDIS) = 1 x 10!'. 

“ RMSE (M1) 
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Figure 2. Trade-off Curve Between M1 and RTB (with Q(BORR) = 5000) 

The discount rate wanders off its path slightly, particularly when a high penalty 

is attached to M1. This is not surprising since now the discount rate is penalized 

less heavily relative to borrowings, and after all, the discount rate is the cost of 

borrowing. 

Note that the trade-off for this set of experiments is back ward-bending, i.e., the 

root-mean-square deviation for the bill rate does not decrease monotonically as 

we increase its relative cost. The same behavior is also true of unborrowed reserves, 

whose root-mean-square deviation also does not decline monotonically. The 

reason for this is that, as we decrease the cost on M1 to zero, the effective relative 

cost on borrowings increases. Thus, when in experiment F we insist on a level of 

borrowings that stays close to its nominal path, we are in effect requiring that the 
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level of unborrowed reserves be used through its influence on other markets to 

make this possible. We note also that the discount rate follows its nominal path 

exactly in this experiment, so that the only instrument that can be used to control 

borrowings is the level of unborrowed reserves. 

Again, the results seem to indicate that the interest rate might be a better 

target variable than the money stock. We can see from the results that the loss 

of controllability of M1 (as we decrease its relative cost) is more than offset by an 

increase in controllability of RTB, and furthermore that this increase in control- 

lability of RTB is accompanied by more reasonable behavior in the levels of 

borrowings and unborrowed reserves. 

In Figures 3 through 10, on the following pages, we have plotted the results 

for experiment E both when there is zero weight on borrowings and a non-zero 

weight on borrowings. In particular, we look at the endogenous variables M1, 

RTB, RFF, OTS, CD, BORR, and RBaa, as well as the policy variable UR. In 

each graph, we plot the two optimal trajectories and the nominal trajectory. Note 

that when there is a weight on borrowings, the optimal path for unborrowed 

reserves is somewhat higher. This is because a higher level of unborrowed reserves 

is needed so that there will be less need for borrowing. This higher level of un- 

borrowed reserves allows both OTS and CD to get closer to their nominal paths. 

As would be expected, when the Federal Reserve supplies less reserves, i.e., 

when unborrowed reserves are lower, banks, in an effort to meet reserve require- 

ments and other commitments, will not only borrow more heavily but will also 
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Figure 3 Money stock (M1) 
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Per cent 
g 7) 9.25 

— 
= 4 9.00 

7 * 

7 \ 

~ a ~ied . ceoeaceiell 
a \ 4 38.75 

\\ \ 

\ 7 i PO te cn id 
\ Bad 

a 
bs | | N l 8.25 

Jan Apr Jul Oct Jan Apr Jul 
1971 1972 

NOMINAL TRAJECTORY 
—-— Q (BORR)=0 
—e-=— Q (BORR)=5000 

Figure 9 Baa corporate bond rate (RBaa) 

230 



Billions of dollars 
~] 36 

l | l | | 20 
Jan Apr Jul Oct Jan Apr Jul 

1971 1972 

NOMINAL TRAJECTORY 
— — Q (BORR)=0 
—-=— Q (BORR)=5000 

Figure 10 Unborrowed reserves (UR) 

make portfolio adjustments by selling interest-bearing securities, thus lowering 

the price of those securities and raising the effective interest rates. We indeed see 

this effect uniformly in the experiments. When unborrowed reserves are lower, 

the Treasury bill rate, the Federal Funds Rate, and the Baa rate are all higher. 

4. STOCHASTIC OPTIMIZATION EXPERIMENTS 

4.1. Formulation of the Problem 

In this section of the paper, we will repeat the experiments performed earlier, 

but now taking into account the effects of random shocks on the model. We will 

assume that the only random shocks affecting the model are additive noise terms 

which are not autocorrelated, thus allowing certainty equivalence to be invoked. 

Our model is now given by equation (33). 

(33) Xi4+1 = x; = Ax; + Bu; + Cz; + Dé;. 

The error vectors ¢; in equation (33) are generated by either adding or sub- 

tracting the residuals obtained from a simulation of the model. These residuals 

will only be generated during the first 12 months of the 18 month planning period, 

since we will not be interested in the performance of the model during the last 

six months. 

The optimal solution to this stochastic control problem is obtained by 

applying the deterministic optimal control solution to the model in a closed-loop 
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manner. Recall that the deterministic optimal control solution yields a linear 

feedback rule, ice., it is of the form :?! 

(34) * uf = Fx? + G;. 

In the deterministic problem, x¥ can always be predicted exactly over the entire 

planning period. Now, however, the application of the optimal control in the 

first period may not result in the expected optimal state vector in the second period, 

since the model is subject to random shocks. Thus, the optimal control in the 

second period must compensate, or correct, for possible deviations in the state 

vector from its optimal path. 

In the experiments that follow, we begin with the given initial condition xo, 

and apply the deterministic optimal control uj. Given ug, the model generates 

x, and then computes ¥, = x, + €,, where ¢, is the noise vector in period 1. The 

deterministic optimal control solution is then used to obtain uf given this X,. 

In the second period, the modet calculates x, using uf as the input, and then 

computes ¥, = x, + &2. This process is repeated until all of the uf’s and X,’s 

have been calculated. This closed-loop optimal control process is shown diagram- 

matically in Figure 11. 

There are two primary objectives in the following experiments. First, we 

would like to see how the trade-off curve changes as a result of the influence of 

random shocks. We would expect the trade-off to become worse, i.e., no matter 

what combination of weights we chose for M1 and RTB, the root-mean-square 

deviations for both would be larger. The question, however, is how much worse? 

As we will see, if the monetary authority allows itself more flexibility with respect 

to movements in the control instrument, i.e., in unborrowed reserves, then the 

trade-off curve is not very much worse at all. What we want to demonstrate as 

the second objective of these experiments is exactly this point, i.e., that the monetary 

authority must allow itself greater flexibility with respect to the movements of its 

instrument variables. 

4.2. Stochastic Policy Experiments 

In our experiments we will use as values for the error vectors ¢; in equation 

(33) the residuals generated from a simulation of the model.?? Two experiments 

Optimal Control Law 
mages: i RD ~s 

xj 

7 

(disturbance) . Model 
Xi xj44 — xj = Axj + Buj + Cz; 

Figure 11 Closed loop control 

21 See Pindyck [16]. 
?? This method was an expedient alternative to performing a set of Monte Carlo experiments. It 

should also be pointed out that one can analytically obtain the expected sum of squares of deviations of 
the variables from their target paths, as shown by Chow [7]. 
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will be performed ; in the first the residuals will be added and in the second they 

will be subtracted. These residuals will only be generated for the first 12 montks 

of the 18-month planning period, since we will not be interested in the performance 

of the model during the last six months of the period. 

In the results which follow, a weight was attached to the level of borrowings, 

as in the second set of deterministic optimization experiments. This should be 

kept in mind when comparing results. The trade-off curves for the two stochastic 

cases are presented together with the trade-off curve from the deterministic case 

in Figure 12. Note that all of the trade-off curves are very close together, so that 

the presence of random shocks does not seem to result in a large deterioration of 

the optimal control results, as long as the optimal solutions are calculated in a 

closed loop manner. The reason for this can be seen by looking at the movement 

in the level of unborrowed reserves, as shown in Tables 6 and 7. What we find is 

that unborrowed reserves generally must move more dramatically in order to 

attain policy objectives. This is particularly true when more emphasis is placed 

on M1. This is another indication that following an interest rate target might be 

preferable for the monetary authority. When a heavier emphasis is placed on 

interest rates, unborrowed reserves stays much closer to its nominal path. 

Tosummarize these results, it is interesting to note that the closed loop control 

is self-correcting, so that the trade-off is not substantially worsened as long as new 

observations are used in making the next optimal policy decision. The Federal 

TABLE 6 

RESULTS OF TRADE-OFF BETWEEN M1 AND RTB wiTH Q(BORR) = 5,000 AND DisTURBANCES ADDED 

Root-Mean-Square Deviations 

Experiment Q(M1) Q(RTB) M1 RTB BORR UR RDIS 

A 1 x 10° 0 1,865 6.131 13,679 14,992 0.710 
B 2 x 10* 1 x 10° 2,734 2.744 5,129 6,567 0.263 
Cc 2 x 10° 1 x 10° 3,189 1.558 2,477 3,431 0.129 
D 200 1 x 10° 4,582 0.341 465 774 0.024 
E 20 1 x 10° 4,999 0.305 60 242 0.003 
r 0 1 x 10° 5.054 0.319 10 180 0.000 

Note: R(UR) = 1.0 and R(RDIS) = 1 x 10"?. 

TABLE 7 

RESULTS OF TRADE-OFF BETWEEN M1 AND RTB wiTtH Q(BORR) = 5,000 AND DisTURBANCES 
SUBTRACTED 

Root-Mean-Square Deviations 

Experiment Q(M1) Q(RTB) M1 RTB BORR UR RDIS 

A 1 x 10° 0 2,073 4.968 10,718 11,722 0.554 
B 2 x 10 1 x 10° 2.945 . 2.921 4,835 5,688 0.248 
Cc 2 x 10° 1 x 10° 3,761 1.648 2,616 2,862 0.136 
D 200 1 x 10° 5,570 0.171 498 111 0.026 
E 20 1 x 10° 6.044 0.207 64 523 0.003 
F 0 1 x 10° 6,105 0.242 10 594 0.000 
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Figure 12 Trade-off curves, stochastic experiments 

Reserve Board now is operating in a very different way but may be arriving at 

much the same result. As is evidenced by the published record of policy actions of 

the FOMC (siarting with the meeting of February 15, 1972), the existence of random 

shocks in the economy has resulted in the specification of a range of acceptable 

values for targeted variables.?* The Fed's staff transforms the specified ranges on 

target variables into an appropriate range within which the policy instruments 

may fluctuate in order to meet policy objectives. The range on acceptable values 

for policy variables indicates that current policy is predicted on the assumption 

that policy instruments must be allowed to fluctuate so as to compensate for 

random disturbances in the economy. This same necessary condition holds if one 

formulates policy using optimal control. The root-mean-square deviations for 

unborrowed reserves are in general larger for the stochastic experiments than they 

are for the deterministic ones. This can be seen by looking at Figure 13, which 

shows that the optimal paths for unborrowed reserves in the two stochastic 

experiments (E) bound the optimal path for the corresponding deterministic 

experiment. 

5. SUMMARY AND CONCLUSIONS 

Let us summarize our results and their possible implications for policy 

making. First, we have observed that the deterministic closed loop control law 

adequately corrects for random shocks, although more freedom of movement is 

23 The record of policy actions is published periodically in the Federal Reserve Bulletin. 
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required with respect to the policy instrument.?* We did not, of course, take into 

account our imperfect knowledge of the true values of the model’s coefficients 

when obtaining our stochastic control solutions. If the estimated value of critical 

coefficients have large standard errors, this could decrease the precision of our 

control. Also, we have not explored fully the limitations inherent in the model’s 

linearity. Our results might be less meaningful if the economy were experiencing 

rapid structural change. 

In both the deterministic and stochastic cases, we find that the monetary 

aggregate M1 can indeed be closely controlled, but only at the great expense of 

considerable fluctuations in other variables. The problem does not occur when 

attention is focused primarily on interest rates as the policy objective. Interest 

rates can be controlled very closely without much loss in the control of other 

variables. Note that we are not saying that it is best to focus on interest rates from 

the point of view of overall stabilization policy. If, however, interest rates are the 

intermediate targets of the monetary authority, then precise control becomes 

easier to attain. 

We also found that monetary control is best achieved by administering the 

discount window to some extent (i.e., by placing some cost on the deviations of 

24 The effects of random shocks are much more sérious if the deterministic control law is applied 
in an open loop manner, i.e., without observing the state-vector each period. We ran one set of stochastic 
experiments using open loop control, and found the root-mean-square deviations for most variables to 
be 50% to 100 % larger than in the closed loop case. This was consistent with Chow’s findings [7] using a 
small macro-econometric model. 
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borrowings from its nominal path). We did not explore the proper role of the 

discount rate as a policy instrument, so that in our experiments the discount 

window was only administered indirectly through unborrowed reserves. The 

examination of the appropriate role of the discount rate as a policy instrument 

will be a subject of future study. 

There are other problems in monetary policy which we feel could fruitfully be 

approached from the point of view of optimal control. One of these is whether 

closer control of the money stock or other aggregates could be achieved more 

easily by placing less emphasis on interest rate targets and more on reserve 

targets. In this case the objective function would have the Federal Funds rate as 

the primary policy instrument, and unborrowed reserves (or some other reserve 

measure, such as reserves available to support private deposits) would be made a 

target variable. Then we would examine the trade-off between the control of 

M1 and the control of reserves. 

A second important question is whether intermediate target strategies are 

desirable in the first place. This could be studied by making the money market 

model a sub-sector of a macro-econometric model, and then performing optimiza- 

tion experiments in which the targets are macro variables such as GNP, unemploy- 

ment, prices, etc. We would like to find out whether the resulting optimal paths 

for intermediate variables are anything like the target paths that we have chosen 

for our experiments. 

Massachusetts Institute of Technology 

Board of Governors of the 

Federal Reserve System 

REFERENCES 

{1] Andersen, L. C., “Selection of a Monetary Aggregate for Use in the FOMC Directive,” Open 
Market Policies and Operating Procedures—Staff Studies, Board of Governors of the Federal 
Reserve System, 1971. 

(2] Athans, M., “The Discrete Time Linear--Quadratic-Gaussian Stochastic Control Problem,” 
Annals of Economic and Social Measurement, October 1972. 

[3] Athans, M. and P. Falb, Optimal Control—An Introduction to the Theory and Its Applications, 
McGraw-Hill, 1966. 

[4] Axilrod, S. H., “The FOMC Directive as Structured in the Late 1960's: Theory and Appraisal,” 
Open Market Policies and Operating Procedures—Staff Studies, Board of Governors of the Federal 
Reserve System, 1971. 

[5] Axilrod, S. H., “Monetary Aggregates and Money Market Conditions in Open Market Policy,” 
Open Market Policies and Operating Procedures—Staff Studies, Board of Governors of the 
Federal Reserve System, 1971. 

[6] Chow, G.C., “On the Optimal Control of Linear Econometric Systems with Finite Time Horizon,” 
International Economic Review, February 1972. 

[7] Chow, G. C., “How Much Could be Gained by Optimal Stochastic Policies?” Annals of Economic 
and Social Measurement, October 1972. 

[8] Davis, R. G., “Short Run Targets for Open Market Operations,” Open Market Policies and 
Operating Procedures—Staff Studies, Board of Governors of the Federal Reserve System, 1971. 

(9] Farr, H. T.,S. M. Roberts, and T. D. Thomson, ““A Weekly Money Market Model,” unpublished 
paper, Federal Reserve Board, December 1972. 

[10] Friedman, B. M., “Methods in Optimization for Economic Stabilization Policy,” Economics 
Ph.D. Dissertation, Harvard University, 1971. 

(11) Holbrook, R. and H. Shapiro, “The Choice of Optimal Intermediate Targets,’ American Economic 
Review, Papers and Proceedings, May 1970. 

{12] Holmes, A. R., “The Problems of the Open Market Manager,”’ Controlling Monetary Aggregates 
II: The Implementation, Federal Reserve Bank of Boston, 1972. 

236 



[13] Kareken, J. H., T. Muench, and N. Wallace, “Optimal Open Market Strategy: The Use of 
Information Variables,” American Economic Review, March 1973. 

[14] Livesey, D. A., “Optimizing Short Term Economic Policy,’ Economic Journal, September 1971. 
[15] Pierce, J. L. and T. D. Thomson, “Some Issues in Controlling the Stock of Money,” Controlling 

Monetary Aggregates Il: The Implementation, The Federal Reserve Bank of Boston, 1972. 
[16] Pindyck, R. S., Optimal Planning for Economic Stabilization, North Holland, 1973. 
[17] Pindyck, R. S., “Optimal Stabilization Policies via Deterministic Control,” Ariaals of Economic 

and Social Measurement, October 1972. 
[18] Sengupta, J. K., “Optimal Stabilization Policy with a Quadratic Criterion Function,” Review 

of Economic Studies, January 1970. . 
[19] Theil, H., ““A Note on Certainty Equivalence in Dynamic Planning,” Econometrica, April 1957. 
[20] Thomson, T. D., J. L. Pierce, and R. T. Parry, “A Monthly Money Market Model,” Journal of 

Money, Credit and Banking, forthcoming. 
[21] Waud, R., ““Proximate Targets and Monetary Policy,” The Economic Journal, March 1973 






