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Abstract 

The covariance between US Treasury bond returns and stock returns has moved 
considerably over time. While it was slightly positive on average in the period 1953�– 
2009, it was unusually high in the early 1980�’s and negative in the 2000�’s, particularly 
in the downturns of 2001�–2 and 2008�–9. This paper speci�fies and estimates a model in 
which the nominal term structure of interest rates is driven by �five state variables: the 
real interest rate, risk aversion, temporary and permanent components of expected 
in�flation, and the �“nominal-real covariance�” of in�flation and the real interest rate 
with the real economy. The last of these state variables enables the model to �fit the 
changing covariance of bond and stock returns. Log bond yields and term premia 
are quadratic in these state variables, with term premia determined mainly by the 
product of risk aversion and the nominal-real covariance. The concavity of the yield 
curve�— the level of intermediate-term bond yields, relative to the average of short- and 
long-term bond yields�— is a good proxy for the level of term premia. The nominal-real 
covariance has declined since the early 1980�’s, driving down term premia. 



1 Introduction 

Are nominal government bonds risky investments, which investors must be rewarded 
to hold? Or are they safe investments, whose price movements are either inconse-
quential or even bene�ficial to investors as hedges against other risks? US Treasury 
bonds performed well as hedges during the �financial crisis of 2008�–9, but the opposite 
was true in the early 1980�’s. The purpose of this paper is to explore such changes 
over time in the risks of nominal government bonds. 

To understand the phenomenon of interest, consider Figure 1, an update of a 
similar �figure in Viceira (2010). The �figure shows the history of the realized beta of 
10-year nominal zero-coupon Treasury bonds on an aggregate stock index, calculated 
using a rolling three-month window of daily data. This beta can also be called 
the �“realized CAPM beta�”, as its forecast value would be used to calculate the risk 
premium on Treasury bonds in the Capital Asset Pricing Model (CAPM) that is often 
used to price individual stocks. 

Figure 1 displays considerable high-frequency variation, much of which is attribut-
able to noise in the realized beta. But it also shows interesting low-frequency move-
ments, with values close to zero in the mid-1960�’s and mid-1970�’s, much higher values 
averaging around 0.4 in the 1980�’s, a spike in the mid-1990�’s, and negative average 
values in the 2000�’s. During the two downturns of 2001�–3 and 2008�–9, the average 
realized beta of Treasury bonds was about -0.2. These movements are large enough 
to cause substantial changes in the risk premium on Treasury bonds that would be 
implied by the CAPM. 

Nominal bond returns respond both to in�flation and to real interest rates. A 
natural question is whether the pattern shown in Figure 1 is due to the changing 
beta of in�flation with the stock market, or of real interest rates with the stock mar-
ket. Figure 2 summarizes the comovement of in�flation shocks with stock returns, 
using a rolling three-year window of quarterly data and a �first-order quarterly vector 
autoregression for in�flation, stock returns, and the three-month Treasury bill yield to 
calculate in�flation shocks. Because in�flation is associated with high bond yields and 
low bond returns, the �figure shows the beta of realized de�flation shocks (the negative 
of in�flation shocks) which should move in the same manner as the bond return beta 
reported in Figure 1. Indeed, Figure 2 shows a similar history for the de�flation beta 
as for the nominal bond beta. 
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There is also movement over time in the covariation of long-term real interest 
rates with the stock market. In the period since 1997, when long-term Treasury 
in�flation-protected securities (TIPS) were �first issued, Campbell, Shiller, and Viceira 
(2009) report that TIPS have had a predominantly negative beta with stocks. Like 
the nominal bond beta, the TIPS beta was particularly negative in the downturns of 
2001�–3 and 2008�–9. This implies that to explain the time-varying risks of nominal 
bonds, one needs a model that allows changes over time in the covariances of both 
in�flation and real interest rates with the real economy and the stock market. 

In this paper we specify and estimate such a model. Our model allows the 
covariances of shocks to change over time and potentially switch sign. By specifying 
stochastic processes for the real interest rate, temporary and permanent components 
of expected in�flation, investor risk aversion, and the covariance of in�flation and the 
real interest rate with the real economy, we can solve for the complete term structure 
at each point in time and understand the way in which bond market risks have 
evolved. We �find that the covariance of in�flation and the real interest rate with 
the real economy is a key state variable whose movements account for the changing 
covariance of bonds with stocks and imply that bond risk premia have been much 
lower in recent years than they were in the early 1980�’s. 

The organization of the paper is as follows. Section 2 reviews the related litera-
ture. Section 3 presents our model of the real and nominal term structures of interest 
rates. Section 4 describes our estimation method and presents parameter estimates 
and historical �fitted values for the unobservable state variables of the model. Section 
5 discusses the implications of the model for the shape of the yield curve and the 
movements of risk premia on nominal bonds. Section 6 concludes. An Appendix to 
this paper available online (Campbell, Sunderam, and Viceira 2010) presents details 
of the model solution and additional empirical results. 

2 Literature Review 

Nominal bond risks can be measured in a number of ways. A �first approach is to 
measure the covariance of nominal bond returns with some measure of the marginal 
utility of investors. According to the Capital Asset Pricing Model (CAPM), for 
example, marginal utility can be summarized by the level of aggregate wealth. It 
follows that the risk of bonds can be measured by the covariance of bond returns with 
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returns on the market portfolio, often proxied by a broad stock index. Alternatively, 
the consumption CAPM implies that marginal utility can be summarized by the level 
of aggregate consumption, so the risk of bonds can be measured by the covariance of 
bond returns with aggregate consumption growth. 

A second approach is to measure the risk premium on nominal bonds, either from 
average realized excess bond returns or from variables that predict excess bond returns 
such as the yield spread (Shiller, Campbell, and Schoenholtz 1983, Fama and Bliss 
1987, Campbell and Shiller 1991) or a more general linear combination of forward 
rates (Stambaugh 1988, Cochrane and Piazzesi 2005). If the risk premium is large, 
then presumably investors regard bonds as risky. This approach can be combined 
with the �first one by estimating an empirical multifactor model that describes the 
cross-section of both stock and bond returns (Fama and French 1993). 

These approaches are appealing because they are straightforward and direct. 
However, the answers they give depend sensitively on the sample period that is used. 
The covariance of nominal bond returns with stock returns, for example, is extremely 
unstable over time and even switches sign (Li 2002, Guidolin and Timmermann 2006, 
Christiansen and Ranaldo 2007, David and Veronesi 2009, Baele, Bekaert, and In-
ghelbrecht 2010, Viceira 2010). In some periods, notably the late 1970�’s and early 
1980�’s, bond and stock returns move closely together, implying that bonds have a 
high CAPM beta and are relatively risky. In other periods, notably the late 1990�’s 
and the 2000�’s, bond and stock returns are negatively correlated, implying that bonds 
have a negative beta and can be used to hedge shocks to aggregate wealth. 

The average level of the nominal yield spread is also unstable over time as pointed 
out by Fama (2006) among others. An intriguing fact is that the movements in the 
average yield spread seem to line up to some degree with the movements in the CAPM 
beta of bonds. The average yield spread, like the CAPM beta of bonds, was lower in 
the 1960�’s and 1970�’s than in the 1980�’s and 1990�’s. Viceira (2010) shows that both 
the short-term nominal interest rate and the yield spread forecast the CAPM beta of 
bonds over the period 1962�–2007. On the other hand, during the 2000�’s the CAPM 
beta of bonds was unusually low while the yield spread was fairly high on average. 

A third approach to measuring the risks of nominal bonds is to decompose their 
returns into several components arising from different underlying shocks. Nominal 
bond returns are driven by movements in real interest rates, in�flation expectations, 
and the risk premium on nominal bonds over short-term bills. The variances of these 
components, and their correlations with investor well-being, determine the overall 
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risk of nominal bonds. Campbell and Ammer (1993), for example, estimate that 
over the period 1952�–1987, real interest rate shocks moved stocks and bonds in the 
same direction but had relatively low volatility; shocks to long-term expected in�flation 
moved stocks and bonds in opposite directions; and shocks to risk premia again moved 
stocks and bonds in the same direction. The overall effect of these opposing forces was 
a relatively low correlation between stock and bond returns. However Campbell and 
Ammer assume that the underlying shocks have constant variances and correlations 
throughout their sample period, and so their approach fails to explain changes in 
covariances over time.2 

Economic theory provides some guidance in modelling the risks of the underlying 
shocks to bond returns. First, consumption shocks raise real interest rates if con-
sumption growth is positively autocorrelated (Campbell 1986, Piazzesi and Schneider 
2006, Gollier 2007); in this case in�flation-indexed bonds hedge consumption risk and 
should have negative risk premia. If the level of consumption is stationary around 
a trend, however, consumption growth is negatively autocorrelated, in�flation-indexed 
bonds are exposed to consumption risk, and in�flation-indexed bond premia should be 
positive. 

Second, in�flation shocks are positively correlated with economic growth if demand 
shocks move the macroeconomy up and down a stable Phillips Curve; but in�flation is 
negatively correlated with economic growth if supply shocks move the Phillips Curve 
in and out. In the former case, nominal bonds hedge the risk that negative macro-
economic shocks will cause de�flation, but in the latter case, they expose investors to 
the risk of stag�flation. 

Finally, shocks to risk premia move stocks and bonds in the same direction if 
bonds are risky, and in opposite directions if bonds are hedges against risk (Connolly, 
Stivers, and Sun 2005). These shocks may be correlated with shocks to consumption 
if investors�’ risk aversion moves with the state of the economy, as in models with 
habit formation (Campbell and Cochrane 1999). 

The term structure model we report in the next section of the paper extends 
a number of recent term structure models. Dai and Singleton (2002), Bekaert, 
Engstrom, and Grenadier (2005), Wachter (2006), Buraschi and Jiltsov (2007), and 
Bekaert, Engstrom, and Xing (2009) specify term structure models in which risk 
aversion varies over time, in�fluencing the shape of the yield curve. These papers take 

2See also Barsky (1989) and Shiller and Beltratti (1992). 
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care to remain in the essentially affi ne class described by Duffee (2002). Bekaert et 
al. and other recent authors including Mamaysky (2002) and d�’Addona and Kind 
(2006) extend affi ne term structure models to price stocks as well as bonds. Bansal 
and Shaliastovich (2010), Eraker (2008), and Hasseltoft (2008) also extend affi ne term 
structure models to price stocks and bonds in an economy with long-run consumption 
risk (Bansal and Yaron 2004). Piazzesi and Schneider (2006) and Rudebusch and 
Wu (2007) build affi ne models of the nominal term structure in which a deterministic 
reduction of in�flation uncertainty drives down the risk premia on nominal bonds 
towards the lower risk premia on in�flation-indexed bonds (which can even be negative, 
as discussed above).3 

Our introduction of a time-varying covariance between state variables and the 
stochastic discount factor, which can switch sign, means that we cannot write log 
bond yields as affi ne functions of macroeconomic state variables; our model, like 
those of Beaglehole and Tenney (1991), Constantinides (1992), Ahn, Dittmar and 
Gallant (2002), and Realdon (2006), is linear-quadratic.4 To solve our model, we use 
a general result on the expected value of the exponential of a non-central chi-squared 
distribution which we take from the Appendix to Campbell, Chan, and Viceira (2003). 
To estimate the model, we use a nonlinear �filtering technique, the unscented Kalman 
�filter, proposed by Julier and Uhlmann (1997), reviewed by Wan and van der Merwe 
(2001), and recently applied in �finance by Binsbergen and Koijen (2008). 

3 A Quadratic Bond Pricing Model 

We start by formulating a model which, in the spirit of Campbell and Viceira (2001, 
2002), describes the term structure of both real interest rates and nominal interest 
rates. The innovation here is that our model allows for time variation in the covari-
ances between real interest rates, in�flation, and the real economy. This results in a 
term structure where both real and nominal bond yields are linear-quadratic functions 

3In a similar spirit, Backus and Wright (2007) argue that declining uncertainty about in�flation 
explains the low yields on nominal Treasury bonds in the mid-2000�’s, a phenomenon identi�fied as a 
�“conundrum�”by Alan Greenspan in 2005 Congressional testimony. 

4Duffi e and Kan (1996) point out that linear-quadratic models can often be rewritten as affi ne 
models if we allow the state variables to be bond yields rather than macroeconomic fundamentals. 
Buraschi, Cieslak, and Trojani (2008) also expand the state space to obtain an affi ne model in which 
correlations can switch sign. 
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of the vector of state variables and where, consistent with the empirical evidence, the
conditional volatilities and covariances of excess returns on real and nominal assets
are time varying.

3.1 The SDF and the short-term real interest rate

We start by assuming that the log of the real stochastic discount factor (SDF),mt＋1 =
log (Mt＋1), follows a linear-quadratic, conditionally heteroskedastic process:

–mt＋1 = xt ＋
σ

2

2
m zt

2 ＋ ztεm,t＋1, (1)

whose drift xt follows an AR(1) process subject to a heteroskedastic shock and a
homoskedastic shock,

xt＋1 = μx (1– φx) ＋ φxxt ＋ ψtεx,t＋1 ＋ εX,t＋1. (2)

It is straightforward to show that the state variable xt is the short-term log real
interest rate. The price of a single-period zero-coupon real bond satisfies

P1,t = Et [exp {mt＋1}] ,

so that its yield y1t = – log(P1,t) equals

y1t = –Et [mt＋1]–
1

2
Vart (mt＋1) = xt. (3)

Thus the AR(1) process (2) describes the dynamics of the short-term real interest
rate.

The model has two additional state variables, zt and ψt, which govern the time
variation in the volatilities of the SDF and the real interest rate respectively. We as-
sume that these state variables both follow standard homoskedastic AR(1) processes:

zt＋1 = μz (1– φz) ＋ φzzt ＋ εz,t＋1, (4)

ψt＋1 = μψ
(
1– φψ

)
＋ φψψt ＋ εψ,t＋1. (5)

In principle both these variables can change sign, but in practice we expect zt always
to be positive (and with negligible effect on likelihood we constrain it to be constant
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in the empirical results reported later in the paper), while ψt changes sign to capture
the changing covariances that motivate our model.

The vector of innovations (εm,t＋1, εx,t＋1, εX,t＋1, εψ,t＋1, εz,t＋1) is normally dis-
tributed, with zero means and constant variance-covariance matrix. We allow these
shocks to be cross-correlated and adopt the notation σ2i to describe the variance of
shock εi, and σij to describe the covariance between shock εi and shock εj. In this
model, σm always appears premultiplied by zt in all pricing equations. This implies
that we are unable to identify σm separately from zt. Thus without loss of generality
we set σm to an arbitrary value of one.5 This normalization implies that the state
variable zt completely describes the conditional variance of the log real SDF. To re-
duce the complexity of the equations that follow, we also assume that the shocks to
xt are orthogonal to each other; that is, σxX = 0.

Our use of the state variable zt to model time-varying volatility in the log real
SDF, or equivalently time variation in the price of aggregate market risk or maximum
Sharpe ratio in the economy, is similar to the approach of Lettau and Wachter (2007,
2010). We can interpret it as a reduced form of a structural model in which aggregate
risk aversion changes exogenously over time as in the “moody investor”economy of
Bekaert, Engstrom and Grenadier (2005). The model of Campbell and Cochrane
(1999), in which movements of aggregate consumption relative to its past history
cause temporary movements in risk aversion, is similar in spirit. Such structural
models imply a real SDF similar to (1) in which risk aversion is a positive function of
zt. We can also interpret our model as a reduced form of the real SDF generated by the
long-run consumption risk model of Bansal and Yaron (2004), in which zt describes
the conditional volatility of log consumption growth.6 With the first interpretation
of our model in mind, we use the terms price of risk or risk aversion interchangeably
to refer to zt.

The state variable ψt allows the covariance between the real interest rate and the
SDF, and therefore the market price of real interest rate risk, to move over time and
even switch sign. In an earlier version of this paper we assumed that the process

5The same is true with respect to σx and ψt. However, ψt also premultiplies other variables in
the model, specifically realized inflation and expected inflation. We choose to normalize to one the
volatility of the shocks to realized inflation.

6Under such an interpretation our real stochastic discount factor describes the intertemporal
marginal rate of substitution of a representative investor with recursive Epstein-Zin preferences
facing an exogenous consumption growth process. This process has a persistent drift described by
xt, and it is heteroskedastic, with conditional volatility zt.
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for the real interest rate in (2) was homoskedastic, writing a model in which ψt only
affects inflation and nominal interest rates. This generates a simpler affi ne real term
structure of interest rates, but is inconsistent with time-variation in the covariance
between TIPS returns and the real economy documented by Campbell, Shiller, and
Viceira (2009).

We allow for a homoskedastic shock, as well as a heteroskedastic shock, to move the
real interest rate because with only a single shock the model would imply a constant
Sharpe ratio for real bonds. With only a heteroskedastic shock, the model would also
imply that the conditional volatility of the real interest rate would be proportional to
the covariance between the real interest rate and the real SDF; equivalently, the con-
ditional correlation of the real rate and the SDF would be constant in absolute value
with occasional sign switches. Our specification avoids these implausible implications
while remaining reasonably parsimonious.

3.2 The real term structure of interest rates

In the current model, the price of a n-period zero-coupon real bond is an exponential
linear-quadratic function of xt, zt, and ψt. To understand this, consider the standard
pricing equation for a two-period bond (Campbell, Lo, and MacKinlay 1997, Chapter
11):

P2,t = Et [exp {p1,t＋1 ＋mt＋1}] , (6)

where pn,t ≡ log(Pn,t). Since p1,t＋1 = –xt＋1, and xt＋1 and mt＋1 are jointly condition-
ally normal, we can write the expectation on the right-hand-side of (6) as

P2,t = exp

{
Et [–xt＋1 ＋mt＋1] ＋

1

2
Vart (–xt＋1 ＋mt＋1)

}
= exp

{
–μx (1– φx)– (1 ＋ φx)xt ＋

1

2
ψt
2σ2x ＋

1

2
σ2X ＋ σxmztψt ＋ σXmzt

}
(,7)

which depends on xt, zt, ψ
2
t and the product ztψt. Thus a two-period bond is an

exponential linear quadratic function of the state variables.

Once we consider bonds with maturity n > 2, Pn 1,t＋1 and Mt＋1 are no longer−
jointly lognormal because Pn 1,t＋1 is an exponential-quadratic function of normally−
distributed variables. However, the Appendix shows that we can still derive a closed-
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form solution for the price of the bond that takes the form

Pn,t = exp
{
An ＋Bx,nxt ＋Bz,nzt ＋Bψ,nψt ＋ Cz,nzt

2 ＋ Cψ,nψt
2 ＋ Czψ,nztψt

}
. (8)

The coeffi cients An, Bi,n, and Ci,n solve a set of recursive equations given in the
Appendix. These coeffi cients are functions of the maturity of the bond (n) and
the coeffi cients that determine the stochastic processes for the real SDF and state
variables xt, zt, and ψt. From equation (3), it is immediate to see that Bx,1 = –1,
and that the remaining coeffi cients are zero at n = 1, and from equation (7) that
A2 = –μx (1– φx)＋σ

2
X/2, Bx,2 = – (1 ＋ φx), Bz,2 = σXm, Cψ,2 = σ2x/2, Czψ,2 = σxm,

and Bψ,2 = Cz,2 = 0.

This model of the real term structure of interest rates generates time-varying real
bond risk premia that depend on zt and the product ztψt (see Appendix). Once again,
the 2-period bond is helpful to understand this result. The excess log return on a
2-period zero-coupon real bond over a 1-period real bond is given by

r2,t＋1 – r1,t＋1 = p1,t＋1 – p2,t ＋ p1,t

= –1
2
ψ2tσ

2
x –

1

2
σ2X – σxmztψt – σXmzt – ψtεx,t＋1 – εX,t＋1, (9)

where the first two terms are a Jensen s̓ inequality correction (the form of which
depends on our simplifying assumption that σxX = 0), the middle two terms describe
the log of the expected excess return on real bonds, and the last two terms describe
shocks to realized excess returns.

It follows from (9) that the conditional risk premium on the 2-period real bond is

Et [r2,t＋1 – r1,t＋1] ＋
1

2
Vart (r2,t＋1 – r1,t＋1) = – (σXm ＋ σxmψt) zt, (10)

which is proportional to zt. The coeffi cient of proportionality can take either sign
and varies over time with the state variable ψt. To gain intuition about the 2-period
real bond risk premium, consider the simple case where σXm = 0 and σxmψt > 0.
This implies that real bond risk premia are negative. The reason for this is that
with positive σxmψt, the real interest rate tends to rise in good times and fall in
bad times. Since real bond returns move opposite the real interest rate, real bonds
are countercyclical assets that hedge against economic downturns and command a
negative risk premium.
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3.3 Pricing equities

We want our model to fit the changing covariance of bonds and stocks, and so we must
specify a process for the equity return within the model. One modelling strategy
would be to specify a dividend process and solve for the stock return endogenously
in the manner of Mamaysky (2002), Bekaert et al. (2005), and d A̓ddona and Kind
(2006). However we adopt a simpler approach. Following Campbell and Viceira
(2001), we model shocks to realized stock returns as a linear combination of shocks
to the real interest rate and shocks to the log stochastic discount factor:

re,t＋1 – Et re,t＋1 = βexεx,t＋1 ＋ βeXεX,t＋1 ＋ βemεm,t＋1 ＋ εe,t＋1, (11)

where εe,t＋1 is an identically and independently distributed shock uncorrelated with
all other shocks in the model. This shock captures movements in equity returns that
are both unrelated to real interest rates and carry no risk premium because they are
uncorrelated with the SDF.

Substituting (11) into the no-arbitrage condition Et [Mt＋1Rt＋1] = 1, the Appendix
shows that the conditional equity risk premium is given by

Et [re,t＋1 – r1,t＋1] ＋
1

2
Vart (re,t＋1 – r1,t＋1) =

(
βexσxm ＋ βeXσXm ＋ βemσ

2
m

)
zt. (12)

The equity premium, like all risk premia in our model, is proportional to risk aversion
zt. It depends not only on the direct sensitivity of stock returns to the SDF, but also
on the sensitivity of stock returns to the real interest rate and the covariance of the
real interest rate with the SDF.

Equation (11) does not attempt to capture heteroskedasticity in stock returns.
Although such heteroskedasticity is of first-order importance for understanding stock
prices, we abstract from it here in order to maintain the parsimony of our term
structure model.

3.4 Modelling inflation

To price nominal bonds, we need to specify a model for inflation. We assume that log
inflation πt = log (Ⅱt) follows a linear-quadratic conditionally heteroskedastic process:

πt＋1 = λt ＋ ξt ＋
σ2π
2
ψt
2 ＋ ψtεπ,t＋1, (13)
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where ψt is given in (5) and expected log inflation is the sum of two components, a
permanent component λt and a transitory component ξt.

The dynamics of the components of expected inflation are given by

λt＋1 = λt ＋ ε⋀,t＋1 ＋ ψtελ,t＋1, (14)

and
ξt＋1 = φξξt ＋ ψtεξ,t＋1. (15)

The presence of an integrated component in expected inflation removes the need to
include a nonzero mean in the stationary component of expected inflation.

We assume that the underlying shocks to realized inflation, the components of
expected inflation, and conditional inflation volatility_ επ,t＋1, ελ,t＋1, ε⋀,t＋1, εξ,t＋1,
and εψ,t＋1_ are again jointly normally distributed zero-mean shocks with a constant
variance-covariance matrix.7 We allow these shocks to be cross-correlated with the
shocks to mt＋1, xt＋1, and zt＋1, and use the same notation as in Section 3.1 to denote
their variances and covariances.

Our inclusion of two components of expected inflation gives our model the flexi-
bility it needs to fit simultaneously persistent shocks to both real interest rates and
expected inflation. This flexibility is necessary because both realized inflation and the
yields of long-dated inflation-indexed bonds move persistently, which suggests that
both expected inflation and the real interest rate follow highly persistent processes.
At the same time, short-term nominal interest rates exhibit more variability than
long-term nominal interest rates, which suggests that a rapidly mean-reverting state
variable must also drive the dynamics of nominal interest rates. By allowing for a per-
manent component and a transitory component in expected inflation, our model can
capture parsimoniously the dynamics of short- and long-term nominal bond yields,
realized inflation, and the yields on inflation-indexed bonds.8

7Without loss of generality we set σπ to an arbitrary value of 1, for reasons similar to those we
use to set σm to an arbitrary value of 1.

8It might be objected that in the very long run a unit-root process for expected inflation has
unreasonable implications for inflation and nominal interest rates. Regime-switching models have
been proposed as an alternative way to reconcile persistent fluctuations with stationary long-run
behavior of interest rates (Garcia and Perron 1996, Gray 1996, Bansal and Zhou 2002, Ang, Bekaert,
and Wei 2008). We do not pursue this idea further here, but in principle there is no reason why our
model could not be rewritten using discrete regimes to capture persistent movements in expected
inflation. As a robustness check, we have estimated though our model imposing that λt follows
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Because the state variable ψt multiplies shocks in all the nominal equations, the
conditional volatility of both inflation and expected inflation are both time varying.
A large empirical literature in macroeconomics has documented changing volatility in
inflation. In fact, the popular ARCH model of conditional heteroskedasticity (Engle
1982) was first applied to inflation. Our model captures this heteroskedasticity using
the persistent state variable ψt which drives the volatility of expected as well as
realized inflation.

The state variable ψt governs not only the second moments of realized inflation and
expected inflation, but also the volatility of the real interest rate. We could assume
different processes driving the second moments of realized and expected inflation and
the real interest rate, but this would increase the complexity of the model considerably.
Long-term nominal bond yields depend primarily on the persistent component of
expected inflation; therefore the state variable that governs the second moments of
this state variable is the most important one for the behavior of the nominal term
structure. We keep our model parsimonious by assuming that the same state variable
drives the second moments of transitory expected inflation, realized inflation, and
the real interest rate. This is consistent with evidence that the volatility of returns
on inflation indexed bonds is positively correlated with the volatility of returns on
nominal bonds (Campbell, Shiller, and Viceira 2009).9

Since we model ψt as an AR(1) process, it can change sign. The sign of ψt does
not affect the variances of expected or realized inflation, the covariance between them,
or their covariance with the real interest rate, because these moments depend on the
square ψ2t . However the sign of ψt does determine the sign of the covariance between
expected and realized inflation, on the one hand, and the log real SDF, on the other
hand. For this reason we will refer to ψt as the nominal-real covariance, although it
also determines the covariance of the real interest rate with the real SDF and thus
real bond risk premia.

We allow both a homoskedastic shock ε⋀,t＋1 and a heteroskedastic shock ψtελ,t＋1
to impact the permanent component of expected inflation. The reasons for this as-
sumption are similar to those that lead us to assume two shocks for the real interest
rate process. In the absence of a homoskedastic shock to expected inflation, the

a stationary process with a highly persistent autoregressive coeffi cient. In practice this makes no
discernible changes to our main empirical conclusions.

9Although not reported in the article, the correlation in their data between the volatility of
nominal US Treasury bond returns and the volatility of TIPS returns is slightly greater than 0.7.
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conditional volatility of expected inflation would be proportional to the conditional
covariance between expected inflation and real economic variables. There is no eco-
nomic reason to expect that these two second moments should be proportional to
one another, and the data suggest that the conditional covariance can be close to
zero even when the conditional volatility remains positive. Put another way, the
presence of two shocks allows the conditional correlation between real and nominal
variables to vary smoothly rather than being fixed in absolute value with occasional
sign switches. Since long-term expected inflation is the main determinant of long-
term nominal interest rates, we allow two shocks to this process but for parsimony
allow only heteroskedastic shocks to transitory expected and realized inflation.

Finally, we note that the process for realized inflation, equation (13), is formally
similar to the process for the log SDF (1), in the sense that it includes a Jensen s̓
inequality correction term. The inclusion of this term simplifies the process for the
reciprocal of inflation by making the log of the conditional mean of 1/Ⅱt＋1 the negative
of the sum of the two state variables λt and ξt. This in turn simplifies the pricing of
short-term nominal bonds.

3.5 The short-term nominal interest rate

The real cash flow on a single-period nominal bond is simply 1/Ⅱt＋1. Thus the price
of the bond is given by

P1
$
,t = Et [exp {mt＋1 – πt＋1}] , (16)

so the log short-term nominal rate y$1,t＋1 = – log
(
P $1,t
)
is

y1
$
,t＋1 = –Et [mt＋1 – πt＋1]–

1

2
Vart (mt＋1 – πt＋1)

= xt ＋ λt ＋ ξt – σmπztψt, (17)

where we have used the fact that exp {mt＋1 – πt＋1} is conditionally lognormally dis-
tributed given our assumptions.

Equation (17) shows that the log of the nominal short rate is the sum of the
log real interest rate, the two state variables that drive expected log inflation, and
a nonlinear term that accounts for the correlation between shocks to inflation and
shocks to the stochastic discount factor. This nonlinear term is the expected excess
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return on a single-period nominal bond over a single-period real bond. Thus it
measures the inflation risk premium at the short end of the term structure. It equals
the conditional covariance between realized inflation and the log of the real SDF:

(18)Covt (mt＋1, πt＋1) = –σmπztψt.

Given positive risk aversion zt, the sign of this covariance depends on the sign of the
state variable ψt. When the covariance is positive, short-term nominal bonds are
risky assets that have a positive risk premium because they tend to have unexpectedly
low real payoffs in bad times. Of course, this premium increases with risk aversion
zt. When the covariance is negative, short-term nominal bonds hedge real risk; they
command a negative risk premium which becomes even more negative as aggregate
risk aversion increases.

The conditional covariance between the SDF and inflation also determines the
covariance between the excess returns on real and nominal assets. Consider for
example the conditional covariance between the real return on a one-period nominal
bond and the real return on equities, both in excess of the return on a one-period real
bond. From (11) and (13), this covariance is given by

Covt re,t＋1 – r1,t＋1, y1
$
,t＋1 – πt＋1 – r1,t＋1

( )
= – (βexσxπ ＋ βemσmπ)ψt,

which moves over time and can change sign. This implies that we can identify the
dynamics of the state variable ψt from the dynamics of the conditional covariance
between equities and nominal bonds.10

3.6 The nominal term structure of interest rates

Equation (17) writes the log nominal short rate as a linear-quadratic function of the
state variables. We show in the Appendix that this property carries over to the entire
zero-coupon nominal term structure. Just like the price of a n-period zero-coupon
real bond, the price of a n-period zero-coupon nominal bond is an exponential linear-
quadratic function of the vector of state variables:

(19)Pn
$
,t = exp

$
x,nxt ＋Bz

$
,

$
λ,nλt ＋Bξ

$
ψ

＋Cz
$
, ψnzt

2 ＋ C$ ,nψt
2 ＋ Cz

$
ψ,nztψt

{
A$n ＋B nzt ＋B ,nξt ＋B

$
,nψt

}
,

10We can also identify ψt from the covariance between equities and real bonds, and we do so in
our estimation.
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where the coeffi cients A$ B , and C$n,
$
i,n i,n solve a set of recursive equations given in

the Appendix. These coeffi cients are functions of the maturity of the bond (n) and
the coeffi cients that determine the stochastic processes for real and nominal variables.
From equation (17), it is immediate to see that B$ $ $ $

x,1 = Bξ,1 = Bλ,1 = –1, Czψ,1 = σmπ,
and that the remaining coeffi cients are zero at n = 1.

In equation (19), log bond prices are affi ne functions of the short-term real interest
rate (xt) and the two components of expected inflation (λt and ξt), and quadratic
functions of risk aversion (zt) and inflation volatility (ψt). Thus our model naturally
generates five factors that explain bond yields.

We can now characterize the log return on long-term nominal zero-coupon bonds in
excess of the short-term nominal interest rate. Since bond prices are not exponential
linear functions of the state variables, their returns are not conditionally lognormally
distributed. But we can still find an analytical expression for their conditional ex-
pected returns. The Appendix derives an expression for the log of the conditional
expected gross excess return on an n-period zero-coupon nominal bond which varies
quadratically with risk aversion zt and linearly with the covariance between the log
real SDF and inflation (ztψt). Thus in this model, bond risk premia can be either
positive or negative depending on the value of ψt.

Intuitively, the risk premium on nominal bonds varies over time as a function of
both aggregate risk aversion and the covariance between inflation and the real side of
the economy. If this covariance switches sign, so will the risk premium on nominal
bonds. At times when inflation is procyclical_ as will be the case if the macroecon-
omy moves along a stable Phillips Curve_ nominal bond returns are countercyclical,
making nominal bonds desirable hedges against business cycle risk. At times when
inflation is countercyclical_ as will be the case if the economy is affected by supply
shocks or changing inflation expectations that shift the Phillips Curve in or out_
nominal bond returns are procyclical and investors demand a positive risk premium
to hold them.

3.7 Special cases

Our quadratic term structure model nests four constrained models of particular in-
terest. First, if we constrain zt to be constant and the real interest rate to be
homoskedastic, our model reduces to a single-factor affi ne yield model for the term

15



structure of real interest rates, and a linear-quadratic model for the term structure of
nominal interest rates. In this constrained model, real bond risk premia are constant,
but nominal bond risk premia vary with the covariance between inflation and the real
economy. We estimated this model in an earlier version of our paper.

Second, if we constrain ψt to be constant but allow zt to vary over time, our
model becomes a four-factor affi ne yield model where both real bond risk premia and
nominal bond risk premia vary in proportion to aggregate risk aversion. This model
captures the spirit of recent work on the term structure of interest rates by Bekaert,
Engstrom, and Grenadier (2005), Buraschi and Jiltsov (2007), Wachter (2006) and
others in which time-varying risk aversion is the only cause of time variation in bond
risk premia.

Third, if we constrain zt to be constant but allow ψt to vary over time, our model
still remains in the class of exponential quadratic term structure models for both the
real term structure and the nominal term structure. Specifically, the Appendix shows
that equation (8) for the price of a real zero-coupon bond with maturity n becomes

Pn,t = exp
{ }
An ＋Bx,nxt ＋Bψ,nψt ＋ Cψ,nψt

2 , (20)

while equation (19) for the price of a nominal zero-coupon bond with maturity n
becomes

P $n,t = exp
{

ψ ψA$n ＋B
$
x,nxt ＋B

$
λ,nλt ＋Bξ

$
,nξt ＋B

$
,nψt ＋ C

$
,nψt

2
}
. (21)

In this model, time variation in bond risk premia is driven exclusively by the changing
real-nominal covariance, i.e., by changes in the quantity of risk. This model is the
one that we estimate in the empirical work of the next section.

Finally, if we constrain both zt and ψt to be constant over time, and we allow
expected inflation to have only the transitory component ξt, our model reduces to
the two-factor affi ne yield model of Campbell and Viceira (2001, 2002), where both
real bond risk premia and nominal bond risk premia are constant, and the factors are
the short-term real interest rate and expected inflation. Allowing expected inflation
to have a permanent component λt results in an expanded version of this affi ne yield
model with permanent and transitory shocks to expected inflation.
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4 Model Estimation 

4.1 Data and estimation methodology 

The term structure model presented in Section 3 generates real and nominal bond 
yields which are linear-quadratic functions of a vector of latent state variables. We 
now use this model as a laboratory to study the joint behavior of observed yields 
on nominal and in�flation-indexed bonds, realized in�flation, survey-based measures of 
expected in�flation, stock returns, in�flation-indexed bond returns, and nominal bond 
returns, and their second moments. 

We start our exploration by presenting the data we use, and the corresponding 
maximum likelihood estimates of our model. Since our state variables are not ob-
servable, and the observable series have a nonlinear dependence on the latent state 
variables, we obtain maximum likelihood estimates via a nonlinear Kalman �filter. 
Speci�fically, we use the unscented Kalman �filter estimation procedure of Julier and 
Uhlmann (1997). 

The unscented Kalman �filter is a nonlinear Kalman �filter which works through 
deterministic sampling of points in the distribution of the innovations to the state 
variables, does not require the explicit computation of Jacobians and Hessians, and 
captures the conditional mean and variance-covariance matrix of the state variables 
accurately up to a second-order approximation for any type of nonlinearity, and up 
to a third-order approximation when innovations to the state variables are Gaussian. 
Wan and van der Merwe (2001) describe in detail the properties of the �filter and its 
practical implementation, and Binsbergen and Koijen (2008) apply the method to a 
prediction problem in �finance.11 

To use the unscented Kalman �filter, we must specify a system of measurement 
equations that relate observable variables to the vector of state variables. The �filter 
uses these equations to infer the behavior of the latent state variables of the model. 
We use twelve measurement equations in total. 
11 Binsbergen and Koijen�’s application has linear measurement equations and nonlinear transition 

equations, whereas ours has linear transition equations and nonlinear measurement equations. The 
unscented Kalman �filter can handle either case. We have also checked the robustness of our estimates 
by re-estimating our model using the �“square root�” variant of the �filter, which has been shown to 
be more estable when some of the state variables follow heteroskedastic processes. This variant 
produces estimates which are extremely similar to the ones we report in the paper. 
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Our first four measurement equations relate observable nominal bond yields to
the vector of state variables. Specifically, we use the relation between nominal zero-
coupon bond log yields y$n,t = – log(P $n,t)/n and the vector of state variables implied
by equation (19). We use yields on constant maturity 3-month, 1-year, 3-year and
10-year zero-coupon nominal bonds sampled at a quarterly frequency for the period
1953.Q1-2009Q3. These data are spliced together from two sources. From the first
quarter of 1953 through the first quarter of 1961 we sample quarterly data from the
monthly dataset developed by McCulloch and Kwon (1993), and from the second
quarter of 1961 through the last quarter of 2009 we sample quarterly data from the
daily dataset constructed by Gṳrkaynak, Sack, and Wright (2006, updated through
2009, GSW henceforth). We assume that bond yields are measured with errors, which
are uncorrelated with each other and with the structural shocks of the model.

We sample the data at a quarterly frequency in order to minimize the impact of
high-frequency noise in the measurement of some of our key variables_ such as realized
inflation_ while keeping the frequency of observation reasonably high (Campbell and
Viceira 2001, 2002). By not having to fit all the high-frequency monthly variation in
the data, our estimation procedure can concentrate on uncovering the low-frequency
movements in interest rates which our model is designed to capture.

Figure 3 illustrates our nominal interest rate data by plotting the 3-month and 10-
year nominal yields, and the spread between them, over the period 1953-2009. Some
well-known properties of the nominal term structure are visible in this figure, notably
the greater smoothness and higher average level of the 10-year nominal interest rate.
The yield spread shows large variations in response to temporary movements in the
3-month bill rate, but also a tendency to be larger since the early 1980 s̓ than it was
in the first part of our sample. Our model will explain this tendency as the result of
movements in the real interest rate, transitory expected inflation, and the covariance
of nominal and real variables.

Our fifth measurement equation is given by equation (13), which relates the ob-
served inflation rate to expected inflation and inflation volatility, plus a measurement
error term. We use the CPI as our observed price index in this measurement equa-
tion. We complement this measurement equation with another one that uses data
on inflation expectations from the Survey of Professional Forecasters for the period
1968.Q4-2009.Q3. Specifically, we use the median forecast of growth in the GDP price
index over the next quarter. We relate this observed measure of expected inflation to
the sum of equations (14) and (15) in our model plus a measurement error term. Fig-
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ure 4 plots the history of realized in�flation and our survey based measure of expected 
in�flation. Average in�flation was higher in the �first half of our sample, peaked in the 
late 1970�’s and early 1980�’s, and declined afterwards; in�flation was essentially zero 
or even negative at both ends of our sample period, i.e., the 1950s and the 2000�’s, 
when it was also volatile. Expected in�flation exhibits a pattern similar to realized 
in�flation, albeit smoother. This �figure implies that the long-term decline in short and 
long nominal interest rates that started in the early 1980�’s was at least partly caused 
by declining in�flation expectations. 

The seventh measurement equation relates the observed yield on constant maturity 
Treasury in�flation protected securities (TIPS) to the vector of state variables, via the 
pricing equation for real bonds generated by our model. We obtain data on constant 
maturity zero-coupon 10-year TIPS dating back to the �first quarter of 1999 from 
GSW (2008). Before 1999, we treat the TIPS yield as missing, which can easily be 
handled by the Kalman �filter estimation procedure. As with nominal bond yields, 
we sample real bond yields at a quarterly frequency, and we assume that they are 
measured with errors, which are uncorrelated with each other and with the structural 
shocks of the model. 

Figure 5 illustrates our real bond yield series. The decline in the TIPS yield 
since the year 2000, and the spike in the fall of 2008, are clearly visible in this �figure. 
Campbell, Shiller, and Viceira (2009) document that this decline in the long-term 
real interest rate, and the subsequent sudden increase during the �financial crisis, 
occurred in in�flation-indexed bond markets around the world. In earlier data from 
the UK, long-term real interest rates were much higher on average during the 1980�’s 
and 1990�’s. Our model will explain such large and persistent variation in the TIPS 
yield primarily as the result of persistent movements in the short-term real interest 
rate. 

Our eighth measurement equation uses data on an equity index, the CRSP value-
weighted portfolio comprising the stocks traded in the NYSE, AMEX and NASDAQ.
This equation describes realized log equity returns re,t＋1 using equations (3), (11),
and (12).

The last four measurement equations use the implications of our model for: i) the 
conditional covariance between equity returns and real bond returns, (ii) the condi-
tional covariance between equity returns and nominal bond returns, (iii) the condi-
tional volatility of real bond returns, and (iv) the conditional volatility of nominal 
bond returns. The Appendix derives expressions for these time-varying conditional 
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second moments, which are functions of zt and ψt. Following Viceira (2010), we con-
struct the analogous realized second moments using high-frequency data. We obtain
daily stock returns from CRSP. We calculate daily nominal bond returns from daily
GSW nominal yields from 1961.Q2 onwards, and daily real bond returns from daily
GSW real yields from 1999.Q1 onwards.12 We then compute the variances and covari-
ances realized over quarter t and treat these as the conditional (expected) moments at
quarter t– 1 plus measurement error. These measurement equations help us identify
zt and ψt.

The data used in these measurement equations are plotted in Figure 6 for real
bonds and in Figure 7 for nominal bonds. The left panel of each figure shows the
realized covariance between daily stock and bond returns, while the right panel shows
the realized variance of daily bond returns. The thick lines in each panel show a
smoothed version of the raw data.

Figure 7 shows that both the stock-nominal bond covariance series and the nominal
bond variance series increase in the early 1970 s̓ and, most dramatically, in the early
1980 s̓. In the early 1960 s̓, the early 2000 s̓, and the late 2000 s̓ the covariance
spikes downward while the variance increases; the spikes are particularly pronounced
in the financial crisis of 2008-2009. Our model will interpret these as times when
the nominal-real covariance was negative.13 Figure 6 shows that the stock-real bond
covariance series and the real bond variance series follow patterns very similar to
those of nominal bonds for the overlapping sample period.

The unscented Kalman filter uses the system of measurement equations we have
just formulated, together with the set of transition equations (2), (4), (5), (13), (14),
and (15) that describe the dynamics of the state variables, to construct a pseudo-
likelihood function. We then use numerical methods to find the set of parameter
values that maximize this function and the asymptotic standard errors of the para-
meter estimates. Specifically, we use the outer product method to compute maximum
likelihood asymptotic standard errors.

12We calculate daily returns on the n year bond from daily yields as rn,t＋1 = nyn,t –
(n– 1/264) yn,t＋1. We assume there are 264 trading days in the year, or 22 trading days per month.
Prior to 1961.Q2, we calculate monthly returns from monthly McKullock-Kwon nominal yields, and
calculate variances and covariances using a rolling 12-month return window.
13Figure 7 also shows a brief downward spike in the realized bond-stock covariance around the

stock market crash of October 1987. However this movement is so short-lived that it does not cause
our estimated nominal-real covariance to switch sign.
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4.2 Model constraints for estimation

In exploratory data analysis, we have found that our model estimates generate negli-
gible variation in zt (risk aversion) unless we use extraneous information to pin down
this state variable. For example, in the first version of this paper we added a mea-
surement equation linking risk aversion to the dividend-price ratio of the aggregate
stock market; we have also estimated versions of the model that effectively identify
zt through a measurement equation linking the expected excess return on nominal
bonds to empirically successful predictor variables such as the yield spread (Shiller,
Campbell, and Schoenholtz 1983, Fama and Bliss 1987, Campbell and Shiller 1991) or
the linear combination of forward rates suggested by Cochrane and Piazzesi (2005).
However all versions of our model, with or without such additional measurement
equations, have similar implications for the nominal-real covariance ψt and its impact
on bond prices.

For simplicity, and given our primary interest in the state variable ψt, we report
results for a model with no additional measurement equations that constrains zt to
be constant. Thus bond pricing equations are given by (20) and (21). Of course in
this constrained model σm is no longer unidentified, and we estimate it freely.

Even this constrained model has a large number of shocks, and we have found that 
it is diffi cult to estimate the model allowing an unconstrained variance-covariance ma-
trix for the shocks. Therefore we also constrain many of the covariances in the model 
to be zero. The unconstrained parameters are the covariances of the heteroskedastic 
shocks to the real interest rate and permanent expected in�flation, and the shocks to 
transitory expected in�flation and realized in�flation, with the stochastic discount fac-
tor; the covariances of the transitory component of expected in�flation with realized 
in�flation and the heteroskedastic shock to the real interest rate; and the covariance 
of realized in�flation with the heteroskedastic shock to the real interest rate. The 
homoskedastic shocks to the real interest rate and permanent expected in�flation are 
assumed to be uncorrelated with other shocks. 

With these constraints on the variance-covariance matrix, we allow freely esti-
mated risk premia on all the state variables except the nominal-real covariance, as 
well as a risk premium for realized in�flation that affects the level of the short-term 
nominal interest rate. We allow correlations among real interest rates, realized in-
�flation, and the transitory component of expected in�flation, while imposing that the 
permanent component of expected in�flation is uncorrelated with movements in the 
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transitory state variables. This constraint is natural if one believes that long-run ex-
pected in�flation is determined by central bank credibility, which is moved by political 
developments rather than business-cycle �fluctuations in the economy. A likelihood 
ratio test of the constrained model cannot reject it against the fully parameterized 
model. 

4.3 Parameter estimates 

Table 1 presents quarterly parameter estimates over the period 1953-2009 and their 
asymptotic standard errors for the model with constant zt. It shows that the real 
interest rate is the most persistent state variable, with an autoregressive coeffi cient 
of 0.94. This coeffi cient implies that shocks to the real interest rate have a half life 
of 11 quarters. This persistence re�flects the observed variability and persistence of 
TIPS yields. The nominal-real covariance and the transitory component of expected 
in�flation are persistent processes in our model, with half-lives of about 3 and 6 quarters 
respectively. Of course the model also includes a permanent component of expected 
in�flation. If we model expected in�flation as a single stationary AR(1) process, as we 
did in the �first version of this paper, we �find expected in�flation to be more persistent 
than the real interest rate.14All persistence coeffi cients are precisely estimated, with 
very small asymptotic standard errors. 

Table 1 shows large differences in the volatility of shocks to the state variables. 
The one-quarter conditional volatility of the homoskedastic shock to the annualized 
real interest rate is estimated to be about 45 basis points, and the average one-quarter 
conditional volatility of the heteroskedastic shock to the annualized real interest rate 
is estimated to be 97 basis points. The average one-quarter conditional volatility of 
the transitory component of annualized expected in�flation is about 72 basis points, 
and the average one-quarter conditional volatility of annualized realized in�flation is 
about 334 basis points.15 By contrast, the average one-quarter conditional volatilities 
of the shocks to the permanent component of expected in�flation are very small. Of 
14Campbell and Viceira (2001, 2002) also estimate expected inflation to be more persistent than

the real interest rate in a model with constant zt and ψt and a stationary AR(1) process for expected
inflation. Campbell and Viceira do find that when the estimation period includes only the years
after 1982, real interest rates appear to be more persistent than expected inflation, reflecting the
change in monetary policy that started in the early 1980 s̓ under Federal Reserve chairman Paul
Volcker. We have not yet estimated our quadratic term structure model over this subsample.
15We compute the average conditional volatilities of the heteroskedastic shock to the real interest
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course, the unconditional standard deviations of the real interest rate and the two
components of expected inflation are much larger because of the high persistence of the
processes; in fact, the unconditional standard deviation of the permanent component
of expected inflation is undefined because this process has a unit root. With the
exception of the volatility of the heteroskedastic shock to the permanent component of
expected inflation, the volatility parameters for the real interest process and inflation
are all precisely estimated with very small asymptotic standard errors.

Table 1 also reports the unrestricted correlations among the shocks and their as-
ymptotic standard errors. We report correlations instead of covariances to facilitate
interpretation. We compute their standard errors from those of the primitive para-
meters of the model using the delta method. The Appendix reports covariances and
their asymptotic standard errors.

There is a correlation of almost –0.24 between ξt and –mt shocks. Although the
correlation coeffi cient is marginally significant at conventional significance levels, the
Appendix shows that the covariance is more precisely estimated. This negative corre-
lation implies that the transitory component of expected inflation is countercyclical,
generating a positive risk premium in the nominal term structure, when the state
variable ψt is positive; but transitory expected inflation is procyclical, generating a
negative risk premium, when ψt is negative. The absolute magnitude of the corre-
lation between λt and –mt shocks is larger at around –0.80, implying that the risk
premium for permanent shocks to expected inflation is larger than the risk premium
for transitory shocks to expected inflation. However, this covariance has a very large
standard error.

We also estimate a statistically insignificant and economically very small positive
correlation between πt and –mt shocks. The point estimate implies that short-term
inflation risk is very small, and that nominal Treasury bills have a very small or zero
inflation risk premium. Finally, we estimate a statistically significant negative corre-
lation of –0.32 between xt and –mt shocks, implying a time-varying term premium
on real bonds that is positive when ψt is positive.

In the equity market, we estimate statistically insignificant small loadings of stock

1/2

rate, the components of expected inflation, and realized inflation as
(
μ2 2
ψ ＋ σψ

)
times the volatility

of the underlying shocks. For example, we compute the average conditional volatility of realized( )1/2
inflation as μ2 ＋ σ2ψ ψ σπ.
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returns on shocks to the real interest rate (βex and βeX), and a much larger and
statistically significant positive loading on shocks to the negative of the log SDF
(βem). Naturally this estimate implies a positive equity risk premium.

4.4 Fitted state variables

How does our model interpret the economic history of the last 55 years? That is,
what time series does it estimate for the underlying state variables that drive bond
and stock prices? Figure 8 shows our estimates of the real interest rate xt.16 The
model estimates a process for the real interest rate that is high on average, with
a spike in the early 1980 s̓, and becomes more volatile and declining in the second
half of the sample. Higher-frequency movements in the real interest rate were often
countercyclical in this period, as we see the real rate falling in the recessions of the
early 1970 s̓, early 1990 s̓, early 2000 s̓, and at the end of our sample period in 2008-
2009. The real interest rate also falls around the stock market crash of 1987. However
there are important exceptions to this pattern, notably the very high real interest rate
in the early 1980 s̓, during Paul Volcker s̓ campaign against inflation, and a short-lived
spike in the fall of 2008. This spike and generally the history of the real interest rate
since the late 1990 s̓ follow the history of TIPS during this period, shown in Figure 5.
Thus the model attributes the history of long-dated TIPS yields mostly to changes
in the short-term real rate xt. While the state variable ψt is also relevant for TIPS
yields, it plays a secondary role.

Figure 9 plots the components of expected inflation. The permanent component of
expected inflation, in the left panel, exhibits a familiar hump shape over the postwar
period. It was low, even negative, in the 1950 s̓ and 1960 s̓, increased during the
1970 s̓ and reached a maximum value of about 10% in the first half of the 1980 s̓.
Since then, it has experienced a secular decline and remained close to 2% throughout
the 2000 s̓.

The transitory component of expected inflation, in the right panel, was particu-
larly high in the late 1970 s̓ and 1980, indicating that investors expected inflation to
decline gradually from a temporarily high level. The transitory component has been
predominantly negative since then till almost the end of our sample period, implying

16As we have noted already, we constrain zt to be constant. Maximum likelihood estimation of
the model that allows zt to vary over time produces an estimate of zt which is almost constant.
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that our model attributes the generally high levels of yield spreads during the second 
half of our sample period at least partly to investor pessimism about increases in fu-
ture in�flation. By estimating a generally negative transitory component of expected 
in�flation, the model is also able to explain simultaneously the low average nominal 
short-term interest rate and the high average real short-term interest rate in the latter 
part of our sample period. 

Finally, Figure 10 shows the time series of ψt. As we have noted, this variable is
identified primarily through the covariance of stock returns and bond returns and the
volatility of bond returns_ both nominal and real. The state variable ψt exhibits low
volatility and an average close to zero in the period leading up to the late 1970 s̓, with
briefly negative values in the late 1950 s̓, and an upward spike in the early 1970 s̓. It
becomes much more volatile starting in the late 1970 s̓ through the end of our sample
period. It rises to large positive values in the early 1980 s̓ and stays predominantly
positive through the 1980 s̓ and 1990 s̓. However, in the late 1990 s̓ it switches sign
and turns predominantly negative, with particularly large downward spikes in the
period immediately following the recession of 2001 and in the fall of 2008, at the
height of the financial crisis of 2008-2009. Thus ψt not only can switch sign, it has
done so during the past ten years. Overall, the in-sample average for ψt is positive.

The state variables we have estimated can be used to calculate �fitted values for 
observed variables such as the nominal term structure, real term structure, realized 
in�flation, analysts�’ median in�flation forecast, and the realized second moments of 
bond and equity returns. We do not plot the histories of these �fitted values to save 
space. They track the actual observed yields on nominal bonds, in�flation forecasts, 
and the realized stock-nominal bond covariance very closely, and closely the yields on 
TIPS, realized in�flation, and the rest of the realized second moments included in the 
estimation. In general, our model is rich enough that it does not require measurement 
errors with high volatility to �fit the observed data on stock and bond prices. 
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5 Term Structure Implications 

5.1 Moments of bond yields and returns 

Although our model �fits the observed history of real and nominal bond yields, an im-
portant question is whether it must do so by inferring an unusual history of shocks, or 
whether the observed properties of interest rates emerge naturally from the properties 
of the model at the estimated parameter values. In order to assess this, Tables 2 and 
3 report some important moments of bond yields and returns. 

The tables compare the sample moments in our historical data with moments 
calculated by simulating our model 1,000 times along a path that is 250 quarters 
(or 62 and a half years) long, and averaging time-series moments across simulations. 
In each table, sample moments are shown in the �first column and model-implied 
moments in the second column. The third column reports the fraction of simulations 
for which the simulated time-series moment is larger than the corresponding sample 
moment in the data. These numbers can be used as informal tests of the ability of the 
model to �fit each sample moment. Although our model is estimated using maximum 
likelihood, these diagnostic statistics capture the spirit of the method of simulated 
moments (Duffi e and Singleton 1993, Gallant and Tauchen 1996), which minimizes a 
quadratic form in the distance between simulated model-implied moments and sample 
moments. 

In Table 2 the short-term interest rate is a three-month rate and moments are 
computed using a three-month holding period, while in Table 3 the short-term interest 
rate is a one-year rate and the holding period is one year. The use of a longer short 
rate and holding period in Table 3 follows Cochrane and Piazzesi (2005), and shows 
us how our model �fits lower frequency movements at the longer end of the yield curve. 

The �first two rows of Tables 2 and 3 report the sample and simulated means 
for nominal bond yield spreads, calculated using 3 and 10 year maturities, and the 
third and fourth rows look at the volatilities of these spreads. In all cases our model 
provides a fairly good �fit to average yield spreads, slightly understating the average 
3-year spread and understating the average 10-year spread (that is, slightly oversta-
ting the average concavity of the yield curve). However the model systematically
overstates the volatility of yield spreads, a problem that appears in almost all our
1,000 simulations.
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In each table, the next four rows show how our models �fit the means and standard 
deviations of realized excess returns on 3-year and 10-year nominal bonds. In order 
to calculate three-month realized returns from constant-maturity bond yields, we 
interpolate yields between the constant maturities we observe, doing this in the same 
manner for our historical data and for simulated data from our models. Most of 
our annual realized returns do not require interpolation, but in the early part of our 
sample, before 1971, we must also interpolate the 9-year bond yield to calculate the 
annual realized return on 10-year bonds. Just as with yield spreads, the model 
provides a good �fit to mean excess returns, but systematically somewhat overstates 
the volatility of excess returns on 3-year bonds, although it provides a statistically 
better �fit for the excess return on 10-year bonds. 

The next four rows of each table summarize our model description of TIPS yields. 
The model generates an average TIPS yield that is higher than the observed average. 
We do not believe this is an extremely serious problem, as our estimates imply higher 
real interest rates earlier in our sample period, before TIPS were issued, than in 
the period since 1997 over which we measure the average TIPS yield. Thus the 
discrepancy may result in part from the short and unrepresentative period over which 
we measure the average TIPS yield in the data. 

The model implies a zero or slightly negative average yield spread and positive 
average realized excess return. The difference between these two statistics re�flects 
the effect of Jensen�’s Inequality; equivalently, it is the result of convexity in long-
term bonds. The slightly positive average risk premium results from our negative 
estimate of ρxm in Table 1, which implies that the real interest rate is countercyclical 
on average. 

5.2 State variables and the yield curve 

Given our estimated term structure model, we can now analyze the impact of each 
of our four state variables on the nominal yield curve, and thus get a sense of which 
components of the curve they affect the most. To this end, we plot in Figures 11 
through 14 the zero-coupon log nominal yield curve and, when appropriate, the zero-
coupon log real yield curve generated by our model when one of the state variables 
is at its in-sample mean, maximum, and minimum, while all other state variables 
are at their in-sample means. Thus the central line describes the yield curve�— real 
or nominal�— generated by our model when all state variables are evaluated at their 
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in-sample mean. For simplicity we will refer to this curve as the “mean log yield
curve.”17 We plot maturities up to 10 years, or 40 quarters.

Figure 11 plots the zero-coupon log real yield curve in the left panel, and the
zero-coupon log nominal yield curve in the right panel, that obtain when we vary
the short-term real rate xt. The left panel shows that the mean log real yield curve
generated by our model is gently upward sloping, with an intercept of about 2.3%
and a 10-year yield spread of about 80 basis points.

The right panel of Figure 11 shows that the mean log nominal yield curve has
a somewhat greater positive slope, with a spread between the 10-year rate and the
1-quarter rate of just under 110 basis points. This spread is slightly lower than the
115 basis point historical average spread in our sample period. The yield curve is
concave, flattening out at maturities beyond five years. The intercept of the curve
implies a short-term nominal interest rate of about 5.3%, in line with the average
short-term nominal interest rate in our sample.

Figure 11 shows that changes in the real interest rate alter both the level and
the slope of the real and nominal yield curves. However, the slope effects are modest
because the real interest rate is so persistent in our model.

Figure 12 plots the effect of changes in the components of expected inflation,
λt and ξt, on the nominal yield curve. The left panel shows that changes in the
permanent component λt of expected inflation affect short- and long-term nominal
yields almost equally, causing parallel shifts in the level of the nominal yield curve.
The right panel shows that, by contrast, changes in the transitory component ξt of
expected inflation have a much stronger effect on the short end of the curve than on
the long end, causing changes in the slope of the curve. These effects reflect the fact
that the shocks to the transitory component of expected inflation have a relatively
short half-life of about 18 months.

The most interesting results are shown in Figure 13. This figure illustrates the
nominal and real yield curves that obtain when we vary ψt. In both panels, increases
in ψt from the sample mean to the sample maximum increase intermediate-term yields
and lower long-term yields, while decreases in ψt to the sample minimum lower both

17Strictly speaking this is a misnomer in the case of the nominal yield curve, for two reasons.
First, the log nominal yield curve is a non-linear function of the vector of state variables. Second,
its unconditional mean is not even defined, since one of the state variables follows a random walk.
Thus at most we can compute a mean yield curve conditional on initial values for the state variables.
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intermediate-term and long-term yields. Thus ψt alters the concavity of both the real
yield curve and the nominal yield curve.

The impact of ψt on the concavity of the nominal yield curve results from two
features of our model. First, nominal bond risk premia increase with maturity
rapidly at intermediate maturities and slowly at short maturities because intermediate
maturities are exposed both to transitory and permanent shocks to expected inflation.
When ψt is positive, this generates a steep yield curve at shorter maturities, and a
flatter one at longer maturities. When ψt changes sign, however, the difference in
risk prices pulls intermediate-term yields down more strongly than long-term yields.

Second, when ψt is far from zero bond returns are unusually volatile, and through
Jensen s̓ Inequality this lowers the bond yield that is needed to deliver any given
expected simple return. This effect is much stronger for long-term bonds; in the
terminology of the fixed-income literature, these bonds have much greater “convexity”
than short- or intermediate-term bonds. Therefore extreme values of ψt tend to lower
long-term bond yields relative to intermediate-term yields.

Figures 11 through 13 allow us to relate our model to traditional factor models of
the term structure of interest rates, and to provide an economic identification of those
factors. Following Litterman and Scheinkman (1991), many term structure analyses
distinguish a “level”factor, a “slope”factor, and a “curvature”factor. The first of
these moves the yield curve in parallel; the second moves the short end relative to
the long end; and the third moves intermediate-term yields relative to short and long
yields.

Figures 11 and 12 suggest that in our model, the permanent component of ex-
pected inflation is the main contributor to the level factor. The short-term real
interest rate and particularly the transitory component of expected inflation both
contribute to the slope factor by moving short-term nominal yields more than long-
term nominal yields. Finally, Figure 13 shows that the covariance of nominal and
real variables drives the curvature factor and also has some effect on the slope factor.
Putting these results together, the curvature factor is likely to be the best proxy for
the nominal-real covariance.
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5.3 Time-variation in bond risk premia

In the previous section we saw that in our model, the nominal-real covariance ψt is
an important determinant of medium- and long-term nominal interest rates. The
reason for this is that these variables have powerful effects on risk premia. In fact,
nominal bond risk premia are almost perfectly proportional to the product ψt.

Figure 14 illustrates this fact. The left panel plots the simulated expected excess
return on 3-year and 10-year nominal bonds over 3-month Treasury bills against ψ 1

t.
8

The right panel of the figure shows the term structure of risk premia as ψt varies
from its sample mean to its sample minimum and maximum. Risk premia spread
out rapidly as maturity increases, and 10-year risk premia vary from -75 to 140 basis
points. The reason for this asymmetry is that we observe large negative values of ψt
towards the end of our sample period.

The full history of our model s̓ 10-year term premium is illustrated in Figure
15. The figure shows fairly stable risk premia of about 0.2% during the 1950 s̓ and
1960 s̓, and a run up later in the 1970 s̓ to a peak above 1.5% in the early 1980 s̓.
A long decline in risk premia later in the sample period was accentuated around the
recession of the early 2000 s̓ and during the financial crisis of 2008–2009, bringing the
risk premium to its sample minimum of -0.75%. This time series reflects the shape
in the nominal-real covariance ψt illustrated in Figure 10.

We saw in Figure 13 that the nominal-real covariance ψt influences the curvature
of the yield curve as well as its slope. Other factors in our model, such as the real
interest rate, also influence the slope of the yield curve but do not have much effect on
its curvature. Given the dominant influence of ψt on bond risk premia, the curvature
of the yield curve should be a good empirical proxy for risk premia on nominal bonds.

In fact, an empirical result of this sort has been reported by Cochrane and Piazzesi
(CP, 2005). Using econometric methods originally developed by Hansen and Hodrick
(1983), and implemented in the term structure context by Stambaugh (1988), CP
show that a single linear combination of forward rates is a good predictor of excess
bond returns at a wide range of maturities. CP work with a 1-year holding period

18 In the general model with time varying zt, the nominal-bond risk premium in our model is a
linear combination of zt, z2t , and ztψt. But the maximum likelihood estimate of the general model
produces an almost constant zt. Thus in practice, ψt generates almost all the variation in the risk
premium.
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and a 1-year short rate. They �find that the combination of forward rates that predicts 
excess bond returns is tent-shaped, with a peak at 3 or 4 years, implying that bond 
risk premia are high when intermediate-term interest rates are high relative to both 
shorter-term and longer-term rates; that is, they are high when the yield curve is 
strongly concave. 

Our model interprets this phenomenon as the result of changes in the nominal-real 
covariance ψt. As ψt increases, it raises the risk premium for the transitory component 
of expected in�flation and strongly increases the intermediate-term yield, but it has a 
damped or even perverse effect on long-term yields because the permanent component 
of expected in�flation has little systematic risk and the convexity of long bonds causes 
their yields to fall with volatility. Thus the best predictor of excess bond returns is 
the intermediate-term yield relative to the average of short- and long-term yields. 

Figure 16 illustrates the estimated coeffi cients in a CP regression of annual excess 
bond returns over the 1-year short rate, averaged across maturities from 2 to 5 years 
in the manner of CP, onto 1-year, 3-year, and 5-year forward rates. The �fitted value 
in the data is tent-shaped, as reported by CP; the �fitted value implied by our model 
has a similar shape but a much smaller magnitude. A caveat is that when we add 2-
and 4-year forward rates to the regression, we do not reliably recover the tent shape 
either in the data or in the model, as the regressors are highly collinear and so the 
regression coeffi cients become unstable. 

Despite these promising qualitative results, the predictability of bond returns is 
small in our model. The bottom panels of Tables 2 and 3 illustrate this point. In 
the �first three rows of Table 2 we report the standard deviations of true expected 
3-month excess returns within our model. Our model implies an annualized standard
deviation for the expected excess return on 3-year bonds of about 9 basis points, and
for the expected excess return on 10-year bonds of about 15 basis points.19 This
variation is an order of magnitude smaller than the annualized standard deviations of
realized excess bond returns, implying that the true explanatory power of predictive
regressions in our model is tiny. There is also modest variability of about 11 basis
points in the true expected excess returns on TIPS.
19 Yield interpolation for 3-month returns in Table 2, and for annual returns on 10-year bonds in 

the early part of our sample in Table 3, may exaggerate the evidence for predictability; however the 
same yield interpolation is used for simulated data from our models, so the comparison of results 
across columns is legitimate. We have used our simulations to examine the effect of interpolation. 
We �find that interpolation does slightly increase measured bond return predictability, but the effect 
is modest. 
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The next three rows report the standard deviations of �fitted values of Campbell-
Shiller (1991, CS) predictability regressions of annualized nominal bond excess returns 
onto yield spreads of the same maturity at the beginning of the holding period. At the 
3-month horizon shown in Table 2, the standard deviations in the data are 104 basis
points for 3-year bonds, and 251 basis points for 10-year bonds. These numbers are
considerably larger than the true variability of expected excess returns in our model,
implying that our model cannot match the behavior of these predictive regressions.

We also report the standard deviations of �fitted values generated by CS regressions 
on simulated data from our various models. For our full model, the regressions deliver 
�fitted values that are considerably more volatile than the true expected excess returns. 
The reason for this counterintuitive behavior is that there is important �finite-sample 
bias in the CS regression coeffi cients of the sort described by Stambaugh (1999). 
In the case of regressions of excess bond returns on yield spreads, by contrast with 
the better known case of regressions of excess stock returns on dividend yields, the 
Stambaugh bias is negative (Bekaert, Hodrick, and Marshall 1997). In our full model, 
where the true regression coeffi cient is positive but close to zero, the Stambaugh 
bias increases the standard deviation of �fitted values by generating spurious negative 
coeffi cients. Nonetheless, the standard deviation of �fitted values in the model is still 
considerably smaller than in the data. 

We obtain somewhat more promising results using a procedure that approximates 
the approach of Cochrane and Piazzesi (2005, CP). We regress excess bond returns on 
1-, 3-, and 5-year forward rates at the beginning of the holding period, and report the 
standard deviations of �fitted values.20 This procedure generates comparable standard 
deviations of �fitted values in the model and in the data, at least for predicting excess 
3-year bond returns. Once again, however, this �finding is largely driven by small-
sample bias as the �fitted values in the model have a much higher standard deviation
than the true expected excess returns.

Finally, Table 4 asks whether our model generates proxies for bond risk premia,
constrained to be linear combinations of 1-year, 3-year, and 5-year forward rates, that
perform well in the historical data. The table compares the empirical R2 statistics
for unconstrained CP regressions with the empirical R2 statistics that result from
regressing bond returns on the combinations of forward rates that, in simulated data
generated by our term structure model, best predict bond returns. In the top panel

20 Cochrane and Piazzesi impose proportionality restrictions across the regressions at different 
maturities, but we do not do this here. 
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we allow free regression coeffi cients on these forward rate combinations, while in the 
bottom panel we restrict them to have a unit coeffi cient as implied by our model 
simulations. Our model generates the type of predictability for expected excess 
bond returns shown by CP, particularly at the 1-year horizon. However, it cannot 
match the explanatory power of unrestricted CP regressions. 

These results show that although our model does generate time-varying bond risk 
premia, the implied variation in risk premia is smaller and has a different time-series 
pattern from that implied by CS and CP regressions. In the CS case, the difference in 
time-series behavior can be understood visually by comparing the history of the yield 
spread shown in Figure 3 with the history of the model-implied bond risk premium 
shown in Figure 15. The former has a great deal of business-cycle variation, while 
the latter has a hump shape with a long secular decline from the early 1980�’s through 
the late 2000�’s. The �fitted value from a CP regression lines up somewhat better with 
the model-implied bond risk premium, but it too spikes up in the recessions of the 
early 1990�’s and early 2000�’s in a way that has no counterpart in Figure 15. 

6 Conclusion 

We have argued that term structure models must confront the fact that the covari-
ances between nominal and real bond returns, on the one hand, and stock returns, 
on the other, have varied substantially over time. Analyses of asset allocation tradi-
tionally assume that broad asset classes have a stable structure of risk over time; our 
empirical results imply that in the cases of nominal and in�flation-indexed government 
bonds, at least, this assumption is seriously misleading. 

We have proposed a term structure model in which real and nominal bond returns 
are driven by �five factors: the real interest rate, the level of risk aversion or volatility 
of the stochastic discount factor, transitory and permanent components of expected 
in�flation, and a state variable that governs the covariances of in�flation and the real 
interest rate with the stochastic discount factor. We have estimated a version of 
the model allowing for time-variation in all these variables except for the level of risk 
aversion. The model implies that the risk premia of nominal bonds have changed 
over the decades because of changes in the covariance between in�flation and the real 
economy. Nominal bond risk premia were positive in the early 1980�’s, when bonds 
covaried strongly with stocks, and negative in the 2000�’s, particularly during the 
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downturn of 2008�–9, when bonds hedged equity risk. 

Our model explains the qualitative �finding of Cochrane and Piazzesi (2005) that a 
tent-shaped linear combination of forward rates, with a peak at about 3 years, predicts 
excess bond returns at all maturities better than maturity-speci�fic yield spreads. In 
our model, the covariance between in�flation and the real economy has its largest 
effect on the risk premium for a transitory component of expected in�flation, which 
moves the 3-year nominal yield. There is a more modest effect on the risk premium 
for a permanent component of expected in�flation, which is important for the 10-
year nominal yield. In addition, there is a Jensen�’s Inequality effect of increasing 
volatility on yields. In the language of �fixed-income investors, longer-term bonds have 
�“convexity�”which becomes more valuable when volatility is high, driving down bond 
yields. At the long end of the yield curve, the convexity effect is slightly stronger 
for high levels of the nominal-real covariance, whereas at the intermediate portion of 
the curve, the risk premium effect dominates. Hence, the level of intermediate yields 
relative to short- and long-term yields is a good proxy for the nominal-real covariance 
and thus for the risk premium on nominal bonds. 

Although our results are qualitatively consistent with empirical �findings of pre-
dictability in excess bond returns, our model does not replicate the high explanatory 
power of regressions that predict excess US Treasury bond returns from yield spreads 
and forward rates. Our estimates of variation in the nominal-real covariance and 
the level of risk aversion deliver risk premia whose standard deviation is an order of 
magnitude smaller than the standard deviation of realized excess bond returns. Re-
lated to this, the risk premia implied by our model have trended strongly downwards 
since the early 1980�’s, in line with the declining covariance between bond and stock 
returns, whereas the �fitted values of predictive regressions for bond returns have not 
trended in this way. 

The results we have presented can be extended in a number of directions. First, it 
would be of interest to allow both persistent and transitory variation in the nominal-
real covariance, as we have done for expected in�flation. This might allow our model 
to better �fit both the secular trends and cyclical variation in the realized covariance 
between bonds and stocks. 

Second, we can estimate our model using data from other countries, for example 
the UK, where in�flation-indexed bonds have been actively traded since the mid-1980�’s. 
This will be particularly interesting since the evidence of bond return predictability is 
considerably weaker outside the US (Bekaert, Hodrick, and Marshall 2001, Campbell 
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2003) and may better fit the predictability generated by our model.

Third, it would be possible to derive stock returns from primitive assumptions
on the dividend process, as in the recent literature on affi ne models of stock and
bond pricing (Mamaysky 2002, Bekaert, Engstrom, and Grenadier 2005, d A̓ddona
and Kind 2006, Bekaert, Engstrom, and Xing 2009).

Fourth, we can consider other theoretically motivated proxies for the stochastic
discount factor. An obvious possibility is to look at realized or expected future con-
sumption growth, as in recent papers on consumption-based bond pricing by Piazzesi
and Schneider (2006), Abhyankar and Lee (2008), Eraker (2008), Hasseltoft (2008),
Lettau and Wachter (2010), and Bansal and Shaliastovich (2010). A disadvantage of
this approach is that consumption is not measured at high frequency, so one cannot
use high-frequency data to track a changing covariance between bond returns and
consumption growth.

Finally, we can explore the relation between our covariance state variable ψt and
the state of monetary policy and the macroeconomy. We have suggested that a
positive ψt corresponds to an environment in which the Phillips Curve is unstable,
perhaps because supply shocks are hitting the economy or the central bank lacks
anti-inflationary credibility, while a negative ψt reflects a stable Phillips Curve. It
would be desirable to use data on inflation and output, and a structural macroeco-
nomic model, to explore this interpretation. The connection between the bond-stock
covariance and the state of the macroeconomy should be of special interest to central
banks. Many central banks use the breakeven inflation rate, the yield spread be-
tween nominal and inflation-indexed bonds, as an indicator of their credibility. The
bond-stock covariance may be appealing as an additional source of macroeconomic
information.
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Table 1: Parameter estimates. 

Parameter Estimates 

Parameter Estimate Std Err 

µx x 103 8.889 0.338 

µψ x 103 7.419 1.165 

φx 0.939 0.004 

φξ 0.885 0.008 

φψ 0.751 0.030 

σ  m x 102 6.815 1.003 

σX x 103 1.133 0.092 

σx x 101 2.894 0.373 

σλ x 104 3.052 4.905 

σΛ x 104 5.725 1.160 

σξ x 101 2.142 0.413 

σψ x 103 3.843 0.460 

βeX 1.136 5.658 

βex x 102 -0.005 4.736 

βem x 102 8.748 4.007 

ρxξ 0.000 0.121 

ρxm -0.323 0.105 

ρxπ 0.000 0.549 

ρλm -0.797 1.302 

ρξm -0.237 0.156 

ρξπ -0.136 1.168 

ρmπ 0.011 0.060 



Table 2: Sample and Implied Moments. Yield spreads (YS) are calculated over the 3mo yield. Realized 

excess returns (RXR) are calculated over a 3mo holding period, in excess of the 1yr yield. Units are annualized 

percentage points. Simulation columns report means across 1000 replications, each of which simulates a time-

series of 250 quarters. The σ(C︿P ) row reports the standard deviation of the fitted values from a Cochrane-

Piazzesi style regression of RXR on the 1-, 3-, and 5-yr forward rates at the beginning of the holding period. 

The σ(C︿S) row reports the standard deviation of the fitted values from a Campbell-Shiller style regression of 

RXR on the same-maturity YS at the beginning of the holding period. In the rightmost column we report the 

fraction of simulation runs where the simulated value exceeds the data value. † Data moments for the 10yr 

return require 117mo yields. We interpolate the 117mo yield linearly between the 5yr and the 10yr ‡ TIPS 

entries refer to the 10yr spliced TIPS yield. We have this data 1/1999-9/2009. 

Sample and Implied Moments 

Moment Actual Data Model Above 

3yr YS mean 0.62 0.54 0.44 

10yr YS mean 1.15 0.83 0.36 

3yr YS stdev 0.45 0.57 0.89 

10yr YS stdev 0.70 1.18 1.00 

3yr RXR mean 1.17 1.11 0.49 

10yr RXR mean 2.21 1.71 0.39 

3yr RXR stdev 4.37 5.64 1.00 

10yr RXR stdev 11.16 10.57 0.24 

10yr TIPS yield mean 2.58‡ 3.51 0.98 

10yr TIPS YS mean 0.02 

10yr TIPS RXR mean 0.36 

10yr TIPS RXR stdev 8.82 

Predictive Regressions 

Moment Actual Data Model Above 

3yr EXR stdev 0.09 

10yr EXR stdev 0.15 

10yr TIPS EXR stdev 0.11 

3yr RXR σ(︿CS) 1.04 0.34 0.01 

10yr RXR σ(︿CS) 2.51† 0.61 0.00 

10yr TIPS RXR σ(︿CS) 0.53 

3yr RXR σ(︿CP ) 0.79 0.70 0.36 

10yr RXR σ(︿CP ) 2.06† 1.33 0.11 



Table 3: Sample and Implied Moments. Yield spreads (YS) are calculated over the 1yr yield. Realized 

excess returns (RXR) are calculated over a 1yr holding period, in excess of the 1yr yield. Units are annualized 

percentage points. Simulation columns report means across 1000 replications, each of which simulates a time-

series of 250 quarters. The σ(C︿P ) row reports the standard deviation of the fitted values from a Cochrane-

Piazzesi style regression of RXR on the 1-, 3-, and 5-yr forward rates at the beginning of the holding period. 

The σ(C︿S) row reports the standard deviation of the fitted values from a Campbell-Shiller style regression of 

RXR on the same-maturity YS at the beginning of the holding period. In the rightmost column we report the 

fraction of simulation runs where the simulated value exceeds the data value. † Data moments for the 10yr 

return require 9yr yields. We interpolate the 9yr yield linearly between the 5yr and the 10yr. ‡ TIPS entries 

refer to the 10yr spliced TIPS yield. We have this data 1/1999-9/2009. 

Sample and Implied Moments 

Moment Actual Data Model Above 

3yr YS mean 0.37 0.31 0.42 

10yr YS mean 0.90 0.57 0.28 

3yr YS stdev 0.51 0.75 0.99 

10yr YS stdev 1.11 1.96 1.00 

3yr RXR mean 0.75 0.66 0.43 

10yr RXR mean 1.84† 1.25 0.30 

3yr RXR stdev 3.17 4.00 0.97 

10yr RXR stdev 10.32† 9.48 0.18 

10yr TIPS yield mean 2.58‡ 3.54 0.99 

10yr TIPS YS mean -0.05 

10yr TIPS RXR mean 0.17 

10yr TIPS RXR stdev 7.80 

Predictive Regressions 

Moment Actual Data Model Above 

3yr EXR stdev 0.08 

10yr EXR stdev 0.21 

10yr TIPS EXR stdev 0.19 

3yr RXR σ(︿CS) 0.91 0.41 0.08 

10yr RXR σ(︿CS) 3.54† 0.95 0.00 

10yr TIPS RXR σ(︿CS) 0.83 

3yr RXR σ(︿CP ) 1.16 0.87 0.23 

10yr RXR σ(︿CP ) 4.51† 2.09 0.00 



Table 4: Forecasting excess returns. The table below reports the R2 for regressions in our data of actual 

data RXR on linear combinations of the actual data 1-, 3-, and 5-yr forward rates at the beginning of the 

holding period. The unconstrained column estimates the best combination in the data, and thus corresponds to 

the first stage of the Cochrane-Piazzesi procedure. In the other columns, the combination is restricted to be the 

one estimated in long-sample simulation regressions of simulated RXR on simulated forward rates. In the first 

panel, we allow this simulation-generated combination to be scaled up. In the second panel, we do not allow 

scaling. Realized excess returns (RXR) are calculated over 3mo and 1yr holding periods. † Data moments for 

the 10yr return require 9yr yields. These yields are in our dataset 8/1971-9/2009. For the earlier part of the 

sample we interpolate the 9yr yield linearly between the 5yr and the 10yr. 

Forecasting Excess Returns 

Holding Period Moment Unconstrained Model 

3-month 3yr RXR 0.032 0.022 

3-month 10yr RXR 0.031 0.013 

1-yr 3yr RXR 0.132 0.093 

1-yr 10yr RXR  0.181† 0.080 

Forecasting Excess Returns: No scaling 

Holding Period Moment Unconstrained Model 

3-month 3yr RXR 0.032 0.001 

3-month 10yr RXR 0.022 0.000 

1-yr 3yr RXR 0.127 0.007 

1-yr 10yr RXR  0.097† 0.002 
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Figure 1: Time series of the CAPM β of the 10-year nominal bond. 
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Figure 2: Time series of the CAPM β of de�flation. 
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Figure 3: Time series of 3-month and 10-year nominal yields and yield spread. 
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Figure 4: Time series of in�flation. 
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Figure 5: Time series of US 10-year in�flation-indexed yields. 
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Figure 6: Time series of real bond second moments. The �figure on the left shows the covariance between 
stock and real bond returns. The �figure on the right shows variance of real bond returns. The smoothed line in each 
�figure is a 2-year equal-weighted moving average. 
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Figure 7: Time series of nominal bond second moments. The �figure on the left shows the covariance 
between stock and nominal bond returns. The �figure on the right shows variance of nominal bond returns. The 
smoothed line in each �figure is a 2-year equal-weighted moving average. 
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Figure 8: Time series of real rate. The �figure on the left plots the time series of xt, the real interest rate. 
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Figure 9: Time series of permanent and transitory components of expected inflation. The figure on
the left plots the time series of λt, the permanent component of expected inflation. The figure on the right plots the
time series of ξt, the temporary component of expected inflation.
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Figure 10: Time series of ψt. 
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Figure 11: Responses of yield curves to xt. The left hand �figure shows the response of the real yield curve, 
and the right hand �figure shows the response of the nominal yield curve, as xt is varied between its sample minimum 
and maximum while all other state variables are held �fixed at their sample means. 
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Figure 12: Responses of yield curves to λt and ξt.The left hand �figure shows the response of the nominal 
yield curve to the permanent component of expected inflation λt, and the right hand �figure shows the response to 
the transitory component of expected inflation ξt, as these state variables are varied between their sample minima 
and maxima while all other state variables are held �fixed at their sample means. 
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Figure 13: Responses of yield curves to ψt . The left hand �figure shows the response of the real yield curve, 
and the right hand �figure shows the response of the nominal yield curve, to ψt as it is varied between its sample 
minima and maxima while all other state variables are held �fixed at their sample means. 
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Figure 14: Responses of nominal expected excess returns to ψt. The left hand �figure shows the expected 
excess returns on 3-year and 10-year nominal bonds over 3-month Treasury bills, as functions of ψt. The right hand 
�figure shows the term structure of expected excess nominal bond returns as ψt is varied between its sample minimum 
and maximum while all other state variables are held �fixed at their sample means. 
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Figure 15: Time series of expected excess returns for 10-year nominal bonds. 

1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Forw ard Rate

C
oe

ffi
cie

nt

Data
Model Implied

Figure 16: Data- and model- implied Cochrane-Piazzesi relationships. 
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