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Uncertainty is the second nature of science. One cannot know whether years of research will 
ever lead to a discovery, whether the scientific community will realize the significance of the 
discovery, and whether the discovery will lead to important applications. COVID-19 vaccines 
were eventually developed at breakneck speed for a global pandemic that, as of January 
2022, has caused more than 5.5 million deaths (World Health Organization 2022), and the 
development of a new vaccine class which holds great potential for the future (Pardi et al. 
2020). The development of mRNA vaccines is a story of remarkable scientific progress in an 
environment shrouded in deep uncertainty (see also Franzoni et al. 2021).  
 
The thrill of discovery, the traction of recognition and prestige, as well as the pursuit of 
career incentives such as job security and tenure were all important drivers that led 
scientists to develop the fundamental research behind the vaccine. Pulled by the urgent 
need for action, various streams of research came together at an unprecedented speed. The 
story behind these scientific endeavors underscores the delicate interplay between the 
motivation of scientists and the availability of funding for research institutions, large 
pharmaceutical companies, and startups.  

The mRNA genetic molecule, a key component of COVID-19 vaccines, was discovered 
more than 60 years ago (Cobb 2015). A traditional vaccine works by injecting a modified 
version or selected components of the virus into a patient’s body, thus training the immune 
system to learn how to combat the virus and apply the lesson in the future if needed. The 
mRNA genetic molecule works differently by carrying instructions on how to produce the viral 
proteins directly to the patient’s cells (CDC 2022). This creates a more realistic infection that 
trains the immune system more effectively, with future benefits in case of contraction of the 
disease. However, for years the use of mRNA molecules for vaccine development was 
thought to be largely impractical. Given their very fast degradation, it seemed almost 
impossible to isolate mRNA molecules from cells. The focus of molecular biologists shifted to 
other, more promising areas of research (Kolata and Mueller 2022). 

Scientists like Dr. Weissman and Dr. Karikó believed in the potential of the mRNA molecule 
as a carrier of instructions. Their beliefs, however, did not fall in place with the then 
prevailing paradigm, and they faced limited funding (Rothberg 2021). Unfazed by this and 
convinced of their hunches, they spent seven years researching how to inject mRNA without 
provoking an adverse immune response. Once they managed to solve the problem, the 
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scientific community did not realize the importance of the discovery. There were still many 
obstacles, such as the molecule’s fast degradation when injected into a host which meant 
that mRNA was still considered an unrealistic candidate for vaccines. 

Key breakthroughs in devising an efficient method for preventing the molecule’s degradation 
were developed in parallel by other scientists working in both academic and commercial 
settings. The interplay between these environments is a common feature of research, and it 
can lead to conflicts. Another team of scientists found a way of encasing the mRNA 
molecules in a lipid shell. While promising, there were a number of technical difficulties, and 
the technology was licensed to Protiva, a company that made great strides in improving 
efficiency and perfecting the approach (Jeffs et al. 2005). Dr. Karikó understood the 
importance of the work and approached Protiva for collaboration. Discussions around 
intellectual property and the demands of the funding parties prevented this collaboration 
from occurring (Kolata and Mueller 2022). 

Breakthroughs by Dr. McLellan, Dr. Graham, and Dr. Wang in visualizing coronaviruses and 
developing a method to stabilize Spike proteins were another essential component of the 
Covid-19 vaccine. Through a sequence of serendipitous events, Dr. McLellan’s and Dr. 
Graham’s lab realized that a common coronavirus could hold lessons for its more deadly 
cousins which cause MERS and SARS. The first breakthrough came soon when the team 
managed to isolate and visualize the virus’s Spike proteins, an unprecedented feat 
(Kirchdoerfer et al. 2016). The lab, in particular through Dr. Wang’s work, achieved a second 
breakthrough by devising a method to stabilize the Spike proteins, a serious issue that had 
prevented the development of vaccines (Pallesen et al. 2017). Again, the breakthrough was 
overlooked in the scientific community. The MERS epidemic was over and coronaviruses 
were not an area of focus (Kolata and Mueller 2022).  

The importance of these breakthroughs was understood only in the first months of 2020 with 
the emergence of COVID-19. Suddenly, the research of hundreds of scientists that had been 
disregarded became of utmost value. Dr. Weissman and Dr. Karikó have been recognized 
with a Breakthrough Prize, the largest award in science, and are considered strong 
candidates for the Nobel Prize (Dolgin 2021).  
 
An essential role in the development of mRNA technology was played by research-intensive 
startups like Moderna and BioNTech, founded in 2008 and 2010 respectively with the 
support of both public and private grants. At a later stage, large established pharmaceutical 
companies such as Pfizer entered the field, enabling the roll out of the vaccine.  
 
The critical situation that emerged in the first months of 2020 led governments and 
institutions such as the World Health Organization to adapt and revise their standard 
approach in managing the deployment of vaccines. In a race to roll out the vaccine, 
governments entered advance purchase agreements with vaccine producers well before the 
vaccines were approved by the relevant national health regulatory bodies (Bloom et al. 
2021). In July 2020, the U.S. government purchased 100 million doses of the Pfizer-Biontech 
vaccine for $1.85 billion, with the option of acquiring 500 million more doses in the future 
(Pfizer 2020). Similar contracts were stipulated by Israel, the United Kingdom, and the EU. 
Advance purchase agreements are an unconventional form of pull incentives. The aim is to 
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stimulate and expedite firms in their final stages of innovation by providing them with 
significant market rewards upfront. 
 
This swift response was made possible by well-positioned startups that took decisive and 
risky actions at the very beginning of the pandemic, and then formed strong ties and 
partnerships with established pharmaceutical companies. Within days of the virus’ genome 
sequence being available online, Moderna had created a prototype vaccine. Within 8 months 
from early human testing, Pfizer and Biontech received emergency authorization.  
This previously unheard of pace of development, testing and approval, was made possible 
by hands-on management and partnerships between companies, research labs, and 
governments.  

Uncertainty Reigns  

Science is a journey into the unknown to push the frontiers of knowledge. Research 
continuously challenges and refines what we believe is true. Scientists always entertain the 
possibility that the existing body of knowledge is incorrect or at least incomplete. Gleick 
(1992) writes that Feynman “believed in the primacy of uncertainty, not as a blemish on our 
ability to know, but as the essence of knowing.” When facing unsolved problems, “you have 
to leave the door to the unknown ajar” (Feynman 1998).  
 
The lack of certainty and the pursuit of improved knowledge is what spurs scientific 
innovation. Certainty is impossible to achieve as our understanding of the world evolves. 
Rather than certainty, we should reasonably expect reliability from science. Scientific ideas, 
in both physical and social sciences, are reliable and credible when they survive the 
continuous arrival of new evidence and the repeated scrutiny of the scientific community. But 
they are not certain (Rovelli 2012). 
 
According to Kuhn (1962), science evolves with alternating stages of normal science and 
scientific revolutions. Normal science operates within an accepted paradigm, which consists 
of a set of tools, methods, notions, and assumptions that are largely shared by the 
community of scientists working in a field. Scientific revolutions take place when a critical 
mass of evidence unveils some fundamental inconsistencies in the prevailing paradigm. As 
novel tools, assumptions, and theoretical frameworks are developed, a new paradigm 
emerges that is more compatible with the evidence. Revolutionary science permits science 
to move between different stages of understanding. This model of scientific progress evokes 
the key role of uncertainty as described by Feynman (1998) and Rovelli (2012).  
 
We can immediately see how a scientist whose work does not fit within the current paradigm 
and, of course, is not certain of being part of the next paradigm, faces significant uncertainty 
in their professional lives. Practical aspects of a scientist’s life, such as job security and 
achieving tenure, for example, are heavily influenced by the scientist’s scientific productivity 
and standing in the scientific community. The distribution of citations within scientific fields is 
heavily skewed. It is clear that scientists face significant uncertainty when deciding which 
research avenue to pursue. Each choice has a high opportunity cost and scientists cannot 
easily predict the best path to take. Wang et al. (2017) construct a measure of novelty for 
individual publications and find more novel publications tend to have higher variance in their 
citations and take longer to be recognized as valuable by the scientific community. 
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Another aspect of uncertainty arises from the potentially delayed responses to scientific 
research. It is not always the case that advancements in science are immediately recognized 
as useful. The discovery of the mRNA molecules is an excellent example. The fast 
degradation of mRNA molecules led to the premature conclusion that it was not a viable 
area of research. Molecular biologists moved their focus to other rising areas of research, 
such as DNA and proteins (Kolata and Mueller 2022). A minority of scientists believed in the 
molecule’s potential and, despite the uncertainty and risks involved, managed to solve the 
issues that had stunted progress. It took several decades for the significance of the 
discovery of the mRNA molecule to be vindicated. How can “sleeping beauties”, papers 
whose importance is not recognized for several years after publication (Ke et al. 2015), be 
identified early? 

In a recent study, Menkveld et al. (2021) uncover another important source of uncertainty 
that is generated by the latitude researchers have in analyzing the data, even when both the 
data to be used and the hypotheses to be tested are given. They distinguish the data-
generating process (when samples of data are obtained from a population) from the 
evidence-generating process (when estimates from the sample are obtained through 
statistical analysis). While research has typically focused on the standard errors that arise 
from drawing a sample from a population, the evidence-generating process can also cause 
“non-standard” errors, which add uncertainty to the scientific process. Non-standard errors 
may arise from the choices that researchers must make when analyzing the data, from the 
data cleaning method to the specification of a statistical model—even when the data and the 
hypotheses are held constant. The set of choices is vast and it can lead to sizable errors. In 
an experiment where 164 teams tested six hypotheses on the same data sample, Menkveld 
et al. (2021) found that non-standard errors have a similar magnitude to standard errors, are 
routinely underestimated by the researchers involved, and tend to be reduced by peer 
feedback.  

Science as Incentive System 

Driven by passion and intellectual curiosity, investigators carry out “blue-sky” research to 
solve open puzzles and challenge conventional wisdom. Often it is not clear whether the 
potential discoveries will lead to practical applications. Scientists operate within a community 
whose shared values and ideals have been studied extensively by sociologists of science. 
According to Merton (1942), the spirit of modern science is captured by four sets of 
institutional imperatives: communalism, universalism, disinterestedness, and organized 
skepticism. These norms are not upheld necessarily for their intrinsic ethical value, but 
because they are considered by the majority of the profession as essential for the renewed 
success of scientific research. Scientific ideas have universal value, are common property 
and are subject to the scrutiny epitomized by the motto of the Royal Society, Nullius in 
Verba.  
 
The science reputation system rewards the first scientists who discover important new 
knowledge and present it with clarity to the scientific community. Rather than assigning the 
property of the innovation to the discoverer, the priority system rewards the publication of 
results. The discoverer essentially donates the innovation to the community, in exchange for 
public recognition. Once the innovation becomes common property, other scientists can 
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freely build on it, while properly crediting the contribution by citing the relevant work. 
Citations act like non-monetary dues, thus making the priority reward proportional to the 
value of the contribution for follow-on work and discoveries.  
 
Scientists are largely driven by a set of complementary incentives such as prizes, awards, 
and the tenure system. These nonmarket incentives leverage the scientists’ intrinsic 
motivation to make discoveries and to gain prestige and reputation for scientific excellence. 
These complementary incentives reinforce each other as a system in which each element 
can only be understood in combination with the other elements (Holmstrom and Milgrom 
1994). 
 
Science, like any other human endeavor, is far from a perfect system. Incentives sometimes 
are insufficient, other times excessive, and often distorted. To be promoted and be granted 
tenure researchers are under pressure to obtain funding, deliver measurable results, and 
publish work that attracts citations. In addition to picking low hanging fruits, researchers 
might have an incentive to avoid upsetting the common wisdom of reviewers and journal 
editors, or worse, to cut corners and adopt questionable research practices, in stark contrast 
with the Mertonian norms. These practices challenge the very credibility of science. In a 
number of fields, many empirical studies have proven to be difficult or impossible to 
replicate, even when using the same dataset, leading to a replicability crisis. A key driver of 
this crisis is publication bias, resulting when only significant results or results that are aligned 
with partisan views of either the researchers or the reviewers are published.  
 
While the motivation of scientists to thrive in the scientific community plays a central role in 
the arena of pure research, commercial incentives are also essential for innovations to come 
to fruition and be widely adopted—think of the deployment of the new vaccines to the world 
population. Two systems of incentives are relevant for practical innovation, the nonmarket 
“science system” and the “market system”. The internal organization of science is far from 
the market system traditionally analyzed by economists. The science system is largely 
governed by nonmarket incentives, mostly acting through non-anonymous interactions that 
build on scientists’ self-motivation for discovery and interest for recognition, impact, and 
prestige. Market transactions, instead, are less reliant on individual personalities and center 
more on impersonal and anonymous interactions typically mediated by monetary rewards 
and the price system.  
 
Market incentives play a central role in the diffusion and deployment of applications of 
scientific knowledge. As new knowledge is embodied in innovation, the commercial adoption 
of practical applications is largely driven by market incentives. Incentives centered on 
intellectual property such as patents provide monetary rewards to innovations that deliver 
consumer value. Policy levers are typically classified into push and pull incentives: 
 

● Push incentives, such as grants, credit, and tax subsidies that lower research costs, 
act on the cost/supply side at the ex ante level. Push incentives are typically 
unconditional and leave investigators free to pursue their curiosity. Researchers are 
thus empowered to follow hunches that might lead to break-throughs. However, push 
incentives run the risk of being technology driven and untargeted toward applicable 
innovations that are widely adopted.  
 



6 

● Pull incentives, such as intellectual property, instead act ex post through the 
revenue/demand side, and thus tend to be more goal oriented. The promise of 
market rewards offered by patents, for example, incentivize firms to bring their 
products to commercial fruition. These rewards, being conditional on outcomes, are 
highly targeted, but are often perceived to be insufficient to motivate fundamental 
research that can have far-reaching applications that are difficult to predict and trace 
back to the source.  

 
While push incentives tend to play an important role in the early stages of innovation where 
basic research is prevalent, pull incentives typically become prevalent in later stages of 
commercial development. To be effective, science policy must understand the interplay of 
science and the market, and the delicate nexus of incentives that prevail in the two systems. 
Prizes, advance market commitments, and goal-oriented research are more elaborate forms 
of incentives that contain elements of conditionality typical of traditional pull incentives, but 
they act ex ante, similar to push incentives. These mixed tools hold great promise but 
require careful governance. 

1. Science Policy as Organizational Design 

How does or should society organize science? Economists naturally frame the production 
and diffusion of knowledge as an organizational design problem that builds on social choice 
and agency theory, a paradigm that has become central in modern economic analysis since 
Arrow’s (1951 and 1963) pioneering work. Principal-agent problems arise from the 
simultaneous presence of two features:  
 
(1) Misaligned Interests: Individuals have conflicting preferences (objectives, motivations, 
and interests). For example, scientists (agents) might enjoy doing research on intellectually 
challenging problems, more than on problems that are practically relevant for the funder 
(principal).  
 
(2) Asymmetric Information: Individuals make decisions under uncertainty, having access to 
limited information, which is typically distributed asymmetrically across individuals. For 
example, scientists might privately know better than the public the potential benefits and 
costs of a line of research.  

For the sake of argument, at least initially, let us abstract away from the complications 
created by the fact that principal and agent each represent many individuals. For the grand 
scheme of science policy we can think of the agent as the collective of scientists and the 
principal as the research funding organization (representing society).  

Focus on the baseline formulation with a single agent and a single principal. The principal 
aims at controlling the behavior of the agent through a number of contractual and 
organizational tools. Assuming feature (1) and in the absence of informational frictions (2), 
the divergence of objectives of principal and agent can be framed in terms of externalities. 
Externalities measure the impact of the action taken by the agent on the payoff of the rest of 
society. Under symmetric information, traditional public economics suggests how the 
externality problem can be solved through a corrective tax and subsidy policy (Pigou 1920). 
The idea is simply to compensate the agent with a payment equal to the externality. 
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Activities that generate negative externalities, such as pollution, should be taxed, while 
activities like research that generate positive externalities should be subsidized.  

At the other extreme, suppose that principal and agent have access to asymmetric 
information as in (2), but they have aligned preferences, so that feature (1) is absent. This 
case corresponds to the economic theory of teams, pioneered by Marschak and Radner 
(1972). Team theory primarily deals with the aggregation of information across individuals 
and the communication problem that is also studied in computer science.  

Agency problems arise from the simultaneous presence and interplay of conflicts of interests 
(1) and asymmetric information (2). The two main specifications of asymmetric information 
are (a) hidden action (i.e., moral hazard) problems in which the decision made or effort 
chosen by the agent is not observed by the principal and (b) hidden information (i.e., 
adverse selection) problems in which the principal does not observe some key parameter (or 
“type”) that characterizes the agent. For example, in a moral hazard problem the funding 
organization might not observe how hard the researcher is really working to solve the 
relevant problem, while in an adverse selection problem the funder might not know the 
intrinsic merit of the researcher’s idea.  

In the case of science, researchers has large latitude in the choice of action because of the 
high level of uncertainty in the environment. Direct monitoring is rather ineffective, given the 
specialized knowledge required. And there is a fundamental informational problem in 
knowing which problems should be investigated. The science incentive system leverages the 
self-motivation of researchers, their quest for knowledge, the thrill of discovery. Incentive 
problems would be limited if researchers could self finance their activities, like the 
independently wealthy gentlemen scientists impersonated by Robert Boyle (Shapin 1995).  

Modern science, however, requires large resources—it is more an industrial activity than an 
independent art. Proper funding is needed to attract talented individuals from all walks of life. 
At the same time, funding risks distorting scientists’ incentives as some would be attracted 
by the monetary rewards rather than the more intrinsic pleasures of scientific research. 
Successful funding schemes should leverage the self motivation of scientists, while directing 
efforts toward socially valuable goals. Information asymmetry constrains this process. 
Instruments such as peer review in the allocation of grants are attempts at reducing this 
asymmetry. 

Modern research universities are major funders of research. According to the prevailing 
model, scientists perform both teaching and research. It is often claimed that teaching 
revenue is largely used to cross-subsidize research (James 1990). Promotion and tenure 
criteria heavily weigh research performance. A possible explanation is that teaching quality 
is hard to measure when student evaluations are sometimes akin to popularity contests 
which hardly reflect added value. Research performance, instead, is more accurately 
observable through publications and citations. When teaching and research abilities are 
correlated, it becomes efficient for principals to use research performance as a selection 
device.  

2. Funding Instruments 
Scientific research is an arduous and demanding activity that requires significant resources. 
Scientific progress has been at the root of economic growth in the modern era. Modern 
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governments acknowledge science policy issues as having strategic importance for national 
competitiveness and economic security (Dasgupta and David 1994). In this context, an 
investigation of the economics of the funding of science is of critical importance.  
 
The main product of science is invention and discovery of new knowledge. Arrow (1962) 
explains why we should not expect the market system to deliver efficient production and 
diffusion of new knowledge in the form of information. Information has a number of features 
that naturally lead to market failure. Firstly, information is non-rival: it can be replicated at 
zero (or close to zero) cost. Secondly, the production of information is risky. As discussed in 
the previous section, uncertainty is a key component of the scientific process. Not all 
research ventures lead to the production of knowledge. In addition, there are uninsurable 
moral hazard issues. Lastly, trading of information is problematic as the value of information 
is only revealed after it is transferred. 

  
Because of the public good nature and positive externalities associated with research, we 
expect the market to underprovide innovation. For this reason, the role of the government in 
incentivising innovation and providing funding for scientific research leading to innovation is 
justified on economic terms. Governments, universities, public bodies, institutions and 
individuals have funded research through a number of instruments.  

Prizes and Awards 

Prizes consist typically in monetary rewards given to the scientist or group of scientists that 
manage to achieve a specific, predetermined objective or multiple objectives as defined by 
the funding committee. The Longitude Prize is probably the most famous example. In 1714, 
by passing the Longitude Act the British Parliament promised a payment equivalent of £1.5m 
in today’s currency to whoever could devise a method to determine longitude to an accuracy 
of half a degree. The prize was created as a response to the high risks that ships and their 
crews faced in traveling across the Atlantic (Sobel 2007).  
 
Prizes tend to be created in response to a well-defined need. Therefore, scientists have a 
clear goal to aim at. Prizes can only be effective when the final use of the innovation is clear 
at the outset. A main difficulty may arise in identifying the need and defining the goal in a 
precise way. Prizes are more open-ended than grants, as noted by Kalil (2006). Grants 
typically require the funding agency to specify the recipient of the award and the preferred 
approach. Prizes typically do not have these limitations and thus can more effectively 
incentivise innovation through unconventional means.  
 
However, researchers who aim to win the prize are not awarded funds ex ante, as it would 
be the case with other funding instruments such as grants. Given that prizes do not make 
funds available until after the discovery is made, prizes can only be effective if researchers 
can leverage funding through other sources. Thus, entry is restricted only to candidates who 
have significant resources ex ante to support their research. Given the uncertainty involved, 
it might be difficult for inventors to finance their research activity. Obtaining credit from 
capital markets is difficult given the highly specialized expertise needed to evaluate the 
promise of research ideas. Indeed, funding from traditional credit markets is rarely available 
given the uncertainty and information asymmetry that characterizes scientific investigations. 
Difficulties with funding might explain why the use of prizes is rather limited. Mission-oriented 
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research schemes and advance market commitments can be seen as a modern incarnation 
of prizes in that they both direct research efforts toward clearly defined goals. 
 
Awards differ from prizes as they have an important honorific component and are assigned 
ex post for outstanding achievements. The criteria for awards is typically specified in a more 
general manner compared to prizes. Awards satisfy the motivation for prestige by publicly 
acknowledging, celebrating, and enhancing the reputation of a scientist. 

Patents 

A patent confers to the inventor the property right to exclude others from selling the 
protected invention. By limiting ex post competition this way, a patent holder is free to 
exercise market power and charge prices that more than cover variable costs. The lure of 
profits attracts potential innovators who can expect to cover the ex ante fixed cost 
associated with the inventive activity. However, market power results in a deadweight loss of 
social surplus. Also, while the patent system in principle is designed to require the patent 
holder to disclose information about the invention, to maintain their market power patent 
holders might resist and obstruct followup innovations by competitors.  
 
The patent system requires an ex ante evaluation of the claims of innovators (centralized at 
the level of the patent office) as well as an ex post mechanism to manage disputes (mostly 
decentralized through patent litigation). Inventors are largely guided by their own interest in 
the pursuit of new market needs. Inventors are successful only if they bring to market 
products or processes that buyers appreciate. Given that inventors must contribute their own 
resources and seek financing in the marketplace, the patent system is highly decentralized.  
 
A significant difference between patents and grants is the award size. Grants entail a fixed 
reward. In the case of patents, rewards are essentially set by the market, depending on the 
relative demand and supply for the product covered by the patent (Hemel and Ouellette 
2013). From an informational perspective, patents exploit the ex ante informational 
advantage the inventor has regarding the future value of the invention (Wright 1983). 
Patents are a flexible instrument because the market reward is linked to the user value of the 
innovation. By making the returns to the innovation private, innovators can leverage future 
profits to obtain private funding and finance their activities in the credit market. 

Research and Development (R&D) Subsidies 

R&D subsidies provide financial assistance to firms in an effort to stimulate innovation. The 
common approach is a tax subsidy. Governments provide tax advantages to R&D activities, 
thus implicitly reducing the cost of innovation. 
 
Similar to patents, R&D tax subsidies are decentralized. No central planning authority 
specifies which ideas are worth investing in. However, general mission-oriented plans might 
assign subsidies to different sectors. Firms are free to allocate their time and resources to 
the most promising avenues of research. As these subsidies do not typically cover all the 
research costs incurred, incentives to recoup the investments through the market and to 
select the best ideas are not distorted.  
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Advance Market Commitments (AMCs) 

AMCs are a novel form of funding instrument consisting of a funder committing to fully or 
partially finance purchases of a product which meets predetermined conditions. AMCs were 
utilized for the first time in 2007 for the development of the vaccine for pneumococcal 
disease (Kremer et al. 2020). In this case the funder agreed to purchase a quantity of 
vaccines in the future at a specific price. Vaccine developers are therefore guaranteed a 
return on their investment, conditional on the vaccine conforming to the conditions previously 
stipulated.  
 
Low purchasing power of less developed countries has hindered vaccine development over 
the past decades. Pharmaceutical companies have historically shied away from investing in 
vaccine development due to the low profits expected. The aim of AMCs is to specify upfront 
a price and design a market so that companies have guaranteed demand for their product in 
the short run and can ensure a sustainable supply in the long run (Albright et al. 2005). By 
appropriately subsidizing the market price, AMCs allow vaccine developers to recoup their 
investment costs. AMCs exploit the informational advantages of vaccine developers, leaving 
them free to pursue the development of the vaccine in the most efficient way. Subsidies tend 
to be proportional to market sales, thus leveraging the information of buyers and 
encouraging effective and large-scale product deployment. This commitment is particularly 
important for vaccines considered technologically distant, for which funders may have 
particularly scarce information regarding the best approaches (Kremer et al. 2020).  

Grants 

Grants can be seen as temporary employment contracts, accompanied by a budget for 
expenses. Typically grantmakers give wide latitude to the grantees to spend the budget in 
the most appropriate way.  
 
Grantmaking has its roots in the patronage system. Since time immemorial, governments 
and wealthy patrons have sponsored talented artists, renowned philosophers, and brilliant 
mathematicians and scientists. The great mathematician Archimedes was likely to be on the 
payroll of the government of Syracuse, where his inventions, especially in the military arena, 
were greatly appreciated. Philip II, King of Macedon, retained Aristotle to educate his young 
son, the future Alexander the Great. Galileo Galilei obtained an appointment as professor 
without teaching obligations—the dream of any academic—at the newly created University 
of Pisa by leveraging his connection with the young Grand Duke of Tuscany Cosimo de’ 
Medici, whom he tutored as a child (Biagioli 1990 and Westfall 1985).  
 
The process of grantmaking has been institutionalized over the last two centuries. In the 
nineteenth century, the French Academy of Sciences gradually developed its celebrated 
system of prizes into a system reminiscent of “encouragements” or grants, where relatively 
small monetary budgets were awarded to promising scientists to enable them to make new 
discoveries rather than to reward them retrospectively for having already achieved important 
innovations (Crosland and Gálvez 1989).  
 
Hanson (1998) traces the dominance of grants over prizes to institutional features of the 
patrons that were supporting science societies and academies in the eighteen century. He 
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finds that societies with non-autocratic, non-local government patrons were especially likely 
to use funding instruments akin to grants rather than prizes. Grants eventually prevailed over 
prizes, as science funders became increasingly democratic and centralized. 
 
Following the successful experience in government-funded research during WW2, the 
previous director of the wartime Office of Scientific Research and Development Vannevar 
Bush lobbied effectively for stronger federal research support. In 1950 the National Scientific 
Foundation (NSF) began its operations. In 2021, the NSF had an annual budget of $8.5 
billion and supported around 25 percent of all federally supported basic research in US 
colleges and universities (NSF 2022).  
 
Prizes involve a reward at the completion of an objective. Grants instead provide the funding 
ex ante, thus ensuring that researchers have the resources necessary for their studies. 
There is no guarantee that the project will achieve the promised objectives. For this reason, 
the initial stage of evaluating the grant proposals is of critical importance. 

In a criticism of the distortions associated with using grant peer review for allocating science 
funding, Roy (1985) forcefully proposes an alternative system based on a formula that 
rewards research departments—rather than individual scientists—for the quality and quantity 
of their research output (such as publications and citations), while also taking into account 
some key research inputs. The key advantage of this alternative system, according to the 
proposer, would be its reliance on retrospective performance measures, which are more 
reliable than the evaluation of speculative research proposals. Research funding schemes 
like the UK Research Excellence Framework essentially follow these ideas.2  

3. Grantmaking  
Having introduced the main funding instruments, this section zooms in on the economics of 
grantmaking. Our discussion of the economic logic of grant funding complements Azoulay 
and Li’s (2021) recent overview of the fast-growing empirical work in the area.  

Retrospective Evaluation 

Maurer and Scotchmer (2004) analyze the role of retrospective evaluation in grantmaking by 
formulating a simple infinite horizon model. Their model stresses how grant funding self-
selects more productive researchers who value repeated funding more and thus have 
stronger incentives to deliver the results promised in the grant proposals they submit.  
 
When awarded a grant, a researcher obtains an immediate private benefit equal to 𝜐𝜐, 
corresponding, say, to career advances. If the researcher works hard on the project and 
spends effort cost 𝜅𝜅, society obtains a benefit θ. Researchers differ in terms of their 
productivity, captured by the parameter 𝜆𝜆 that represents the probability they will obtain a 
fundworthy research idea in each future period. Researchers are privately informed about 
their productivity. The funder, instead, only knows the distribution of the productivity in the 
population of researchers. Researchers receive a grant for each idea. 

                                                
2 See Geuna and Martin (2003) for an overview of the issues and Reale and Zinilli (2017) for a more 
recent discussion. 
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In each period, the researcher must decide whether to work hard on the project, thus 
producing the expected research results, or to shirk saving the effort cost 𝜅𝜅. In equilibrium, 
the grantmaker starts off in the first period by assigning an initial grant to every new 
applicant. In subsequent periods, however, the grantmaker will continue funding only the 
researchers who made good on their past promises and delivered results for all the grants 
awarded in the past. The researcher has an incentive not to shirk in the first period if  

𝜐𝜐 ≤ 𝜐𝜐 − 𝜅𝜅 +
𝜆𝜆
𝑟𝑟

 (𝜐𝜐 − 𝜅𝜅).  

By shirking (on the left-hand side), the researcher saves on the cost 𝜅𝜅, but loses the net 
benefit from all future grants, equal to per-idea rent 𝜐𝜐 − 𝜅𝜅 obtained by the researcher, times 
the probability 𝜆𝜆 of obtaining an idea in any given period, in perpetuity from next period (and, 
thus, divided by the discount rate 𝑟𝑟). This no-shirking condition can be rearranged as 

 𝜆𝜆 ≥ 𝑟𝑟𝑟𝑟
𝜐𝜐−𝑟𝑟

. 
Only highly productive researchers have the right incentives to produce results and thus 
obtain continuous funding.  
 
This model hinges on the simultaneous presence of hidden action and hidden information in 
grantmaking. First, the researchers have private information about their productivity type 
(hidden information). Second, there is asymmetric information about research effort (hidden 
action). The grant contract leaves researchers rather free, given how difficult it is to verify the 
specific activities carried out by researchers and the specialist knowledge required. 
Researchers are tempted to “take the money and run”. Incentives to deliver in Maurer and 
Scotchmer’s (2004) model results from the loss of the rent associated with future grants, 
which act like an “efficiency wage”. More productive researchers value this rent more 
because they are more likely to obtain grants. As the model highlights, grantmaking is both 
an incentive device (giving researchers incentives to perform in order to obtain future grants) 
and a selection device (sorting more productive researchers into funding, while less 
productive researchers who have less stake in future funding yield to the temptation of not 
delivering). 

Prospective Evaluation 

Maurer and Scotchmer’s (2004) view stresses the retrospective evaluation of the 
performance of grant applicants. While past performance surely plays an important role in 
grant funding, evaluation of applications also has a prospective role. Grant programs 
thoroughly evaluate and review proposals made by applicants. Only the applications 
deemed to be most promising are funded—for an indication of how competitive the process 
is, the current success rate (fraction of funded applications) at the European Research 
Council (ERC) is around 10%. Given that preparing a grant application is a time consuming 
and costly activity,3 it is natural to expect that candidates should be more willing to apply 
when they expect to be more likely to be funded. 
 

                                                
3 In an observational study, Herbert et al. (2013) report that submitters of new proposals to the 
Australian National Health and Medical Research Council spent on average 38 working days 
completing the application. 
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To analyze the impact of prospective grant evaluation on the extent of the self-selection of 
candidates, Ottaviani (2020) proposes a model of grantmaking with noisy evaluation. The 
baseline version of the model with a single field can be understood in terms of demand and 
supply for funding. On the demand side, candidates are characterized by a continuously 
distributed type θ, which captures their intrinsic merit. A candidate bears a cost equal to 𝑐𝑐 to 
apply; the applicant then obtains benefit 𝑣𝑣 if awarded a grant. On the supply side, the 
grantmaker observes a noisy signal for each application submitted.  
 
On the supply side, a higher signal indicates that the application has higher merit. The 
grantmaker then assigns the available budget of grants to the applications that obtain a 
signal or, equivalently, a score above a certain acceptance cutoff. In turn, on the demand 
side, candidates with higher merit are more likely to be awarded a grant. Thus, in equilibrium 
only candidates with merit above a certain application cutoff find it worthwhile to apply. How 
does the size of the budget available for distribution and the accuracy of the grant evaluation 
process affect the extent of self-selection of candidates?  
 
An increase in budget reduces self-selection and increases the incentives to apply. But while 
applications increase with the budget available for distribution, whether the success rate 
increases or decreases with the budget depends on the shape of the distribution of 
researchers’ types. Suppose that researchers’ types have a thicker tail than exponential, 
consistent with a classic observation by Lotka (1926) that researchers’ productivity in terms 
of publications follows a power law. Intuitively, applicants who self-select into applying are 
then much stronger on average than the marginal applicant, who is just indifferent whether to 
apply or not. As the budget increases, the additional applicants that are attracted are much 
weaker than the average inframarginal applicants, thus pushing the success rate down. In 
this case, an increase in the budget results in a more than proportional increase in 
applications, so that the elasticity of applications with respect to the budget is greater than 
one. This prediction is confirmed by evidence of the impact of the 2009 increase in the 
budget available for research grants in the US as a result of Obama’s Stimulus Package to 
buffer the great recession. Grant applications increased more than the budget, thus resulting 
in a reduction in the fraction of successful applicants; see Stephan (2012, p. 145).  
 
Ottaviani (2020) also shows that an increase in noise of the evaluation signal decreases the 
extent of self-selection and unambiguously increases the incentives to apply. Intuitively, as 
the evaluation becomes noisier, the probability of succeeding in obtaining a grant becomes 
less responsive to the merit type of applicants. Thus, more candidates must apply to make 
sure the applicants absorb the given budget of grants that is available.  
 
While the allocation of budget within a panel representing a single field is relatively 
straightforward when expert reviewers are able to compare the merit of applicants who work 
in their specialized area, the apportionment of budget across different fields is much more 
delicate. For example, it is natural to expect that reviewers understand better and tend to 
favor work in their own area of expertise over work in other fields—a version of homophily 
bias.  
 
If the determination of the final allocation across fields is left to a composite panel of experts 
from different fields, disagreement and conflict is likely to result. It is natural to expect 
experts to inflate the scores they assign to work in their field and to correspondingly 
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downgrade work in other, competing fields. The quality of the evaluation will suffer, resulting 
in a less reliable judgment. 
 
Alternatively, the overall budget could be apportioned across fields using an automatic 
formula, as it is practically done at some of the world’s largest research funding 
organizations. For example, the National Institutes of Health (NIH) and the ERC apportion 
the budget in proportion to funds requested by applicants in each panel. Proportional budget 
allocation automatically equalizes the success rate across fields. The system appears fair 
and balanced and indeed performs well if fields are relatively symmetric in terms of the noise 
in the evaluation signal.  
 
If, instead, fields have varying levels of evaluation noise, the performance of proportional 
allocation deteriorates. Recall that, for any given level of budget, noisier fields tend to attract 
more applications. But with proportional apportionment the increased number of applications 
results in a proportional increase in the budget, which in turn induces a further increase in 
applications. If applications increase less than proportionally with the budget, as is the case 
when the type distribution has a thinner top tail than the exponential distribution, the process 
converges to an interior equilibrium that definitely features more applications in the noisier 
field. When the distribution of types is exponential in all fields, or has a top tail thicker than 
exponential, even the slightest asymmetry in noise results in all the funds being allocated to 
the noisiest field, with no applications in all other fields—a drastic version of unraveling. The 
performance of proportional apportionment can be truly perverse. Unraveling results more 
generally when evaluation in a field is sufficiently accurate; it always occurs in the extreme 
case with perfect evaluation. 

4. Peer Review 
We are now ready to zoom in on another prototypical agency problem in science—the 
delegation of evaluation to experts.4 Society (the principal) should aim at selecting the most 
promising among a number of projects proposed by different scientists (the agents). 
Scientists benefit from funding. In the first stage, the agent proposes their project to the 
funder. There is informational asymmetry between the principal and the agent regarding the 
quality of the project. Applicants have strong incentives to selectively reveal information 
regarding their project in order to maximize their chances to be funded.  

Peer review is a system used to minimize this informational asymmetry. Rather than directly 
evaluating the proposal, the funder delegates evaluation to a new set of agents, the peer 
reviewers. This way, the principal has two sets of agents, the scientists and the reviewers, 
structured hierarchically. Peer reviewers are selected for their expertise in the specific 
scientific fields relevant to the proposal. Their role is to reduce the information gap between 
the principal and the scientists. 

The introduction of the reviewer leads to new agency problems. First, performing an 
accurate review requires not only expertise in the field, but also time and hard work. What 

                                                
4 See David (1998, 2008) for an engaging account of the historical emergence of the review process 
and the open science movement. For an extensive review of the scientometric literature on peer 
review we refer to Bornmann (2011). See also Rietzschel et al. (2019) for an overview of the 
organizational psychology literature on the assessment of creative work. 
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are the incentives of reviewers to perform an informed and balanced assessment? 
Reviewers are selected on the basis of their ability and willingness to act as evaluators. 
Naturally, reviewers who have research interest closely aligned to the work to be evaluated 
are more likely to be interested in reading the application and might be willing to contribute 
constructive comments.  

At least in principle, the grantmaker (or more concretely, the program manager or other 
panel members) can try to estimate the expertise of the reviewers on the basis of their 
historical track record. When the grantmaker must simultaneously estimate the merit of the 
projects as well as the expertise of reviewers evaluating the very same projects, the problem 
becomes challenging. A complicating factor is that the grantmaker does not have access to 
exogenous information about the merit of the projects—and observes at best a noisy signal 
about the quality of projects, typically only when the projects are actually funded. 

In practice, the review process leading to the selection of applications proposed for funding 
unfolds through a number of stages. According to a common organizational design, in a first 
stage proposals are reviewed individually. Then reviews are shared among panel members, 
who discuss and compare proposals at a meeting and reach a consensual ranking. Often 
the final allocation is determined either by a higher-level committee or a formula (e.g. 
proportional). There are many variations on this basic format; for example, first-stage 
reviewers might be panel members or outside reviewers; in some cases, outside reviewers 
are added between the first and the second stage.  

Here we review the main biases and pitfalls that might affect the grant peer review process 
and how organizational design can be leveraged to address these issues.  

Reviewer Bias 

According to Merton (1973) the norms and values to which peers hold each other are 
universally and consistently applied to all members. When these norms and values are 
impartially interpreted and applied, peer evaluations are understood as being fair. Bias can 
be defined as the violation of impartiality in peer evaluation (Lee 2013).  

Should we expect reviewers to report truthfully his/her opinion? Or should we be concerned 
about reviewers being biased and tilting their evaluation? A reviewer with specialized 
expertise closer to the applicant’s field might be able to better evaluate the proposal, but 
might be biased in favor or against the application.5 If reviewers stand to gain from work in 
their area (or that cites their own research) they might be overly supportive. If, instead, 
reviewers perceive a competitive threat they might be excessively critical and try to boycott 
the proposal. 

In their review of the literature on peer review, Guthrie et al. (2018) find that there is some 
evidence (though not consistent across studies) that peer review can be biased in terms of 
gender, age, ethnicity and ‘elite’ vs peripheral institutions, and that it suffers from cronyism 
and cognitive particularism (favoring your own field or way of thinking). Regarding cognitive 
particularism, Travis and Collins (1991) find that reviewers tend to favor proposals 
supporting their own school of thought, and argue that this is likely to have a much bigger 

                                                
5 Garfagnini, Ottaviani, and Sørensen (2014) model this situation as a problem of mechanism design 
without transfers and with limited commitment. 

https://f1000research.com/articles/6-1335#ref-99
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impact on the direction of science than institutional bias or cronyism identified by other 
studies. Using NIH data, Li (2017) documents the same pattern; reviewers with research 
interest closer to the applicant are more favorably biased. However, they are also better 
informed. Other studies find that reviewers are more critical of applications in areas of their 
own expertise (Boudreau et al. 2016 and Gallo et al. 2016).  

Cognitive particularism might be partially explained by the extensively documented 
information processing bias termed confirmation bias, which is the tendency to search for, 
interpret and recall information in a way that supports what we already believe. Information 
that confirms our expectations is more easily processed and understood, and thus has a 
bigger impact than does disconfirming information. Testifying to the subconscious nature of 
this bias, Lamont (2009) concludes based on her ethnographic study of peer review panels 
that “equating ‘what looks most like you’ with ‘excellence’ is so reflexive as to go unnoticed 
by some.” 

Related to cognitive particularism is the finding that reviewers suggested by the applicants 
themselves tend to give higher scores. Analyzing data from the Australian Research Council, 
Marsh et al. (2008) conclude that applicant-nominated reviewers gave “biased, inflated, 
unreliable and invalid” marks, systematically higher than experts selected in other ways. 
Severin et al. (2020) confirm this finding in a recent cross-sectional analysis of 38,250 
external peer review reports submitted to the Swiss National Science Foundation.  

Langfeldt (2002) finds that professional assessments are not only colored by the interests of 
the assessors, but also by their different assumptions and thought patterns. Langfeldt and 
Moen (2013) point out that "while professional bias can give structural biases in the outcome 
of application processing—in the form of prioritizing certain disciplines, methods or fields—
personal bias often has a more random effect.”  

Heterogeneous Leniency 

There is extensive empirical evidence that reviewers disagree to a high degree in their 
assessments of grant proposals. Jayasinghe et al. (2001, 2003) and Marsh and Bazeley 
(1999) suggest that an important source of grant reviewer disagreement is idiosyncratic 
response biases in the way assessors map their subjective impressions onto a numerical 
rating scale.  

Lee et al. (2013) identify a number of studies which show significant differences in the 
patterns of reviewing by gender, with female reviewers being stricter than their male 
colleagues. They also find that toughness may vary by disciplinary affiliation and nationality. 

Lamont (2009) find that such varying degrees of harshness and leniency might be partly 
explained by strategic voting whereby scoring “is guided primarily by a desire to facilitate or 
hinder the funding of another proposal” and can involve so called low-balling, “giving a lower 
rank that would otherwise be justified to some proposals” and high-balling, “strategically 
assigning a high rank to a proposal.” 

https://f1000research.com/articles/6-1335#ref-18
https://f1000research.com/articles/6-1335#ref-41
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Author Anonymity 

Should the identity of applicants/authors be disclosed to the reviewers? Reviewers might be 
inclined to evaluate proposals submitted by prominent scholars or by submitters who belong 
to dominant groups more favorably, giving them an undue advantage. As discussed, there is 
for example some evidence that grant peer review is biased in favor of ‘elite’ vs peripheral 
institutions. The impact of double blind submission policies on discrimination has been 
studied extensively; for classic studies in economics, see Blank (1991) and Goldin and 
Rouse (2020). 

When the author’s identity is concealed, ex post sorting by reviewers might be hampered 
because the decision cannot be conditional on observable characteristics and other 
predictors of success. However, as Taylor and Yildirim (2011) highlight in the context of a 
simple model, anonymity levels the playing field among those submitted, thus increasing the 
incentives of strong and weak authors to perform. From a practical point of view, however, 
implementing double blind submissions and retaining author anonymity is increasingly 
difficult in the age of the internet.  

Reviewer Anonymity 

According to a widely adopted practice, the identity of peer reviewers is not revealed to 
submitters. A common explanation is that reviewers would otherwise be less objective 
because they would give in to social pressure to be supportive and avoid expressing candid 
criticism. For example, reviewers could be concerned that if they are openly critical of the 
work submitted, the submitter would hold a grudge against them and that their own work in 
the future would receive similar critical comments.  

Anonymity might improve objectivity but, at the same time, anonymity may be 
counterproductive. For example, emboldened by anonymity, reviewers might take advantage 
of their power position. It might also reduce accountability. Name-Correa and Yildirim (2019) 
develop a theoretical model where reviewers have expertise in assessing a particular 
dimension of the proposal and are negatively biased toward this dimension. Reviewers might 
be worried about being singled out as the cause of an eventual rejection of the proposal. 
When the concern for blame is high, the principal can benefit from imposing anonymity so 
that reviewers don’t excessively lower their acceptance standard. If, instead, the concern for 
blame is low, public voting becomes preferable.  

Reputational Concerns  

Suppose that reviewers are not biased, but they want to appear to be well informed. Would 
reviewers concerned about their reputation for expertise have the right incentives to truthfully 
report their evaluation?  

Consider a game of reputational cheap talk with the following structure, based on Ottaviani 
and Sørensen (2006). Each of a number of reviewers privately observe a signal about the 
merit of a grant proposal. Then, each sends a recommendation to their peers in the panel. 
The panel uses the recommendations of all reviewers not only to assess the merit of the 
grant proposal but also to assess the expertise of the panel members. The objective of each 
reviewer is to maximize this assessment that the panel makes about their individual 
expertise. 
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At first blush, one might think that a reviewer interested in developing a reputation for 
accuracy should have the right incentives to report the posterior expectation about the merit 
of the proposal, conditional on the noisy signal received. However, a careful analysis of this 
game of reputational cheap talk reveals the somewhat counterintuitive conclusion that 
experts who aim to maximize their reputation do not necessarily have an incentive to be 
truthful. 

When more informed reviewers have signals closer to the merit of the applicant, reviewers 
would like their peers in the panel to believe that their private signal is located at their 
posterior expectation about the candidate’s merit, in order to convince the panel that their 
private information is accurate. In other words, if reviewers can convince peers that their 
predictions are based fully on private information, they would be considered even better 
informed than they really are. However, in equilibrium, the panel should adjust for this 
incentive of each reviewer to shade their recommendation toward the consensus view. The 
upshot of this reputational incentive is that reviewers cannot credibly reveal all the 
information they have. See for example Nunnari et al. (2018) for an experimental 
investigation of reputational cheap talk in the context of strategic forecasting. 

In some cases this loss of information can be drastic. For example, when the picture 
emerging from other reviewers is rather clear, individual reviewers who might have 
information leading in the opposite direction might keep silent. This tendency to conform 
reduces the accuracy of the evaluation process.  

Aggregation of Reviews 

Panels aggregate the information conveyed by different reviewers and reach a decision 
regarding the proposal. The process of aggregating peer reviews has informational and 
incentive implications, and thus must be designed with care.  

Reputational concerns may lead to herding. A typical approach is a sequential process 
where each agent reveals their information in turn. Imagine a situation in which each agent 
has received a signal regarding the quality of a proposal and are called to share their 
information in a public debate. As the process unfolds, agents are learning from the 
statements of the other agents, and thus will continuously update their beliefs about the 
quality of the proposal. Given that agents are worried about appearing well-informed, they 
may decide to not reveal their true signal if it’s in disagreement with the statement of a 
reviewer with better expertise. Potentially valuable information is discarded. This leads to 
herding, where agents selectively reveal their information and decide to ‘follow the crowd’ 
(Ottaviani and Sorensen 2001).6  

The order in which reviewers are asked to give their opinion is also important. This is due in 
part to the anchoring bias (Kahneman 2011), which refers to the strong significance of 
arbitrarily set anchoring points. In line with this theory, introductory comments often serve as 
a reference point for all subsequent comments. Research on peer review indicates that this 

                                                
6 Banerjee (1992) and Bikhchandani et al. (1992) develop the logic of herd behavior and informational 
cascades in a related setting in which decision makers act—rather than speak—in sequence. When a 
sufficiently large number of predecessors make the same decision in a common value environment, it 
becomes optimal for individuals to completely disregard their own information and take the same 
action as the predecessors. 
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also holds true in grant peer review discussions. For example, according to Arensberg 
(2014), “what the first speaker starts the discussion with is found to be decisive . . . The 
strong or weak points of the applicant mentioned first are strongly supported by other 
panelists.” 

A common sequencing approach is the anti-seniority rule where experts speak in order of 
seniority, which typically is a good proxy for expertise. This rule is used for example in many 
judicial systems in which judges are promoted to high level courts only once they 
demonstrate sufficient expertise. The benefit of this approach is that more junior experts, 
such as junior judges, might be less influenced by their more senior colleagues. While the 
anti-seniority rule is not always optimal, it tends to be more attractive than the seniority rule 
according to which more informed experts are consulted first.  

Some funders address the issue of herding by requesting that all panel members supply 
written input prior to the panel meeting in the form of scores and/or comments and 
structuring the discussion around the information supplied.  

The importance of aggregating reviews cannot be understated. Herding can have disastrous 
consequences. The tendency of groups to suppress dissent has also been studied 
extensively by social and organizational psychologists. Recounting a number of policy 
disasters, Janis (1982) argues that groupthink emerges when cohesive decision-making 
groups establish a mode of thinking that prioritizes consensus rather than a more rational 
appraisal of the alternatives.  

Even though the literature on expert aggregation contains some useful insights, much work 
is left to be done to obtain concrete predictions on how the deliberation protocol can be 
designed to maximize the quality of the evaluation process. 

Shared Information Bias and Conformity Bias 

The tendency to conform to the majority view and the tendency for groups to focus on 
information known to all group participants rather than the information possessed by only 
one or a few members is extensively explored in the research on group dynamics. This 
tendency is called shared information bias. An experiment carried out by Garold Stasser is a 
good illustration of this phenomenon. A group of eight people were asked to rate the 
performance of 32 psychology students. All members of the group received two relevant 
sources of information describing the students (e.g., grades) while two members of the 
group received two additional sources of information (e.g., degree of class participation) and 
one member received another source of information. Although the group as a whole then 
had five relevant sources of information available, their assessments were based almost 
exclusively on the information everyone shared (Surowiecki 2005). If making a correct 
decision hinges on examining the unshared information held by group members, the shared 
information bias can have adverse effects on decision quality. 

Shared information bias can be reduced by increasing the diversity of opinion within a group 
(Smith 2008). Experiments show that heterogeneous groups, in which group members 
preferred different candidates prior to the discussion, were more likely to repeat unshared 
information than homogeneous groups. 
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To reap the benefits of diversity, however, it is not enough for all relevant expertise to be 
represented. The composition should also ensure a balanced representation of different 
expertise. This is important because the majority has a very strong influence due both to 
informational conformity (resulting when there are more arguments supporting the favored 
position) and to normative conformity (as people are less likely to want to be seen as 
disagreeing with the majority opinion).  

Not agreeing with the group majority can be very uncomfortable. Berns et al. (2008) found in 
their experiments that this can cause brain activity associated with pain, fear, and stress. 
However, when minorities have an ally, disagreeing with the majority seems to be easier. 
Asch (1955) and (1956) found in his experiments that minority conformity rates were cut by 
one fourth when he added an ally compared to the experiments where the minority faced a 
unanimous majority.  

Interpretation of Evaluation Criteria 

Forscher et al. (2019) contend that if reviewers do not agree on their criteria, this will result in 
arbitrary and unreliable judgements. They posit that shared criteria enable and facilitate the 
consistency of reviews across reviewers as they provide a common and stable frame of 
reference. However, empirical evidence suggests that review criteria are not necessarily 
shared across reviewers. A survey of all humanities scholars in Switzerland provides 
evidence against the assumption that there is a consensus on evaluation criteria (Hugh and 
Ochsner 2022). 

Other research in the field shows that reviewers weigh differently the various evaluation 
criteria they are assigned. For example, Abdoul et al. (2012) report that “Some reviewers 
gave the same weight to each assessment criterion, whereas others considered originality to 
be the most important criterion (12/34), followed by methodology (10/34) and feasibility 
(4/34). Conceivably, this variability might adversely affect the reliability of the review 
process.” A review of three American research funding organizations—National Institutes of 
Health, National Science Foundation and the National Endowment for the Humanities— 
showed that “unwritten or informal criteria were used by panels at all three agencies” 
(Government Accounting Office 1994, p. 83). 

5. Disagreement  
To analyze and measure disagreement in peer review, we now introduce a simple model of 
information processing with Bayesian updating. Bayesian updating is the process of revising 
assessments on the basis of additional information.  
 
Suppose that there be 𝑗𝑗 = 1,2, . . . , 𝐽𝐽 projects in a single field. The projects could correspond 
to grant applications to a funding agency or article submissions to a scientific journal. 
Suppose that the merit of each project, denoted as 𝜃𝜃𝑗𝑗, is distributed according to a normal 
distribution with mean 𝜇𝜇 and standard deviation 𝜎𝜎𝜃𝜃, representing the prior distribution in the 
population of applicants.  
 
Suppose then that there are 𝑖𝑖 =  1,2, . . . , 𝐼𝐼 experts in the field. Each expert 𝑖𝑖 receives a signal 
𝑥𝑥𝑖𝑖 = 𝜃𝜃𝑗𝑗 + 𝜎𝜎𝜀𝜀𝜀𝜀𝑖𝑖 drawn from a normal distribution centered around the merit of the project 𝜃𝜃𝑗𝑗, 

https://scholar.google.no/citations?user=Hh-NcWgAAAAJ&hl=en&oi=sra
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with standard deviation 𝜎𝜎𝜀𝜀. For simplicity, assume that this standard deviation 𝜎𝜎𝜀𝜀 is identical 
across projects and captures the noise level in each expert’s evaluation of the merit of 
projects. 
 
Focusing on a single expert, we can then compute the expert’s conditional expectation of the 
merit 𝜃𝜃𝑗𝑗 conditional on receiving signal 𝑥𝑥𝑖𝑖. This conditional expectation is the best prediction 
of the project’s merit and thus is an important benchmark for our analysis. In an ideal setting, 
the expert with perfectly aligned incentives would score the project by truthfully reporting this 
conditional expectation. Given that both the prior and the signal are normally distributed, the 
expert’s conditional expectation, or score, is a linear combination of the prior mean 𝜇𝜇 and the 
signal 𝑥𝑥𝑖𝑖. The weight assigned to the signal increases in the prior variability of the merit of 
projects, 𝜎𝜎𝜃𝜃, and decreases in the signal noise, 𝜎𝜎𝜀𝜀. Intuitively, when the signal is very noisy 
the expert’s score is equal to the prior 𝜇𝜇 and when the signal is without noise the expert’s 
score is equal to actual merit 𝜃𝜃𝑗𝑗.  
 
The variance in the scores across experts evaluating any given project, thus holding fixed its 
merit 𝜃𝜃𝑗𝑗, is equal to  

𝑉𝑉𝑉𝑉𝑟𝑟(𝐸𝐸[𝜃𝜃|𝑥𝑥𝑖𝑖]|𝜃𝜃𝑗𝑗)  =
𝜎𝜎𝜃𝜃4𝜎𝜎𝜀𝜀2

(𝜎𝜎𝜃𝜃2 +  𝜎𝜎𝜀𝜀2)2.  

Note that this variance is at its lowest when the noise in the signal is either zero or becomes 
arbitrarily large. Intuitively, when there is no noise, the score is perfect and equal to the 
project’s merit 𝜃𝜃𝑗𝑗, and so it is a constant conditional on 𝜃𝜃𝑗𝑗. Similarly, when the noise is very 
high, the signal received contains no information and thus the score is equal to the prior 𝜇𝜇, 
again a constant. Given that the variability of scores is non-monotonic in 𝜎𝜎𝜀𝜀, it is not a good 
indicator of the information content, 1/𝜎𝜎𝜀𝜀, of expert scores.  
 
The correlation across the scores given by different experts, instead, is a much better 
measure of agreement. For the purpose of illustration consider the case with two experts, 𝑖𝑖 
and 𝑖𝑖′. Conditional on a project’s merit 𝜃𝜃𝑗𝑗, the correlation 

𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟(𝐸𝐸[𝜃𝜃|𝑥𝑥𝑖𝑖],𝐸𝐸[𝜃𝜃|𝑥𝑥𝑖𝑖′]|𝜃𝜃𝑗𝑗)  =  
1
𝜎𝜎𝜀𝜀2

(𝜃𝜃 − 𝜇𝜇)2 

decreases as the noise in the field increases. In addition, it does not depend on the variance 
of the merit of the projects in the field. The unconditional correlation of scores is instead  

𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟(𝐸𝐸[𝜃𝜃|𝑥𝑥𝑖𝑖],𝐸𝐸[𝜃𝜃|𝑥𝑥𝑖𝑖′])  =  𝜎𝜎𝜃𝜃2

𝜎𝜎𝜃𝜃2+ 𝜎𝜎𝜀𝜀2
, 

which decreases in 𝜎𝜎𝜀𝜀 and increases in 𝜎𝜎𝜃𝜃. Intuitively, if the experts are perfectly informed 
and the signal contains no noise, the scores will be perfectly correlated. As the noise in the 
merit of projects increases, the scores given by reviewers become less positively correlated.  

Measuring Disagreement 

The correlation we just derived is compatible with the intraclass correlation ICC, a commonly 
used measure of the agreement of ratings given by different observers. At least since 
Zuckerman and Merton (1971), it has been widely believed that disagreement is more 
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pervasive in social sciences and humanities relative to physical sciences. While natural 
sciences such as physics and biology build on a core of widely agreed knowledge, this is not 
always the case in the social sciences. 
 
As forcefully argued by Cole (1992), however, it is important to distinguish between core 
knowledge and frontier knowledge. Scientific knowledge is defined to be at the core of a field 
once the scientific community in the field reaches substantial consensus. Frontier knowledge 
instead comprises the latest scientific contributions. To put it simply, core knowledge forms 
the major part of the key textbooks in the field, while frontier knowledge is to be found in the 
latest journal publications. The structure of the two is also radically different. Core knowledge 
is ordered and has been refined over the years. Frontier knowledge is less structured and 
more chaotic, leading to higher levels of disagreement. 
 
Summarizing a wide range of empirical research, Cole (1992) concludes that, even though 
natural sciences show a higher degree of consensus than social sciences on core 
knowledge, it is not clear that a clear difference can be discerned at the research frontier. He 
believes that the building of scientific knowledge through the operation of the reward system 
and disagreement work in a roughly similar way across all fields.  
 
Measuring the level of consensus is not a straightforward task, as recognized by Cole (1992) 
in his empirical analysis. A critical step is defining the unit of analysis. The unit of analysis 
may be a general field (i.e., physics) or a specific subfield (i.e., nuclear physics), for 
example. Subfields comprise varying amounts of core and frontier knowledge. There is also 
significant overlap across fields so that it becomes difficult to define precisely an area over 
which to measure consensus. Similarly, measurements of disagreement in peer review of 
scientific journals need to take into account the scope of the journal, which is not always 
clear.  
 
In an important study, Cicchetti (1991) investigates the level of agreement across reviewers 
depending on the breadth of the field covered by academic journals and grant evaluation 
panels. The generality of the field affects the level of disagreement. In general and diffuse 
fields (which attract a broader set of submissions and require more cross-disciplinarity), he 
finds more agreement on rejection than acceptance decisions. Instead, in more specific and 
narrower fields (which attract submissions more focused on a shared methodology), peer 
reviewers tend to agree more on acceptance than on rejection. 
 
Overall, the large empirical literature on disagreement in grant peer review displays relatively 
low inter-rater reliability. While some researchers have suggested that inter-rater reliability 
for two reviewers on a single submission should be about 0.8–0.9 (Marsh et al. 2008, p. 
162), actual agreement rates are considerably lower. For peer review procedures in funding 
organizations, reliability measures above 0.40 have rarely been demonstrated (Cicchetti 
1991). More recently, Jayasinghe et al. (2003) reported a single-rater reliability correlation of 
just 0.21 for the humanities and social sciences, and an even lower correlation of 0.19 for 
the sciences. Fogelholm et al. found an inter-rater reliability of around 0.23 for medical 
research (Fogelholm et al. 2012). Similarly, Reinhart (2009) found an intraclass correlation 
coefficient for medicine of 0.20 and a higher rate for biology of 0.45. 
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As exemplified in the above studies, disagreement rates vary between fields of research, 
and there is evidence that increasing diversity of discipline of peer reviewers reduces rating 
consistency. Lobb et al. (2013) found that the level of agreement among experts from 

different disciplines was considerably lower than that among experts from the same 

disciplines, with an intraclass correlation coefficient of 0.66 for researchers from the same 

discipline and − 0.04 for adjudicators from different disciplines. 

As grant peer review usually includes a panel stage after the initial round of individual 
reviews, studies have also been carried out comparing agreement rates between groups of 
reviewers, assembled in different review panels. The results indicate the presence of 
considerable disagreement there too.  

In a seminar investigation, Cole et al. (1981) conducted a study of a real evaluation panel in 
NSF and a surrogate panel that was put together to resemble the original panel. The 
surrogate panel supported the real panel's decisions to fund / reject applications in 75% of 
cases, leading the authors to conclude that “the fate of a particular application is roughly half 
determined by the characteristics of the proposal and the principal investigator, and about 
half by apparently random elements which might be characterized as `the luck of the 
reviewer draw’.” A later study conducted by Hodgson (1997) yielded very similar results; two 
comparable panels that considered the same set of applications agreed to fund / reject 
applications in 73% of cases. A study conducted by Mayo et al. (2006) provided similar 
conclusions.  

Is Disagreement Natural? Even Desirable? 

While the majority of studies of inter-rater disagreement and its origins view disagreement 
and its root causes as problematic, others believe that “too much agreement is in fact a sign 
that the review process is not working well, that reviewers are not properly selected for 
diversity, and that some are redundant” (Bailar and Patterson 1985). Along the same lines, 
Reinhart (2009) points out that “complete agreement among reviewers would render it 
pointless to consider more than one review per application.” Lee (2013) qualifies as 
“questionable”, the assumption that disagreement among reviewers is not normatively 
appropriate or desirable, and asserts that “a natural direction for future research includes 
articulating and assessing alternative normative models that acknowledge reviewer partiality, 
with a focus on the epistemic and cultural bases for reviewer disagreement.” 

According to these authors, inter-rater disagreement reflects normatively appropriate 
disagreements about what constitutes good research. Editors and grant program officers 
may seek reviewers who can evaluate different aspects of a submission according to their 
expertise (Bailar 1991), and high inter-rater reliability can not be expected in cases where 
different fields of expertise have varying perceptions of quality and focus on different parts of 
the application. In line with this, Lamont (2009) and Mallard et al. (2009) argue that when 
evaluative cultures are specific to disciplines, such differences should not necessarily be 
understood as a form of problematic bias.  

Research on the social dynamics of groups concur with the view that diversity of opinion is 
not problematic, and can even be positive with respect to ensuring the quality of decisions. 
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Studies show that heterogeneous groups with complementary skills make better decisions 
than homogeneous groups (Levi 2007). Kahneman et al. (2021, p. 272) find that “the validity 
of pooled judgements increases faster when the judgements are uncorrelated with one 
another” and that the average of such an uncorrelated group paradoxically will be more 
accurate than the average of a unanimous one. 

As discussed in the above, diversity can also serve to guard against negative group 
dynamics such as shared information bias (Smith 2008) and conformity pressure (Asch 
1955, 1956). 

6. Improving Reliability of Grant Review  
While much work still remains to be done in terms of identifying measures that might serve 
to optimize the evaluation process, the literature on grant peer review and on social 
psychology suggests some key measures that might have an effect in ensuring a reliable 
process, minimizing the biases and process deficiencies discussed in the above. These 
include ensuring that a sufficient number of reviewers assess each application, supplying 
guidelines and training and ensuring structured assessments. 

Sufficient Number of Reviewers 

Research on grant peer review shows that "funding decisions will vary widely with the 
number of reviewers considering proposals that are closely scored" (Kaplan et al. 2008, p. 
3). Graves et al. (2011) compare financing decisions made by panels consisting of 7, 9 and 
11 members and finds that: “Reliability can be increased by using the most effective system 
of 11 panel members. This is probably worthwhile . . .” The challenge is that the use of a 
high number of experts results in high costs: “Use of additional reviewers per application 
may increase reliability and decision consistency, but adds to overall cost and burden” (Snell 
2015). 

Mayo et al. (2006) find through their statistical modeling that on average it is necessary for 

seven experts to evaluate each application in order to make robust, stable decisions. Marsh 

et al. (2008) find that at least six experts per application are needed to make decisions that 

are sufficiently robust. Snell (2015) concludes on the basis of statistical modeling that 

“Having too few reviewers (ie, N ≤ 3) results in excessive decision inconsistency . . . Five 

reviewers per application represents a practical trade-off, in terms of balancing increased 

decision consistency against incremental cost, as well as minimizing large random effects in 

decision outcomes and improving efficiency of the decision making process.” 

The Working Group on Peer Review of the Advisory Committee to the Director of NIH (NIH 
2008a) recommended increasing the number of experts evaluating each application in the 
NIH to four (NIH 2008b). Based on its review of over 30 research funding bodies, the ESF 
(2011) recommends that “the aim should be to provide at least three expert assessments 
before a final decision is made.” 
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While the literature on peer review seems to indicate that “the more the merrier” holds true, 
the social psychology literature on group dynamics however finds a tendency for groups to 
become less effective when size increases. Mullen and co-authors found in their meta 
review of eight US studies that the most effective working groups were of relatively small 
size—about four or five members. They also found that working in groups of about this size 
is more enjoyable to the members, in comparison with being in larger groups (Mullen et al. 
1989). One reason that people are more motivated to put in more effort when groups are 
smaller is that each person plays a larger role in determining the outcome (Kameda et al. 
1992).  

Guidelines and Training 

ESF (2011, p. 27) recommends that “before the tasks of both individual/remote reviewers 
and panel members begin, it is essential that their assignments are clearly described and 
communicated.” In general, reviewers demand clear guidelines from research funding bodies 
- a survey among reviewers used in application evaluation at nine different research funding 
bodies internationally showed that only 16% (42/258) considered that the research councils 
provided clear guidelines for their assignment. In total, 85% (220/258) had not received any 
training in assessing project applications and 64% (166/258) wanted this (Schroter et al. 
2010).  

There is some emerging evidence that training can increase the inter-rater reliability of 
reviewers. An online training video was found to increase the inter-rater reliability for both 
novice and experienced reviewers for the US National Institute of Health, with correlation 
scores rising from 0.61 to 0.89 following training (Sattler et al. 2015). Furthermore, the 
Canadian Institutes of Health Research used a training module on unconscious biases to 
address an identified bias against women in its grant system. Following its introduction 
female and male scientists had equal success rates (Guglielmi 2018). 

The effect of training with respect to reducing unwanted variability in judgements has also 
been proven in a number of other fields (Kahneman et al. 2021). Training in the form of 
“learning by doing” has also proved effective in increasing inter-rater reliability. Studies on 
the issue find that differences in how reviewers translate their assessment onto a numerical 
scale is exacerbated if each assessor only makes ratings of one or a few submissions. In 
such cases, reviewers do not have a sufficient frame of reference for translating subjective 
impressions about the quality of a proposal onto the numerical scale that constitutes the 
peer review ratings. Jayasinghe et al. (2003, p. 298) find that: “The more proposals an 
assessor reviewed, the better the quality of the ratings they provided.” Jayasinghe et al. 
(2006, p. 594) conclude that “assessors who review a large number of proposals give lower, 
more reliable ratings than those who review a few proposals.” 

That skills matter a lot is confirmed in studies of inter-rater reliability in other fields. In 
medicine, for example, a study of pneumonia diagnosis by radiologists found that “variation 
in skill can explain 44% of the variation in diagnostic decisions” (Kahneman et al 2021, p. 
275). 
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Structured Assessments 

Research on peer review shows that discussing criteria one by one provides a greater 
degree of equal treatment of applications and more consistent assessments of quality. 
Differences in the foci of committee discussions will introduce variation in the treatment of 
applications. For one application, a concern with methodology might dominate the 
discussion. For the next, a question about a particular publication may draw the committee’s 
attention. By discussing a set of predefined criteria one by one, you ensure that the same 
things are emphasized in the discussion of each application within the panel and also a 
greater degree of equal treatment of applications across panels (Obrecht et al. 2007, 
Thornley et al. 2002, and Wood and Wessely 2003). 

Kahneman et al. (2021) suggest a method designed to reduce noise, the so-called 
“mediating assessment protocol.” The idea is to divide a complex assessment into mediating 
assessments—much like the different review criteria used in grant peer review. Decision 
makers should then evaluate the mediating assessments separately and explicitly. On each 
assessment, participants should make their judgements individually before discussing them 
one by one and making a final decision. Kahneman (2011, p. 224-225) argues that this is 
also in line with research in psychology which finds that “humans are incorrigibly inconsistent 
in making summary judgements of complex information. . . . Research suggests a surprising 
conclusion: to maximize predictive accuracy, final decisions should be left to formulas.”7 

While some funding agencies calculate the main score for each application based on the 
individual scores agreed for each criterion, others employ a practice whereby the overall 
score is set by the experts, based on the individual review criteria, but allowing for reviewer 
discretion in how to weigh the different criteria. Given the findings in research on peer review 
on how variability in the weights assigned to different criteria by different experts might result 
in reduced reliability of assessments, serious consideration should be given to experiment 
with ways to determine the final grant scores on the basis of the scores for each review 
criteria, rather in a discretionary manner by experts.  

Failure to Fund Novel, Risky or Interdisciplinary Research  

That peers disagree in their assessment of grant proposals is not surprising given the 
discussion above regarding the uncertainty associated with the scientific endeavor. This 
uncertainty is particularly pronounced in the context of research grant evaluation, as the 
evaluation is carried out ex ante and there is no guarantee that projects will achieve the 
objectives promised. As discussed, uncertainty associated with what Kuhn terms 
revolutionary science is significantly higher than that associated with what he terms normal 
science. How can revolutionary research be identified and supported effectively? Studies 
suggest that reviewer disagreement is higher for research grant proposals that attempt more 
radical shifts in the knowledge frontier compared to more incremental work. They 
recommend taking high disagreement among reviewers as an indicator of work with high risk 

                                                
7 McCauley (1991) finds that “Recent reviews draw on nearly 100 studies involving many different 
kinds of predictions . . . The results are strikingly consistent in showing that the formula does at least 
as well as the expert judge.”  
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but potentially high reward and target such proposals for funding (Giraudeau et al. 2011, 
Linton 2016). 

As the outcome of panel discussions are normally determined either by panel members 
agreeing on a consensus score based on the individual reviews of the different panel 
members, or by computing an average of the individual reviews, proposals where there is 
substantial disagreement are disadvantaged in the competition. 

The literature on the subject points to a number of possibilities for adapting the review 
process to accommodate more risky/radically interdisciplinary proposals: 
 

● Removing outlier best and worst scores from consideration thereby allowing 
proposals that cannot achieve consensus to go forward (Liaw et al. 2017). 
 

● Not requiring consensus decisions in panel review, for example by allowing each 
panel member one “gold” vote, which allows them to protect a proposal they think is 
highly promising regardless of negative views of other panel members. Alternatively, 
issue reviewers with several gold votes, but still a limited supply. This forces 
reviewers to think carefully about how to allocate their stars across projects (Kolev et 
al. 2019).  
 

● Asking reviewers to score peer review criteria separately and then curate a portfolio 
of accepted submissions that include some percentage of submissions that score 
highly for qualities typically underweighted by reviewers such as groundbreaking 
potential (OECD 2021). 
 

● Identifying proposals with large disagreement between evaluators and funding these, 
based on the assumption that risky proposals will be subject to more controversy 
than safer proposals. For example, the NIH uses such an "out of order funding" 
approach where a number of applications for innovative research are chosen for 
funding despite receiving lower scores than other funded research based purely on 
the peer review process (Linder and Nakamura 2015).  
 

● Asking evaluators to use less fine-grained scoring systems, which leads to more ties 
between competing submissions and allows funders to use funding priorities such as 
prioritization of particularly innovative research to serve as tiebreakers (Lee 2015). 

● Introducing a lottery element in the review process. The idea is to first rely on peer 
reviewers to separate applications that are worthy of funding from those that are not, 
and then select grant winners among those deemed worthy of funding based on a 
lottery (Fang and Casadevall 2016). Advocates argue that a lottery can reduce some 
of the bias associated with more risky/radically interdisciplinary proposals, as it would 
be possible for proposals subject to reviewer disagreement to make it into the 
fundable lottery pool, but less likely that they would make it to the top of a ranked list 
decided by reviewers. Especially in highly competitive calls, the top ranked positions 
are normally reserved for those proposals where there is universal agreement about 
the merit. Given the traction this idea is gaining in policy circles, it is an interesting 
challenge for mechanism designers to investigate under what condition a lottery-

https://f1000research.com/articles/6-1335#ref-45
https://f1000research.com/articles/6-1335#ref-72
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based grant allocation can be optimal. 
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