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Abstract 

We use data on enrollment in the Supplemental Security Income (SSI) and Social Security Dis-
ability Insurance (SSDI) program and data on health care spending by Medicaid beneficiaries to 
analyze the extent to which Medicaid spending is predictive of future disability insurance re-
ceipt among non-disabled teenagers and future disability insurance disenrollment among dis-
abled teenagers. In our first set of analyses, we find that we currently do not have enough data 
to predict future SSI and SSDI enrollment among non-disabled teenagers. In our second set of 
analyses, we find that observed Medicaid spending among disabled teenagers can be used to pre-
dict SSI disenrollment. Our results indicate that machine learning models using information on 
healthcare spending may be useful for identifying current teenage SSI recipients who are more or 
less likely to be removed from SSI. 
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1 Introduction 

Despite recent declines, enrollment levels as well as total spending in U.S. disability insurance (DI) 

programs have risen in recent decades. The Social Security Disability Insurance (SSDI) program had 

11.7 million beneficiaries in 2017 (Social Security Administration, 2018a), two and half times more 

beneficiaries than 30 years earlier. Similarly, the number of beneficiaries in the Supplemental Security 

Income (SSI) program doubled during the same period (Social Security Administration, 2018b). With 

almost $200 billion in total federal spending on cash benefits (Social Security Administration, 2018a,b) 

and an additional $270 billion in total federal spending on health insurance benefits (Kaiser Family 

Foundation, 2014; Congressional Budget Office, 2016), these programs account for 2.5% of GDP. 

However, beyond their fiscal importance, DI programs impact the lives of millions of Ameri-

cans in a variety of ways. Recent research has provided evidence on the effects of these programs 

on beneficiaries, including effects on labor supply and earnings (Maestas, Mullen and Strand, 2013; 

French and Song, 2014; Moore, 2015; Deshpande, 2016a; Gelber, Moore and Strand, 2017), financial 

well-being (Deshpande, Gross and Su, 2019), and health (Gelber, Moore and Strand, 2018). Disability 

programs have also been shown to impact entire households beyond individual recipients (Duggan 

and Kearney, 2007; Dahl, Kostol and Mogstad, 2014; Deshpande, 2016b; Autor et al., 2019). Despite 

extensive research into the effects of enrollment in these programs, we still know relatively little 

about the factors that lead beneficiaries to enroll, with existing research on determinants of program 

take-up largely limited to economic factors (Autor and Duggan, 2003; Maestas, Mullen and Strand, 

2015, 2018). While the extent to which overall changes in health and aging have impacted enrollment 

is debated in the literature (Autor and Duggan, 2006; Autor, 2011; Liebman, 2015), evidence on the 

importance of non-economic factors is scarce.1 

In this paper, we take a first step toward understanding the role of an understudied but po-

tentially important factor in the process determining enrollment in DI programs: healthcare. Many 

disabling conditions can be prevented or managed given appropriate health care treatment. For ex-

ample, mental conditions such as severe depression could influence labor force participation, but at 

the same time could be treatable via psychotherapy and/or pharmaceutical therapies such as anti-

depressants and anti-psychotics. Heart attacks that may inhibit workers from returning to certain 

1Exceptions include (Cutler, Meara and Richards-Shubik, 2011) who tie disability enrollment to health shocks and recent 
work by Park and Powell (2019) tying enrollment in SSI and SSDI to the reformulation of OxyContin and the subsequent 
shift from prescription opioids to heroin and fentanyl. 

1 



jobs may be prevented by pharmaceuticals such as statins. Physical therapy may lessen the debilitat-

ing effects of back or knee injuries. 

To make progress on this question, we leverage rich administrative data including information 

on both enrollment in disability programs and utilization of healthcare. Specifically, we use data 

from state Medicaid programs that provides information on each Medicaid beneficiary’s disability 

status, and whether they qualified for Medicaid on the basis of disability or an alternative channel. 

Medicaid eligibility due to disability typically implies that a beneficiary is simultaneously in the SSI 

program. These data also include each beneficiary’s full set of health insurance claims, providing a 

complete view of each individual’s healthcare utilization. We link these data at the individual level 

to enrollment data from the Medicare program. Consistent with the Medicaid data, the Medicare 

enrollment data also tracks whether a beneficiary is enrolled in Medicare due to disability as opposed 

to another reason. Medicare enrollment due to disability definitively implies concurrent enrollment 

in the SSDI program. 

Using this data, we focus on teenagers enrolled in the Medicaid program in the early 2000’s. We 

look separately at teenagers who are eligible for Medicaid due to disability vs. some other eligibility 

pathway. For both groups, we first identify whether they are enrolled in SSDI anytime prior to 2010, 

at most 13 years after we observe their healthcare utilization in Medicaid. We find that almost no 

individual in our sample is enrolled in SSDI at that time, implying that there is little possibility of 

estimating the role of teenage health care use in determining SSDI enrollment as of age 23. We then 

focus on individuals who were at one time enrolled in Medicaid but not disabled, and then examine 

whether they enroll in Medicaid on the basis of disability (and SSI) at a later date, prior to 2010. 

Again, we find that very few of these individuals enrolled in SSI by that time, implying that there 

again is little possibility of estimating the role of health care use in determining SSI enrollment for 

this group.2 We then turn to the group of teenagers who are originally eligible for Medicaid due to 

disability. For this group, we ask a different question: Did they leave SSI at age 18? We find that a 

substantial portion leave, but a substantial portion stay, providing a promising setting for assessing 

the effects of healthcare on SSI disenrollment. As a start toward this causal question, we perform an 

exploratory analysis of the association between healthcare utilization and disenrollment at age 18. 

2In both cases, it is likely that age 23 is not old enough for much enrollment in SSI or SSDI to have occurred. This data 
limitation also rules out analyses of the effects of specific treatments, such as post-surgical opioids, on later-life DI program 
enrollment. Future work should focus on these important questions once the data become available. 
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We first show that, intuitively, teenagers with higher healthcare spending have a lower proba-

bility of exiting the SSI program. Nearly half (48%) of teenagers in the lowest quartile of Medicaid 

spending exit SSI, while only 23% in the highest spending quartile do, a 25 percentage point differ-

ence. We then use a series of machine learning algorithms to assess the extent to which healthcare 

utilization predicts disenrollment from SSI. The models correctly predict whether an individual will 

be disenrolled from SSI about 80% of the time. They perform better for individuals who stay on SSI 

vs. individuals who are disenrolled. We show that overall the actual disenrollment rate for the top 

quartile of predicted disenrollment is 71-82 percentage points higher than the actual disenrollment 

rate for the bottom quartile of predicted disenrollment. Indeed, individuals in the bottom quartile 

of predicted disenrollment (top quartile of predicted enrollment in SSI at age 23) have an actual 

disenrollment rate of just 1% (rate of SSI enrollment at age 23 of 99%). We then condition on all non-

healthcare-related variables in the prediction models (demographics, time, geography) and assess 

the extent to which actual disenrollment differs across quartiles of conditional predicted disenroll-

ment, finding that the disenrollment rate for the top quartile of conditional predicted disenrollment 

is 38-54% higher than the disenrollment rate for the bottom quartile of conditional predicted disen-

rollment, implying that information about health care spending during teenage years is predictive of 

disenrollment at age 18. 

Our results suggest that observed healthcare spending (as well as other information found in 

Medicaid data) can be used to predict future disability insurance receipt status among current dis-

ability insurance recipients. Our results also indicate that machine learning models using information 

on predicted healthcare spending may be useful for identifying current teenage SSI recipients who 

are more or less likely to be removed from the program. In theory, one possible use of these models 

could be to target redetermination efforts to the groups of recipients most likely to be removed, possi-

bly saving resources by putting off redeterminations of the groups least likely to be removed. Indeed, 

the models allow for easy and transparent identification of ex ante identifiable groups of individuals 

for whom the ex post probability of disenrollment is a mere 1%, indicating that redetermination for 

large groups of teenage SSI recipients could be avoided with almost no real effect on who is actu-

ally removed from the program. These models may also be useful for helping recipients understand 

the likelihood they will be removed at age 18, helping those who are likely to be removed to more 

accurately plan for their future. 
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This paper contributes to the literature on take-up of disability insurance programs. Most of this 

literature has focused on the economic sources of disability insurance take-up. For example, in re-

cent work (Maestas, Mullen and Strand, 2015, 2018) show that when economic conditions are worse, 

workers are more likely to apply for and be awarded SSDI payments. Other existing works considers 

a variety of factors, including aging, demographic change, and program rules (Autor and Duggan, 

2006; Autor, 2011; Liebman, 2015). We complement this literature by performing an exploratory de-

scriptive analysis of the role of healthcare in disability insurance take-up. 

The paper proceeds as follows. Section 2 provides background on SSDI and SSI and age-18 

redetermination in the SSI program. Section 3 describes the Medicaid data we use. Section 4 describes 

our machine learning methods. Section 5 summarizes our empirical findings. Section 6 concludes. 

2 Background 

In the U.S., there are two major federal disability insurance programs: the Social Security Disabil-

ity Insurance (SSDI) program and the Supplemental Security Income (SSI) program. Both of these 

programs provide monthly cash benefits to individuals classified as disabled, where disability is 

federally defined as the “inability to engage in substantial gainful activity (SGA) by reason of any 

medically determinable physical or mental impairment(s) which can be expected to result in death 

or which has lasted or can be expected to last for a continuous period of not less than 12 months.” 

SSDI benefits are awarded to individuals with disabilities who have sufficient work histories, as well 

as certain dependent family members. SSI benefits are awarded to individuals with disabilities who 

have limited income and resources. The SSI program covers low-income children with disabilities 

under age 18. 

When children enrolled in the SSI program turn 18, they must go through a redetermination 

process to remain eligible for SSI payments. While, under age 18 the income and assets of the parents 

are used to determine eligibility and benefit amounts, after age 18, the child’s own income and assets 

are considered. Recipients also go through a medical review and they must qualify under the medical 

eligibility criteria for adults, which differ from the eligibility criteria for children.3 Specifically, the 

3Separately, disabled children may become eligible for the SSDI program at age 18, based on the earnings record of a 
parent in the event the parent is already receiving old age/disability SS benefits or has died. For SSDI, children at 18 are 
also subject to the stricter adult medical criteria, identical to requirements for SSI. In the event that children qualify for 
sufficiently high SSDI benefits, they may no longer qualify for SSI. 
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disability criteria for adults is defined as an inability to work, while for children disability is defined 

as “marked and severe functional limitation.” 

Because of the difference between the definition of disability for children vs. adults, approxi-

mately 40 percent of individuals who received SSI as children are removed from the program during 

this redetermination. Approximately three-quarters of program removals following redetermination 

come from failure to satisfy the new adult medical criteria. For example, two-thirds of children with 

mental health conditions (other than intellectual disability) and muskuloskeletal disabilities are de-

nied benefits during the initial redetermination. SSI children who first became eligible at a later age 

are more likely to get an initial cessation decision: 23% of those whose initial eligibility was at an age 

younger than 5 are get denied benefits vs. 49% of those with initial eligibility between ages 13 and 

17. (Hemmeter and Gilby, 2009; Deshpande, 2016a). 

The age 18 redetermination process is time-consuming, expensive, and mandatory. It may be 

the case that the large number of age 18 redeterminations take SSA resources away from conducting 

redeterminations for other groups such as adult SSDI recipients and children under age 18. It is pos-

sible that targeting of age-18 redetermination resources to the children most likely to be disenrolled, 

while subjecting others to lower-cost, simpler reviews would optimize resource use while also better 

serving program recipients. 

While the disabling condition and the age of initial eligibility are clearly predictive for which 

children will ultimately be disenrolled from the program at age 18, information about health care 

utilization may also have predictive power. If it does, this information could be used to target re-

determination resources toward the children most likely to be disenrolled from the program, rather 

than toward children who have little chance of being removed. 

3 Data and Sample 

We use several administrative datasets from the Centers for Medicare and Medicaid Services (CMS) 

for the states of Texas and New York, and covering both the Medicaid and Medicare programs. Ad-

ministrative data pertaining to the Medicaid program extend from 1999 to 2010, while those pertain-

ing to Medicare extend from 1999 to 2015. These data longitudinally track beneficiaries’ program 

enrollment status, disability and SSI/SSDI program status, medical care utilization and spending, 

as well as prescription drug use. Uniquely, the data allow us to track individuals’ enrollment and 
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utilization over time not just for those staying in Medicaid or Medicare, but also those beneficiaries 

transitioning from one program to another. 

Using these data, we can precisely identify the cohorts of interest in our analyses. Specifically, 

we restrict our analysis samples to teenagers enrolled in either Texas or New York Medicaid, for a 

minimum of 9 continuous months, while they were between the ages of 13 and 18. We further restrict 

to individuals who would have turned 23 by 2010 (the final year for which Medicaid data is available 

that can be linked to Medicare data due to issues with the Medicaid-Medicare crosswalk in later 

years), so that we have an extended view of Medicaid utilization and SSI status for every individual 

in our sample. For the set of analyses focused on SSI attrition among previously enrolled teenagers 

enrolled in SSI, we further restrict just to those who were also on SSI between the ages of 13 and 18. 

3.1 Beneficiary Characteristics and Enrollment Information 

Leveraging a combination of Medicaid and Medicare administrative data, we collect information 

on beneficiary characteristics, Medicaid and Medicare program enrollment status, as well as their 

SSI/SSDI status. For Medicaid beneficiaries, we obtain this information from the CMS Medicaid An-

alytic eXtract (MAX) Personal Summary (PS) files, while for Medicare beneficiaries we obtain it from 

CMS’s Medicare Beneficiary Summary Files (MBSF). These files track each individual’s Medicaid and 

Medicare enrollment status at a monthly frequency. These files also track the basis for each benefi-

ciary’s ongoing eligibility for Medicaid or Medicare, such as through qualification for SSI, SSDI, or 

alternative channels. Given that enrollment in Medicaid is automatic for SSI beneficiaries in New 

York and Texas, these states’ Medicaid enrollment files can be used to track everyone in that state 

who receives SSI, based on the disability indicator contained in those files. Meanwhile, given that 

Medicare enrollment is automatic for SSDI beneficiaries following a 2 year waiting period, Medicare 

enrollment files and the disability indicator contained in them can likewise be used to track everyone 

receiving SSDI in these states. 

The key outcome variables for this study of SSI and SSDI enrollment status can be derived di-

rectly from these files. To identify the impact of childhood health care utilization under Medicaid 

on subsequent SSDI takeup, Medicaid and Medicare administrative data need to be linked. For link-

ing Medicare and Medicaid (claims and enrollment) files, we employ a special crosswalk obtained 

from CMS that tracks the Medicare-specific beneficiary ID corresponding to each Medicaid-specific 

6 



beneficiary ID. This crosswalk allows us to identify childhood Medicaid enrollees taking up SSDI 

and Medicare later in life and to examine the childhood medical and demographic factors that were 

predictive of later take-up. 

3.2 Medical Utilization and Expenditures Data 

We track childhood medical utilization, expenditures, and chronic condition presence using claims 

data from Medicaid. These claims data cover the full range of inpatient as well as outpatient care, 

and are contained in the MAX inpatient (IP) and other therapy (OT) files. These data track claims 

paid by the public Medicaid program as well as those paid by private Medicaid plans. We use pay-

ment amount information in claims to construct annual measures of expenditures for different service 

types, such as inpatient and outpatient, and diagnosis information to construct beneficiary-level in-

dicators for different chronic conditions. We then examine these measures as potential predictors of 

disability related outcomes, both pertaining to attrition from SSI as well as to possible future takeup 

of SSDI. 

3.3 Prescription Drug Utilization and Expenditures Data 

We track childhood prescription drug utilization and expenditures using administrative claims data 

from Medicaid, covering both New York and Texas. This prescription drug data covers beneficiaries 

under public as well as private Medicaid. The drug data tracks each prescription’s cost, the date 

when the prescription was filled, the days’ supply associated with the fill, and the drug identifier 

(NDC code), which we link to external data in order to group drugs by therapeutic class. This data 

thereby enables us to examine overall prescription drug use as well as drug-specific use as potential 

predictors of disability-related outcomes. 

3.4 Sample 

To construct our main analytic sample, we limit to Texas and New York Medicaid enrollees who we 

observe in our data between ages 13 and 18 and at age 23. In practice, this means that we limit to 

individuals who turn 23 by 2010 and who are 13 to 18 between 2000 and 2005. We use health care 

utilization information from their oldest year that keeps them in our baseline teenager sample and 

limit to enrollees who are in Medicaid for at least 9 months in this baseline year. 
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4 Methods 

Our objective is to predict SSI disenrollment by age 23 for children ages 18 and below who are cur-

rently in SSI using the data available in the Medicaid records. We aim to build a model that performs 

well in predicting disenrollment on out-of-sample data. To do so, we train and compare three dif-

ferent models for binary classification, ℓ 1-penalized logistic regression, random forests and gradient 

boosted trees. To compare the performance of these models, we initially reserve 20% of our data as a 

test set. This data is randomly selected and never used to train any of the models. This guarantees an 

unbiased comparison of the predictive performance of the different models. To avoid overfitting and 

guarantee good out-of-sample performance, we use 10-fold cross-validation to train the models and 

select the optimal tuning parameters. We split the remaining data in 10 equal sized folds, estimate 

our model on 9 of these and predict its performance on the left-out validation fold. We then repeat 

this for all possible splits, and average the classification error rate on the validation sample to get a 

good measure of out-of-sample performance. 

This process is repeated for all combinations of tuning parameters on a chosen model-specific 

grid. When training the models, we always use classification accuracy as our performance metric. 

Using AUC or other alternative performance metrics leads to very similar final models. We then pick 

the best models in each class and compare their performance on the 20% hold-out sample. Finally, we 

re-estimate the models using the optimal tuning parameters on the full sample to obtain predictions 

and predicted probabilities for all individuals in the data. 

We choose the three different machine learning classifiers due to their popularity in applications, 

and because from a modelling perspective, they span the range of modelling options. Logistic Lasso 

(ℓ 1-penalized logistic regression; Tibshirani, 1996; Hastie, Tibshirani and Friedman, 2001) is concep-

tually similar to a simple linear index model and classical regression. Lasso additionally applies a 

penalty to the absolute size of the coefficients, shrinking them. Since the penalty function is based on 

the ℓ 1 norm, some coefficients are shrunk exactly to zero, leading to a more parsimonious model. To 

achieve good performance for this type of model, we include as model inputs additional non-linear 

transformations of the base input variables. Specifically, we also include up to a third-order polyno-

mial of all continuous variables, and all second-order interactions of these and the original variables. 

The tuning parameter for penalized regression is the penalty factor λ. 

The other two methods we consider are ensemble methods that combine a set of base learners. 
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Random forests rely on the ensemble algorithm bagging (bootstrap aggregating, Breiman, 1996, 2001). 

In bagging, a base learner is fit on a with-replacement bootstrap sample of the original sample. This 

process is repeated multiple times, and the predictions of the base learner across the different boot-

strap samples are then aggregated. Typically decision trees are chosen as base learners (Breiman 

et al., 1984; Hastie, Tibshirani and Friedman, 2001). Since individual tree estimators tend to overfit, 

averaging their predictions substantially reduces variance at a negligible cost of bias. Random forests 

are essentially bagged trees, with the additional modification that at each split point in the tree, only 

a random subset of the available predictor variables is considered for partitioning the sample. The 

size of this random subset is the major tuning parameter for random forests. We set the number 

of bootstrap resamples to 1,000, i.e. our forests consist of 1,000 individual trees, as this appears to 

stabilize estimates sufficiently. 

The other ensemble method we apply is gradient boosting (Friedman, 2001, 2002; Hastie, Tibshi-

rani and Friedman, 2001). In contrast to bagging, which aggregates a series of high-variance models, 

adaptive boosting algorithms rely on sequentially fitting a series of low-variance models. Specifically, 

we rely on the gradient boosting algorithm and choose trees as our individual base learners (Chen 

and Guestrin, 2016). Gradient boosting works by sequentially adding shallow tree classifiers to the 

ensemble. Each new tree is fit to the residuals of the previous one, partially correcting the prede-

cessor’s errors and improving overall predictive performance. By sequentially combining models, 

boosting can substantially improve upon the prediction of the simple base model and explain large 

parts of the residual error. Gradient boosting features a large set of tuning parameters—specifically, 

the number of boosting iterations, the weight shrinkage factor, the maximum tree depth, the mini-

mum tree split loss reduction, the subsample and column subsample ratio. 

5 Results 

5.1 Summary Statistics 

We start by describing the New York and Texas samples. As discussed in Section 3, we split our 

samples into two groups: disabled teenage Medicaid enrollees (i.e., enrolled in SSI) and non-disabled 

teenage Medicaid enrollees (i.e., not enrolled in SSI). In Table 1, we report average annual healthcare 

spending by type of service for these two groups in each state. As expected, the table shows that 
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the disabled Medicaid enrollees had significantly higher Medicaid spending vs. the non-disabled 

enrollees. These dissagregated healthcare spending measures will be the key inputs to our predictive 

models. 

Table 1: Annual Healthcare Spending 

(a) New York 

Inpatient 

Spending 

Outpatient 

Spending 

Rx 

Spending 

Long-Term Care 

Spending 

Not Initially Disabled $375 $594 $252 $149 

Initially Disabled $1,615 $6,443 $1,640 $6,693 

(b) Texas 

Inpatient 

Spending 

Outpatient 

Spending 

Rx 

Spending 

Long-Term Care 

Spending 

Not Initially Disabled $581 $1,172 $288 $29 

Initially Disabled $1,484 $3,230 $3,551 $2,150 

Note: Table shows mean healthcare spending by spending category for individuals in New York and Texas. 

We now present overall statistics describing what portion of each group is enrolled in SSI at age 

23 in each state.4 In results not reported here, we also analyzed SSDI enrollment at any age but found 

that very few individuals enrolled in SSDI during our sample period (<0.1%), making prediction of 

this outcome infeasible.5 

Table 2 shows SSI enrollment at age 23 for the disabled and non-disabled teenagers in each state. 

The table shows initial teenager SSI enrollment status (in rows) vs. SSI enrollment status at age 23 

(columns). The first item of note from this table is that less than 2% (e.g., 4,223/343,382) of those not 

initially on SSI are on SSI at age 23. Given the small number of individuals in this category enrolling 

in SSI, prediction of this outcome is likely to be difficult. Indeed, our attempts to estimate predictive 

4We use SSI enrollment at age 23 as our outcome of interest rather than enrollment at age 18 due to the fact that, for 
some teenagers, the redetermination and disenrollment process take several years. 

5In future versions of this paper, we hope to extend the period during which we observe SSDI enrollment all the way 
up through 2018, meaning that we will observe a larger share of our original sample eventually enrolling in SSDI. We are 
currently impeded from doing so due to issues with the Medicaid-Medicare crosswalk provided to us by CMS, where a 
valid crosswalk is necessary for linking members of our original Medicaid sample to their eventual SSDI outcomes in the 
Medicare data. These issues affect data from 2011 on, preventing us from observing outcomes beyond 2010. 
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models for this outcome largely failed, leading us to focus instead on predicting disenrollment from 

the initially disabled group. 

When considering SSI enrollment rates among the initially disabled group, we find that about 

23% of initial enrollees in New York and 46% of initial enrollees in Texas are removed from SSI by 

age 23, in line with the national averages discussed in Section 2. For this group, there is a sufficiently 

large number of individuals enrolled in SSI at age 23 and a sufficiently large number of individuals 

not enrolled in SSI at age 23 for us to estimate our predictive models. For all remaining results, we 

focus on predicting this outcome for this group. 

Table 2: Sample 

(a) New York 

Not Disabled at 23 Disabled at 23 

Not Initially Disabled 343,382 4,223 

Initially Disabled 17,745 20,737 

(b) Texas 

Not Disabled at 23 Disabled at 23 

Not Initially Disabled 157,496 2,967 

Initially Disabled 5,667 19,428 

Note: Table shows our baseline sample for New York and Texas. 

5.2 Relationship between Teenage Healthcare Utilization and SSI Disenrollment 

We now use the linked health care and SSI enrollment data, consisting specifically of teenage Med-

icaid healthcare utilization data connected to SSI enrollment data, to determine whether teenage 

healthcare utilization is predictive of disenrollment from SSI. We start by comparing SSI enroll-

ment rates at age 23 by quartile of healthcare spending for individuals who were enrolled in SSI 

as teenagers. These rates are presented in Figure 1. The figure shows a strong monotonic relationship 

between teenage healthcare spending and SSI enrollment at age 23. While only 52% of those in the 

lowest quartile of spending remain enrolled in SSI as adults, 58% of those in the second quartile, 66% 

of those in the third quartile, and 77% of those in the top quartile remain in SSI at age 23. 
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The gradient of age-23 SSI enrollment in teenage healthcare spending implies that taking this 

one variable and using a relatively coarse classification of the variable (quartiles), we can identify a 

group that has an 80% chance of remaining enrolled in SSI and a group that has about a 50% chance 

of remaining enrolled, a difference of 30 percentage points. Such a difference in the probability of 

disenrollment suggests that disabled teenagers in the top quartile of healthcare spending may not 

be particularly good targets for redetermination efforts, given that so few of them will eventually be 

removed from the program. 

Figure 1: SSI Enrollment at Age 23 By Level of Medicaid Spending 
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Note: Figure shows SSI Enrollment at age 23 by quartile of teenage Medicaid spending. 

5.3 Machine Learning 

To more fully examine how teenage healthcare utilization is predictive of adult SSI enrollment among 

individuals who were disabled as teenagers, we now turn to advanced machine learning methods. 

These methods allow us to optimally use the predictive information embedded in the healthcare uti-

lization data, maximizing explanatory power by exploring different functional forms (polynomials, 

interactions, etc.) while also using separate testing and estimation samples to avoid over-fitting. 

We start by describing diagnostics for our predictive models and then use our predictions to 

stratify the sample and show how well the models allow us to classify individuals into groups that 

differ in their probability of being enrolled in SSI as adults. 
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Table 3: Predicting SSI receipt, Full Sample 

ℓ 1 penalized regression Random forest Gradient boosting 

Actual SSI receipt Actual SSI receipt Actual SSI receipt 

Prediction 0 
1 

0 
12858 
10554 

1 
2677 

37488 Prediction 0 
1 

0 
13144 
10317 

1 
2549 

37687 Prediction 0 
1 

0 
13574 

9838 

1 
2434 

37731 

Accuracy 0.7919 0.798 0.807 
95% CI (0.7887, 0.795) (0.7949, 0.8011) (0.8039, 0.81) 

Sensitivity 0.9333 0.9366 0.9394 
Specificity 0.5492 0.5602 0.5798 
Pos Pred Value 0.7803 0.7851 0.7932 
Neg Pred Value 0.8277 0.8376 0.8480 

Kappa 0.519 0.5337 0.5558 
Mcnemar’s Test P-Value < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 

Note: Tuning parameters chosen via 10-fold cross-validation on a random 80% training sample. The table shows the results for the final 
models re-estimated on the full sample. The original model comparison on the 20% hold-out test sample is given in Appendix Table A1. 
As described in section 4, the input variables for the penalized regression model include a set of non-linear transformations of the original 
variables. We use trees as the base learner for the gradient boosting model. 

Estimation Results and Diagnostics Table 3 shows the results for our prediction models. We report 

the results for the final models re-estimated on the full sample. Results for the hold-out sample are 

reported in Appendix Table A1. 

Overall, the best option from each class of models achieves about 80% accuracy. This means that 

we correctly classify SSI receipt at age 23 for four out of every five people who are receiving SSI at 

age 18. We find that the different models show very similar performance and the ensemble methods 

only have a slight edge over penalized regression approaches. The accuracy of the logistic lasso is 

about 0.79, relative to which the random forest and boosted trees achieve about one percentage point 

better accuracy. Predictive performance across both SSI receipt and non-receipt states is also similar. 

For positive predicted value, about 78% to 79% of those predicted to remain on SSI actually remain 

on SSI. Negative predicted value is slightly larger, between 82% and 85% of those predicted to be 

disenrolled are actually disenrolled. 

However, we find that the models do not perform equally well in identifying the true persistence 

of SSI and in identifying true disenrollment. For all three models, the true positive rate (sensitivity) is 

very high. About 93% of those remaining on SSI are correctly identified as such. In contrast to this, the 

true negative rate (specificity) of the models is lower. Between 55% and 58% percent of individuals 

disenrolled from SSI are correctly identified. This is also what distinguishes the different models. 

While sensitivity is similar for all three models, specificity is larger for the ensemble methods. The 

gradient boosting model is three percentage points more likely to correctly identify those who drop 
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out. 

At about 0.52 to 0.56, the Kappa statistics are moderately good. The Kappa statistic expresses the 

accuracy of our classifier compared to a random classifier given the unconditional class frequencies 

in the data. Again, the gradient boosting model achieves the best value for the statistic. The results 

for McNemar’s test indicate that sensitivity and specificity for all models differ and the marginal 

propensities in the data are not equal. 

One insight gained from training and model development is that comparable performance be-

tween the penalized regression and ensemble methods can only be achieved if the inputs for the 

penalized regression model include non-linear transformations of the original variables (higher or-

der polynomials of continuous variables, second order interactions of all variables and polynomials); 

otherwise, performance is significantly worse (only about 0.7 accuracy or less). This allows the pe-

nalized regression model to account for more complicated non-linearities, which tree-based methods 

incorporate naturally. In general, random forests and boosted trees perform better for a wider range 

of tuning parameters in training. 

Identification of Most Predictive Variables In the next step, we examine which predictor variables 

most enhance predictive power. In Table 4 we rank the variables by descending influence using 

model-specific variable importance computed during training. For the logistic lasso, we rank the pe-

nalized coefficients of the input variables and their transformations by coefficient size in descending 

order. For the tree based models, we compute variable importance as the number of times a variable 

is split on weighted by the depth of the split. 

Looking at the 20 most influential variables, we find that similar variables are important. Across 

all models, indicators of the baseline age are important (age_18, age_17, etc.). Recall that these vari-

ables indicate the last year we observe the individual enrolled in Medicaid for at least 9 months. It is 

not surprising that this is predictive of SSI enrollment at age 23, as individuals who drop out of Med-

icaid at younger ages are likely the healthiest disabled teenagers and much less likely to re-enroll in 

SSI later in life. Gender, race, and whether the individual was on Medicaid in the year prior are also 

common to all models. In addition, indicators for the state, the baseline year, and certain counties can 

be found on both lists. All of these variables indicate that non-healthcare information in the Medicaid 

data seems to be highly predictive of SSI enrollment at age 23. 
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Table 4: Important Predictors 

ℓ 1 penalized regression 

Variable Rank 

Random forest 

Variable 
Relative 

importance 

Gradient boosting 

Variable 
Relative 

importance 

cz999 20 age_18 100.00 age_18 100.000 
age_18 19 cz134 36.34 elg_cd22 74.786 
elg_cd12 * age_18 18 mdcd_spend 33.26 age_17 55.397 
elg_cd22 17 rx_spend 30.45 mdcd_spend 48.808 
ot_spend 16 ot_spend 30.03 ot_spend 45.829 
age_18 * mdcd_mo_12 15 mdcd_mo_12 29.23 rx_spend 35.925 
medicaid_last_yr * cz134 14 elg_cd22 28.36 state 24.327 
age_14 13 elg_cd12 28.35 age_16 23.320 
medicaid_last_yr 12 medicaid_last_yr 22.23 cz134 18.582 
year_2000 * state 11 state 21.33 elg_cd12 18.527 
mdcd_spend 10 ip_spend 20.71 mdcd_mo_12 15.094 
elg_cd42 9 lt_spend 20.53 ip_spend 13.882 
mdcd_spend * ot_spend 8 el_prvt_insrnc_mo_cnt 20.12 age_15 12.636 
ot_spend_2 7 yr_2005 16.84 age_14 9.442 
yr_2001 * state 6 tot_ltc_cvr_day_cnt_psych 16.45 lt_spend 7.955 
cz102 5 yr_2000 15.72 medicaid_last_yr 7.832 
yr_2002*state 4 female 14.81 el_prvt_insrnc_mo_cnt 7.566 
elg_cd12*cz134 3 race9 12.62 yr_2005 5.903 
el_prvt_insrnc_mo_cnt 2 elg_cd42 11.67 yr_2000 5.105 
cz96 1 yr_2002 11.30 female 4.501 

Note: The variable importance ranking for the Lasso is based on the size of the penalized model coefficients. Variable importance for 
the tree-based ensemble methods is computed as the number of times the variable is split on weighted by the depth of the split. 

Importantly, we also find that variables related to healthcare utilization appear in the lists of most 

important variables. Overall Medicaid spending (mdcd_spend), outpatient spending (ot_spend), 

inpatient spending (ip_spend), long-term care spending (lt_spend), and drug spending (rx_spend) 

all appear in the top 20 variables for at least one of the three models. Inpatient and long-term care 

spending seem to appear higher (i.e., more important) on the list of important variables, indicating 

that these types of healthcare utilization are more predictive of SSI enrollment at age 23. Overall, 

these results suggest that even conditional on all of the non-healthcare information found in the 

Medicaid data, information about healthcare utilization remains important and highly predictive. 

Using Predictive Models to Identify Groups with High and Low Probability of Adult SSI En-

rollment Next, we repeat out previous quartile comparison by calculating average enrollment by 

quartiles of the predicted enrollment probability. Our purpose in doing this is to illustrate in a simple 

and transparent way the power of the predictive model for identifying groups of individuals who 

are ex ante likely to be disenrolled from SSI at age 18 vs. individuals who are ex ante unlikely to be 

disenrolled from SSI. 

Figure 2 shows the actual likelihood of remaining on SSI by quartiles of the predicted probability 

15 



of remaining on SSI. Teenagers who are predicted to remain on SSI with a higher likelihood are indeed 

more likely to be on SSI at age 23. When using Lasso, 18% of teenagers in the bottom quartile of the 

predicted probability distribution remain on SSI vs 90% for the top quartile. When using Random 

Forest, 17% in the bottom quartile and 99% in the top quartile of the predicted probability distribution 

are still on SSI at age 23. When using Gradient Boosting, 15% in the bottom quartile and 94% in the 

top quartile of the predicted probability distribution are still on SSI at age 23. 

These differences in ex post probabilities of adult SSI enrollment based on ex ante information 

found in the Medicaid data imply that given this information and our predictive models, one can 

identify a (large) group of disabled teenagers with a lowered chance of being disenrolled from the 

SSI program at age 18. This suggests that targeting redetermination resources away from individuals 

in the top quartile of ex ante probability of persistence in the program may have little effect on actual 

disenrollment of individuals from SSI. 

Recall, however, that many of the most important variables in the predictive model were not 

related to healthcare utilization. To understand the independent predictive power of information 

about healthcare utilization, we examine the predicted probabilities conditional on non-healthcare 

variables. Figure 3 shows the distribution of the likelihood of remaining on SSI by predicted probabil-

ities residualized on non-healthcare variables (so that the remaining variation comes from healthcare 

variables). The difference between the likelihood of remaining on SSI between top and the bottom 

quartile of the residual predicted probabilities is 38 percentage points for Lasso, 54 percentage points 

for Random Forest, and 52 percentage points for Gradient Boosting. Again, for individuals in the top 

quartile of residual predicted probabilities, the vast majority (over 80%) of individuals stay on SSI. 

While the healthcare variables alone do not perform as well as when combined with other informa-

tion (demographics, age, geography, etc.) found in the Medicaid data, these variables do appear to 

have substantial predictive power. Importantly, the machine learning methods seem to add value 

here, with the difference in ex post probabilities of SSI enrollment between the first and fourth quar-

tiles of ex ante residual predicted probabilities being significantly larger than the same difference 

when just grouping individuals by overall Medicaid spending as presented in Figure 1. 
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Figure 2: SSI Enrollment at Age 23 By Predicted Probability 

(a) Lasso 

(b) Random Forest 

(c) Gradient Boosting 
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Note: Figure shows SSI Enrollment at age 23 by quartile of predicted enrollment probability. 
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Figure 3: SSI Enrollment at Age 23 By Predicted Probability Conditional on Non-Healthcare 
Variables 

(a) Lasso 

(b) Random Forest 

(c) Gradient Boosting 
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Note: Figure shows SSI Enrollment at age 23 by quartile of predicted enrollment probability. 
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6 Conclusion 

In this paper, we used machine learning techniques on detailed Medicaid claims data to predict 

SSI enrollment among teenagers reaching adulthood. Our results suggest that relying on Medicaid 

data and machine learning techniques can be useful in predicting continuing disability insurance 

enrollment. 

We find that both healthcare and non-healthcare information found in Medicaid data is predictive 

of eventual disenrollment from SSI. Using both sets of information combined, the ex post probability 

of disenrollment from SSI for the top quartile of individuals by ex ante predicted probability of adult 

enrollment in SSI is a mere 1%. This indicates that our predictive models are powerful for identifying 

groups for which persistence in the program (i.e., non-removal at adulthood) is a near certainty. 

The ability to do this could be valuable for targeting redetermination resources to groups where the 

removal is less certain. 

We further investigated the independent role of healthcare information for predicting SSI en-

rollment at age 23. We found that healthcare has important predictive power, and that the machine 

learning methods we use are important for fully harnessing that power. The implications of these 

results are unclear. It could be the case that healthcare utilization helps identify groups with more 

vs. less severe disabilities. However, it could also be the case that use of healthcare services has 

a causal impact on whether a teenager’s condition improves and he or she exits the SSI program. 

Disentangling these selection and treatment effects represents a key area of future research. 
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Table A1: Predicting SSI receipt, Hold-out Sample 

ℓ 1 penalized regression Random forest Gradient boosting 

Actual SSI receipt Actual SSI receipt Actual SSI receipt 

Prediction 
0 
1 

0 
2543 
2127 

1 
575

7494 
Prediction 

0 
1 

0 
2585 
2103 

1 
555

7496 
Prediction 

0 
1 

0 
2603 
2074 

1 
581

7457 

Accuracy 0.7879 0.7913 0.7912 
95% CI (0.7807, 0.795) (0.7842, 0.7984) (0.784, 0.7982) 

Sensitivity 0.9287 0.9311 0.9277 
Specificity 0.5445 0.5514 0.5566 
Pos Pred Value 0.7789 0.7809 0.7824 
Neg Pred Value 0.8156 0.8232 0.8175 

Kappa 0.5089 0.5182 0.5189 
Mcnemar’s Test P-Value < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 

Note: Tuning parameters chosen via 10-fold cross-validation on a random 80% training sample. The table shows the results for the 
final models re-estimated on the full sample. The re-estimated models for the full sample are given in Table 3. As described in sec-
tion 4, the input variables for the penalized regression model include a set of non-linear transformations of the original variables. 
We use trees as the base learner for the gradient boosting model. 
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