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Abstract 

We use long-run annual cross-country data to evaluate pseudo out-of-sample forecasts of five 
variables for horizons up to 50 years. The variables we forecast are real per capita GDP growth, 
CPI inflation, labor productivity growth, and long- and short-term nominal interest rates. Our 
models for forecasting include simple time series models and frequency domain methods recently 
developed in Müller and Watson (2016). We focus on coverage of 68% forecast intervals (that 
is, coverage of 68% confidence intervals for forecasts). For GDP growth, CPI inflation and labor 
productivity growth, median coverage across countries is roughly 68% for several models, but 
with considerable dispersion around that median. For these three series, a reasonable model 
choice is a frequency domain model that does not require the user to take a stand on the order 
of integration of the data. For interest rates, forecast intervals for most models and samples 
include markedly fewer than 68% of realized values. For interest rates, a reasonable model 
choice is a driftless random walk. For real per capita GDP and labor productivity growth, we 
find that forecasts and forecast intervals from the best-performing models are very similar to 
the Social Security Administration’s (SSA’s) long-run projections. In contrast, for CPI inflation 
and long-term interest rates, we find that forecasts from the best-performing models have wider 
forecast intervals than intervals implied by the SSA’s projections for their low- and high-cost 
scenarios. 
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1 Introduction 

Many public policy issues require judgement about long-run economic outcomes. The long-run 
feasibility of current policies relating to government spending and taxation clearly depends on 
future prospects for variables such as growth, productivity and interest rates on government debt. 
So, too, does the desirability of alternative short-term policies, some of which might treat current 
generations in a way that is not feasible to sustain, or alternatively, might short-sightedly sacrifice 
the welfare of current generations in favor of future generations. 
Recognizing the centrality of long-run economic outcomes, the U.S. Social Security Adminis-

tration (henceforth SSA) makes projections up to 75 years ahead.1 These projections are not the 
product of a formal econometric model, and, for the most part, are not accompanied by formal 
measures of uncertainty such as confidence intervals around the projections. While that approach 
has considerable appeal, it is not the only possible way to quantify future outcomes. 
In this paper, we lay the groundwork to complementing the approach of the SSA. Using data 

from 23 mostly developed countries (Bergeaud, Cette, and Lecat, 2016; Jordà, Schularick, and 
Taylor, 2017), we construct and evaluate forecasts and forecast intervals up to 50 years ahead for 
five variables. The variables are annual per capita GDP growth, CPI inflation, labor productivity 
growth, and long- and short-term interest rates. Depending on the series and the country, the start 
date is usually in the 1870s but sometimes is as late as 1891. We start our forecasting exercise 
between 1918 and 1939, leaving us, for each variable in each country, about a century’s worth 
of data to use to evaluate predictions. We construct forecasts and forecast intervals with both 
simple time series models and recently developed frequency domain models (Müller and Watson 
(2016)–henceforth MW). All of our models are univariate. We construct pseudo out-of-sample 
forecasts and forecast intervals for the average values of each of our variables in each of our countries 
over the next 10, 25 and 50 years. 
We focus on intervals with 68% nominal coverage. Across samples–that is, across variables and 

across countries–the ideal outcome of course would be to find that about 68% of realized values 
fall within the 68% forecast intervals in sample after sample. For convenience of exposition, let 
us interpret “about 68%” as 68% ± 10%. Unfortunately, it is only in a minority of samples that 
“about 68%” of the realized values fall within our forecast intervals. Depending on the variable 
and the model, sometimes distinctly more than 68% of the realized average values fall in the 68% 

1According to Dev (2015), Social Security has been making projections for horizons well beyond 5 years since 
1956; the 75 year horizon has been in place since 1992. The The 2021 Annual Report of the Board of Trustees of 
the Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds, also called the OASDI 
Trustees Report, which contains the most recent projections at the time of this writing, is available at https: 
//www.ssa.gov/OACT/TR/2021/. 
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intervals, and sometimes distinctly fewer. 
For the three variables generally modeled as stationary (per capita GDP growth, inflation, 

productivity growth), median coverage is about 68%, with as many samples including too many 
realized values as samples including too few realized values. For these three variables, a reasonable 
choice of a model is a frequency domain model that does not require one to specify whether the 
data are stationary or have a unit root or fall somewhere in between. For the two interest rate 
series, our models generally deliver forecast intervals that are too narrow, with many more samples 
having empirical coverage less than 68% than greater than 68%. An exception to the previous 
sentence is the random walk model (one of our simple time series models) for short-term interest 
rates, which deliver roughly as many samples with too many as with too few realized values in its 
68% intervals. 
We use the results to interpret 25-year-ahead projections for real per capita GDP growth, 

labor productivity growth, CPI inflation and long-term interest rates from the 2021 Report from 
the Trustees of the Social Security Administration.2 The Report’s “intermediate” projections are 
accompanied by alternative projections under what are called “low-cost” and “high-cost” scenarios. 
We ask the question: if our forecasting models are used to inform the SSA’s projections, what would 
they tell us? In answering this question, we compare the projections of low- and high-cost scenarios 
to the ends of 68% forecast intervals produced by our models. 
For GDP and productivity growth, SSA projections are basically in agreement with our models. 

For CPI inflation, our point forecasts tend to be slightly higher than the SSA projection and our 68% 
forecast intervals are notably wider than the difference between the low- and high-cost projections. 
For long-term interest rates, our point forecasts are distinctly below the SSA projection and, as 
is the case for CPI inflation, our 68% forecast intervals are wider than that implied by low- and 
high-cost projections. 
Taking our forecasts and 68% forecast intervals at face value, this suggests that the U.S. economy 

is likelier to breach the bounds of the low-cost and high-cost projections for CPI than for GDP 
or productivity growth, and still more likely to breach the bounds for interest rates. In addition, 
there is substantial probability that long-term interest rates will be lower than projected by SSA. 
To our knowledge, the vast majority of theoretical and empirical work on forecasting considers 

horizons shorter than even our shortest horizon of 10 years. In addition to Müller and Watson 
(2016), exceptions include the following. Granger and Jeon (2007) proposed that long-horizon 
forecasts be based on very simple parametric models. They graphically analyze how well their 
simple models do in terms of forecasting the log level of GDP 10 and 15 years ahead, finding that 

2Formally, this is The 2021 Annual Report referenced in the previous footnote. We do not compare our results for 
short-term interest rates because this document does not seem to include projections of short-term rates. 
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realized GDP almost always falls within 90% confidence intervals. We, too, construct some of our 
forecasts with very simple parametric models.3 Chudý, Karmakar, and Wu (2020) evaluate the 
long-horizon forecast intervals of Pascual, Romo, and Ruiz (2004), Zhou, Xu, and Wu (2010) and 
Müller and Watson (2016). Their data are daily, so “long-horizon” means many days ahead. They 
find mixed results for 90% forecast intervals, with more accurate coverage at shorter rather than 
longer horizons. To the best of our knowledge, we are the first evaluate long-horizon forecasting 
with annual macroeconomic data. 
Some studies have analyzed the ex-post performance of long horizon projections of the SSA 

(Dev, 2015; Kashin, King, and Soneji, 2015). Like those studies, we use the difference between 
low- and high-cost projections as a measure of SSA uncertainty. Unlike those studies, our ex-post 
evaluation is applied to our models rather than to SSA projections, and we contrast up to date 
forecasts of our models with up-to-date SSA projections. Stock (2019) also presents up-to-date 
forecasts of some variables of central interest to the SSA. 
We stated above that we merely “lay the groundwork” for an alternative approach to long-

horizon forecasts. This is partly because the performance of our forecast intervals was not ideal, as 
is often the case in simulations in the closely related literature on estimation of long run variances 
(e.g., Vogelsang (2018)). As well, we have only considered five variables, and we focus on forecast 
interval coverage. We only briefly study the accuracy of point forecasts, leaving more thorough 
analysis of point forecasts for future research. 
Section 2 of the paper describes our models, section 3 our data, and section 4 the mechanics 

of our forecasting analysis. Section 5 presents forecast evaluation results. Section 6 compares our 
forecasts and forecast intervals to those implied by the projections of the SSA. Section 7 concludes. 
The appendix has some technical details. 

2 Forecasting Models 

The forecasts that we construct and evaluate in this paper are long-horizon averages of an economic 
variable, xt. We impose two restrictions on all of the forecasting models used in this paper. First, all 
of the models will be univariate. That is, we will only use the available data sample of the variable 
of interest, {x1, . . . , xT }, to forecast the long-horizon average, ( ./h)h+Tx+++1Tx · · · Second, we 
will assume that xt has no deterministic time trend. In practice, this will mean forecasting growth 
rates – not levels – of trending variables, including per capita gross domestic product (GDP), labor 
productivity, and the consumer price index (CPI). However, we will forecast nominal long- and 

3Granger and Jeon (2007) propose forecasting the level of log GDP with a random walk with drift. This is 
equivalent to our use of what we call an “iid” model to forecast GDP growth. 
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as normally distributed with a mean of 

the point forecast, f-subscript-[T,h], and a variance, V-subscript-[T,h]. That is, we use

and the three different models will give different forms for f-subscript-[T,h] and V-subscript-[T,h]. We provide 
derivations in the appendix.

short-term interest rates in levels. 
In this paper, we compute point forecasts and use the notation fT,h to denote the forecast made 

at time T of horizon h. We also compute 68% forecast intervals, which are intended to give a 
measure of uncertainty around the point forecast. We will interpret these intervals as saying, “the 
probability that (xT +1 + · · /h)h+Tx+· is contained in the forecast interval is 0.68.” 
We use six models to make our forecasts: an independent and identically distributed (iid) model, 

a random walk (RW) model with iid innovations, an autoregressive model of order one (AR(1)) 
with iid innovations, MW’s integrated of order zero (MW0) model, MW’s integrated of order one 
(MW1) model, and MW’s fractionally integrated (MWd) model. For each variable we use either 
the iid or random walk model but not both. We use the iid model for data generally considered 
stationary and the random walk model for interest rates. Thus, each variable is forecast by five 
models: AR(1), MW0, MW1, MWd, and either iid or RW. 
The iid, RW and AR(1) models are relatively simple and put a good amount of structure on 

the data. We describe these models in subsection 2.1. The MW0, MW1, and MWd models require 
more exposition, and we describe these models in 2.2. 

2.1 Simple Forecasting Models 

and the three different models will give different forms for fT,h and VT,h. We provide derivations 
in the appendix. 

The iid Model. Our first model assumes that the data generating process (DGP) for xt is 

We now describe the iid, random walk, and AR(1) forecasting models. For these three models, we 
treat the future realization of the data, (xT +1+· · ·+xT +h)/h, as normally distributed with a mean of 
the point forecast, fT,h, and a variance, VT,h. That is, we use (xT +1 +· · ·+xT +h)/h ∼ N(fT,h, VT,h), 

xt = µ + ut, (2.1) 

in

with µ̂ = T −1 PT
t=1 xt 

which ut is iid with a
and σ̂2 

u = T −1 (xt − µ̂
PT 

t=1 )2 . 
mean of zero and variance of σ2 . We compute 

µ̂ = T −1 PT 
t=1 xt, the sample 

the estimates of µ and σ2 
u u 

We then use 
average, as the point forecast 

f iid 
T,h = µ̂. (2.2) 

The estimated variance of the forecast is given by 

V̂ iid 
T,h = [(1/h) + (1/T )]σ̂2 

u. (2.3) 
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Then, using the normal distribution’s ±1 standard deviation around the mean to compute 68% 
forecast intervals, we have 

as our 68% forecast interval. 

The Random Walk Model. Our second model assumes that the DGP for xt is a random walk 
with no drift 

µ̂ ± 
p
[(1/h) + (1/T )]σ̂2 

u (2.4) 

xt = xt−1 + ut, (2.5) 

σ̂2 
u = (T − 1)−1 (xt − xt−1)2 . 

PT 
t=2 

in which ut is iid with a mean of zero and variance of σ2 . We compute the estimate of σ2 withu u 

We then use the last observation in the sample, xT , as the point 
forecast 

f rw 
T,h = xT (2.6) 

The estimated variance of the forecast is given by 

V̂ rw 
T,h = (h + 1)(2h + 1)σ̂2 

u/(6h). (2.7) 

Then, we use 
xT ± 

p
(h + 1)(2h + 1)σ̂2 

u/(6h) (2.8) 

as our 68% forecast interval. 

The AR(1) Model. Our third model assumes that the DGP for xt is an AR(1) 

xt = ρ0 + ρ1xt−1 + ut, (2.9) 

in which ut is iid with a mean of zero and variance of σ2 . We estimate ρ0 and ρ1 with ordinary u 

least squares, denoting the estimates with ρ̂0 and ρ̂1. We only use the AR(1) model if |ρ̂1| < 1, 
so that the model implies that xt is stationary. If we estimate ρ̂1 ≥ 1, then we forecast with the 
random walk model. 
If |ρ̂1| < 1, we compute ût = xt − ̂ρ0 − ̂ρ1xt−1 and σ̂2 

u = (T −1)−1 PT 
t=2 û

2 
t . Using these estimates, 

the estimated unconditional mean of xt is ρ̂0/(1 − ρ̂1), and we use 

far1 
T,h = 

ρ̂0 

1 − ρ̂1 
+ 
1 
h
(ρ̂1 + ρ̂2 

1 + · · · + ρ̂h 
1 ) 

� 
xT − 

ρ̂0 

1 − ρ̂1 

� 
(2.10) 
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as the point forecast. The estimated variance of the forecast is given by 

V̂ ar1 
T,h = 

1 
h2 [1 + (1 + ρ̂1)2 + · · · + (1 + ρ̂1 + · · · + ρ̂h 

1 )
2]σ̂2 

u. (2.11) 

Then, we use 
far1 
T,h ± 

q 
V̂ ar1 
T,h , (2.12) 

as our 68% forecast interval. 

2.2 Müller and Watson’s Forecasting Models 

The MW forecasting models are all based on extracting long-run patterns from the sample 
{x1, . . . , xT } by using a small number, q << T , of slowly cycling cosine waves. Hence, we may also 
refer to MW’s methodology as a “low-frequency” or “frequency domain” methodology. 
The tth observation of the jth cosine wave is given by ψj,t 

1, . . . , T and j = 1, . . . , q. We show the first four of these cosine waves in Figure 2.1. The first wave 
completes one cycle in 2T periods, the second wave completes one cycle in T periods, the third 
wave completes on cycle in 2T/3 periods, and the fourth wave complete one cycle in T/2 periods. 
The general pattern is that the jth wave completes one cycle in 2T/j periods. For example, if the 
sample size is T = 48 and the number of cosine waves is q = 8, then the first cosine wave completes 
one cycle in 96 years and the eighth cosine wave completes one cycle in 12 years. These eight cosine 
waves can then be used to extract long-run patterns in the data that occur between 12 and 96 
years. 
We extract the long-run patterns in the data with linear projection, 

= 
√ 
2 cos(πj(t − 1/2)/T ) for t = 

xt = β0 + β1ψ1,t + · · · + βqψq,t + et. (2.13) 

0 for j = 1, . . . , q. Second, their squares sum to T over time, for 
j = 1, . . . , q. Third, their cross products sum to zero over time, = 0 for j 6= k. With 
these three features, we have 

We estimate β0, β1, . . . , βq with ordinary least squares. Before providing equations for the estimates 

PT
t=1 ψj,t =

of β0, β1, . . . , βq, we note three features of the cosine waves. First, they sum to zero over time, 

ˆwhich is simply the sample average of xt. We note that β0 is equivalent to µ̂ for the iid model. 

PT 
t=1 ψ

2 
j,t = T PT 

t=1 ψj,tψk,t 

β̂0 = T −1 
TX 

t=1 
xt, (2.14) 
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Figure 2.1: The cosine waves for j = 1, . . . , 4 for extracting long-run patterns. 

Next, we have 

βj 2 cos(πj(t − 1/2)/T )xt, for j = 1, . . . , q. (2.15) 
t=1 

X √ 
ˆ = T −1 

T

Hence, β̂j is a weighted average of xt in which the jth cosine wave provides the weights. 
To illustrate what these long-run patterns look like, we can compute the long-run trend, using 

the q cosine waves and the estimates in (2.14) and (2.15) 

trend x̂t = β̂0 + β̂1ψ1,t + · · · + β̂  
qψq,t. (2.16) 

Figure 2.2 shows this trend for labor productivity. Figure 2.2 has 48 years of annual productivity 
growth, from 1973 to 2020, and we use q = 8 to compute the trend.4 The trend follows the data 
but smooths through the year-to-year fluctuations.5 The trend in Figure 2.2 highlights that labor 
productivity persistently exceeded its sample average from the mid-1990s to the mid-2000s and 
that labor productivity was below its sample average from 2010 to 2019. 

ˆ ˆThe estimates β̂0, β1, . . . , βq summarize the information in the long-run trend and will be used 
to compute the MW forecasts. For forecasting, we use the notation β̂1:q = [β̂1, . . . , β̂  

q]
0 to denote the 

4Labor productivity data are from the supplemental single-year tables to the 2021 SSA Trustees Report. See 
Section 3.2. 

5This method of computing a long-run trend is sometimes referred to as “low-frequency filtering” or “band-pass 
filtering.” As described above, with T = 48 and q = 8, we are filtering out the frequencies that do not correspond to 
periods between 12 ad 96 years. 
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Figure 2.2: Labor productivity growth with its sample average and long-run trend, 1973-2020. 

(q×1) vector of slope estimates computed with (2.15). We also use = (xT +1+· · ·+xT +h)/h−β̂0.T,h y

We assume that limT →∞(h/T ) = r > 0 so that the forecast horizon does not become too small as 
the sample size increases. Then, MW prove a central limit theorem (CLT) 

T 1−κ 

" 
β̂1:q 

yT,h 

# 

⇒ 

" 
β̃

y 

# 

∼ N(0, Σ), Σ = 

" # 
Σββ Σβy 

Σyβ Σyy 
, (2.17) 

in which κ is a scaling factor that depends on the relevant model for xt. For the MW0 model, κ = 

given β̂0 and β̂1:q. 
In addition to different scaling factors, the form of the covariance matrix, Σ, will be different 

for each of the MW models. We now discuss forecasting with each of the models. 

The MW0 Model. The DGP for xt is 

1/2. For the MW1 model, κ = 3/2. For the MWd model, κ = 1/2 + d. The usefulness of this CLT 
is that, when T is large, we can treat T 1−κ β̂1:q and T 1−κyT,h = T 1−κ(xT +1 + · · ·+xT +h)/h−T 1−κ β̂0 

as jointly normally distributed, allowing us to compute a distribution for (xT +1 + · · · + xT +h)/h 

xt = µ + ut, (2.18) 

in which ut is a mean zero and I(0) process. By I(0) process, we mean that the dependence between 
distant observations of ut is limited so that ut reverts to 0 relatively quickly.6 In general, we intend 

6More formally, we assume that the jth autocovariance of ut, denoted by E(utut−j ), has two properties. First, 
the jth autocovariance only depends on j but not on t. Second, the jth autocovariance goes to zero quickly as j 
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When computing forecasts, the values of t-superscript-[q]-subscript-[0.84] will change with different values of q. Using the example of q = 8, t-superscript-[8]-subscript-[0.84] 
= 1.06, which is 6 percent larger than the ﾱ1 standard deviation used in the simple models. Larger values of q will 
cause t-superscript-[q]-subscript-[0.84] to move closer to 1.

The DGP for x-subscript-[t] is

in which u-subscript-[t] is a mean zero and I(1) process. By I(1) process, we mean that differences in u-subscript-[t],

Footnote 8: These differences have statistical interpretations. ￃ-hat-superscript-[2]-subscript-[u] is the estimated variance of x-subscript-[t] in the iid model. When using the iid assumption, 
ￃ-hat-superscript-[2]-subscript-[u] is equivalent to the long-run variance of x-subscript-[t]. In contrast, when u-subscript-[t], and thus x-subscript-[t], is an I(0) process,

for the assumption that ut is I(0) to be flexible, covering cases where ut is an ARMA process with 
potentially infinite orders and with potentially non-iid innovations. In other words, we can think 
of the MW0 model as being similar to but more general than the iid or the AR(1) models. 
When ut is I(0), MW can compute the covariance matrix, Σ, in (2.17) analytically. Let σ2 be lrv 

the long-run variance of ut. 7 being the (q × q) identity matrix. It is 
also the case that = Σ0 βy yβ Σ is a (1 × q) matrix of zeros. Finally, Σyy 

Based on this covariance matrix, MW show that (xT +1 + · · + xT +h)/h is a Student-t random 
variable with q degrees of freedom – not a normally distributed random variable as with the simple 
forecasting models in Section 2.1. The 68% forecast interval is 

Then, Σββ = σ2 
lrvIq with Iq 

= [(1/h) + (1/T )](T σ2 
lrv). 

· 

β̂0 ± 
q 
[(1/h) + (1/T )](T β̂0 1:q β̂1:q/q) t

q 
0.84, (2.19) 

in which t0 
q
.84 denotes the 0.84 quantile of the Student-t distribution with q degrees of freedom. 

When computing forecasts, the values of t0 
q
.84 will change with different values of q. Using the 

example of q = 8, t8 = 1.06, which is 6 percent larger than the ±1 standard deviation used in0.84 

the simple models. Larger values of q will cause t0 
q
.84 to move closer to 1. 

ˆWe make two observations about the MW0 model. First, the point forecast, β0, is just the 
sample average based on (2.14) and is equivalent to µ̂ in the iid model. Thus, the MW0 and iid 
model give the same point forecast. Second, the only practical difference between the MW0 and iid 
models is the width of the 

q 
T β̂0 1:q 

ˆ /q tβ1:q 1−α/2 
q 

forecast interval. Comparingp
[(1/h) + (1/T )]. Hence, the only difference is

the forecast intervals in (2.19) and (2.4), 
we see that both forecast intervals are scaled by p
that the MW0 model uses while the iid model uses σ̂2 . 8 

u 

The MW1 Model. The DGP for xt is 

xt = µ + ut, (2.20) 

in which ut is a mean zero and I(1) process. By I(1) process, we mean that differences in ut, 
We may also refer to ut as being a “unit root” process. Hence, this 

model is similar to but generalizes the random walk model. 
Δut = ut − ut−1, are I(0). 

increases. See Section 2.1 of Stock 
lrv = E(ut ) + 2 j=1 E(utut−j ).

2 P∞2σ
assumptions.)(1994 for technical 

7The long-run variance is Following the assumptions in Stock (1994), the 
long-run variance of an I(0) process is finite but non-zero. 

8 σ2 

σ2 

I(0) process, T ˆ β1:q /q is MW’s estimate of the long-run variance of xt. Further, because MW rely only on the 
estimates β̂1, . . . , β̂  

q for computing forecasting intervals, they effectively shrink their sample size to q. Hence, they 

These differences have statistical interpretations. ˆu is the estimated variance of xt in the iid model. When 
using the iid 

β0 1:q ˆ
assumption, ˆu is equivalent to the long-run variance of xt. In contrast, when ut, and thus xt, is an 

use Student-tq quantiles rather than standard normal quantiles. 
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cause t-superscript-[q]-subscript-[0.84] to move closer to 1.

The DGP for x-subscript-[t] is

in which u-subscript-[t] is a mean zero and I(1) process. By I(1) process, we mean that differences in u-subscript-[t],

Footnote 8: These differences have statistical interpretations. ￃ-hat-superscript-[2]-subscript-[u] is the estimated variance of x-subscript-[t] in the iid model. When using the iid assumption, 
ￃ-hat-superscript-[2]-subscript-[u] is equivalent to the long-run variance of x-subscript-[t]. In contrast, when u-subscript-[t], and thus x-subscript-[t], is an I(0) process,



Unlike when ut is I(0), MW do not provide an analytical form for every element of Σ when 
ut is I(1). Because of this, we use an approximation of Σ, proving formulas in the appendix. As 
with the MW0 model, MW show that ·( /h)h+Tx+++1Tx · · is a Student-t random variable with 
q degrees of freedom – not a normally distributed random variable as with the simple forecasting 
models in Section 2.1. The forecast interval is 

β̂0 + ΣyβΣ
−1 
ββ β̂1:q ± 

q 
(Σyy − Σyβ Σ

−1 
ββ Σβy)( ̂β0 1:q Σ

−1 
ββ β̂1:q/q) t

q 
0.84, (2.21) 

in which t0 
q
.84 denotes the 0.84 quantile of the Student-t distribution with q degrees of freedom. 

Using the example of q = 8, t8 = 1.06.0.84 

Comparing (2.19) and (2.21), we see that the point forecasts of the MW0 and MW1 models 

Using Figure 2.2 as an example for productivity growth, the MW0 point forecast will be the sample 
average while the MW1 point forecast will approximately be the value of the trend for 2020 (which 
happen to be very similar in Figure 2.2). 
In addition, while the forecast intervals for the MW0 and MW1 models both use Student-

tq quantiles, they have different scalings that precede these quantiles. As we will see below, it 
is generally the case that the MW1 model’s forecast intervals are wider than the MW0 model’s 
forecast intervals. 

The MWd Model. The DGP for xt is 

are different: fMW 0 
T,h = β̂0 and fMW 1 

T,h = β̂0 + ΣyβΣ
−1 
ββ β̂1:q. The additional term for the MW1 model 

moves the forecast away from the sample average and toward the last value of the long-run trend. 

xt = µ + ut, (2.22) 

in which ut is a mean zero and I(d) process with −0.5 < d < 1.5. This MWd model functions as 
a more general model than either the MW0 or MW1 models. That is, if we set d = 0, then we 
recover the MW0. If we set d = 1, then we recover the MW1 model. However, we may also choose 
any value of d such that −0.5 < d < 1.5.9 

If d is known, then we can approximate Σ in (2.17) and compute forecasts in manner that 
parallels the MW1 model. However, in practice, d is not known. Instead, following MW, we use 
a Bayesian approach. Our prior is that d has an equal probability of being one of the values in 
{−0.4, −0.2, 0, 0.2, 0.4, 0.6, 0.8

xT +h = (xT +1 + · · · ,/h)h+Tx¯ 
, 1}. We then numerically compute the Bayes predictive density as 

in Section 3.2 of MW. Using we denote the Bayes predictive density 
9This model may also be called the “fractionally integrated” model, referring to the fact that d can be a fraction. 

See Baillie (1996) for an overview. 
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R b 
−∞ f

bayes(x̄T +h| ̂β0, β̂1:q)dx̄T +h and 0.84 = 
R ̄b 
−∞ f

bayes(x̄T +h| ̂β0, β̂1:q)dx̄T +h. The MWd forecast 
¯

with f bayes(x̄T +h|β̂0, β̂1:q).
With f bayes(¯ xT +h|β̂0, β̂1:q 

fMWd xT +hf
bayes(¯ ˆ 

T,h = ¯ xT +h|β̂
Z ∞

−∞ 
0, β1:q)dx̄T +h. (2.23) 

) in hand, we use the expectation or mean as our point forecast 

To compute the 68% forecast intervals, we then find the values of b and b̄ such that 0.16 = 

interval is then {b, b}. 

3 Data 

In this section, we describe the data used in this paper. Section 3.1 covers the data for our pseudo 
out-of-sample forecasting exercises, which are described in Section 4 with results shown in Section 
5. Section 3.2 covers the data used to compare the forecast intervals from the forecasting models 
with the low- and high-cost scenarios in OASDI Trustees Report in Section 6. 

3.1 Data for Pseudo Out-of-Sample Analysis 

We use two datasets for our pseudo out-of-sample analysis. First is the Macrohistory Database 
(Jordà, Schularick, and Taylor, 2017). Second is the Long-Term Productivity Database (Bergeaud, 
Cette, and Lecat, 2016).10 We compute pseudo out-of-sample forecasts for five variables: per capita 
real GDP growth, CPI inflation, labor productivity growth, the level of long-term interest rates, 
and the level of short-term interest rates. We observe all data at an annual frequency. The two 
databases allow us to observe each variable for many different countries. For each variable, we 
include a country if it has a long sample with no missing observations. We also extend the CPI and 
interest rate data to 2020 when possible using data from the OECD and from individual country 
central bank websites. In the following bullets, we list which countries we use for each variable and 
their respective samples. 

• per capita real GDP: We use a panel of 17 countries: AUS, BEL, CAN, CHE, DEU, DNK, 
ESP, FIN, FRA, GBR, ITA, JPN, NLD, NOR, PRT, SWE, and USA. All countries have data 
samples from 1871 to 2017. 

• CPI inflation: We use a panel of 17 countries: AUS, BEL, CAN, CHE, DEU, DNK, ESP, 
FIN, FRA, GBR, ITA, JPN, NLD, NOR, PRT, SWE, and USA. All countries have data 

10Each dataset presents only the latest vintage. Thus, our forecasting analysis abstracts from the effects of data 
revisions, which in any case would likely be small for long-horizon averages. 
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samples from 1871 to 2020. 

• Labor productivity growth: We use a panel of 23 countries: AUS, AUT, BEL, CAN, 
CHE, CHL, DEU, DNK, ESP, FIN, FRA, GBR, GRC, IRL, ITA, JPN, MEX, NLD, NOR, 
NZL, PRT, SWE, and USA. AUS, AUT, and BEL have data samples from 1891 to 2018. All 
other countries have data samples from 1891 to 2019. 

• Long-term interest rate level: We use an unbalanced panel of 15 countries. Due to the 
nature of the unbalanced panel, we list the data samples for each country: AUS (1870-2020), 
BEL (1920-2020), CAN (1870-2020), CHE (1919-2020), DNK (1870-2020), FRA (1870-2020), 
GBR (1870-2020), IRL (1922-2020), ITA (1870-2020), JPN (1870-2020), NLD (1870-2020), 
NOR (1870-2020), PRT (1870-2020), SWE (1870-2020), USA (1870-2020). 

• Short-term interest rate level: We use an unbalanced panel of 12 countries. Due to the 
nature of the unbalanced panel, we list the data samples for each country: BEL (1920-2020), 
CHE (1870-2020), DNK (1875-2020), FIN (1870-2020), FRA (1922-2020), GBR (1870-2020), 
IRL (1920-2020), ITA (1922-2020), NLD (1870-2020), PRT (1880-2020), SWE (1870-2020), 
USA (1870-2020). 

3.2 Data for Social Security Comparison 

For comparing point and interval forecasts from our models to the SSA’s long-run projections, we 
use data from the supplemental single-year tables to the SSA’s 2021 Trustees Report, downloaded 
from https://www.ssa.gov/OACT/TR/2021/. For per capita real GDP growth, we use total popu-
lation from Table V.A3 to compute population growth. We then subtract that population growth 
from real GDP growth in Table V.B2. We pull labor productivity growth and CPI inflation from 
Table V.B1. We use the nominal average annual interest rate from Table V.B2 as a long-term 
interest rate.11 We do not have a short-term interest rate for this analysis. 

4 Pseudo Out-of-Sample Analysis 

We make forecasts over horizons h = 10, 25 and 50 years ahead, with 50 year forecasts made only 
for samples longer than 125 years. To illustrate the mechanics, suppose that the first observation 
in the data series is 1871, as is the case for much of our cross-country data. For concreteness, let us 

11This interest rate is for newly issued Social Security trust fund securities and is the average average of the nominal 
interest rates for special U.S. Government obligations issuable to the trust fund in each of the 12 months of the year. 
See page 116 of the 2021 Trustees Report. We find that this interest rate is very close to the annual average of the 
10-year Treasury constant maturity rate from the FRED database, https://fred.stlouisfed.org/series/GS10, 
and so treat it as a long-term interest rate. 

12 

https://www.ssa.gov/OACT/TR/2021/
https://fred.stlouisfed.org/series/GS10


suppose that GDP growth is the variable under study and that we are using 68% forecast intervals. 
As a reminder, for a normal distribution a 68% forecast interval is ±1 standard deviation around 
the mean. Our cross-country GDP data end in 2017. 
Let us use “estimate our models” as shorthand for “estimate parameters that our models need to 

make forecasts and construct forecast intervals.” (As distinguished from, estimating the forecasting 
performance of our models.) We proceed as follows: 

1. Using a 48-year sample running from 1871-1918, estimate each of our models (iid, AR(1), 
three MW models). 

2. Construct forecasts and 68% forecast intervals for average GDP growth for horizons of 10, 25 
and 50 years: 1919-1928 (h = 10), 1919-1943 (h = 25), 1919-1968 (h = 50). 

3. Using the data for the indicated 10, 25 and 50 year intervals, compute the ex-post forecast 
error and note whether the ex-post average growth rate is within the 68% forecast interval. 

4. Add one year to the end of the sample used to estimate our models. Repeat steps 1-3. 
Repeat over and over, until the available data are exhausted. For example, for h = 10 year 
ahead forecasts, we forecast and construct forecast intervals for average GDP growth from 
1919-1928, then 1920-1929, and so on, up to 2008-2017. 

In a sample running 1871-2017, we end up with 90 forecasts for h = 10, 75 forecasts for h = 25 
and 50 forecasts for h = 50. As a result, we have 90, 75 or 50 observations on the ex-post average 
growth rate. To explain some of the statistics we compute from the forecasts and forecast errors, 
consider h = 10. We compute a time series of 90 forecasts errors, running from T + 10 = 1928 to 
T + 10 = 2017. Let 

x̄T +10 =(xT +1 + · · · + xT +10)/10=realized 10 year average, (4.1a) 

ηT +10 =forecast error= ̄xT +10 −(forecast made using a sample ending at T ), (4.1b) 

F IT +10 =68% forecast interval for T +10, made using a sample ending at T . (4.1c) 

For T + 10 running from 1928 to 2017, with a sample size of predictions and realizations P = 90, 
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we compute among other statistics: 

absolute value of bias (|bias|): 
X 

T 
ηT +10/P (4.2) 

root mean squared forecast error (RMSFE): 
rX 

T 
η2 
T +10/P (4.3) 

fraction of realized averages that fall within nominal 68% forecast intervals: (4.4)hX 
T 
1(x̄T +10 ∈ F IT +10) 

i 
/P. 

In (4.4), 1(x̄T +10 ∈ F IT +10) is an indicator function that takes the value of 1 if realized average 
growth x̄ T +10 falls within the forecast interval, and is 0 otherwise. An ideal procedure to construct 
68% forecast intervals would yield a value of 0.68 for this statistic. 

4.1 Samples and Sampling Schemes 

There remains a question of whether one should use distant data in making forecasts and construct-
ing forecast intervals: in estimating models to forecasting average GDP growth 2011-2020, should 
one use data on GDP growth all the way back to 1871? Distant data allows forecasts to reflect 
behavior in the distant past that may recur in the future. On the other hand, one might view 
what happened to GDP growth in (say) World War II as uninformative or perhaps even misleading 
about prospects for GDP growth in the 21st century. 
We allow for both of these positions and in two ways. First, we use two sampling schemes, one 

of which does use all available data (the recursive scheme) and one of which drops the observation 
that was formerly at the beginning of the sample when another observation is added on at the end 
(the rolling scheme). For both schemes, the sample size used for estimation of our models starts 
at 48. To illustrate, suppose data run from 1871-2017 and consider the h = 10 horizon. For the 
recursive scheme, the sample size used for estimation grows year by year until it reaches 137. At 
that point, data for 1871-2007 is used to forecast 2008-2017. For the rolling scheme, the sample 
size stays fixed at 48, with the initial observation dropped when an year is added at the end. Thus, 
a sample running 1960-2007 is used to forecast 2008-2017. The final rolling samples for h = 25 
and h = 50 are of course shifted back 15 and 40 years earlier than the final 1960-2007 sample for 
h = 10. 
Second, although all our data go back to the 19th century, we repeat all of our estimation using 

samples that start in 1919 (or early 1920s, depending on data availability). With a sample start 
of 1919, the first 10-year forecast is for 1967-1976. The choice of 1919 is not entirely arbitrary. In 
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Table 4.1: Samples for different horizons 

(1a) 
h = 10 

(1b) (2a) 
h = 25 

(2b) (3a) 
h = 50 

(3b) 

data sample 
first predicted 
observation 

no. of 
predictions P 

first predicted 
observation 

no. of 
predictions P 

first predicted 
observation 

no. of 
predictions P 

1871-2020 
1919-2020 

1919-1928 
1967-1976 

93 
45 

1919-1943 
1967-1991 

78 
30 

1919-1968 
n.a. 

53 
n.a. 

Notes: Some series start or end on dates slightly different than 1871, 1919 or 2020. See text for exact dates. The 
first forecast is always for an h-year period that begins 48 years after the beginning of the sample. For example, for 
series whose coverage begins in 1870, the first predicted 10 year average is for 1918-1927, and there would be 94, 79 
and 54 predictions for the three horizons. 

addition to giving us about 100 years of data, such a starting point eliminates some potentially 
anomalous periods. It omits World War I entirely and makes forecasts start well after the Great 
Depression and World War II. Because the sample is shorter, we only predict at 10- and 25- but 
not 50-year horizons. 
For rolling samples, forecasts for a given observation (say, average GDP growth 1967-1976) are 

identical in the complete sample and the sample that ignores data prior to 1919. That is, the 
forecasts (and forecast errors) in the sample that ignores data prior to 1919 are a subset of those 
in the complete sample. For recursive samples, forecasts and forecast errors for a given observation 
are, in general, different in the complete and 1919- samples. 
Table 4.1 summarizes information on sample sizes. Per the description of data in the previous 

section, the start date for some series is not exactly 1871 or 1919 and some series end slightly prior 
to 2020. Whatever the start and end dates, for a given series in a given country, the number of 
predictions is the same for the rolling and recursive schemes. 
In our view, the number of predictions given in Table 4.1 should be understood in light of the 

heavily overlapping nature of our forecasts. Despite the sample sizes of 93 / 78 / 53 in the 1871-
2020 line in Table 4.1, there are only 9 non-overlapping 10-year periods, 3 non-overlapping 25-year 
periods and 1 non-overlapping 50-year period. Among other implications, this leads us to follow 
Müller and Watson (2018) and our own work (Lunsford and West, 2019) in using 68% forecast 
intervals: because realizations in the tails of a distribution are infrequent, observing behavior in 
the tails, as is required for evaluation of 90% or 95% forecast intervals, requires more data than 
evaluation of behavior that includes realizations towards the more-frequently-observed center of a 
distribution. 
Of course, even for h = 50 we have 77 different samples with one non-overlapping set of 50 
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The value of 72% in the iid row, h = 10 column indicates that 65 of the 90 realizations of 10 year average GDP growth fall within 
the iid model�s nominal 68% forecast interval. Other entries are defined similarly.

Table 4.2: Actual coverage of 68% forecast intervals, US GDP growth, rolling samples 

(1) (2) (3) (4) 
h = 10 h = 25 h = 50 

median across horizons(90 forecasts) (75 forecasts) (50 forecasts) 

(1) iid 72% 80% 82% 80% 
(2) AR(1) 71% 78% 63% 71% 
(3) MW0 71% 80% 74% 74% 
(4) MW1 77% 88% 94% 88% 
(5) MWd 70% 77% 74% 74% 
(6) median across models 71% 80% 74% 77% 

Notes: 
1. The sample period runs 1871-2017. 
2. See the text for definitions of the models. 
3. The value of 72% in the iid row, h = 10 column indicates that 65 of the 90 realizations of 10 year average GDP 
growth fall within the iid model’s nominal 68% forecast interval. Other entries are defined similarly. 

observations.12 Our hope is that these 77 samples, though highly correlated, will provide enough 
variation for us to meaningfully evaluate the forecasting performance of our models. 

4.2 Reporting of Results 

We report results both for quality of forecast intervals for predictions, and of the quality of the 
predictions relative to one another. These results are aggregated over all countries. 
To illustrate how such aggregations are constructed, Table 4.2 reports how our 68% forecast 

interval coverage works for a single country and sampling scheme: U.S. GDP growth, for rolling 
samples. To illustrate, consider the 72% figure for iid, h = 10 in row (1), column (1). This indicates 
that 72%, or 65 of the 90 realized values for 10 year average growth, fall within the 68% forecast 
interval that was constructed using the iid model. (The figures in the table are the fractions in 
equation (4.4), multiplied by 100 to convert to percentage.) Of course, an ideal figure would be 
68%. So slightly more realizations than are ideal fall into the forecast intervals. The 80% and 82% 
figures for h = 25 and h = 50 indicate that 60 of 75 (h = 25) or 41 of 50 (h = 50) realized values 
fall within the intervals for those horizons.13 

1277 = GDP growth for 17 countries + inflation for 17 countries + productivity growth for 23 countries + long 
interest rates for 12 countries + short interest rates for 8 countries. Since this same data is used for other horizons, 
for h = 10, the comparable figure is 9 × 77 sets of non-overlapping 10-year observations and for h = 25 the figure is 
3 × 77. 

13We noted above that the iid and MW0 models use identical point forecasts. But as can be seen in the table 
for h = 50, the fact that they use different procedures to construct forecast intervals means coverage can be quite 
different. 
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In our tables below, we report median coverage over a set of forecasts as one summary statistic 
of behavior. Table 4.2 involves few enough entries that perhaps no summary statistics are needed. 
But for illustration we present medians over horizons, over models, and overall over both horizons 
and models. In columns (1)-(3), the bottom row in the table presents the median across the five 
models for a given horizon; in rows (1)-(5), the final column presents the median across the three 
horizons; row (6), column (4) presents the median across the 15 entries in the table. 
In the results about to be presented, we aggregate in a way analogous to the aggregation in the 

final row and final column of Table 4.2. For each of our data series, the basic unit of observation is a 
set of forecasts for a given country, horizon and sampling scheme. For example, we shall summarize 
(among other statistics) the behavior of the each model aggregated across horizons. For GDP 
growth, this means across 102 observations. Here, 102 = 17 countries × 3 horizons × 2 sampling 
schemes. (For the sample starting in 1919, our sample includes 68 observations, where 68 = 17 
countries × 2 horizons × 2 sampling schemes.) Thus, in our tables below, for GDP growth, using 
all available data, and for a given model such as AR(1), median coverage is computed using 102 
observations rather than (as in the rightmost column of Table 4.2) using 3 observations. 
We also summarize accuracy of coverage via a histogram of coverage. We use four bins. For 

nominal 68% coverage, we report the percentage of observations in which: coverage is less than 38%; 
between 38% and 58%; between 58% and 78% (labeled in our graphs as 68% ± 10%); and greater 
than 78%. A well-performing model will have a pile-up of observations in the 68% ± 10% bin–that 
is, will generally have coverage that is close to nominal size of 68%. Our use of “within 10%” as 
defining “close to 68%” is arbitrary, but we think suffices to distinguish well- and poorly-performing 
models. 
We also report histograms after aggregating over models. Figure 4.1 illustrates this when we 

aggregate over models and report a histogram for the 15 entries in Table 4.2. Since 9 of the 15 
entries in the table are within 68% ± 10%, the graph reports 0.6 (=9/15) for the 68% ± 10% entry. 
For point estimates, such as |bias| or RMSFE (see equations (4.2) and (4.3)), we look at medians 

across aggregates, and express the results relative to an arbitrarily chosen baseline model. We also 
report the percentage of sets of forecasts in which a given model produces the lowest RMSFE. 

5 Pseudo Out-of-Sample Results 

We present results for coverage of 68% forecast intervals in Section 5.1 and then for |bias| and 
RMSFE in Section 5.2. In each case, we begin by discussing results for GDP growth, inflation and 
productivity growth, for the longest possible samples and for samples that begin around 1919. We 
then discuss the results for interest rates. 
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Figure 4.1: US GDP growth: 68% coverage 

This is a histogram of the figures in Table 4.2. The vertical axis is the fraction of the 15 entries in Table 4.2 that 
fall into the indicated bin. 

For simplicity, we will refer to GDP growth, inflation and productivity growth as “stationary” 
variables rather than use the longer but more accurate description “variables often presumed to be 
stationary.” We distinguish these from our interest rate variables, which are often interpreted as 
displaying behavior suggestive of unit roots. 

5.1 Results for Coverage of 68% Forecast Intervals 

Table 5.1 has summary information on performance of 68% confidence intervals. The top panel 
relies on the longest time series available. The bottom panel relies on data starting in 1919 or 
slightly later. In each panel, for our stationary variables (columns (3)-(5)), the baseline simple 
time series model is the iid model. We do not compute random walk forecasts for the stationary 
variables, and show “n.a.” in the random walk row. In columns (6) and (7), the baseline simple 
time series model for interest rates is a random walk. We do not compute iid model forecasts for 
these variables, and show “n.a.” in the iid row. 
Overall, the models perform better for stationary variables than for interest rate variables. We 

discuss stationary and interest rate variables in turn. 
For the stationary variables, performance is better in the complete sample going back to the 19th 

century (panel A). Here, the “median coverage” columns in panel A indicate to us that coverage 
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Table 5.1: Actual 68% forecast interval coverage: medians and fraction of samples within 10% of nominal coverage 

A. Samples starting 1870s or 1891 

(1) (2) (3a) (3b) (3c) (4a) (4b) (4c) (5a) (5b) (5c) (6a) (6b) (6c) (7a) (7b) (7c) 
(1) GDP growth CPI inflation Productivity growth Long-term interest rates Short-term interest rates 
(2) 17 countries 17 countries 23 countries 12 countries 8 countries 

(3) horizon model no. of median fraction no. of median fraction no. of median fraction no. of median fraction no. of median fraction 
samples coverage 68%±10% samples coverage 68%±10% samples coverage 68%±10% samples coverage 68%±10% samples coverage 68%±10% 

(4) all all 510 70% 0.36 510 69% 0.25 690 71% 0.26 360 31% 0.07 240 34% 0.09 
(5) all RW n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 72 34% 0.13 48 66% 0.35 
(6) all iid 102 61% 0.35 102 36% 0.13 138 61% 0.29 n.a. n.a. n.a. n.a. n.a. n.a. 
(7) all MW0 102 67% 0.36 102 62% 0.31 138 65% 0.30 72 27% 0.00 48 20% 0.00 
(8) all MW1 102 86% 0.26 102 88% 0.16 138 90% 0.07 72 38% 0.13 48 44% 0.08 
(9) all MWd 102 64% 0.46 102 76% 0.38 138 70% 0.33 72 34% 0.08 48 35% 0.02 
(10) all AR1 102 60% 0.36 102 57% 0.29 138 57% 0.29 72 20% 0.01 48 20% 0.00 
(11) 10 all 170 72% 0.58 170 75% 0.36 230 75% 0.35 120 43% 0.13 80 43% 0.16 
(12) 25 all 170 74% 0.31 170 65% 0.29 230 67% 0.25 120 25% 0.02 80 27% 0.04 
(13) 50 all 170 57% 0.19 170 58% 0.12 230 69% 0.17 120 24% 0.07 80 29% 0.08 

B. Samples starting 1919 or 1920s 

(1) (2) (3a) (3b) (3c) (4a) (4b) (4c) (5a) (5b) (5c) (6a) (6b) (6c) (7a) (7b) (7c) 
(1) GDP growth CPI inflation Productivity growth Long-term interest rates Short-term interest rates 
(2) 17 countries 17 countries 23 countries 15 countries 12 countries 

(3) horizon model no. of median fraction no. of median fraction no. of median fraction no. of median fraction no. of median fraction 
samples coverage 68%±10% samples coverage 68%±10% samples coverage 68%±10% samples coverage 68%±10% samples coverage 68%±10% 

(4) all all 340 85% 0.24 340 73% 0.25 460 80% 0.25 300 30% 0.03 240 34% 0.11 
(5) all RW n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 60 29% 0.10 48 57% 0.35 
(6) all iid 68 74% 0.35 68 30% 0.10 92 66% 0.28 n.a. n.a. n.a. n.a. n.a. n.a. 
(7) all MW0 68 80% 0.29 68 64% 0.32 92 72% 0.25 60 30% 0.00 48 28% 0.00 
(8) all MW1 68 100% 0.10 68 91% 0.19 92 100% 0.15 60 40% 0.03 48 42% 0.15 
(9) all MWd 68 86% 0.19 68 87% 0.31 92 86% 0.28 60 30% 0.00 48 35% 0.04 
(10) all AR1 68 78% 0.28 68 67% 0.32 92 66% 0.28 60 21% 0.00 48 26% 0.02 
(11) 10 all 170 79% 0.29 170 75% 0.32 230 78% 0.30 150 38% 0.03 120 41% 0.14 
(12) 25 all 170 96% 0.19 170 67% 0.18 230 82% 0.20 150 21% 0.03 120 27% 0.08 

Notes: 
1. For all series, the sample end date is between 2017 and 2020. See text for list of countries, explanation of models and exact sample periods. 
2. In the lists of horizons and models in columns (1) and (2), “all” means numbers aggregated over all five models or over all three (panel A) or two 
(panel B) horizons. 
3. In the list of models in column (2), we use the shorthand “RW” and “AR1” for the random walk and AR(1) models. 
4. To explain “median coverage,” consider the figure of 67% in row (7), column (3b) in panel A. Per column (3a), the MW0 model is used to produce 
102 sets of pseudo out-of-sample forecasts of average GDP growth; here, 102 = 17 countries × 3 horizons × 2 sampling schemes. Confidence intervals 
with nominal 68% coverage are computed for each forecast in each of the 102 sets of forecasts. We show the median value across these 102 sets of 
forecasts. 
5. To explain “fraction 68% ± 10%,” continue the example in the previous note by considering the figure of 0.36 in column (3c) in the MW0 row in 
panel A. Across the 102 sets of forecasts, actual coverage is between 58% and 78% in 37 of the 102 sets, giving the fraction 37/102=0.36. 



Figure 5.1: 68% coverage for GDP growth, MWd model, rolling scheme 

Note: The results plotted here are a subset of those reported in column (3) of panel A of Table 5.1. 

tends to be centered tolerably close to the ideal value of 68%. Of the 27 entries for “median 
coverage” in panel A for the three stationary variables, all but 4 fall between 57% and 76%, and 
three of the four exceptions are for the MW1 model that is not intended for stationary data. 
These results indicate to us that coverage is centered reasonably close to the ideal value of 68%. 

However, and even putting aside MW1, there is considerable dispersion around these medians. 
Columns (3c), (4c) and (5c) in panel A indicate that typical values for the fraction of actual 
coverage that is 68% ± 10% is about 0.25 to 0.35; there are occasional higher or lower values. 
Put differently, in two thirds or more of the sets of forecasts, actual coverage is not within 10% of 
nominal 68% coverage. Perhaps unsurprisingly, coverage is better at shorter horizons (h = 10 [row 
(11), panel A]) than at longer horizons (h = 25 or h = 50 ). This is true whether on measures 
quality of coverage by closeness of the median to 68% or by fraction 68% ± 10%. 
Figure 5.1 gives some insight into behavior across horizons, as well as variability across countries. 

For GDP growth, rolling samples, it plots coverage of 68% intervals for each of our 17 countries. 
Country mnemonics appear in alphabetical order on the horizontal axis. For the USA, the three 
values plotted are the same as those presented in the MWd row of Table 4.2. 
One can see notable degradation of performance in the h = 50 horizon relative to h = 25 and 

h = 10, along with smaller degradation for h = 25 relative to h = 10. As well, one can see that 
h = 10 and h = 25 track one another, with over- or under-coverage in one tending to be associated 
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with the same in the other – unsurprising, given that the forecasts and realizations come from the 
same data. Finally, one can see that there is considerable variation. Even limiting ourselves to 
h = 10 and h = 25, actual coverage runs from 43% to 93%. Teasing out circumstances that lead to 
over- or under-coverage is an interesting task, but one that we leave for future research. 
Let us return to Table 5.1. In panel A, across models (rows (6) to (10)), MWd is best according 

to “fraction 68% ± 10%” for the stationary variables, and it split the honors with MW0 for median 
closest to 68%. Figure 5.2(a) presents a histogram of coverage for MWd. The spike at 68% ± 10% 
is pronounced, which is good; what is bad is that many (indeed, slightly over half) of the sets of 
forecasts yield coverage that is outside of 68% ± 10%. Also, one can see that there are (slightly) 
more sets of forecasts with coverage below 58% (leftmost two bars) than above 78%. That is, 
median coverage is below 68%. Something new to the figure and not presented in the table is the 
fact that coverage for some sets of forecasts is far from 68%, with about one sixth of the forecasts 
having coverage below 38%. 
We will discuss the other graphs in Figure 5.2 shortly. For the present, let us turn to results 

for shorter samples, in panel B of Table 5.1. For the stationary variables, country coverage is 
the same as in panel A. So any differences between panel A and panel B are attributable to the 
sample periods considered. For almost each and every permutation of model and horizon, median 
coverage in panel B is higher than in panel A. The increase is particularly notable for GDP growth. 
Since, in our view, coverage is well centered in panel A, the implication is that median coverage 
is generally above 68% in panel B. Unless one would rather have coverage that is above 68% than 
below 68%–which of course is entirely possible–performance is less satisfactory in panel B. As well, 
“fraction 68% ± 10%” falls in virtually every case, sometimes dramatically so (e.g., for h = 10, 
GDP growth, it falls from 0.58 to 0.29). 
The performance of MWd for the stationary variables degrades notably in the 1919- sample in 

panel B. The histogram in Figure 5.2(b) shows that nearly three-fourths of the sets of forecasts 
have coverage greater than 78%. That is, the MWd forecast intervals are almost always too broad, 
with realized growth rates landing in the 68% forecast intervals far more often than 68% of the 
time. Indeed, the vertical scale of the graph is different than Figure 5.2(a), to accommodate the 
high fraction falling in the “>78%” bin. 
To study how sampling schemes affect our differing results for the different samples, Table 5.2 

breaks down the “fraction 68% ± 10%” results for both the rolling and recursive schemes. The 
“all” line repeats the “fraction 68% ± 10%” that appears in row (4) of panel A and of panel B in 
Table 5.1. The rolling and recursive lines report this statistic for forecasts constructed according 
to the indicated scheme. Since exactly half of the all samples used each scheme, the all figure is 
an average of the rolling and recursive figures (apart from rounding). 
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(a): GDP, 68% coverage MWd (b) GDP19, 68% coverage MWd 

(c): iS, 68% coverage MWd (d): iS19, 68% coverage MWd 

(e): iS, 68% coverage RW (f): iS19, 68% coverage RW 

Figure 5.2 

These are histograms of the fraction of samples in which actual forecast interval coverage fall in the 
indicated range. “GDP” refers to GDP growth and “iS” refers to short-term interest rates. The left 
column relies on the entire sample, the right column on samples starting around 1919. In (a)-(f) above, the 
values for the 68% ± 10% bins repeat values from panel A of Table 5.1 (left column above) or panel B of 
Table 5.1 (right column above), as follows: (a) and (b): row (9), column (3c); (c) and (d): row (9), column 
(7c); (e) and (f): row (5), column (7c). 

22 



Table 5.2: Fraction of samples with coverage 68% ± 10% 

(1a) (1b) 
GDP growth 

(2a) (2b) 
Inflation 

(3a) (3b) 
Prod. growth 

—Sample— 
Full 1919-

—Sample— 
Full 1919-

—Sample— 
Full 1919-

(1) 
(2) 
(3) 

all 
rolling 
recursive 

0.36 
0.41 
0.30 

0.24 
0.33 
0.10 

0.25 
0.26 
0.25 

0.25 
0.19 
0.31 

0.26 
0.29 
0.23 

0.25 
0.34 
0.16 

Notes: 
1. The all line repeats “fraction 68% ± 10%” presented in line (4) of panels A and B of Table 5.1. 
2. The rolling and recursive lines split the results underling the all line into the halves associate with the rolling 
and with the recursive scheme. See text for definition. 
3. See notes to Table 5.1. 

Coverage for “all” in Table 5.2 is worse in the 1919- sample for GDP growth and similar across 
samples for inflation and productivity growth. Consistent with these overall results, each scheme’s 
performance is worse in the 1919- sample for GDP growth. For inflation, the rolling scheme’s 
performance is worse in the 1919- sample while the recursive scheme improved. Productivity has 
the opposite results. Hence, we cannot conclude that changes in performance across samples is 
explained by the use of distant data by the recursive scheme. Rather, we leave the changes in 
performance as unexplained at present. 
We return now to panel B in Table 5.1. Across the two horizons, coverage is better for h = 10 

than for h = 25. Across the five models, the AR(1) model is best for the stationary variables, as 
measured by closeness of median to 68% or “fraction 68% ± 10%.” The iid model performs similarly 
to the AR(1) model for GDP and productivity growth, but is distinctly worse for inflation. The 
MW0 is similar to the AR(1) model for “fraction 68% ± 10%” for the stationary variables. 
Now let us consider results for interest rates, noting that country coverage is broader in panel B 

than in panel A. For long-term rates, performance in each of the samples (both panels A and B) is 
roughly similar, and, in general, is poor relative to that for GDP growth, inflation or productivity 
growth. Median coverage is generally well below 68% (column (6b)). The fraction of sets of forecasts 
with coverage of 68% ± 10% is tiny, generally less than 0.10 (column (6c)). Of this seemingly poor 
collection of models, the random walk and MW1 models perform best. 
For short-term rates, the random walk model is distinctly the best. It produces median coverage 

and “fraction 68% ± 10%” that is comparable to that for stationary variables in panel A: median 
coverage is 66% (panel A) and 57% (panel B); “fraction 68% ± 10%” is 0.35 in both panels. To 
our eye, therefore, the RW model’s performance is tolerable. 
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While the coverage of the MWd model is intended to be robust to very persistent variables, such 
as interest rates, it performs slightly worse than the MW1 model for both long- and short-term 
rates and for both samples based on both median coverage and “fraction 68% ± 10%.” It also 
performs worse than the random walk model based on “fraction 68% ± 10%,” materially so for 
short-term rates. However, the MWd model generally performs better than the MW0 and AR(1) 
models for both long- and short-rates. Overall, we view these results as indicating that the coverage 
of the MWd model has some robustness to high degrees of persistence. 
For interest rates, across horizons, performance is better for h = 10 than for longer horizons. 
Figures 5.2(c) and 5.2(d) depict the behavior of MWd for short term interest rates. For both the 

complete (Fig. 5.2(c)) and 1919- samples (Fig. 5.2(d)), over half the sets of forecasts have actual 
coverage below 38%. For interest rates, MWd is neither the best nor worst performing model, so 
these histograms are broadly representative. 
Figures 5.2(e) and 5.2(f) present coverage histograms for the random walk model. These have 

the same flavor as the histogram for MWd/GDP growth in Figure 5.2(a), with a nice peak in the 
68% ± 10% bin. 

5.2 Results for |bias| and RMSFE 

Table 5.3 has results for median absolute value of bias (|bias|) and root mean squared forecast 
error (RMSFE). We present these with values normalized relative to the median value of a baseline 
model. With this convention, the median values for the baseline model are 1. The choice of baseline 
model is arbitrary. We normalize to allow a clean presentation of relative sizes of median |bias| and 
median RMSFE.14 

Recall that the iid and MW0 models both use the sample mean to forecast and, hence, for each 
data set the two models yield identical |bias| and RMSFE. For the three series generally modeled 
as stationary (GDP growth, inflation, productivity growth), the baseline model is iid/MW0. For 
the two interest rates series, the baseline model is RW. 
To understand the column “% lowest RMSFE,” consider the 40% figure for iid/MW0 for GDP 

growth in the left corner of panel A. Of the 102 samples (102 = 17 countries × 3 horizons × 2 
sampling schemes), the iid/MW0 forecast produces the lowest RMSFE in 41, or 40%, of these 
samples. Apart from rounding, the percentages in the “% lowest RMSFE” column add to 100 
(because in any given sample, one of the models produces the lowest RMSFE). 
We begin with the six sets of results in panels A and B for our stationary variables: GDP 

growth, inflation and productivity growth. A striking result is that MW1 has exceptionally small 
14We found the raw numerical values unrevealing, and hence express them in relative fashion. 
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Table 5.3: Absolute value of forecast bias (|bias|) and root mean squared forecast error (RMSFE) 

A. Samples starting 1870s or 1891 

(1) (2a) (2b) (2c) (3a) (3b) (3c) (4a) (4b) (4c) (5a) (5b) (5c) (6a) (6b) (6c) 
(1) GDP growth CPI inflation Productivity growth Long term interest rates Short term interest rates 
(2) 17 countries, 102 samples 17 countries, 102 samples 23 countries, 138 samples 12 countries, 72 samples 8 countries, 48 samples 

(3) model median median % lowest median median % lowest median median % lowest median median % lowest median median % lowest 
|bias| RMSFE RMSFE |bias| RMSFE RMSFE |bias| RMSFE RMSFE |bias| RMSFE RMSFE |bias| RMSFE RMSFE 

(4) RW n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1 1 51% 1 1 23% 
(5) iid/MW0 1 1 40% 1 1 50% 1 1 36% 6.32 1.21 29% 2.28 1.03 44% 
(6) MW1 0.16 2.54 0% 0.59 2.07 0% 0.27 2.15 0% 0.84 1.08 3% 0.99 1.03 6% 
(7) MWd 0.95 1.03 25% 0.60 1.12 20% 0.93 1.08 43% 0.93 1.08 11% 0.79 0.98 4% 
(8) AR1 0.96 0.97 34% 0.81 0.96 30% 0.99 1.01 22% 1.07 1.08 6% 0.93 0.97 23% 

B. Samples starting 1919 or 1920s 

(1) (2a) (2b) (2c) (3a) (3b) (3c) (4a) (4b) (4c) (5a) (5b) (5c) (6a) (6b) (6c) 
(1) GDP growth CPI inflation Productivity growth Long term interest rates Short term interest rates 
(2) 17 countries, 68 samples 17 countries, 68 samples 23 countries, 92 samples 15 countries, 60 samples 12 countries, 48 samples 

(3) model median median % lowest median median % lowest median median % lowest median median % lowest median median % lowest 
|bias| RMSFE RMSFE |bias| RMSFE RMSFE |bias| RMSFE RMSFE |bias| RMSFE RMSFE |bias| RMSFE RMSFE 

(4) RW n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1 1 52% 1 1 31% 
(5) iid/MW0 1 1 28% 1 1 6% 1 1 20% 1.89 1.32 33% 0.76 0.99 40% 
(6) MW1 0.69 1.62 1% 1.28 1.07 24% 0.34 1.55 17% 1.32 1.06 3% 1.11 1.01 15% 
(7) MWd 1.24 1.01 37% 0.91 0.90 43% 0.86 1.17 36% 1.15 1.06 5% 0.91 1.00 2% 
(8) AR1 1.17 0.96 34% 1.28 0.90 28% 0.92 1.19 27% 1.34 1.02 7% 0.65 1.10 13% 

Notes: 
1. For each model and data series, the median value of |bias| and RMSFE is computed for the number of samples given in row (2). 
The median values are then expressed relative to the median value for a baseline model. The baseline model is iid/MW0 in columns 
(2)-(4), RW in columns (5) and (6). 
2. “% lowest RMSFE” gives the percentage of sets of forecasts in which the indicated model had the lowest RMSFE. For example, 
in row (5), column (2c) the value of 40% reflects the fact that in 41 of the 102 sets of forecasts, the iid/MW0 model had the lowest 
RMSFE. 
3. In row (5) in each panel, results for the iid and MW0 models are identical. 
4. See notes to Table 5.1. 



|bias| and exceptionally large RMSFE. The most extreme example is for GDP growth in panel A. 
For MW1, |bias| is about one-sixth of the next best model (0.16 ≈ 0.95/6) while RMSFE is over 
twice that of the next worst model (2.54 > 2 × 1.03). Clearly this means that for such data MW1 
has huge variance along with small bias. That MW1 has large variance is unsurprising, since MW1 
is intended for unit root series and the data under discussion are generally considered stationary. 
That it has small |bias| is surprising. We have done a deep dive into a couple of the underlying 
series and learned little other that to confirm that, indeed, forecasts from MW1 tend to be scattered 
far away, but symmetrically, around realizations. Hence the forecast errors average to near zero 
but have large variance. At this point, we do not have a satisfying explanation for the performance 
of MW1, which possibly is a fluke. At any rate, we henceforth put aside MW1 in our discussion of 
the three stationary series. 
Each performance metric (for example, median |bias|) appears six times across the three sta-

tionary series, three times in panel A and three times in panel B. MWd has smallest median |bias| 
in five of the six cases (the exception being GDP growth in panel B). The AR(1) model has smallest 
median RMSFE in four of the six cases (the exceptions being productivity growth in both panels). 
MWd’s “% lowest RMSFE” is the largest in four of the six cases (the exceptions being GDP growth 
and inflation in panel A.) That is, in four of the six cases, MWd produces the lowest RMSFE more 
often than any other model. 
Finally, consider the two interest rate series. The random walk model is clearly the best model 

for long-term interest rates, having top performance for all three measure in panel B and top for 
all but |bias| in panel A. For short-term interest rates, the full sample yields a mixed picture while 
the 1919- sample indicates that iid/MW0 performs best. 

5.3 Summary 

The bottom line is that the MWd model is a good choice for stationary variables, in terms of both 
forecast interval coverage and accuracy of predictions as measured by |bias| or RMSFE. The iid, 
MW0 and AR(1) models perform tolerably well, though they are a step behind MWd. The MW1 
model is not a good choice for stationary variables. For the interest rate variables, the random 
walk model is probably the preferred choice, though its advantages relative to our alternatives are 
not as broadly based. MW1 and MWd come next, with MW0 and perhaps AR(1) not good choices 
for interest rates. 
The reader may reasonably look at the MWd and random walk models as merely the best of a 

bad lot. For forecast interval coverage, even the best performing model on the most accommodating 
data–probably MWd for GDP growth, in the complete sample in panel A of Table 5.1–has flaws. 
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It by no means delivers an unambiguously attractive outcome in which actual coverage is clustered 
close to 68% in the vast majority of samples. For what it is worth, the performance summarized in 
Table 5.1 compares favorably to performance of some well established procedures for long-horizon 
inference about impulse response functions for VARs. The object of study in that literature is 
not the same as ours, but it is related. Simulations in that literature find, as did we using actual 
data, that there can be dramatic under- or over-coverage. See, for example, Pesavento and Rossi 
(2007). As well, the closely related literature on estimation of long-run variances has long struggled 
to devise procedures that work well for inference for a wide range of data series. For a relatively 
recent study whose simulations yield both distinctly worse and distinctly better coverage than 
shown here for actual data, see Vogelsang (2018). 

6 Social Security Projection and Model Comparisons 

In this section, we compare forecasts and forecast intervals from our models to projections of the 
Social Security Administration (SSA).15 We note that the SSA projections are not forecasts from 
models such as ours; rather, they reflect the judgement of the SSA Trustees. Our goal then is 
to answer the question: if our forecasting models are used to inform the judgement of the SSA 
Trustees and their projections, what would our models tell us? 
Our source for the SSA projections is the 2021 Trustee’s Report. The Report includes 75-year 

projections for many variables relevant to the balance sheet of the Social Security system. These 
include real per capita GDP growth, CPI inflation, labor productivity growth and a long-term 
interest rate series. These series align well but not perfectly with the U.S. data used in previous 
sections. We were unable to locate a good analogue to the short-term interest rate series used in 
previous sections, and hence do not consider short rates in the present section. See Section 3.2 for 
some additional details. 
For each of our variables, there are three SSA projections associated with what are called 

intermediate, low- and high-cost scenarios. We interpret the intermediate projection as a central 
tendency, and the projections associated with high- and low-cost scenarios as bracketing a range 
of plausible outcomes. For brevity, we use the “low-cost projection” as the shorthand for “the 
projection associated with the low-cost scenario,” and similarly for intermediate and high-cost 
projections. 
To estimate our models, we use 48 years of data, from 1973 to 2020, which matches the rolling 

15The SSA projections for some variables, such as productivity growth and inflation, are also viewed as economic 
assumptions to help evaluate the financial operations of the Old-Age and Survivors Insurance and Federal Disability 
Insurance trust funds. 
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scheme sample size in our pseudo out-of-sample analysis. Further, we note that the 2021 Social 
Security Trustees Report focuses on the years 1969 to 2019 when discussing its economic projections, 
which has a high degree of overlap with the sample we use.16 We consider forecasts and forecast 
intervals for a horizon of h = 25 years, running 2021-2045. We choose that horizon because our 
pseudo out-of-sample results were not particularly reassuring about h = 50 year horizons, and 
h = 10 is on the low end of horizons of interest. 
Table 6.1 has results. Row (1) has SSA projections. The intermediate projection is the number 

in the top half of the row. The numbers in the parentheses in the lower half of the row come from 
the low- and high-cost projections, with the numerically smaller value put on the left end of the 
range. We will refer to the object in parentheses as the “projection interval.” Subsequent lines in 
the table present the model point forecasts along with 68% forecast intervals. Of course, the point 
forecasts for the iid and MW0 models are identical in columns (1)-(3), while the forecast intervals 
are different. 
For the three stationary variables in columns (1)-(3), MW1 is an outlier. For example, the 

point estimate of -0.0% for GDP growth falls starkly far from the 1.5% to 1.7% values of all other 
entries in the column. Now, in both the overall set of results and in the U.S. results presented in 
the pseudo out-of-sample analysis of the previous section of this paper, the MW1 model had by far 
the worst performance for stationary variables. This was true whether one measured performance 
by either RMSFE or forecast interval coverage. Hence, we put little weight on the MW1 forecast 
for these three variables, and will put MW1 aside until we discuss the interest rate results. 
Focus first on real per capita GDP growth in column (1). Point estimates are very similar in 

all rows (again, putting aside MW1), and are close the intermediate SSA projection. Our 68% 
forecast intervals tend to be a little broader than the SSA low-high interval. This is notably so for 
MWd, which is the model that tended to perform best overall for stationary variables. However, 
the discrepancies are relatively small. 
Next, jump to productivity growth in column (3). As with GDP growth, there is little dis-

agreement amongst the models’ point forecasts and the SSA intermediate projection. Further, the 
agreement between SSA low-high interval and the models’ forecast intervals is even stronger than 
for GDP growth. 
For CPI inflation in column (2), we see some larger discrepancies. The SSA projection of 2.4% 

is at the low end of our point forecasts, which range from 2.4% to 3.8% (putting aside MW1). 
In the previous section’s pseudo out-of-sample results for inflation, while MWd’s performance in 
terms of bias and RMSFE overall was probably best, both the iid/MW0 and AR(1) were pretty 
close. On balance, these three models that worked relatively well suggest that the SSA intermediate 

16See pages 105 to 116 of the 2021 OASDI Trustees Report. 
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Table 6.1: SSA Projections and Model Forecasts, 2021-2045 (h = 25) 

(1) 
GDP 
growth 

(2) 
CPI 

inflation 

(3) 
Productivity 
growth 

(4) 
Long-term 
interest rates 

(1) SSA projections 1.6% 
(1.2%, 2.1%) 

2.4% 
(1.8%, 3.0%) 

1.6% 
(1.2%, 1.9%) 

4.1% 
(3.3%, 5.1%) 

(2) random walk n.a. n.a. n.a. 1.0% 
(-1.7%, 3.7%) 

(3) iid 1.7% 
(1.2%, 2.2%) 

3.8% 
(3.1%, 4.6%) 

1.5% 
(1.3%, 1.8%) 

n.a. 

(4) MW0 1.7% 
(1.2%, 2.3%) 

3.8% 
(2.2%, 5.5%) 

1.5% 
(1.2%, 1.9%) 

6.1% 
(4.2%, 8.1%) 

(5) MW1 -0.0% 
(-2.3%, 2.2%) 

1.5% 
(-2.3%, 5.3%) 

1.6% 
(0.3%, 2.9%) 

2.3% 
(-0.9%, 5.5%) 

(6) MWd 1.5% 
(0.7%, 2.3%) 

2.4% 
(-0.4%, 5.1%) 

1.5% 
(1.0%, 2.0%) 

2.9% 
(-0.0%, 5.8%) 

(7) AR(1) 1.5% 
(1.0%, 2.1%) 

3.0% 
(1.4%, 4.6%) 

1.5% 
(1.3%, 1.8%) 

0.5% 
(-1.9%, 2.9%) 

Notes: 
1. The top half of row (1) shows the SSA’s intermediate projection. The bottom half of row (1) shows 
the SSA’s low- and high-cost projections in parentheses, with the numerically smaller value put on 
the left end of the range. 
2. The top half of rows (2)-(7) show point forecasts from the respective model. The bottom half of 
rows (2)-(7) show the 68% forecast intervals from the respective model. 

projection of 2.4% is on the low side.17 

In terms of interval width, those from all of our models are broader than that for the SSA’s 
projection interval. In particular, the width of the MW0 model at 3.3% is nearly triple the width of 
the projection interval at 1.2%, and the widths of the AR(1) and MWd models are even wider than 
that of the MW0 model. In contrast to GDP and productivity growth, which have SSA projection 
intervals that are similar to the 68% forecast intervals from our forecasting models, CPI inflation 
has SSA projection interval width that is narrower than is consistent with a 68% forecast interval. 
Put differently, if one wishes that projection intervals for each variable reflect equal probability 

17In a private communication, an economist from Social Security commenting on this section of the paper noted 
that the SSA Trustees view the high inflation of the 1970s and 80s as unlikely to be repeated in the future. 
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of occurrence, either the GDP and productivity projection intervals are too broad or the inflation 
projection interval is too narrow.18 

For long-term interest rates in column (4), our point forecasts are generally lower than the SSA’s 
intermediate projection. Further, after we downweight the MW0 and AR(1) forecasts because of 
their poor performance with long-term interest rates in our pseudo out-of-sample analysis, our 
remaining three forecasts (random walk, MW1 and MWd) are notably below those of the SSA 
projections. Indeed, the upper bound of our forecast interval for the random walk model (3.7%) is 
below the intermediate SSA projection of 4.1%. 
In addition to disagreement between the models’ point forecasts and SSA’s intermediate pro-

jection, the models also have forecast intervals for the interest rate that are wider than SSA’s 
projection interval. The random walk, MW1 and MWd models have forecast interval widths that 
range from about 5.5% to 6.5%. In contrast, the SSA projection interval has a width of 1.8%. 
Further, the fact that there tended to be undercoverage in our pseudo out-of-sample forecast in-
tervals for interest rates suggests that the models’ intervals should be even broader. On the other 
hand, the effective lower bound on nominal interest rates may cut the other way. The lower end 
of the forecast interval for the random walk model is -1.7%. One may reasonably argue that the 
odds of long term nominal rates averaging -1.7% over a 25 year period are quite slim, in which case 
a -1.7% value for the lower end of the forecast interval seems doubtful. Perhaps some additional 
structure is necessary for a variable such as interest rates with a bound. Nonetheless, we do think 
our results indicate that the SSA projection is on the high side, and that the projection interval 
seems to reflect less uncertainty than do the intervals for GDP or labor productivity growth. 
In sum, our models and the SSA projections line up well for per capita GDP growth and 

productivity growth. Hence, if SSA views 68% forecast intervals as covering a reasonable range 
of projection scenarios, then our models do not indicate the need for any material change in the 
construction of per capita GDP or productivity growth projections. By contrast, for inflation and 
long-term interest rates, there is some disagreement between SSA’s intermediate projections and 
the models’ point forecasts. Further, the projection intervals for inflation and long-term interest 
rates are narrow compared to our 68% forecast intervals. It is our understanding that projections 
for all four variables may be linked to one another. So even if one agrees that our models raise 
concerns about inflation and interest rate projections, it might not be feasible to adjust one set of 

18In a private communication, an economist from Social Security commenting on this section of the paper stated 
that one should not “judge” the projection intervals with confidence intervals from our models. To be clear: we 
are not judging the projection intervals. We are contrasting them with forecast intervals from our models. One can 
endorse the projection intervals as accomplishing exactly what SSA aims to accomplish in their use of high- and 
low-cost scenarios and simultaneously observe that in a probabilistic sense some intervals are likelier to be breached 
than are other intervals. 
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projections while holding the other set fixed. In that case, we interpret the models as suggesting 
that the chain of steps that leads from baseline assumptions to interest rate and inflation projections 
may warrant re-consideration. 

Conclusions 

In this paper we have used pseudo out-of-sample analysis to evaluate some models for long-horizon 
forecasts and forecast intervals. Our data for the out-of-sample analysis stretches for a century 
or more for up to 23 countries. The variables, which are forecast for horizons up to 50 years, are 
real per capita GDP growth, CPI inflation, labor productivity growth, and long- and short-term 
nominal interest rates. We find that a frequency domain model that does not require one to take 
a stand on the order of integration is a good choice for forecasting GDP growth, CPI inflation and 
labor productivity growth (Müller and Watson (2016)). A driftless random walk model is probably 
the best choice for forecasting nominal interest rates. 
We then compare the point and interval forecasts from our models, after excluding the poorest 

performing models in our pseudo out-of-sample analysis, to the Social Security Administration’s 
(SSA’s) projections. We find that the SSA’s projections for real per capita GDP and productivity 
growth are similar to point forecasts and 68% forecast intervals from our models. In contrast, we 
find that the distance between the SSA’s low- and high-cost scenario projections for CPI inflation 
and nominal interest rates is materially smaller than the 68% forecast intervals from our models. 
In other words, our models indicate that the probability that inflation or interest rates breach the 
projections of either the low- or high-cost scenarios is higher than the comparable probability for 
GDP and labor productivity growth. 
Tasks for future research include consideration of a wider set of models for forecasting and for 

inference. Possibilities include models with bias adjustments for highly serially correlated data, 
methods such as in Chudý, Karmakar, and Wu (2020) for construction of forecast intervals for 
stationary data, model averaging, and multivariate models. 
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A Forecast Distributions of the Simple Models 

. We u 

When h and T are each sufficiently 
· + xT +h)/h − µ] and T 1/2(µ̂ − µ) each as normally distributed with 

The iid Model. The model is xt = µ + ut, with ut being iid with mean zero and variance σ2 

use the estimates µ̂ = T −1 PT 
t=1 xt and σ̂2 

u = T −1 PT 
t=1(xt − ̂µ)2 . 

large, we treat h1/2[(xT +1 + · · 
) and T 1/2(µ̂ − µ) ∼ N(0, σ2 

uh1/2[(xT +1 + · · · + xT +h)/h − µ] ∼ N(0, σ2 
u ). With ut iid, we also have 

that h1/2[(xT +1 + · · · + xT +h)/h] and T 1/2 ̂µ are independent so that (xT +1 + · · · + xT +h)/h − µ̂ ∼ 
N(0, [(1/h) + (1/T )]σ2 

u) or 

(xT +1 + · · · + xT +h)/h = µ̂ + 
p
[(1/h) + (1/T )]σ2 

u ξ, 

in which ξ is a standard normal random variable. For the forecast intervals, we use σ̂2 in the place u 

of σ2 .u 

being iid with mean zero and 
It is then the case that 

The Random Walk Model. The model is xt = xt−1 + ut, with ut 
variance σ2 

u. We use the estimate σ̂2 
u = (T − 1)−1 PT 

t=2(xt − xt−1)2 . 

(xT +1 + · · · + xT +h)/h − xT = [(xT +1 − xT ) + · · · + (xT +h − xT )]/h 

= [uT +1 + (uT +1 + uT +2) + · · · + (uT +1 + · · · uT +h)]/h 

= [huT +1/h + (h − 1)uT +2/h + · · · uT +h/h]. 

Hence, h−1/2[(xT +1 + · · ·+xT +h)/h−xT ] = h−1/2[huT +1/h+(h−1)uT +2/h+ · · · uT +h/h], which we 
treat as normally distributed when h is large. Using 

Ph 
j=1 j

2 = h(h + 1)(2h + 1)/6 from Equation 
16.1.10 in Hamilton (1994), we compute h−1/2[(xT +1 + · · · + xT +h)/h − xT ] ∼ N(0, (h + 1)(2h + 
1)σ2 

u/(6h
2)). Hence, we have 

(xT +1 + · · · + xT +h)/h = xT + 
p
(h + 1)(2h + 1)σ2 

u/(6h) ξ, 

in which ξ is a standard normal random variable. For the forecast intervals, we use σ̂2 in the place u 

of σ2 .u 

The AR(1) Model. The model is = ρ0 + ρ1xt−1 + ut, with uttx being iid with mean zero and 
variance σu 

2 . We compute ρ̂0 and ρ̂1 with ordinary least squares. As noted in the paper, we only 
forecast

If |ρ̂1| < 1,
with the AR(1) model ρ1| < 1. If ρ̂1 >= 

ut = xt − ρ̂0 − ρ̂1xt−1 and σ̂2 = (T − 1)−1 ûu t=2 
PT 2 

t . 
ˆ| 1, 

ˆ 
if we forecast with the random walk model. 

we compute We compute the 
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period-by-period forecasts recursively 

x̂T +1 = ρ̂0 + ρ̂1xT , 

x̂T +j = ρ̂0 + ρ̂1 ̂xT +j−1, j = 2, . . . , h. 

xT +j = (1 + ρ̂1 + · · · + ρ̂j−1 
1 )ρ̂0 + ρ̂j 1xT . Using (1 − ρ̂j 1)/(1 − ρ̂1) = 1 + ρ̂1 +These equations imply ˆ 

· · · + ρ̂j−11 , we then have 

x̂T +j = 
ρ̂0 

1 − ρ̂1 
+ ρ̂j 1 

� 
xT − 

ρ̂0 

1 − ρ̂1 

� 

and then 

1 
h
(x̂T +1 + · · · + x̂T +h) = 

ρ̂0 

1 − ρ̂1 
+ 
1 
h
(ρ̂1 + ρ̂2 

1 + · · · + ρ̂h 
1 ) 

� 
xT − 

ρ̂0 

1 − ρ̂1 

� 
, 

which is the point forecast used in the paper. Fuller and Hasza (1980) show that these forecasts 
are unbiased when ut is drawn from a normal distribution. However, Magnus and Pesaran (1991) 
point out that this unbiasedness result depends on assumptions about the initial observation x1 

and that unbiasedness holds if E(x1) = ρ0/(1 − ρ1). 
To simplify the analysis, we assume that ρ̂0 and ρ̂1 equal the population values ρ0 and ρ1 with 

certainty. With these assumptions, we have h1/2[(xT +1 + · · · + xT +h)/h − (x̂T +1 + · · · + x̂T +h)/h] = 
h1/2[(1 + ρ1 + · · · + ρh−1 

1 )uT +1/h + (1 + ρ1 + · · · + ρh−2 
1 )uT +2/h + · · · + uT +h/h], which we treat as 

normally distributed when h is large. We compute the distribution h1/2[(xT +1 + · · · + xT +h)/h − 
(x̂T +1 + · · · + x̂T +h)/h] ∼ N(0, [1 + (1 + ρ1)2 + · · · + (1 + ρ1 + · · · + ρh−1 

1 )2]σ2 
u/h). Hence, we have 

(xT +1 + · · · + xT +h)/h = 
ρ̂0 

1 − ρ̂1 
+ 
1 
h
(ρ̂1 + ρ̂2 

1 + · · · + ρ̂h 
1 ) 

� 
xT − 

ρ̂0 

1 − ρ̂1 

� 

+ 
q 
[1 + (1 + ρ1)2 + · · · + (1 + ρ1 + · · · + ρh−1 

1 )2]σ2 
u/h

2 ξ, 

in which ξ is a standard normal random variable. For the forecast intervals, we use σ̂2 in the place u 

of σ2 .u 
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B Covariance Approximations for Müller and Watson 

Given a data sample, {x1, . . . , xT }, the forecasting approach in Müller and Watson (2016) uses 

as a scalar. Then, Müller and Watson (2016) prove a central limit theorem 

β̂0 = T −1 PT 
t=1 xt and β̂j = T −1 PT 

t=1 
√ 
2 cos(πj(t − 1/2)/T )xt for j = 1, . . . , q, in which q is much 

smaller than T . Write β̂1:q = [ ̂β1, . . . , β̂q]0 as a (q × 1) vector and yT,h = (xT +1 + · · · + xT +h)/h − β̂0 

T 1−κ 

" 
β̂1:q 

yT,h 

# 

⇒ 

" 
β̃ 
y 

# 

∼ N(0, Σ), Σ = 

" 
Σββ Σβy 

Σyβ Σyy 

# 

, 

in which κ is a scaling factor that depends on the relevant model for xt. For the MW0 model, 
κ = 1/2. For the MW1 model, κ = 3/2. For the MWd model, κ = 1/2 + d. 
The forecasting approach in Müller and Watson (2016) relies on knowing the form of Σ. For the 

MW0 model, Müller and Watson (2016) provide analytical values for every element of Σ. However, 
for the MW1 and MWd models, we use the numerical approximations from Section 3.2 of Müller 
and Watson (2020). 
To start our numerical approximation, let r = h/T be the ratio of the forecast horizon to the 

sample size. Then, we use N = 1000 and compute the integer, H = round(rN). Using the notation 
ψj,t = 

√ 
2 cos(πj(t − 1/2)/N), we write the (N × q) matrix 

Ψ = 

⎡ ⎢⎢⎢⎢⎢⎣ 

ψ1,1 ψ2,1 · · · ψq,1 

ψ1,2 ψ2,2 · · · ψq,2 
. . . 

. . . 
. . . 

ψ1,N ψ2,N · · · ψq,N 

⎤ ⎥⎥⎥⎥⎥⎦ 
. 

Then, we write the ((N + H) × (q + 1)) matrix 

Ξ = 

" 
Ψ −1N×1 

0H×q (N/H)1H×1, 

# 

in which 1m×n denotes an (m × n) matrix of ones and 0m×n denotes an (m × n) matrix of zeros. 
Next, let L be a lower-triangular ((N + H) × (N + H)) matrix with ones on and below the main 
diagonal. Then, we approximate Σ for the MW1 model with 

Σ = σ2 
lrv(Ξ

0LL0Ξ)/N3 , 

in which σ2 denotes the long-run variance of Δut. The value of σ2 is unknown, but the form oflrv lrv 
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the forecast interval is such that any value of σ2 > 0 yields the same forecast interval. We can seelrv 

/q) in the forecast interval. Hence, we set σ2 = 1lrv 

and compute 

for the MW1 model. 
For the MWd model, if the value of d is such that −0.5 < d < 0.5, define a ((N + H) × (N +H)) 

matrix Λ in which the (i, j) element is given by 

this by noting that σ2 
lrv scales every element of Σ equally, causing it to be divided out of the terms 

ΣyβΣ
−1 
ββ and (Σyy − ΣyβΣ

−1 
ββ Σβy)( ̂β0 1:qΣ

−1 
ββ β̂1:q

Σ = (Ξ0LL0Ξ)/N3 , (B.1) 

λi,j = 
Γ(k + d)Γ(1 − 2d) 

Γ(k + 1 − d)Γ(1 − d)Γ(d)
, 

in which k = |i − j| and Γ(·) denotes the gamma function. Then, we set σ2 = 1 as in the MW1lrv 

model19 and compute 
Σ = (Ξ0ΛΞ)/N1+2d . (B.2) 

If the value of d is such that 0.5 < d < 1.5, compute d̃ = d − 1 and define a ((N + H) × (N + H)) 
matrix Λ in which the (i, j) element is given by 

λi,j = 
Γ(k + d̃)Γ(1 − 2 ̃d) 

Γ(k + 1 − d̃)Γ(1 − d̃)Γ( ̃d) 
, 

in which k = |i − j| and Γ(·) denotes the gamma function. Then, we set σ2 = 1 and computelrv 

Σ = (Ξ0LΛL0Ξ)/N1+2d . (B.3) 

19For the MWd model, σ2 denotes the long-run variance of ut 
d)B−(1 with B being the backshift or lag operator. lrv 
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Bergeaud, Antonin, Gilbert Cette, and Rémy Lecat. 2016. “Productivity Trends in Advanced 
Countries between 1890 and 2012.” Review of Income and Wealth 62 (3):420–444. URL https: 
//doi.org/10.1111/roiw.12185. 
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