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1.0 Introduction 

Accurately forecasting expenditures on Social Security is a difficult endeavor because doing so 

requires predicting the health status of Americans well into the future. While health forecasting 

has understandably received more attention in predictions of future Medicare expenditures – 

health care expenditures are more directly tied to health – such forecasts are crucial for Social 

Security forecasting as well.  First, the extent of Social Security expenditures on retirees and 

their spouses (Old-Age and Survivors Insurance, or OASI) depends on how long people survive 

into their retirement years, and this in turn depends critically on their health status.  A 

healthier, more long-lived population will spend more on OASI in the long run. Second, both 

Supplemental Security Income (SSI) and Social Security Disability Income (DI) payments, though 

less in aggregate than OASI payments, depend even more critically on population health status.   

Forecasts that ignore changes in population health status – or inadequately model them – are 

thus bound to be inaccurate.  This is especially the case since the health status of Americans has 

been rapidly changing over the last decades, for both better and worse.  There is considerable 

evidence, for instance, that newer cohorts of elderly Americans have become healthier than 

previous cohorts with declining rates of disability (Manton, Gu, and Lamb, 2006).  Rates of 

smoking and the cancers that it causes have also declined, which makes the population as a 

whole healthier. At the same time, obesity rates and many chronic diseases associated with it 

have increased throughout the population, including in particular the near-elderly.  As these 

populations age toward retirement, they are likely to have shorter lives, on average, than 

cohorts of elderly that came before them (Olshansky et al, 2005; ). At the same time, prominent 

demographers have criticized the Social Security Administration for being too pessimistic about 

future trends in mortality (Soneji and King, 2012). Disentangling these competing trends and 

claims requires a sophisticated approach to disease and mortality modeling. 

In this paper, we apply an updated version of the Future Elderly Model, which has been used 

extensively over the last decade to forecast future Medicare expenditures and to answer 

counterfactual questions about the effects of changing medical technology on future medical 

expenditures, to the purpose of predicting future expenditures by the Social Security 

Administration.  At the core of the FEM is a detailed microsimulation that captures a diverse set 



 

 2 

of health conditions and demographic factors known to drive health care spending and 

mortality. The parameters underlying the FEM are estimated using large nationally-

representative longitudinal databases, including the Health and Retirement Study (HRS) and the 

Medical Expenditure Panel Survey (MEPS).  The FEM provides detailed forecasts for cohorts of 

Americans 51 years old and above.1 One key feature of the FEM is its ability to handle the 

problem of competing risks, where declines in the mortality associated one condition (or 

increases in the prevalence of that condition) lead mechanically to increases in the mortality 

and prevalence of other conditions (since dead people cannot develop any new chronic 

diseases). Our focus in this paper, in addition to introducing the predictions of the FEM on 

outcomes relevant to the Social Security Administration, is on delineating how alternate 

assumptions changes in mortality forecasts affect forecasts.   

 

2.0 Social Security Forecasting—An Overview  

There is no such thing as the perfect forecasting tool.  Every forecasting approach necessarily 

emphasizes some parts of the complicated reality that will determine the future of Medicare, 

while deemphasizing others.  The right question to ask in assessing a forecasting tool is whether 

it accomplishes the goals for which it was designed.  We do not have the space in this paper to 

provide a comprehensive review of all the approaches that have been taken to forecasting 

Social Security expenditures. Instead, we will briefly discuss the approach taken by the Social 

Security Administration (SSA) to highlight the key issue of mortality rate forecasting.   

All forecasts depend in large part on unverifiable assumptions about the future.  The accuracy 

and usefulness of a forecasting framework depends critically on two things: the truth of the 

conceptual model that drives the forecast and the fidelity of the parameter estimates.  Since all 

models are necessarily simplifications, the assumptions made in the construction of a 

forecasting model focus attention on those aspects of underlying reality of most interest to the 

designers of the model and the consumers of its forecasts.  These assumptions also limit the set 

                                                
1 The restriction to people 51 years old and above is required by reliance on HRS data, which does not 
sample people younger than that. 
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of counterfactual questions that can be addressed using the model. The SSA’s primary 

framework is designed to answer one counterfactual question in particular -- “What would 

happen to Social Security expenditures if life expectancies improved at a slower (or faster) 

rate?”   

2.1 Office of the Actuary Forecasting  

The Social Security Office of the Actuary (OACT) each year produces updated projections of 

future Social Security expenditures on the basis of a sophisticated demographic model that 

accounts for a wide variety of important changes in the American population. In particular, the 

OACT model accounts for trends in fertility, immigration, and mortality. In addition, the model 

applies forecasts future changes in unemployment, inflation, interest rates, wages, and 

disability to predict both Social Security expenditures and income (Cheng et al., 2004; Soneji 

and King, 2012).  The OACT model accounts for changes in the age-, sex-, and cause-specific 

death mortality rates for heart disease, cancer, vascular disease, violence, respiratory diseases, 

diabetes mellitus, and a residual category of all other causes.  The modeling effort includes an 

exercise to determine how sensitive forecasted expenditures and receipts are to variations in 

the parameters that underlie the model (Burdick and Manchester, 2003).   

One of the key parameter inputs into the SSA model involves a forecast of how secular 

mortality rates will change over the upcoming decades.  The forecast necessarily requires 

considerable guesswork since it involves predicting how (in the context of the SSA model) 

medical technology will change cause-specific death rates.  The basic idea behind this forecast 

is to use historical data on improvements in mortality as a way to ground future expectations.  

The SSA intermediate forecast assumption effectively assumes that future improvements in the 

mortality rate will mirror those that the US experienced between 1900 and the present (Soneji 

and King, 2012; Lee and Carter, 1992).  This is a vital parameter because small changes in future 

mortality rates will have an outsized impact on future Social Security outlays.  A long-lived 

future population will stay alive longer and thus be eligible for OASI or other benefits for a 

longer period of time. 
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While the OACT methodology flexibly models how changes in mortality leads to changes in 

future Social Security outlays and taxes, demographers have criticized the model for the 

arbitrary way that it handles age- and cause specific mortality profiles.  These profiles are only 

partly derived from nationally representative data sources, and in fact are modified ex-post by 

the Social Security Administration to make the numbers appear more “reasonable.”  Soneji and 

King (2012) argue that these arbitrary ex-post adjustments lead to a likely overestimate of 

future death rates.   

Others have argued that the model’s assumptions about forecasted mortality rate 

improvements are too pessimistic for other reasons.  This criticism is partially based on the 

observation that cause-specific mortality rates have declined faster in the second half of the 

20th Century than they did in the first half (Lee and Carter, 1992).   By contrast, some 

economists have argued that technological progress in medicine is self-limiting, and that 

periods of great advances are followed by periods of slow improvement because after great 

progress, patients have less incentive to participate in randomized trials (Malani and Philipson, 

2011).  Whatever the case, our approach in this paper – similar to the one taken in the SSA 

modeling effort – is to run the FEM under alternate assumptions about future reductions in 

cause-specific mortality spanning from no future technological advances to substantial 

advances consistent with Social Security’s intermediate scenario. 

 

2.2 How the FEM Differs from the SSA Forecasting Methodology 

The FEM is in some ways similar to the SSA forecasting methodology in that it forecasts how 

particular population subgroups – defined based on health status and demography – will evolve 

over the next decades.  However, there are some important differences in emphasis that 

distinguish it from the SSA model:   

• The FEM is a microsimulation model that permits a rich definition of population cells.  

Practically this means, for instance, that the FEM does not lump people into 5-year age 

bins and considers many covariate interactions in its cell definitions beyond the age-sex-

cause of death cells considered in the SSA model. 
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• The FEM explicitly models and focuses attention on the competing risks problem, 

whereby decreases in the mortality rate associated with a particular disease tends to 

increase the prevalence of all other diseases (since a dead person cannot contract a new 

disease).  This stands in contrast to the SSA forecasting model, which has come under 

criticism for inadequately addressing this problem (Wilmouth, 1995; Wilmouth, 2005).   

• The FEM explicitly models disease prevalence and the transition between health states, 

in addition to state-specific mortality rates.  The FEM framework permits a natural way 

of modeling risk-factors such as smoking and obesity that partly determine health status 

transitions. Unlike the Future Elderly Model, the OACT model does not explicitly track 

the prevalence of these conditions in the population, nor does it forecast changes in the 

prevalence of these conditions (and thus their effect on predicted Social Security 

outlays).   

• In the FEM, new entrants in the model in each future year reflect observed health status 

trends in the population.  

• The FEM emphasizes transparency in the estimation and application of model 

parameters, including health status transitions, conditional mortality regressions, and 

other outcomes, including Social Security outcomes.  All of these parameters are based 

on regressions using high quality nationally representative datasets of the age 51+ 

population in the US, such as the Health and Retirement Study.  All the regression 

parameters underlying the model are publicly available and a publicly released version 

of the FEM is freely available to anyone. 

We conclude this section by noting an important weakness of the FEM relative to the Social 

Security model – the FEM only models people who are 51 years old and older.  This is because 

the model relies heavily on the HRS data for its parameter estimates, and the HRS in turn only 

surveys people who are 51 years and older.  A second important caveat is that the current 

version of the FEM forecasts only future Social Security outlays, not tax receipts.  There are 

plans to extend the FEM to produce tax receipt outcomes, but that work has not yet been 

completed. 
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3.0  Trends in Elderly Health 

To make the case that a more sophisticated approach to modeling health status trends in the 

American population is needed in Social Security forecasting, we survey here the 

epidemiological literature on trends in the health status of the elderly population. The main 

message of this literature seems to be mixed – some indicators point to a future elderly 

population that will be healthier than the current cohort of American elderly citizens, while 

other indicators point to a less healthy future elderly population.  Our case for the Future 

Elderly Model rests in part on its ability to sort out the empirical importance of these indicators 

and produce a forecast that accounts for all of these conflicting trends.  

 

3.1 Trends in Disability Rates Among the Elderly 

It is widely-accepted that American elderly are less likely to be disabled than they were two 

decades ago (Freedman, Martin, and Schoeni 2002).  The importance of these positive trends to 

the well-being of elderly populations should be obvious. This fact also represents a sharp 

reversal from the consensus among researchers developed in the 1970s that disability rates 

among the elderly were rising.  To these researchers (for example, Gruenberg 1977), the 

impressive mortality declines of the 20th century represented a “failure of success” since it 

seemed that extra life years were spent by the elderly in a disabled state.   

Though everyone has some intuitive idea about what it means to be disabled, when examined 

closely, disability turns out to be a hard concept to define-and hence difficult to measure in 

population based surveys. Generally, survey data reporting disabilities refer to two broad areas-

-functional limitations and work limitations.  The former encompasses the most basic, 

mechanically-oriented activities of daily living (ADLs) such as dressing, eating, and bathing, as 

well as instrumental activities of daily living (IADLs) that involve everyday behaviors requiring a 

higher level of cognitive functioning than ADLs, such as grocery shopping, managing money, 

and preparing meals.  All of the studies of disability surveyed in this section use one of these 

two definitions. 
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Manton, Corder, and Stallard (1997) use the 1982, ’84, ’89, and ‘94  National Long Term Care 

Surveys (NLTCS) to investigate trends in the prevalence of disability in the elderly population.  

Defining disability as an inability to perform an ADL/IADL without aid for at least 90 days, they 

find that the age-adjusted prevalence of disability for 1994 decreased by 3.6% from 1982 (from 

24.9% to 21.3%).  The authors compare the size of observed disabled population with that 

which would have occurred without the apparent declines in disability. There were 0.54 million 

and 1.2 million fewer disabled in 1989 and 1994, respectively, than there would have been had 

the 1982 rates stayed fixed (Manton, Corder, and Stallard 1993, 1997)   Manton and Gu (2001) 

and Manton, Gu and Lamb (2004) update the results of Manton, Corder, and Stallard (1997) 

using the later waves of the NLTCS.  They confirm a continuing decline in disability among the 

elderly, especially among the oldest age groups. 

Freedman and Martin (1998) use the 1984 and 1993 Surveys of Income and Program 

Participation (SIPP) to investigate trends in disability prevalence.  Their definition is of disability 

differs mildly from the one Manton and his colleagues use; they define it as difficulty seeing 

words in a newspaper, lifting and carrying 10 pounds, climbing stairs, or walking a quarter mile.  

The authors find that prevalence for difficulty in each category declined over the study period.  

Prevalence estimates ranged from 15.3% (difficulty seeing words in a newspaper) to 25.8% 

(walking ¾ mile) in 1984 to 11.6% to 22.3% for the same categories in 1993, a relative 

improvement of between 0.9% and 2.3% across functions.   

Crimmins, Saito, and Reynolds (1997) use the Longitudinal Study of Aging (LSOA) (1984, ’86, ’88, 

’90) and the National Health Interview Survey (NHIS) (1982 to ‘93) to track the prevalence of 

disability over time.  They confirm net decreases in disability from 1982 to 1993 despite 

intermediate fluctuations.  Using NHIS 1970, ‘80, and ‘90 data and an alternate definition of 

disability (any limitation in usual activity over the past 12 months), Crimmins, Saito, and 

Ingegneri (1999) find fluctuations in long-term disability prevalence.   Institutionalization rates 

have declined for most ages, but have stayed the same or increased above age 80.  Long-term 

disability increased for the 60+ population from 1970 to 1980, but decreased from 1980 to 

1990.      
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Crimmins, Saito, and Ingegneri (1999) also investigate the relative contributions to life 

expectancy of disability-free and disabled years.  They use the NHIS definition of years of active 

life expectancy: the “years when an individual’s health does not affect ability to perform normal 

activities of life including both major and secondary activities.”  At age 65, total life expectancy 

increased from 1970 to 1990, but the proportion of that increase that was due to disability free 

years was small.  From 1970 to 1980, disability-free life expectancy did not increase, but there 

was a slight increase from 1980 to 1990.  McKinlay et al. (1989) also find that disability-free life 

expectancy has decreased for newborns and middle-aged women from 1964 to 1985.  These 

findings do not entirely support the hypothesis by Fries (1980) that active-life span is increasing 

faster than total life span. 

3.2  Trends in Elderly Chronic Disease 

Desai et al. (1999) report that the leading causes of death in the U.S. among those over 65 are 

heart disease (1,808/100,000 population), cancers (1,131/100,000 population), and strokes 

(415/100,000 population).  The good news is that all three of these conditions have been 

declining in prevalence and associated mortality over the last decade.  Unfortunately, there has 

been mixed news about other chronic health trends.  While hypertension, heart disease, stroke, 

and cancer among the elderly incidence have declined in the past decade, there has been an 

increase in asthma, hip fractures, arthritis, diabetes, and obesity.  While a comprehensive 

survey of disease trends is beyond our scope here, interested readers can consult Reynolds et 

al. (1998) or Crimmins et al. (1999). 

Heart disease rates and mortality have declined in the past decade so much that it has inspired 

prominent newspaper articles such as Kolata (2003).  Fang and Alderman (2002) report sharp 

declines between 1988 and 1997 in in-hospital mortality from myocardial infarction for all age 

groups, including the elderly.  They attribute these declines to a 98% increase in angiography 

use and a 201% increase in revascularization procedures (for those over 75) during the period.  

Effectively, heart disease is changing from an acute condition resulting in near-immediate death 

to a chronic condition.  For those with chronic heart failure, the news is good as well.  Levy et 

al. (2002) report that both the incidence and mortality due to heart failure have fallen.  

McDonald et al. (2002) report that even for elderly patients with serious and hard to treat heart 
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conditions like ventricular arrhythmias, survival rates have been improving, though medical 

expenditures to treat this condition have been rising. 

The CDC (2002d), using data from a nationally representative sample of patients tested for 

hypertension, reports that age-adjusted hypertension prevalence fell from 39.8% in 1971-1974 

to 23.9% in 1988-1994.  The same report however, shows that the prevalence of hypertension 

rates measured by self-reports rose by 6.7% (from 41.8% to 48.5%) between 1991 and 1999 

among the elderly population.  Psaty et al. (2002), on the other hand, reports that treatment 

rates for elderly with hypertension improved markedly between 1990 and 1999. 

For the four most common types of cancer–lung, breast, prostate, and colorectal cancer–age 

adjusted mortality rates have fallen by an average of 2% per year for each year between 1990 

and 1998 (CDC 2002e).  These mortality rates have fallen even more precipitously for the 

elderly than for younger cohorts.  Cancer incidence rates have also fallen during this same 

period, most sharply for men but also for women (Jemal et al. 2003).  Much of this latter finding 

can be attributed to increased screening for prostate and breast cancer in the early 1990s. 

Age adjusted mortality rates due to stroke have fallen in the past 100 years (Muntner et al. 

2002).  Much of this improvement can be attributed to advances in the treatment of stroke.  

That is, stroke incidence rates have not declined between 1980 and 1999 (Kennedy et al. 2002), 

but mortality rates have increased.  Fang and Alderman (2001) find that age-adjusted 

hospitalization rates for stroke actually increased between 1988 and 1997.  Stroke outcomes 

are better than they used to be, but at a cost in increased medical care use. 

We turn next to the bad news. The Centers for Disease Control (2002a) report that the estimate 

annual prevalence rate for asthma (or an asthma attack or an episode of asthma) rose for the 

over 65 population from 31.9% in 1980 to and astonishing 45.5% in 1996.  The largest increase 

took place between 1980 and 1985, when the asthma prevalence rate was 38.6%.  The CDC 

constructed these estimates using data from the annual National Health and Interview Survey 

(NHIS), which was redesigned in 1997.  Since the redesign, which changed the asthma 

assessment tool (and hence the measured asthma prevalence levels) asthma rates from the 

elderly in the NHIS have declined from 27.3% in 1997 to 22.1% in 1999.  Mannino et al. (1998) 
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confirm that the asthma trends are not an artifact of the NHIS.  Using three other nationally 

representative databases, they find increasing prevalence of self-reported asthma and 

increasing asthma death rates between 1960 and 1995.  Using a community based survey in the 

UK as evidence, Parameswaran et al. (1998) argue that asthma is “under perceived” by the 

elderly, so these rates may actually underestimate the problem for seniors. 

Hip fracture rates have risen sharply among the elderly.  Samelson et al. (2002), using 

longitudinal data from the ubiquitous Framingham Heart Study, find that age standardized hip 

fracture rates are twice as common among men born between 1911 and 1921 as they were for 

men born between 1887 and 1900.  There is a 40% increase for women in the hip fracture 

incidence rate in the more recent birth cohorts.  Melton et al. (1998) using data from the Mayo 

clinic in Minnesota calculate that–for that community–hip fracture rates have risen from 135.8 

per 100,000 residents between 1928-1942 to 612.7 per 100,000 between 1973-1992.  The 

World Health Organization (1999) predicts that these trends will accelerate.  The title of their 

report summarizes their prediction nicely: “Hip fractures to treble by the year 2030.” 

Arthritis is a major cause of disability in the U.S. (CDC, 2000).  Comparing the CDC (2002b) 

report on the prevalence of arthritis in 2001 with the CDC (1994) report on its prevalence in 

1990, it is clear that arthritis prevalence rose from 50.2% of the elderly population in 1990 to 

58.8% in 2001.  For the previous decade between 1982 and 1993, however, Crimmins et al. 

(1999) partly attribute the increased ability of those in their 60s to work to declines in the 

prevalence of arthritis.  

It is well known that obesity rates have been rising in the U.S., not just over the past two 

decades, but indeed over the whole of the past century, and the elderly have not been 

excepted from this trend (Costa and Steckel 1995).   Lakdawalla, Bhattacharya, and Goldman 

(2004) using NHIS data find that obese elderly are nearly twice as likely to be disabled as their 

non-disabled counterparts.  This is confirmed by the CDC (2002c) which, using another 

nationally representative data set, finds that 24% of obese seniors are disabled compared with 

14.5% of non-disabled seniors.  On the other hand, weight gain in old age correlates with 

reductions in mortality (see Newman et al. 2001), so obesity may be a mixed curse for the 

elderly. 
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Given the rise in obesity, it is no surprise that diabetes prevalence has risen among the elderly 

over the past two decades.  The CDC (1997) reports that diabetes prevalence among the elderly 

rose from a low of roughly 80 cases per 1000 elderly in 1983 to over 100 cases per 1000 elderly 

in 1994.  Bertoni et al.’s (2002) finding using Medicare claims files that elderly patients with 

diabetes have a 41% higher all-cause mortality rate than the general population is also not 

surprising.  The CDC (2012) updates these numbers up through 2011 and finds that these trends 

have worsened in every state in the U.S.  

4.0 Future Elderly Model 

The FEM is a complicated model with many moving parts.  We leave a full discussion of the 

details of the model for the Appendix.  Here, we briefly describe the pieces of the model, how 

they fit together, and how the model has been used by researchers.  The last may give the 

reader a sense of the range of counterfactual questions that could be addressed using the 

model, even though in this paper we focus only on mortality rate assumptions in Social Security 

forecasting.   

4.1 A Brief Introduction to the FEM 

The FEM simulation consists, first, of a population of individuals along with their health and 

demographic characteristics observed in a baseline year.  The health and demographic 

characteristics of each individual generate their patterns of use and spending.  To simulate 

future years’ use and spending, the characteristics of the simulated population are evolved 

forward in time and future Social Security payments are simulated based on those 

characteristics.   

The FEM tracks the presence of 8 chronic conditions (hypertension, heart disease, cancer, 

diabetes, stroke, chronic obstructive pulmonary disease, ADL and IADL disability, and obesity).  

Presence of a condition in a particular year is determined using the Medicare Claims by “looking 

back” a certain number of years in the claims data for a certain number of occurrences of the 

relevant codes, where the number of years and the number of occurrences vary by condition. 

The chronic conditions file contains both indicators for whether an enrollee qualified as having 
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each chronic condition this year and an indicator for whether he ever qualified as having each 

chronic condition. 

Figure 1 shows the basic schema of the Future Elderly Model, in which a population of 

simulated people is aged forward over time.  The population is evolved forward in time in two 

ways.  First, people already in the population encounter transitions in their health and 

demographic states.  They age one year each year.  They contract new chronic conditions with a 

probability depending on their current characteristics.  They die with a probability depending 

on their current characteristics.  Second, new 51 year olds enter the population, “refreshing” it.   

To construct the simulation model, we construct a simulation sample of individuals in our 

baseline year of 2006.  Then we estimate transition probabilities between health states.  Then 

we estimate the relationships between health states, demographics and the outcomes we want 

to forecast, including Social Security expenditures.  Then we estimate the characteristics of 

incoming waves of 51 year olds and create these waves of entering cohorts in our simulation 

sample.  To estimate health transition probabilities and the relationship between health states, 

demographics, use, and spending we use some estimation sample, which is not the same as the 

simulation sample.   

To refresh the sample, we estimate the distribution of health characteristics in the newly 

eligible population and create new members of the population who have this distribution of 

characteristics.  This is done using the simulation sample, which consists of information from 

the National Health Interview Survey and modified based on our review of the epidemiological 

literature (see Section 3).  Trends in these factors are calculated and the prevalence of the 

chronic conditions for the newly eligible population are updated to reflect these trends and the 

expected effects of these trends based on the relevant epidemiological literature. 

Finally, for each simulated person alive in each year of the simulation, we obtain a prediction of 

DI, SSI, or OASI benefit as well as amount received using a separate outcomes module.  This 

module consists of regressions – using HRS data -- that estimate the benefit receipt 

probabilities and the expected amount of the transfer conditional on a rich set of health status 
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and demographic characteristics.  Predictions from these regressions form the basis for FEM 

predictions of future Social Security participation and outlays. 

4.2  Findings to Date from the FEM 

The FEM has been used to project how changes in medical technology and demographic trends 

are likely to affect future health care expenditures, most prominently in a special issue of 

Health Affairs devoted to findings from the model.  Perhaps the most salient policy implications 

of this research are: (1) Medicare faces substantial technological risk for high health care 

spending—at least on the order of the cost growth driven by demographic trends; (2) disease 

prevention at older ages, while valuable to society, holds relatively little promise for saving 

money, with the notable exception of obesity interventions; and (3) it is  health rather than age 

that drives spending profiles, and a few sentinel conditions are suitable to capture this 

variation.   

Modeling the consequences of health trends and medical technology. Goldman et al. (2005) 

compare the impact of health trends versus medical innovation.  Recent innovations in 

biomedicine seem poised to revolutionize medical practice.  At the same time, disease and 

disability are increasing among younger populations.  This paper considers how these confluent 

trends will affect the health status and health care spending of the elderly over the next 30 

years.  Because healthier individuals live longer, cumulative Medicare spending varies little with 

a beneficiary’s disease and disability status upon entering Medicare.  On the other hand, ten of 

the most promising medical technologies – as identified by biomedical experts — are 

forecasted to increase spending substantially, at a cost of $9,000 to $1.4 million per life-year.  

There is thus substantial technological risk in future spending by the elderly, and it is unlikely a 

“silver bullet” will emerge to both improve health and dramatically reduce medical spending.  

Disability and spending.  Chernew et al. (2005) used the FEM to forecast the impact of changing 

disability rates on spending by Medicare beneficiaries, accounting for differential spending 

trends among the disabled.  The latter adjustment is important because the composition of the 

disabled population—and the intensity of treatment for the disabled—are changing.  Among 

community dwelling elderly, spending growth among the least disabled grew at a faster rate 
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than among the most disabled, which will offset some of the cost savings associated with 

declining disability rates.  Using estimates of spending trends by disability category, the authors 

project that the cost savings associated with improved disability rates will not dramatically slow 

the long run rate of growth in Medicare spending.   

Consequences of obesity in the elderly.  Obesity is recognized as an important public health 

problem, and it could have serious consequences for older cohorts.  Lakdawalla et al. (2005) 

used the FEM to estimate lifetime costs, life expectancy, disease, and disability for 70-year olds 

based on body mass (see also, Michaud et al., 2012).  Obese 70 year-olds (body-mass index>30 

kg/m2) can expect to live approximately the same length of time (13.9 years) as those of 

normal weight, but they will accumulate more than $39,000 in additional lifetime health 

expenditures.  Moreover, obese 70-year olds will enjoy fewer disability-free life-years, and 

experience higher rates of diabetes, hypertension, and heart disease.  Medicare will spend 

about 34% more on an obese individual than on someone with normal weight.  While these 

cost differences are already large, they do not include the nonmonetary impacts of obesity, in 

terms of disability and poor health. 

Technological advances in cancer.  Bhattacharya et al (2005) used the FEM to examine the 

consequences for total Medicare expenditures between 2005 and 2030 of scientific progress in 

cancer.  Because technological advance is uncertain, widely varying scenarios are modeled.  A 

baseline scenario assumes year 2000 technology stays frozen.  A second scenario incorporates 

recent cancer treatment advances and its attendant discomfort.  Optimistic scenarios analyzed 

include the discovery of an inexpensive cure, a vaccine which prevents cancer, and vastly 

improved screening techniques.   Applying the Future Elderly Model, the authors find that no 

scenario holds significant promise for guaranteeing the future financial health of Medicare.   

Lifetime burden of chronic disease among the elderly. The high costs of treating chronic diseases 

suggest that reducing their prevalence would dramatically improve Medicare’s financial 

stability.  Joyce et al. (2005)  use the FEM to examine the impact of selected chronic diseases on 

the distribution of health care expenditures and the variation in spending over the course of 

disease.  They find that a 65-year-old with a serious chronic illness spends $1,000 to $2,000 

more per year in health care services than a similar adult without the condition.  However, 
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cumulative Medicare payments are only modestly higher for the chronically ill due to their 

shorter life expectancy.  While reducing the prevalence of chronic disease at age 65 is a worthy 

goal, it will have only modest effects on Medicare spending.  

Age versus Life Expectancy as a Predictor of Health Care Spending.  It is unresolved whether age 

or (expected) remaining life years better predicts health care expenditures. Shang and Goldman 

(2008) used the FEM to predict life expectancy, and then used regression analyses to compare 

the predictive power of the two variables in explaining health care expenditures.  Age has little 

additional predictive power on health care expenditures after controlling for life expectancy, 

but the predictive power of life expectancy itself diminishes as health status measures are 

introduced into the model. Using life expectancy rather than age results in lower projections of 

future health care expenditures, suggesting that increases in longevity might be less costly than 

models based on the current age profile of spending would predict.  

5.0 Results 

We present the results of the simulations in a series of graphs that depicts the predictions of 

the FEM between 2005 and 2060.  In each graph, we plot three different scenarios which make 

alternate assumptions about future mortality rates in the population. In the first scenario, 

depicted as a dotted line in each graph, we assume that mortality rates for every single disease 

will decline at a rate equal to the decline assumed in the SSA intermediate mortality adjustment 

scenario. In the second scenario, depicted in the graphs using a dashed line, we assume that 

mortality rates (conditional on having a disease) will remain fixed at 2005 levels. This scenario 

thus isolates the effect of changes in the population prevalence of disease on the outcomes of 

the model. Finally, the third scenario is the same as the first, except that we do not apply the 

mortality rate improvement adjustment to that the new entrants into the model (who are 51-

52 years old each year).  After this population ages into the model, however, the assumed 

improvement in conditional mortality probabilities as the first scenario applies to them.  This 

scenario thus isolates how trends in the health status of younger populations affects the 

different outcomes that we study.  All of the dollar figures in our estimates are inflation 

adjusted and presented in 2012 dollars.   
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Figure 2 shows the population size estimates produced by the FEM, while Figure 3 shows 

forecasted changes in future population mortality rates.  Given the structure of the FEM, these 

estimates are representative of the entire population of the US above the age of 51. By 

construction, annual mortality rates are substantially higher under the assumption that there 

will be no future secular improvements in life expectancy.  Nevertheless, there are movements 

in future overall mortality rates that are driven by changes in the health status and age 

distribution of the future elderly population.  Until about 2025, the FEM forecasts reductions in 

overall mortality, which is consistent with evidence that the health status of older Americans is 

improving. After that point, however, a right shift in the age structure of the older population 

will skew the overall mortality rate upward.  Despite this increase in the mortality rate, the 

population size will continue to rise sharply over the entire period from 2005 to 2060. 

Figures 4, 5, 6, and 7 demonstrate the change in the age structure of the population under our 

alternate mortality rate assumptions.  In all of our simulations, we find sharp declines in the 

proportion of the population between the ages of 55-64 starting in about 2020, and reaching its 

nadir in 2030.  Perhaps not surprisingly, the 65-74 year old population reaches its peak in about 

2030 and then declines until 2040.  The oldest-old population (age 85+) is a roughly constant 

fraction of the population until about 2030, and then it rises sharply – nearly doubling – until 

2050.  This population, should it materialize, will pose a sharp burden on Social Security OASI 

payments, but the existence of the population depends critically on the improvements in 

survival rates.  Figure 7 shows that if survival rates stay at 2005 levels (that is, no mortality 

adjustments), then the rise in the 85+ population will be substantially less steep and will reach a 

peak at about 8% of the population in 2050, rather than 12% under the SSA Intermediate 

Mortality Adjustment Scenario. 

Figures 8 through 13 show predicted health status trends in the population under alternative 

mortality improvement scenarios.  The Figures plot prevalence rate trends in the 51+ 

population in diabetes, hypertension, chronic obstructive pulmonary disease (COPD), stroke, 

heart disease, and cancer.  In every run of the model and for every condition we forecast – with 

the exception of COPD prevalence – the FEM predicts a sharp increase in prevalence.  COPD 

rates, which are directly related to prior smoking rates, decline in some scenarios, reflecting the 
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decrease in smoking rates in the population. Recall that the FEM accounts for the competing 

risks problem in these calculations, so that a decline in mortality from one condition will tend to 

increase the prevalence rates of all the other conditions.  Given this feature of the FEM model, 

it is perhaps not surprising that if mortality rates are assumed to decline in the population, the 

predicted prevalence rates of all the health conditions depicted in these figures increase. 

Figures 14 and 15 depict predictions in the proportion of the 51+ population claiming OASI 

benefits and the total amount of predicted OASI payments (in billions of dollars) over the 

forecast period.  The model forecasts a decline in the proportion of 51+ year olds claiming until 

about 2015, followed by a sharp increase in the proportion that continues through 2030.  

Despite the decline in the proportion of the population claiming benefits, OASI obligations 

steadily increase up to a level of $2 trillion in annual outlays in 2060.  The effect of the various 

mortality assumption is exactly in accordance with expectations.  Under the assumption that 

there is no secular life expectancy rise, OASI payments do not increase by as much, topping out 

at $1.75 trillion in annual outlays in 2060.  The other two scenarios yield almost exactly the 

same predictions; apparently, secular mortality trends in the under 51 year old population are 

not as important as secular trends in mortality in the over 51 population.  Figure 15 serves also 

a check on the validity of the FEM model since it is based on data from prior to 2006; using 

these data, the FEM predicted that OASI expenditures would be $625 billion in 2012.  This is 

close to (though a slight underestimate of) the actual 2012 OASI payments of $637.   

Figures 16 and 17 show the FEM predictions in the proportion of the population 51+ claiming 

Supplemental Security Income (SSI) benefits and total SSI payments (in billions of dollars). 

Unlike OASI participation, the FEM predicts a sharp rise in SSI participation (up to about 3% of 

the 51+ population) over the next few years and a plateau at that level through 2060.  SSI 

payment levels in this population are an order of magnitude less than OASI payments.  The FEM 

predicts a steady increase in SSI obligations until 2060, topping out at about $50 billion. There is 

one important caveat, though, in interpreting this figure – the FEM only predicts expenditures 

on the 51+ population. Since a large portion of SSI payments goes to the under-50 population, 

the FEM only forecasts a portion of what the ultimate outlays will be.   
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Finally, Figures 18 and 19 show predicted trends in the proportion of the age 51+ population 

claiming Social Security Disability Insurance (DI) benefits, as well as total DI payments (in 

billions of dollars).  For this population, the FEM predicts a decline in the proportion claiming 

benefits from about 4% of the population down to about 3% of the population until about 

2030, and then a plateau.  Despite this decline, the model forecasts a sharp increase in DI 

outlays between 2006 and 2020 from about $40 billion annually to about $60 billion, followed 

by a plateau at $60 billion until 2030, and then another sharp rise to nearly $100 billion in 

annual expenditures by 2060.  As is the case with the FEM SSI forecasts, this represents only a 

portion of DI obligations since it focuses on the 51+ population, and there are many under 51 

who qualify for DI benefits. Also, it is well known that DI payments fluctuate closely with 

changes in the unemployment rate (Autor and Duggan, 2006).  The FEM is not designed to 

capture these business cycle fluctuations, and instead yields a smooth prediction that reflects 

health and demographic trends. 

 

6.0  Discussion 

The Future Elderly Model is a detailed microsimulation model of the health of the future 

American population that enables researchers and policy makers to obtain projections of future 

government obligations on Social Security, including on OASI, SSI, and DI expenditures for the 

age 51+ population.  All three of these expenditure outcomes will depend critically on the 

future health of the population since life expectancy is a key input into Social Security 

expenditures.  However, health status trends over the past thirty years paint a complicated 

picture; in some ways Americans have become more healthy – for instance, arthritis rates have 

declined – while in others Americans have become less healthy.  Obesity prevalence and 

concomitant chronic diseases like diabetes have become substantially more common.  A 

detailed model such as the FEM is necessary to account for these conflicting trends in a way 

that also addresses the competing risks problem. 

In addition, it is increasingly common for the elderly to have multiple chronic conditions.  This is 

especially important because multiple chronic diseases act synergistically on probability of 
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death, with predictable effects on life expectancy.  Existing Social Security forecasting models 

tend to ignore the possibility of coexisting chronic conditions. For instance, Social Security 

Office of the Actuary’s (OACT) forecasting models account for cause-specific mortality from a 

small number of singleton conditions, and do not consider multiple conditions at all.  The FEM 

uses the best available evidence from large nationally representative longitudinal surveys of 

health to account for these interactions.  

In this paper, we use the FEM to address a key question that all Social Security forecasting 

models must address – how do different assumptions about secular trends in mortality 

conditional on health status affect forecasted Social Security participation and expenditures?  

While some have argued that Social Security underestimates future reductions in conditional 

mortality (Soneji and King, 2012), in this paper, we estimate a baseline model that is consistent 

with the OACT model’s intermediate assumptions about mortality reductions.   

In addition, we forecast two additional scenarios.  In one, we assume no future changes and 

conditional mortality.  Thus, in this scenario, only changes in the future prevalence of chronic 

disease drive Social Security expenditure changes.   In the third scenario, we assume that 

conditional mortality reductions will only apply to people above 52 years of age, and that there 

will be no improvements in conditional mortality for younger incoming cohorts.   This is an 

important scenario because it allows us to explore the relative importance of investments in 

mortality rate reductions among younger populations on Social Security expenditures. 

Our main findings are as follows:  

• Due to changes in the health status of the American population alone, mortality rates 

will decline in the 51+ population until about 2025, and then will rise sharply until about 

2050. 

• Under all our scenarios, the size of the American 51+ population will increase steadily 

throughout the coming decades, reaching a total of between 145 and 160 million people 

(depending on the assumptions about reductions in conditional mortality rates). 

• The age structure of the 51+ population will shift dramatically toward older ages, with 

the size of the 85+ population in particular experiencing the sharpest growth. 
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• Under all of our scenarios, diabetes, hypertension, stroke, heart disease and cancer 

prevalence will increase (in many cases sharply) in the age 51+ population throughout 

the coming decades. These forecasted prevalence rates are not sensitive to assumptions 

about future changes in conditional mortality rates. 

• The proportion of the age 51+ population claiming OASI will increase sharply in the 

coming decades, reaching a plateau in 2030; OASI expenditures, by contrast, will 

increase steadily through 2060, reaching between $1.5 trillion and $2 trillion in annual 

payouts (depending on conditional mortality rate assumptions). 

• The proportion the age 51+ population claiming SSI will increase sharply until 2020, and 

then reach a plateau through 2060.  As with OASI payments, SSI payments will increase 

steadily through 2060, reaching a level of about $50 billion per year for the 51+ 

population. 

• Finally, DI participation rates will fall sharply through 2030 and then plateau.  Despite 

this fall, DI expenditures will rise to nearly $100 billion in expenditures for the 51+ 

population by 2060. 

Our finding reinforce the well-accepted sense among demographers that the upcoming 

decades of the 21st century will impose a steep burden on the federal government to finance 

Social Security.  The FEM highlights the role that the future health of the population will play in 

a transparent way.  Our main, dispiriting, finding is that whether or not medical technology 

improves or stagnates in its ability to keep chronically ill patients alive, the worsening health of 

the future elderly population, combined with presently low conditional mortality rates will 

combine to make the financial position of Social Security worse over the coming decades. 

 

 

 

  

   



 

 21 

References 

Autor DH, Duggan MG. (2006). The growth in the Social Security Disability rolls: a fiscal crisis 

unfolding. J Econ Perspect. 2006 Summer;20(3):71-96. 

Bertoni AG, Krop JS, Anderson GF, Brancati FL. (2002) “Diabetes-Related Morbidity and 

Mortality in a National Sample of U.S. Elders.” 

Bhattacharya, J., A. Garber, and T. MaCurdy. (1997) "Cause-Specific Mortality Among Medicare 

Enrollees." in Economic Issues in Aging and Heath Care, D. Wise (ed.), University of Chicago 

Press 

Bhattacharya J, Shang B, Su CK, Goldman DP. (2005) Technological advances in cancer and 

future spending by the elderly. Health Aff (Millwood). 2005;24 Suppl 2:W5R53-66. 

Burdick, C., & Manchester, J. (2003). Stochastic models of the Social Security Trust Funds 

(Research and Statistics Note 2003–01). Washington, DC: Division of Economic Research, 

Social Security Administration. Centers for Disease Control and Prevention. (1994) “Arthritis  

revalence and Activity Limitations–United States, 1990." MMWR 43(24):1-6.  

Centers for Disease Control and Prevention (1997) Trends in the prevalence and incidence of 

self-reported diabetes mellitus -- United States, 1980-1994. MMWR Morb Mortal Wkly Rep. 

1997 Oct 31;46(43):1014-8. 

Centers for Disease Control and Prevention (2000) “Health Related Quality of Life Among Adults 

with Arthritis—Behavioral Risk Factor Surveillance System, 11 States, 1996-1998." MMWR 

49(17):366-9 

Centers for Disease Control and Prevention. (2002a) “Surveillance for Asthma–United States, 

1980-1999." MMWR 51(1):1-6 

Centers for Disease Control and Prevention. (2002b) “Prevalence of Self-Reported Arthritis or 

Chronic Joint Symptoms Among Adults–United States, 2001." MMWR 51(42):948-950 



 

 22 

Centers for Disease Control and Prevention. (2002c) “State-Specific Prevalence of Obesity 

Among Adults with Disabilities–Eight States and the District of Columbia, 1998-1999." 

MMWR 51(36):805-808. 

Centers for Disease Control and Prevention. (2002d) “State-Specific Trends in Self-Reported 

Blood Pressure Screening and High Blood Pressure–United States, 1991-1999" MMWR 

51(21): 456-60. 

Centers for Disease Control and Prevention. (2002e) “Recent Trends in Mortality Rates for Four 

Major Cancers, by Sex and Race/Ethnicity–United States, 1990-1998." MMWR 51(3):49-53. 

Centers for Disease Control and Prevention (CDC). (2012). Increasing prevalence of diagnosed 

diabetes--United States and Puerto Rico, 1995-2010. MMWR Morb Mortal Wkly Rep. 2012 

Nov 16;61(45):918-21. 

Cheng, A., Miller, M., Morris, M., Schultz, J., Skirvin, J. P., &Walder, D. (2004). A stochastic 

model of the long-range financial status of the OASDI program (Actuarial Study No. 117). 

Washington, DC: Office of the Chief Actuary, Social Security Administration. 

Chernew ME, Goldman DP, Pan F, Shang B. (2005) Disability and health care spending among 

medicare beneficiaries. Health Aff (Millwood). 2005;24 Suppl 2:W5R42-52. 

Costa DL and Steckel RH. (1995) "Long-Term Trends in Health, Welfare, and Economic Growth 

in the United States." NBER Historical Working Paper #076, National Bureau of Economic 

Research. 

Crimmins EM., Saito Y, and Reynolds SL. (1997) “Further Evidence on Recent Trends in the 

Prevalence and Incidence of Disability Among Older Americans From Two Sources: the LSOA 

and the NHIS.”  Journal of Gerontology Series B: Psychological and Social Sciences.  52B(2): 

S59 S71 

Crimmins EM, Reynolds SL, and Saito Y. (1999) “Trends in Health and Ability to Work among the 

Older Working-Age Population.” Journal of Gerontology, Series B: Psychological Sciences 

and Social Sciences 54(1):S31-40. 



 

 23 

Desai MM, Zhang P, Hennessy CH. (1999) Surveillance for morbidity and mortality among older 

adults--United States, 1995-1996. MMWR CDC Surveill Summ. 1999 Dec 17;48(8):7-25. 

Fang J and Alderman MH. (2001) “Trend of Stroke Hospitalization, United States, 1988-1997." 

Stroke 32(10):2221-6. 

Fang J and Alderman MH. (2002) “Dissociation of Hospitalization and Mortality Trends for 

Myocardial Infarction in the United States from 1988 to 1997." American Journal of 

Medicine 113(3):208-14. 

Freedman VF and Martin LG. (1998) “Understanding Trends in Functional Limitations Among 

Older Americans." American Journal of Public Health 88:1457 1462.. 

Freedman VA, Martin LG, Schoeni RF. (2003) “Recent Trends in Disability and Functioning 

Among Older Adults in the United States: A Systematic Review.” JAMA 288(24):3137-3146. 

Fries JF. (1980) “Aging, natural death, and the compression of morbidity.” NEJM 303: 130 35 

Goldman DP, Shang B, Bhattacharya J, Garber AM, Hurd M, Joyce GF, Lakdawalla DN, Panis C, 

Shekelle PG. (2005) Consequences of health trends and medical innovation for the future 

elderly. Health Aff (Millwood). 2005;24 Suppl 2:W5R5-17. 

Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. (2003) “Cancer Statistics, 2003." 

CA: A Cancer Journal for Clinicians 53(1):5-26. 

Joyce GF, Keeler EB, Shang B, Goldman DP. (2005) The lifetime burden of chronic disease 

among the elderly. Health Aff (Millwood). 2005;24 Suppl 2:W5R18-29. 

Kennedy BS, Kasi SV, Brass LM, Vaccarino V. (2002) “Trends in Hospitalized Stroke for Blacks 

and Whites in the United States, 1980-1999." Neuroepidemiology 21(3):131-41. 

Kolata, G. (2003) “Gains on Heart Disease Leave More Survivors, and Questions.” NYT, Jan. 19. 

Lakdawalla D, Bhattacharya J, Goldman D. (2004) “Are the Young Becoming More Disabled?” 

Health Aff (Millwood). 2004 Jan-Feb;23(1):168-76. 

Lakdawalla DN, Goldman DP, Shang B. (2005) The health and cost consequences of obesity 

among the future elderly. Health Aff (Millwood). 2005;24 Suppl 2:W5R30-41. 



 

 24 

Lakdawalla DN, Goldman DP, Michaud PC, Sood N, Lempert R, Cong Z, de Vries H, Gutierrez I. 

(2009) "US Pharmaceutical Policy in a Global Marketplace." Health Aff (Millwood). 2009 Jan-

Feb;28(1):w138-50. doi: 10.1377/hlthaff.28.1.w138. 

Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting U.S. mortality. Journal of the 

American Statistical Association, 87, 659–675. 

Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Kalon KL, Murabito JM, Vasan RS. 

(2002) “Long-Term Trends in the Incidence of Survival with Heart Failure.” NEJM 

347(18):1397-1402. 

Malani A and Philipson T (2011) Can Medical Progress be Sustained? Implications of the Link 

Between Development and Output Markets.  NBER Working Paper #17011.  National Bureau 

of Economic Research 

Mannino DM, Homa DM, Pertowski CA, Ashizawa A, Nixon LL, Johnson CA, Ball LB, Jack E, Kang 

DS. (1998) “Surveillance for Asthma–United States, 1960-1995." MMWR 47(1):1-27. 

Manton KG., Corder L, and Stallard E. (1993) “Estimates of Change in Chronic Disability and 

Institutional Incidence and Prevalence Rates in the U.S. Elderly Population from the 1982, 

1984, and 1989 National Long Term Care Survey.” Journal of Gerontology Series B: 

Psychological and Social Sciences 48(4): S153 66. 

Manton KG., Corder L, and Stallard E. (1997) “Chronic Disability Trends in Elderly United States 

Populations: 1982 1994.” Proceedings of the National Academy of Science 94: 2593 2598. 

Manton KG., and Gu X. (2001) “Changes in the Prevalence of Chronic Disability in the United 

States Black and Nonblack Population Above Age 65 from 1982 to 1999.” Proceedings of the 

National Academy of Science 98(11): 6354 9. 

Manton KG, Gu X, and Lamb VL (2006) "Change in chronic disability from 1982 to 2004/2005 as 

measured by long-term changes in function and health in the U.S. elderly population." Proc 

Natl Acad Sci U S A. 2006 Nov 28;103(48):18374-9 



 

 25 

McDonald KM, Hlatkey MA, Saynina O, Geppert J, Garber AM, McClellan MB. (2002) “Trends in 

Hospital Treatment of Ventricular Arrhythmias among Medicare Beneficiaries, 1985 to 

1995." American Heart Journal 144(3):413-21. 

McKinlay JB, McKinlay SM, Beaglehole R. (1989) “A review of the evidence concerning the 

impact of medical measures on recent mortality and morbidity in the United States.” Int J 

Health Serv. 19(2):181 208 

Melton LJ, Therneau TM, Larson DR. (1998) “Long-Term Trends in Hip Fracture Prevalence: The 

Influence of Hip Fracture Incidence and Survival.” Osteoporos Int 8(1):68-74. 

Michaud PC, Goldman DP, Lakdawalla DN, Zheng Y, Gailey AH. (2012) The value of medical and 

pharmaceutical interventions for reducing obesity. J Health Econ. 2012 Jul;31(4):630-43. doi: 

10.1016/j.jhealeco.2012.04.006. Epub 2012 May 9. 

Muntner P, Garret E, Klag EJ, Coresh J. (2002) “Trends in Stroke Prevalence Between 1973 and 

1991 in the US Population 25 to 74 years of Age.” Stroke 33(5):1209-13. 

Newman AB, Yanez D, Harris T, Duxbury A, Enright PL, Fried LP. (2001) “Weight Changes in Old 

Age and its Association with Mortality.” Journal of the American Geriatric Society 

49(10):1309-18. 

Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L, Butler RN, 

Allison DB, Ludwig DS (2005) " A potential decline in life expectancy in the United States in 

the 21st century." N Engl J Med. 2005 Mar 17;352(11):1138-45. 

Parameswaran K, Hildreth AJ, Chadha D, Keaney NP, Taylor IK, Bansal SK. (1998) “Asthma in the 

Elderly: Underperceived, Underdiagnosed, and Undertreated; A Community Survey.” 

Respiratory Medicine 92(3):573-7. 

Psaty BM, Manolio TA, Heckert SR, Gottdiener JS, Burke GL, Weissfeld J, Enright P, Lumley T, 

Powe N, Furgerg CD. (2002) “Time Trends in High Blood Pressure Control and the Use of 

Antihypertensive Medications in Older Adults: The Cardiovascular Health Study.” Archives of 

Internal Medicine 162(20):2325-32 



 

 26 

Samelson EJ, Zhang Y, Kiel DP, Hannan MT, Felson DT. (2002) “Effect of Birth Cohort on Risk of 

Hip Fracture: Age-Specific Incidence Rates in the Framingham Study.” American Journal of 

Public Health 92(5):858-62. 

Shang B, Goldman D. (2008) Does age or life expectancy better predict health care 

expenditures? Health Econ. 2008 Apr;17(4):487-501. 

Soneji S, King G. (2102) "Statistical security for Social Security." Demography. 2012 

Aug;49(3):1037-60. doi: 10.1007/s13524-012-0106-z. 

Wilmoth, J. R. (1995). Are mortality projections always more pessimistic when disaggregated by 

cause of death? Mathematical Population Studies, 5, 293–319. 

Wilmoth, J. R. (2005). Some methodological issues in mortality projection, based on an analysis 

of the US Social Security system. Genus, 61, 179–211. 

World Health Organization. (1999) “Hip Fractures to Treble by Year 2030." Bulletin of the World 

Health Organization 77(5):449. 

 

 

 

 

 



 

 27 

APPENDIX:  Detailed Description of the Future Elderly Model 

The future elderly model (FEM) is a demographic-economic microsimulation to project future 

health and medical spending among the elderly.  At its core is a detailed model of chronic 

disease incidence and prevalence that is matched to nationally representative data on mortality 

and morbidity and a closely matched health expenditure model.  The model differs from other 

approaches in that it includes a multi-dimensional characterization of health status. 

Conventional actuarial approaches employ cell-based models in which each cell represents a 

subpopulation of interest.  To capture the heterogeneity of the elderly population (health 

status, sex, age, race, and so on), the number of cells would need to be very large and cell sizes 

would be correspondingly small.  Microsimulation models offer a conceptually and analytically 

superior alternative.  

A.1 Model Overview 

Microsimulation models start out a large sample of simulated individuals.  Each individual is 

characterized by a state vector, which in our case includes an array of health status indicators.  

For expositional purposes, suppose indicators for A (say, peptic ulcer), B (say, arthritis), and C 

(say, stroke) constitute the state vector.  The health states are obviously not mutually exclusive 

and they may or may not be “absorbing,” (that is, it is possible to recover from some 

conditions).   Let H be the “healthy” state in which the person is free from A, B, and C, and D the 

“deceased” state.  Individuals may then be H; A; B; C; A+B; A+C; B+C; A+B+C; or D.  Initially, and 

for each simulated individual, we randomly assign a health state.  For this purpose, we need 

prevalence estimates of each possible combination of health states from a large nationally 

representative dataset.  The random assignment is done so that the prevalence rates of all the 

states (H; A; B; C; A+B; A+C; B+C; A+B+C) match those in the nationally representative dataset.   

Next, we map out individuals’ remaining life paths and identify at what point(s) in time they 

transition into other health statuses, and when they die.  To do this, we estimate transition 

models into all possible health states.  In the example, we need four models: transition into A, 

into B, into C, into D(deceased), plus additional recovery models.  This approach requires us to 

assume independence in disease incidence (conditional on covariates) unless we specifically 



 

 28 

define a separate health state as a combination of A+B, for instance.   We estimate these health 

transition models using standard discrete dependent variable methods using a nationally 

representative longitudinal dataset.  Such models may account for health history in a flexible 

way.  If the models only account for current information, a first-order Markovian process is 

generated; if they account for lagged covariates, such as accumulated health histories, higher-

order Markovian processes result.  Transition models may be estimated using any data source 

that contains health measures that are identical to those distinguished in the microsimulation 

sample.  In the most detailed version of the model, we estimate a different health transition 

model for each combination of fixed covariates (sex and race, for instance).  Finally, we project 

future health transitions for each simulated individual using the health transition models. The 

result is a simulated life path in which the person accumulates multiple disease conditions, and 

then dies. 

The cost model is an empirically derived mapping from the health state vector and the vector of 

demographic variables (such as age, race, and sex) to health care expenditures assuming a 

static medical technology.  In the original FEM, this mapping is constructed using the Medicare 

Current Beneficiary Survey (MCBS), which is a nationally representative sample of Medicare 

beneficiaries in the U.S.  With this mapping we calculate, for each simulated individual in each 

year, expected Medicare expenditures as well as other outcomes of interest, such as out-of-

pocket health expenditures, and inpatient and outpatient expenditures.  This is simple because 

the covariates included in the cost model are exactly the same as those included in the health 

state vector. 

Finally, we need a rejuvenation model that forecasts the health status of incoming cohorts of 

65 year olds, which is the first age at which people qualify for Medicare (unless they are 

severely disabled).  The FEM rejuvenation model relies on a synthetic cohort approach to 

forecasting the health of future cohorts of 65 year olds.  We draw introduce new 65 year old 

simulated individuals with health and demographic status determined by the rejuvenation 

model. 
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Figure 1 depicts how the cost models, transition models, and rejuvenation models are 

integrated into our microsimulation model.  The model is designed to yield predictions in 

constant dollars and—at baseline—using medical technology fixed at a given year.  We start 

with MCBS data for 2000 as the host cohort.  The characteristics of these individuals are used to 

predict per capita 2000 medical expenditures.  The weights of the host data are adjusted such 

that they add up to the 2000 population of individuals age 65 and older.  The product of per 

capita expenditures and population size yields aggregate 2000 medical expenditures.  The host 

data include some individuals who, at the time of their last interview of their first year in the 

MCBS had become deceased.  These are dropped from the sample.  We then project 

individuals’ health status in 2001.  By then, the sample has aged to 66 years of age and older.  

We rejuvenate the sample using the sample of 65-year old MCBS respondents.  The weights of 

newly entering individuals are adjusted, first, in accordance with 2001 prevalence rates of 

health conditions among 65-year olds, and second, such that the sum of weights for age 65 in 

the simulation sample equals the 2001 population of individuals age 65.  The resulting sample is 

representative of the 2001 age 65+ population.  We use the health status and demographic 

characteristics of this sample to predict per capita medical expenditures and derive the 

aggregate expenditures in 2001.  We then repeat this process iteratively for as many years as 

our forecast requires.      

A.2 Modeling Health 

Health measures must meet several competing goals.  First, they should predict costs.  Second, 

they should capture clinically relevant disease.  Third, they should be readily available in the 

data available to us.  The FEM model defines health states based on both self-reported health 

conditions, as well as on health states derived from Medicare claims data.  The MCBS asks 

about a multiplicity of health conditions.  We focus on conditions that are most prevalent in the 

elderly population and also the most expensive to treat.  The conditions we use include cancer 

(breast, prostate, uterine, colon, bladder, lung, kidney, throat, and brain); heart disease (angina 

or myocardial infraction); stroke; diabetes; hypertension; lung disease; and arthritis.  We also 

include body mass index (BMI), indicators for the presence of activity of daily living limitations, 

and whether each individual ever smoked among the health state variables.  The limitation of 
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this approach is that the sample sizes in the MCBS prevent us from considering many jointly 

occurring conditions (A + B, for instance).  This is most problematic for several conditions that 

act synergistically in generating health expenditures (diabetes, hypertension, and heart disease, 

for instance).   

A.2.1 Health Transitions 

For conditions such as cancer, diabetes, and hypertension, the MCBS questions were worded as 

“Did a doctor ever tell you that ...”  Thus, having a condition is a permanent (absorbing) state.  

Accordingly, we only model transitions into these states with no chance for recovery.  In 

current version of the FEM, we model transitions into mortality, cancer, cardiovascular disease, 

diabetes, hypertension, and facility residence with a proportional hazard models: 

lnℎ𝑗(𝑡) = 𝛾′𝐴𝑔𝑒(𝑡) + 𝛽𝑋𝑗 

Here ln ℎ𝑗(𝑡) is the log-hazard of onset of the jth condition (including mortality and entry into a 

facility); 𝐴𝑔𝑒(𝑡) is a piecewise-linear spline transformation of age at time 𝑡; and 𝑋𝑗 are 

demographic characteristics and co-morbidities that affect the onset of condition j.  The 

baseline duration dependency is the dependency on respondent age, 𝛾′𝐴𝑔𝑒(𝑡).  The hazards of 

various conditions’ onset are assumed to be linear in age, with potentially different slopes 

before and after age 77. 

The unit of observation is an interview-pair.  All explanatory covariates are measured with a 

one-year lag.  Only individuals who, at the time of the first interview, did not suffer from a 

specific condition contribute to the model estimation.  For example, consider an individual who 

entered the MCBS in 1993 without cancer but with a heart condition.  In 1994, his conditions 

are unchanged; in 1995, he is diagnosed with cancer; in 1996, his conditions are unchanged.  

This person starts out with a heart condition, so he does not at all contribute to the heart 

disease transition model.  In 1993 and 1994, he is free of cancer, so he contributes two 

observations to the cancer transition model.  The outcome in his first contribution (1993 to 

1994) is zero, because he remained free of cancer; the outcome in his second contribution 



 

 31 

(1994 to 1995) is one, because he was diagnosed with cancer.  He is out of the sample for 

subsequent years.   

Table 1 presents the estimation results for hazard models of onset of cancer, heart disease, 

stroke, arthritis, Alzheimer’s, lung, hypertension, and diabetes.  The coefficients on age indicate 

the baseline slopes on age.  They are generally positive, i.e., the risks of onset of various 

conditions tend to increase with age.  It may surprise that the age coefficients tend to be 

smaller after age 77 than before, i.e., that there is a deceleration in the risk pattern.  Note, 

however, that this age pattern applies only to individuals without any co-morbidity.  As 

individuals get older, they are more likely to suffer from various conditions, which have positive 

effects on the onset of other conditions.  The net result is typically an acceleration of the log-

hazard with age.  We return to this issue below, in the discussion of mortality.  Positive 

coefficients in Table 1 indicate a higher hazard and thus poorer health.  The coefficients 

indicate shifts in the log-hazard and thus proportional shifts in the hazard or risk of onset.  For 

example, hypertension increases the log-hazard of heart disease by 0.47, i.e., it increases the 

risk of heart disease by 100*(exp(0.47)-1)≈60 percent. 

Table 2 shows selected estimates of the hazard model of mortality.  The first and second 

columns show log-hazard coefficients; the third shows percent changes in the mortality risk.  

These estimates are based on MCBS data.  The MCBS may or may not capture all deaths, so the 

next subsection compares MCBS estimates to Vital Statistics.  As before, all explanatory 

covariates are measured with a one-year lag, i.e., as of the first interview of the interview-pair.  

Most health conditions increase the risk of mortality.   

A.2.2 Unobserved Heterogeneity and Left-Censoring 

The presence of persistent unobserved heterogeneity (frailty) could contaminate the 

estimation of dynamic pathways or “feedback effects” across diseases. In addition, many health 

conditions are left-censored—that is, respondents enter the study with a health condition or 

functional status limitation already present. We have estimated a version of the FEM that 

adjusts for these factors using the Health and Retirement Study.  Since we have a stock sample 
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from the age 50+ population, each respondent goes through an individual-specific series of 

intervals. Hence, we have an unbalanced panel over the age range starting from 50 years old. 

Denote by 𝑗𝑖0 the first age at which respondent 𝑖 is observed and 𝑗𝑖𝑇𝑖 the last age when he is 

observed. Hence we observe incidence at ages 𝑗𝑖 = 𝑗𝑖0 … 𝑗𝑖𝑇𝑖.  

Record as ℎ𝑖,𝑗,𝑚 = 1 if the individual has condition 𝑚 as of age 𝑗𝑖. We assume the individual-

specific component of the hazard can be decomposed in a time invariant and variant part. The 

time invariant part is composed of the effect of observed characteristics 𝑥𝑖  and permanent 

unobserved characteristics specific to disease 𝑚, 𝜂𝑖,𝑚. The time-varying part is the effect of 

previously diagnosed health conditions ℎ𝑖,𝑗𝑖−1,~𝑚, (other than the condition 𝑚) on the hazard.2 

We assume an index of the form 𝑧𝑚,𝑗𝑖 = 𝑥𝑖𝛽𝑚 + ℎ𝑖,𝑗𝑖−1,~𝑚𝛾𝑚 + 𝜂𝑖,𝑚. Hence, the latent 

component of the hazard is modeled as 

ℎ𝑖,𝑗𝑖,𝑚
∗ = 𝑥𝑖𝛽𝑚 + ℎ𝑖,𝑗𝑖−1,~𝑚𝛾𝑚 + 𝜂𝑖,𝑚 + 𝑎𝑚,𝑗𝑖 + 𝜀𝑖,𝑗𝑖,𝑚 

for 𝑚 = 1 …𝑀, 𝑗𝑖 = 𝑗𝑖0 … 𝑗𝑖𝑇𝑖 , 𝑖 = 1 …𝑁 

We approximate 𝑎𝑚,𝑗𝑖  with an age spline. Diagnosis, conditional on being alive, is defined as 

hi,ji,m = max�𝐼�hi,ji,m
∗ > 0�, hi,ji−1,m� 

for 𝑚 = 1 …𝑀, 𝑗𝑖 = 𝑗𝑖0 … 𝑗𝑖𝑇𝑖 , 𝑖 = 1 …𝑁 

We consider 7 health conditions to which we add functional limitations (disability) and 

mortality. Each of these conditions is an absorbing state. The same assumption is made for ADL 

limitations, the measure of disability we use. The occurrence of mortality censors observation 

of diagnosis for other diseases in a current year. The term 𝜀𝑖,𝑗𝑖,𝑚 is a time-varying shock specific 

to age 𝑗𝑖. We assume that this last shock is Type-1 extreme value distributed, and uncorrelated 

across diseases.3 Unobserved difference 𝜂𝑖,𝑚 are persistent over time and are allowed to be 

correlated across diseases 𝑚 = 1 …𝑀.  However, to reduce the dimensionality of the 

heterogeneity distribution for computational reasons, we consider a nested specification. We 

assume that heterogeneity is perfectly correlated within nests of conditions but imperfectly 

                                                
2 With some abuse of notation, 𝑗𝑖 − 1 denotes the previous age at which the respondent was observed. 
3 The extreme value assumption is analogous to the proportional hazard assumption in continuous time.  

are persistent over time and are allowed to be

correlated across diseases Z = 1&@. However, to reduce the dimensionality of the heterogeneity 
distribution for computational reasons, we consider a nested specification. 
We assume that heterogeneity is perfectly correlated within nests of conditions 
but imperfectly 
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correlated across nests. In particular, we assume that each of first 7 health conditions (heart 

disease, hypertension, stroke, lung disease, diabetes, cancer and mental illness) have a one-

factor term 𝜂𝑖,𝑚 = 𝜏𝑚𝛼𝑖𝐶   where 𝜏𝑚 is a disease specific factor-loading for the common 

individual term 𝛼𝑖𝐶. We assume disability and mortality have their own specific heterogeneity 

term 𝛼𝑖𝐷 and 𝛼𝑖𝑀. Together, we assume that the triplet (𝛼𝑖𝐶 ,𝛼𝑖𝐷 ,𝛼𝑖𝑀) has some joint 

distribution that we will estimate. Hence, this vector is assumed imperfectly correlated. We use 

a discrete mass-point distribution with 2 points of support for each dimension (Heckman and 

Singer, 1984). This leads to 𝐾 = 8 potential combinations. 

The parameters 𝜃𝑖 = ({𝛽𝑚, 𝛾𝑚, 𝜇𝑚, 𝜏𝑚}𝑚=1
𝑀 ,𝐹𝛼) can be estimated using maximum likelihood, 

where 𝐹𝛼 are the parameters of the discrete distribution. Given the extreme value distribution 

assumption on the time-varying unobservable (a consequence of the proportional hazard 

assumption), the joint probability of all time-intervals until failure, right-censoring or death 

conditional on the individual frailty is the product of Type-1 extreme value univariate 

probabilities. Since these sequences, conditional on unobserved heterogeneity, are also 

independent across diseases, the joint probability over all disease-specific sequences is simply 

the product of those probabilities.  

For a given respondent with frailty 𝛼𝑖 = (𝛼𝑖𝐶 ,𝛼𝑖𝐷 ,𝛼𝑖𝑀) observed from initial age 𝑗𝑖0 to a last 

age 𝑗𝑇𝑖, the probability of the observed health history is (omitting the conditioning on 

covariates for notational simplicity) 

𝑙𝑖�𝜃;𝛼𝑖, ℎ𝑖,𝑗𝑖0� = �� � 𝑃𝑖𝑗,𝑚(𝜃;𝛼𝑖)�1−ℎ𝑖𝑗−1,𝑚��1−ℎ𝑖𝑗−1,𝑀�

𝑗𝑇𝑖

𝑗=𝑗𝑖1

𝑀−1

𝑚=1

� × �� 𝑃𝑖𝑗,𝑀(𝜃;𝛼𝑖)

𝑗𝑇𝑖

𝑗=𝑗𝑖1

� 

We make explicit the conditioning on ℎ𝑖,𝑗𝑖0 = �ℎ𝑖,𝑗𝑖0,0, … ,ℎ𝑖,𝑗𝑖0,𝑀�
′
, we have no information on 

health prior to this age. To obtain the likelihood of the parameters given the observables, it 

remains to integrate out unobserved heterogeneity. The complication is that ℎ𝑖,𝑗𝑖0,~𝑚, the initial 

condition in each hazard is not likely to be independent of the common unobserved 

heterogeneity term which needs to be integrated out. A solution is to model the conditional 

probability distribution 𝑝�𝛼𝑖�ℎ𝑖,𝑗𝑖0,0�. Implementing this solution amounts to including initial 

correlated across nests. In particular, we assume that each of first 7 health conditions (heart disease, hypertension, stroke, 
lung disease, diabetes, cancer and mental illness) have a one-

factor term is a disease specific factor-loading for the common

individual term We assume disability and mortality have their own specific heterogeneity

term Together, we assume that the triplet has some joint

distribution that we will estimate. Hence, this vector is assumed imperfectly correlated. We use a discrete 
mass-point distribution with 2 points of support for each dimension (Heckman and Singer, 1984). 
This leads to > = 8 potential combinations.

The parameters can be estimated using maximum likelihood,

where are the parameters of the discrete distribution. Given the extreme value distribution

assumption on the time-varying unobservable (a consequence of the proportional hazard 
assumption), the joint probability of all time-intervals until failure, right-censoring or 
death conditional on the individual frailty is the product of Type-1 extreme value univariate 
probabilities. Since these sequences, conditional on unobserved heterogeneity, 
are also independent across diseases, the joint probability over all disease-specific 
sequences is simply the product of those probabilities.

For a given respondent with frailty age to a last

age the probability of the observed health history is (omitting the conditioning on 

covariates for notational simplicity)

We make explicit the conditioning on we have no information on

health prior to this age. To obtain the likelihood of the parameters given the observables, it

remains to integrate out unobserved heterogeneity. The complication is that the initial

condition in each hazard is not likely to be independent of the common unobserved heterogeneity term which needs to 
be integrated out. A solution is to model the conditional

Implementing this solution amounts to including 
initial
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prevalence of each condition at baseline each hazard. Therefore, this allows for permanent 

differences in the probability of a diagnosis based on baseline diagnosis on top of additional 

effects of diagnosis on the subsequent probability of a diagnosis. The likelihood contribution for 

one respondent’s sequence is therefore given by 𝑙𝑖�𝜃;ℎ𝑖,𝑗𝑖0� = ∑ 𝑝𝑘𝑙𝑖�𝜃;𝛼𝑖,ℎ𝑖,𝑗𝑖0�𝑘 , where the 

𝑝𝑘 are probabilities for points of support 𝛼𝑘, 𝑘 = 1 …𝐾.  

We have estimated this version of the FEM using the BFGS algorithm and found that it fits the 

data quite well (and that it fits the data better than a model that does not control for initial 

conditions).  For example, we have estimated the model using half of the sample, and then 

simulated outcomes for the 1992 HRS respondents who were not included in the estimation 

sample.  We then compared simulated outcomes 12 years later (2004) with the actual 

outcomes, as shown in Table 3.  In general, the model fits the data quite well, with a close 

correspondence between predicted and actual outcomes for functional status and disease.   

A.3. Modeling Expenditures 

To project medical costs (not shown in this paper), we use longitudinal data from the Medicare 

Current Beneficiary Survey (MCBS) Cost and Use files.  Reimbursements in the MCBS are 

categorized into nine different service groups, such as inpatient care, ambulatory services, 

outpatient prescription drugs, home health, and institutional care.  This level of cost detail 

allows us to explore how new therapies and technologies affect treatment and outcomes and 

how the mix of services change over time and across patient subgroups.   

The cost analyses exclude enrollees under age 65 and persons enrolled in HMOs.  These 

exclusions yield an average yearly sample of about 8,600 beneficiaries.  All the costs are 

adjusted by medical CPI and measured in 1998 dollars.  Average Medicare expenditures 

increased 11.5 percent in real terms between 1992 and 1998, reflecting increased per capita 

utilization.  The number of enrollees in our sample declined over time, primarily due to 

increased HMO enrollment and greater numbers of younger beneficiaries who were excluded 

from the analyses.   

We impute costs in the microsimulation by computing fitted values from cost regressions.  The 

primary dependent variables used in the cost regressions are Medicare reimbursements and 
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their components (Part A and Part B reimbursements), and total medical expenses.4  The set of 

independent variables include demographics such as age, gender, ethnicity, education, and 

geography (region and urban residence), death, as well as the health state variables.  We apply 

similar methods to estimating Social Security expenditures – OASI, SSI, and DI – payments, 

however, because these expenditures are not available in MCBS data, we rely on the Health 

and Retirement Study (HRS) data instead.   We estimate regression models for each of the 

Social Security expenditure and participation probability outcomes using the same set of 

explanatory variables that we use in the Medicare expenditure analysis. 

A.4 Modeling the Incoming Cohort (51 year-olds) 

Our strategy to predict the health status of future cohorts of incoming 51 year-olds proceeds in 

four stages.  First, for each chronic disease condition of interest, we use the National Health 

Interview Survey (NHIS) data to obtain age-specific prevalence information.  Though the NHIS 

has a large sample size overall, for some age-cohorts the sample size is insufficient to produce 

noise-free estimates of low prevalence diseases.  Thus, we introduce a method to smooth the 

NHIS age-specific prevalence profiles, while at the same time accounting for trends in disease 

prevalence.  Second, we use a synthetic cohort-based procedure to obtain age-specific 

incidence rates from the smoothed prevalence profiles.  In particular, we compare the 

prevalence of a disease in one year for one age-cohort with the prevalence rate of that disease 

in the next year of data (where that cohort has aged by one year).  Our procedure adjusts these 

raw prevalence differences to account for population and disease-specific death rates. Third, 

we combine information from the most recent NHIS with our estimated age-specific incidence 

rates to obtain our predictions about the health status of the future incoming Medicare 

cohorts.  For example, we add the prevalence of disease among 50 year olds in 2005 to our 

estimated incidence rate for that disease among 50 year olds to obtain our predictions about 

the 2006 class of 51 year olds.  Fourth, we take our estimates of future prevalence among the 

                                                
4 A panel of social science experts recommended not distinguishing the components of costs—e.g., 
inpatient, outpatient, and home health—because trends during the 1990’s were so extreme, and this is 
the period spanned by our data. 
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entering cohort and use them to construct adjustments to the population weights of future 

entering cohorts with the various disease conditions.   

In our model, the population transitions between health and illness from year to year.  At time 

t, the size of the population who are aged a is given by 𝑃𝑜𝑝𝑡,𝑎.  The size of the age a diseased 

population at time t is given by 𝑃𝑡,𝑎 < 𝑃𝑜𝑝𝑡,𝑎.  The 𝑃𝑜𝑝𝑡,𝑎 − 𝑃𝑡,𝑎 patients without the disease 

condition die from all other causes at a yearly rate given by 𝜋𝑡,𝑎 and they develop the disease 

condition at the age- and year- specific incidence rate 𝑖𝑡,𝑎.  𝑃𝑡,𝑎 patients die from the disease at 

a yearly rate given by 𝑟𝑡,𝑎 and are cured at a rate given by 𝑐𝑡,𝑎. 

The transition equation linking the population size of a given cohort from one year to the next 

is then given by: 

(1) 𝑃𝑜𝑝𝑡+1,𝑎+1 = 𝑃𝑜𝑝𝑡,𝑎 − �𝑃𝑜𝑝𝑡,𝑎 − 𝑃𝑡,𝑎�𝜋𝑡,𝑎 + 𝑃𝑡,𝑎𝑟𝑡,𝑎 

Dividing through by 𝑃𝑜𝑝𝑡,𝑎, we write (1) in terms of the population age-specific prevalence of 

the disease, 𝜌𝑡,𝑎, and the cohort growth rate 𝛾𝑡,𝑎: 

(2) 𝛾𝑡,𝑎 ≡
𝑃𝑜𝑝𝑡+1,𝑎+1
𝑃𝑜𝑝𝑡,𝑎

= 1 − �1 − 𝜌𝑡,𝑎�𝜋𝑡,𝑎 + 𝜌𝑡,𝑎𝑟𝑡,𝑎 

The number of people with chronic diseases in that cohort at t + 1 will equal all of those with 

the disease in the previous year save those who are cured or died, plus all the health people in 

the cohort who develop the disease.  Therefore, the number of chronically ill within a fixed 

cohort evolves according to the following equation (after dividing through by 𝑃𝑜𝑝𝑡,𝑎): 

(3) 𝛾𝑡,𝑎𝜌𝑡+1,𝑎+1 = 𝑖𝑡,𝑎 + 𝜌𝑡,𝑎�1 − 𝑖𝑡,𝑎 − 𝑟𝑡,𝑎 − 𝑐𝑡,𝑎� 

Finally, we rearrange (3), solving for 𝒊𝒕,𝒂 to write the age-incidence curve as a function of 

successive measurements of disease prevalence: 

(4) 𝒊𝒕,𝒂 = 𝜸𝒕,𝒂𝝆𝒕+𝟏,𝒂+𝟏−𝝆𝒕,𝒂�𝟏−𝒓𝒕,𝒂−𝒄𝒕,𝒂�
𝟏−𝝆𝒕,𝒂

 

We use information from the NHIS to generate estimates of disease prevalence rates, 𝜌𝑡+1,𝑎+1 

and 𝜌𝑡,𝑎.  We use information from Vital Statistics (2000) to generate information on disease 

In our model, the population transitions between health and illness from year to year. At time

t, the size of the population who are aged a is given by The size of the age a diseased

population at time t is given by patients without the disease

condition die from all other causes at a yearly rate given by and they develop the disease

condition at the age- and year- specific incidence rate patients die from the disease at

a yearly rate given by and are cured at a rate given by

Dividing through by the disease, we write (1) in terms of the population age-specific prevalence of

the disease, and the cohort growth rate

Finally, we rearrange (3), solving for to write the age-incidence curve as a function of

successive measurements of disease prevalence: 

We use information from the NHIS to generate estimates of disease prevalence rates,

and We use information from Vital Statistics (2000) to generate information on disease
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specific death rates 𝑟𝑡,𝑎 and on overall death rates 1 − 𝛾𝑡,𝑎.  Data on disease specific cure rates 

are nowhere available from any single consistent source.  Consequently, in our calculations we 

assume that 𝑐𝑡,𝑎 ≪ 𝑟𝑡,𝑎.  Because we are considering only chronic diseases with low cure rates, 

this assumption should not introduce too much error. 

Finally, taking linear combinations over t of 𝑖𝑡,𝑎 generates age-incidence profiles that are 

representative for the period over which the linear combination is taken.  Thus, in this 

framework it is easy to incorporate information about trends in disease or disability, at least to 

the extent that such trend evidence is present in the successive NHIS years that we use.  Let the 

linear combination of age-incidence profile be 𝑖𝑎. 

Once the prevalence and incidence functions are calculated for each disease separately, we 

generate our projections for the health status of future entering cohorts of Medicare enrollees.  

The essential idea behind our projection is that for any given future year, we know how old the 

entering Medicare cohort is today.  For example, writing in the year 2013, we know that the 51 

year olds of 2014 are currently 50 years old; 𝜌2013,64 gives the prevalence of chronic disease 

among this cohort, and 𝑖50 gives the predicted proportion of those without disease in that 

cohort who will develop the disease between ages 50 and 51 (among those who are disease 

free at 50).  The disease prevalence for 51 year olds in 2014 is given by a direct application of 

equation (3). 

(5) 𝜌2014,51 = 1
𝛾2013,50

�𝑖50 + 𝜌2013,50�1 − 𝑖50 − 𝑟2013,50�� 

Recursive application of equation (5) to different cohorts in the NHIS data yields predictions 

regarding the prevalence of this disease condition for the entering cohort of any future year y 

(as long as the cohort is alive at the time of the latest NHIS).  By starting with progressively 

younger cohorts, and applying the recursion formula (5) more times, we generate projections 

of disease prevalence for incoming cohorts for each year between 2014 and 2060.  In principle, 

this method could be used to project disease prevalence for any future year, as long as the 

group of people who will be 51 in that year are alive today.  Finally, by assuming that each 

disease occurs independently, we project the joint incidence of disease in incoming cohorts as 

well.    

Data on disease specific cure rates

are nowhere available from any single consistent source. Consequently, in our calculations we

assume that Because we are considering only chronic diseases with low cure rates,

this assumption should not introduce too much error.

Finally, taking linear combinations over t of generates age-incidence profiles

representative for the period over which the linear combination is taken. Thus, in this framework it is easy 
to incorporate information about trends in disease or disability, at least to the extent that such trend evidence 
is present in the successive NHIS years that we use. Let the

linear combination of age-incidence profile be

gives the prevalence of chronic disease of those without disease

among this cohort, and gives the predicted proportion of those without disease in that

cohort who will develop the disease between ages 50 and 51 (among those who 
are disease free at 50). The disease prevalence for 51 year olds in 2014 is 
given by a direct application of equation (3). 
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Figure 1.  Components of the Future Elderly Model 
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Figure 2:  FEM Population Forecasts (Age 51+, US) 

 

Figure 3: FEM Mortality Rate Forecasts 
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Figure 4: FEM Population Forecasts (Age 55-64) 

 
 

Figure 5: FEM Population Forecasts (Age 65-74) 
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Figure 6: FEM Population Forecasts (Age 75-84) 

 
 
 

Figure 7: FEM Population Forecasts (Age 85+) 
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Figure 8: Diabetes Prevalence Forecasts 

 
 

Figure 9: Hypertension Prevalence Forecasts 
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Figure 10: COPD Prevalence Forecasts 

 

Figure 11: Stroke Prevalence Forecasts 
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Figure 12: Heart Disease Prevalence Forecasts 

 
 

Figure 13: Cancer Prevalence Forecasts 
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Figure 14: Proportion of Age 51+ Population Claiming OASI 

 
 

Figure 15:  OASI Payment Forecast (for Age 51+ Population) 
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Figure 16: Proportion of Age 51+ Population Claiming SSI 

 

Figure 17: SSI Payment Forecast (for Age 51+ Population) 
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Figure 18: Proportion of Age 51+ Population Claiming DI 

 

Figure 19: DI Payment Forecast (for Age 51+ Population) 
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Table 1. Estimated Transition Models in FEM version 1.0 (Log-hazard parameters)

NOTE: Asymptotic standard errors in parentheses; Significance: '1'=10%; '2'=5%; '3'=1%. Empty cells indicate clinically imposed restrictions 
- for example, we do not allow heart disease to affect diabetes, but we do allow diabetes to affect the likelihood of developing heart 
disease.

 Cancer Heart Stroke Hypertension Diabetes Lung Arthritis

Cancer (t-1)   -0.11     
Heart disease (t-1)   0.26 '3'     

Stroke (t-1)        
Hypertension (t-1)  0.47 '3' 0.37 '3'     
Diabetes (t-1)  0.25 '3' 0.26 '2' 0.23 '3'    

Lung (t-1)        
Age<77 (spline) 0.05 '3' 0.07 '3' 0.06 '3' 0.04 '3' 0.05 '3' 0.04 '3' 0.04 '3'
Age>77 (spline) -0.01 0.02 '3' 0.02 '3' 0.01 -0.05 '3' 0.01 0.01
Ever smoked 0.14 '1' 0.04 0.21 '2'   0.72 '3'  
Under Weight  0.09 0.31 '3' -0.23 '3' -0.22 '2'  -0.34 '3'
Obese  0.24 '3' -0.10 0.29 '3' 0.71 '3'  0.26 '3'
Male 039 '3' 0.15 '2' 0.09 -0.21 '3' 0.06 -0.08 -0.29 '3'
Black -0.07 -0.03 -0.04 0.47 '3' 0.23 -0.44 '2' 0.13
Hispanic -0.33 '1' -0.11 -0.26 0.26 '2' 0.42 '2' 0.28 '1' 0.01
HS drop-out 0.08 0.11 '2' 0.21 '2' 0.12 '2' 0.20 '2' 0.18 '2' 0.09 '1'
College graduate 0.13 -0.04 -0.22 -0.16 '1' 0.12 -0.25 '1' 0.04
Constant -8.4 '3' -8.8 '3' -9.68 '3' -5.93 '3' -8.57 '3' -8.08 '3' -5.52 '3'

In-L -3799 -5402 -3185 -4877 -2861 -3047 -6277
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Table 2. Results of Mortality Estimation in FEM Version 1.0 (Log-hazard 
parameters and relative risks)

NOTE: Asymptotic t-statistics in parentheses; Significance: '*'=10%; '**'=5%; '***'=1%.

 Log-hazard coefficients Percent hazard changes

 Male Female  

Age<77 0.0547 '***' 0.0932 '***'  

Age>77 0.0641 '***' 0.0707 '***'  

Constant -7.9263 '***' -11.2608 '***'  
 (0.8371) (0.9688)  

Cancer 0.3199 '***' 37.70 '***'

Heart disease 0.4103 '***' 50.73 '***'

Stroke 0.3785 '***' 46.01 '***'

Alzheimer's 0.8654 '***' 137.60 '***'

Diabetes 0.5044 '***' 65.60 '***'

Lung 0.3557 '***' 42.72 '***'

Arthritis -0.2727 '***' -23.87 '***'

Hypertension -0.0039 -0.39

ADL>=1 0.2766 '***' 31.86 '***'

ADL>=3 0.3711 '***' 44.93 '***'

Ever smoked 0.1785 '***' 19.54 '***'

Under weight 0.4428 '***' 55.71 '***'

Obese -0.0961 -9.16

Black 0.0716 7.42

Hispanic -0.2753 '**' -24.07 '**'

High school drop-out 0.1172 '**' 12.43 '**'

College graduate -0.2564 '***' -22.62 '***'

In-L -7511.37  
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Table 3. Goodness of Fit for the Future Elderly Model - v2.0 (HRS Data - Controls 
for Unobserved Heterogeneity and Left-Censoring)

Notes: Estimation conducted with half of the 1992 HRS cohort. Outcomes are then simulated for 
the second half of the cohort and shown here.

Outcome Percent:
1992 2004

(Observed) (Observed) (Simulated)

Survival 1 87.9 85.7
Chronic condition prevalence (%)

Cancer 4.8 14.7 15.4

Diabetes 8.4 20.6 18.6

Heart disease 10.7 25.7 25.8

Hypertension 32.3 56.8 55.7

Lung disease 6.0 13.0 12.9

Stroke 2.1 7.0 7.6
Any chronic condition 46.0 72.2 77.1

3+ chronic conditions 3.4 16.1 14.7
Functional status

IADL limitation only 7.2 2.4 3.0

1 or 2 ADL limitations 9.0 8.4 7.8
3 or more ADL limitations 0.0 3.0 2.1

Nursing home residency 0.0 0.8 0.4
BMI status

Obese (BMI >=30) 23.2 29.5 26.4

Overweight (25 <=BMI<30) 39.9 40.2 39.5

Smoking status

Ever-smoked 62.8 60.3 60.1

Smoking now 25.7 13.2 13.7
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