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1. Review of the Basic Methodology

∙ The standard case: outcomes are observed for

two groups for two time periods. One of the groups

is exposed to a treatment in the second period but

not in the first period. The second group is not

exposed to the treatment during either period. In the

case where the same units within a group are

observed in each time period (panel data), the

average gain in the second (control) group is

substracted from the average gain in the first

(treatment) group. This removes biases in second

period comparisons between the treatment and

control group that could be the result from

permanent differences between those groups, as

well as biases from comparisons over time in the
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treatment group that could be the result of trends.

∙With repeated cross sections, let A be the control

group and B the treatment group. Write

y  0  1dB  0d2  1d2  dB  u,     (1)

where y is the outcome of interest. The dummy dB

captures possible differences between the treatment

and control groups prior to the policy change. The

dummy d2 captures aggregate factors that would

cause changes in y even in the absense of a policy

change. The coefficient of interest is 1.

∙ The difference-in-differences estimate is

̂1  ȳB,2 − ȳB,1 − ȳA,2 − ȳA,1.     (2)

Inference based on even moderate sample sizes in

each of the four groups is straightforward, and is

easily made robust to different group/time period
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variances in the regression framework.

∙More convincing analysis sometimes available by

refining the definition of treatment and control

groups. Example: change in state health care policy

aimed at elderly. Could use data only on people in

the state with the policy change, both before and

after the change, with the control group being

people 55 to 65 (say) and and the treatment group

being people over 65. This DD analysis assumes

that the paths of health outcomes for the younger

and older groups would not be systematically

different in the absense of intervention. Instead,

might use the over-65 population from another state

as an additional control. Let dE be a dummy equal

to one for someone over 65.
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y  0  1dB  2dE  3dB  dE  0d2
 1d2  dB  2d2  dE  3d2  dB  dE  u

    (3)

The coefficient of interest is 3, the coefficient on

the triple interaction term, d2  dB  dE. The OLS

estimate ̂3 can be expressed as follows:

̂3  ȳB,E,2 − ȳB,E,1 − ȳA,E,2 − ȳA,E,1

− ȳB,N,2 − ȳB,N,1

    (4)

where the A subscript means the state not

implementing the policy and the N subscript

represents the non-elderly. This is the

difference-in-difference-in-differences (DDD)

estimate.

∙ Can add covariates to either the DD or DDD

analysis to (hopefully) control for compositional

changes.

∙ Can use multiple time periods and groups.
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2. How Should We View Uncertainty in DD

Settings?

∙ Standard approach: all uncertainty in inference

enters through sampling error in estimating the

means of each group/time period combination.

Long history in analysis of variance.

∙ Recently, different approaches have been suggest

that focus on different kinds of uncertainty –

perhaps in addition to sampling error in estimating

means. Bertrand, Duflo, and Mullainathan (2004),

Donald and Lang (2007), Hansen (2007a,b), and

Abadie, Diamond, and Hainmueller (2007) argue

for additional sources of uncertainty.

∙ In fact, for the most part, the additional

uncertainty is assumed to swamp the sampling error

in estimating group/time period means. (See DL
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approach in cluster sample notes, although we did

not explicitly introduce a time dimension.)

∙ One way to view the uncertainty introduced in

the DL framework – and a perspective explicitly

taken by ADH – is that our analysis should better

reflect the uncertainty in the quality of the control

groups.

∙ Issue: In the standard DD and DDD cases, the

policy effect is just identified in the sense that we

do not have multiple treatment or control groups

assumed to have the same mean responses. So, the

DL approach does not allow inference.

∙ Example from Meyer, Viscusi, and Durbin

(1995) on estimating the effects of benefit

generosity on length of time a worker spends on

workers’ compensation. MVD have the standard
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DD setting: a before and after period, where the

policy change was to raise the cap on covered

earnings; control group is low earners. Using

Kentucky and a total sample size of 5,626, the DD

estimate of the policy change is about 19.2%

(longer time on workers’ compensation) with

t  2. 76. Using Michigan, with a total sample size

of 1,524, the DD estimate is 19.1% with t  1. 22.

(Adding controls does not help reduce the standard

error.) There seems to be plenty of uncertainty in

the estimate even with a pretty large sample size.

Should we conclude that we really have no usable

data for inference?

3. General Settings for DD Analysis: Multiple

Groups and Time Periods

∙ The DD and DDD methodologies can be applied
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to more than two time periods. In the DD case, add

a full set of time dummies to the equation. This

assumes the policy has the same effect in every

year; easily relaxed. In a DDD analysis, a full set of

dummies is included for each of the two kinds of

groups and all time periods, as well as all pairwise

interactions. Then, a policy dummy (or sometimes

a continuous policy variable) measures the effect of

the policy. See Meyer (1995) for applications.

∙With many time periods and groups, a general

framework considered by BDM (2004) and Hansen

(2007b) is useful. The equation at the individual

level is

yigt  t  g  xgt  zigtgt  vgt  uigt,

i  1, . . . ,Mgt,

    (5)

where i indexes individual, g indexes group, and t
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indexes time. This model has a full set of time

effects, t, a full set of group effects, g,

group/time period covariates, xgt (these are the

policy variables), individual-specific covariates,

zigt, unobserved group/time effects, vgt, and

individual-specific errors, uigt. We are interested in

estimating .

∙ As in cluster sample cases, can write

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt,     (6 )

which shows a model at the individual level where

both the intercepts and slopes are allowed to differ

across all g, t pairs. Then, we think of gt as

gt  t  g  xgt  vgt.     (7)

We can think of (7) as a regression model at the

group/time period level.
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∙ As discussed by BDM, a common way to

estimate and perform inference in (5) is to ignore

vgt, so the individual-level observations are treated

as independent. When vgt is present, the resulting

inference can be very misleading.

∙ BDM and Hansen (2007b) allow serial

correlation in vgt : t  1, 2, . . . ,T but assume

independence across g.

∙ If we view (7) as ultimately of interest, there are

simple ways to proceed. We observe xgt, t is

handled with year dummies,and g just represents

group dummies. The problem, then, is that we do

not observe gt. Use OLS on the individual-level

data to estimate the gt, assuming Ezigt′ uigt  0

and the group/time period sizes, Mgt, are

reasonably large.
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∙ Sometimes one wishes to impose some

homogeneity in the slopes – say, gt  g or even

gt   – in which case pooling can be used to

impose such restrictions.

∙ In any case, proceed as if Mgt are large enough to

ignore the estimation error in the ̂gt; instead, the

uncertainty comes through vgt in (7). The MD

approach from cluster sample notes effectively

drops vgt from (7) and views gt  t  g  xgt

as a set of deterministic restrictions to be imposed

on gt. Inference using the efficient MD estimator

uses only sampling variation in the ̂gt. Here, we

proceed ignoring estimation error, and so act as if

(7) is, for t  1, . . . ,T,g  1, . . . ,G,

̂gt  t  g  xgt  vgt     (8)
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We can apply the BDM findings and Hansen

(2007a) results directly to this equation. Namely, if

we estimate (8) by OLS – which means full year

and group effects, along with xgt – then the OLS

estimator has satisfying properties as G and T both

increase, provided vgt : t  1, 2, . . . ,T is a

weakly dependent time series for all g. The

simulations in BDM and Hansen (2007a) indicate

that cluster-robust inference, where each cluster is a

set of time periods, work reasonably well when

vgt follows a stable AR(1) model and G is

moderately large.

∙ Hansen (2007b), noting that the OLS estimator

(the fixed effects estimator) applied to (8) is

inefficient when vgt is serially uncorrelated,

proposes feasible GLS. When T is small, estimating
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the parameters in g  Varvg, where vg is the

T  1 error vector for each g, is difficult when group

effects have been removed. Estimates based on the

FE residuals, v̂gt, disappear as T → , but can be

substantial. In AR(1) case, ̂ comes from

v̂gt on v̂g,t−1, t  2, . . . ,T,g  1, . . . ,G.     (9)

∙ One way to account for bias in ̂: use fully robust

inference. But, as Hansen (2007b) shows, this can

be very inefficient relative to his suggestion to

bias-adjust the estimator ̂ and then use the

bias-adjusted estimator in feasible GLS. (Hansen

covers the general ARp model.)

∙ Hansen shows that an iterative bias-adjusted

procedure has the same asymptotic distribution as ̂

in the case ̂ should work well: G and T both

tending to infinity. Most importantly for the
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application to DD problems, the feasible GLS

estimator based on the iterative procedure has the

same asymptotic distribution as the infeasible GLS

etsimator when G →  and T is fixed.

∙ Even when G and T are both large, so that the

unadjusted AR coefficients also deliver asymptotic

efficiency, the bias-adusted estimates deliver

higher-order improvements in the asymptotic

distribution.

∙ One limitation of Hansen’s results: they assume

xgt : t  1, . . . ,T are strictly exogenous. If we

just use OLS, that is, the usual fixed effects

estimate – strict exogeneity is not required for

consistency as T → . Nothing new that GLS relies

on strict exogeneity in serial correlation cases. In

intervention analyis, might be concerned if the
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policies can switch on and off over time.

∙With large G and small T, one can estimate an

unstricted variance matrix g and proceed with

GLS – this is the approach suggested by Kiefer

(1980) and studied more recently by Hausman and

Kuersteiner (2003). Works pretty well with G  50

and T  10, but get substantial size distortions for

G  50 and T  20.

∙ If the Mgt are not large, might worry about

ignoring the estimation error in the ̂gt. Can instead

aggregate the equations over individuals, giving

ȳgt  t  g  xgt  z̄gt  vgt  ūgt,
t  1, . . ,T,g  1, . . . ,G.

    (10)

Can estimate this by FE and use fully robust

inference because the composite error,

rgt ≡ vgt  ūgt, is weakly dependent.
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∙ The Donald and Lang (2007) approach applies in

the current setting by using finite sample analysis

applied to the pooled regression (10). However, DL

assume that the errors vgt are uncorrelated across

time, and so, even though for small G and T it uses

small degrees-of-freedom in a t distribution, it does

not account for uncertainty due to serial correlation

in vgt.

4. Individual-Level Panel Data

∙ Let wit be a binary indicator, which is unity if

unit i participates in the program at time t. Consider

yit    d2t  wit  ci  uit, t  1, 2,     (11)

where d2t  1 if t  2 and zero otherwise, ci is an

observed effect, and uit are the idiosyncratic errors.

The coefficient  is the treatment effect. A simple

estimation procedure is to first difference to remove
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ci :

yi2 − yi1    wi2 − wi1  ui2 − ui1     (12)

or

Δyi    Δwi  Δui.     (13)

If EΔwiΔui  0, that is, the change in treatment

status is uncorrelated with changes in the

idiosyncratic errors, then OLS applied to (13) is

consistent.

∙ If wi1  0 for all i, the OLS estimate is

̂  Δȳtreat − Δȳcontrol,     (14)

which is a DD estimate except that we different the

means of the same units over time.

∙With many time periods and arbitrary treatment

patterns, we can use

yit  t  wit  xit  ci  uit, t  1, . . . ,T,     (15)
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which accounts for aggregate time effects and

allows for controls, xit. Estimation by FE or FD to

remove ci is standard, provided the policy

indicator, wit, is strictly exogenous: correlation

beween wit and uir for any t and r causes

inconsistency in both estimators (with FE having

some advantages for larger T if uit is weakly

dependent)

∙What if designation is correlated with

unit-specific trends? “Correlated random trend”

model:

yit  ci  git  t  wit  xit  uit     (16)

where gi is the trend for unit i. A general analysis

allows arbitrary corrrelation between ci,gi and

wit, which requires at least T ≥ 3. If we first

difference, we get, for t  2, . . . ,T,
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Δyit  gi   t  Δwit  Δxit  Δuit.     (17)

Can difference again or estimate (17) by FE.

∙ Can derive standard panel data approaches using

the counterfactural framework from the treatment

effects literature. For each i, t, let yit1 and yit0

denote the counterfactual outcomes, and assume

there are no covariates. Unconfoundedness,

conditional on unobserved heterogeneity, can be

stated as

Eyit0|wi,ci0,ci1  Eyit0|ci0
Eyit1|wi,ci0,ci1  Eyit1|ci1,

    (18)
    (19)

where wi  wi1, . . . ,wiT is the time sequence of

all treatments. If the gain from treatment only

depends on t,

Eyit1|ci1  Eyit0|ci0  t     (20)
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and then

Eyit|wi,ci0,ci1  Eyit0|ci0  twit.     (21)

If we assume

Eyit0|ci0  t0  ci0,     (22)

then

Eyit|wi,ci0,ci1  t0  ci0  twit,     (23)

an estimating equation that leads to FE or FD (often

with t  .

∙ If add strictly exogenous covariates, and assume

linearity of conditional expectations, and allow the

gain from treatment to depend on xit and an

additive unobserved effect ai, get

Eyit|wi,xi,ci0,ai  t0  twit  xit0

 witxit− t  ci0  aiwit,

    (24)

a correlated random coefficient model because the
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coefficient on wit is t  ai. Can eliminate ai (and

ci0. Or, with t  , can “estimate” the i and then

use

̂  N−1∑
i1

N

̂i.     (25)

See Wooldridge (2002, Section 11.2) for standard

error, or bootstrapping.

5. Semiparametric and Nonparametric

Approaches

∙ Return to the setting with two groups and two

time periods. Athey and Imbens (2006) generalize

the standard DD model in several ways. Let the two

time periods be t  0 and 1 and label the two

groups g  0 and 1. Let Yi0 be the counterfactual

outcome in the absense of intervention and Yi1

the counterfactual outcome with intervention. AI
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assume that

Yi0  h0Ui,Ti,     (26)

where Ti is the time period and

h0u, t strictly increasing in u for t  0, 1     (27)

The random variable Ui represents all unobservable

characteristics of individual i. Equation (26)

incorporates the idea that the outcome of an

individual with Ui  u will be the same in a given

time period, irrespective of group membership.

∙ The distribution of Ui is allowed to vary across

groups, but not over time within groups, so that

DUi|Ti,Gi  DUi|Gi.     (28)

The standard DD model can be expressed in this

way, with

h0u, t  u    t     (29)
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and

Ui    Gi  Vi, Vi  Gi,Ti     (30)

although, because of the linearity, we can get by

with the mean independence assumption

EVi|Gi,Ti  0. With constant treatment effect,

Yi    Ti  Gi  GiTi  Vi,     (31)

Because EVi|Gi,Ti  0, the parameters in (31)

can be estimated by OLS (usual DD analysis).

∙ Athey and Imbens call the extension of the usual

DD model the changes-in-changes (CIC) model.

Can recover

DYi0|Gi  1,Ti  1,     (32)

under their assumptions (with an extra support

condition). In fact, if Fgt0 y the be cumulative

distribution function of DYi0|Gi  g,Ti  t for
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g  1, 2 and t  1, 2, and Fgty is the cdf for the

observed outcome Yi conditional on Gi  g and

Ti  t, then

F11
0y  F10F00

−1F01y,     (33)

where F00
−1 is the inverse function of F00,

which exists under the strict monotonicity

assumption. Because F11
1y  F11y, we can

estimate the entire distributions of both

counterfactuals conditional on intervention,

Gi  Ti  1.

∙ Can apply to repeated cross sections or panel

data. Of course, can also identify the average

treatment effect

CIC  EY111 − EY110.     (34)

In particular,
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CIC  EY11 − EF01
−1F00Y10.     (35)

∙ Other approaches with panel data: Altonji and

Matzkin (2005) under exchaneability in

DUi|Wi1, . . . ,WiT.

∙ Heckman, Ichimura, Smith, and Todd (1997) and

Abadie (2005). Consider basic setup with two time

periods, no treated units in first time period.

Without an i subscript, Ytw is the counterfactual

outcome for treatment level w, w  0, 1, at time t.

Parameter: the average treatment effect on the

treated,

ATT  EY11 − Y10|W  1.     (36)

Remember, in the current setup, no units are treated

in the initial time period, soW  1 means treatment

in the second time period.
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∙ Key unconfoundedness assumption:

EY10 − Y00|X,W  EY10 − Y00|X     (37)

Also need

PW  1|X  1     (38)

is critical. Under (37) and (38),

ATT  E
W − pXY1 − Y0

1 − pX /PW  1,     (39)

where Yt, t  0, 1 are the observed outcomes (for

the same unit) and pX  PW  1|X is the

propensity score. Dehejia and Wahba (1999)

derived (39) for the cross-sectional case. All

quantities are observed or, in the case of the pX

and   PW  1, can be estimated. As in Hirano,

Imbens, and Ridder (2003), a flexible logit model

can be used for pX; the fraction of units treated
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would be used for ̂. Then

̂ATT  ̂−1N−1∑
i1

N
Wi − p̂XiΔYi
1 − p̂Xi

.     (40)

is consistent and N -asymptotically normal. HIR

discuss variance estimation. Imbens and

Wooldridge (2007) provide a simple adjustment

available in the case that p̂ is treated as a

parametric model.

∙ Similar approach works for ATE.

∙ Regression version:

ΔYi on 1,Wi, p̂Xi, Wi − ̂  p̂Xi, i  1, . . . ,N.

The coefficient on Wi is the estimated ATE.

Requires some functional form restrictions.

Certainly preferred to running the regression Yit on

1, d1t, d1t  Wi, p̂Xi. This latter regression
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requires unconfoundedness in the levels, and as

dominated by the basic DD estimate from ΔYi on

1,Wi

∙ Regression adjustment can also be used, as in

HIST (1997).

6. Synthetic Control Methods for Comparative

Case Studies

∙ Abadie, Diamond, and Hainmueller (2007) argue

that in policy analysis at the aggregate leve, there is

little or no estimation uncertainty: the goal is to

determine the effect of a policy on an entire

population, and the aggregate is measured without

error (or very little error). Application: California’s

tobacco control program on state-wide smoking

rates.

∙ ADH focus on the uncertainty with choosing a

29



suitable control for California among other states

(that did not implement comparable policies over

the same period).

∙ ADH suggest using many potential control

groups (38 states or so) to create a single synthetic

control group.

∙ Two time periods: one before the policy and one

after. Let yit be the outcome for unit i in time t, with

i  1 the treated unit. Suppose there are J possible

controls, and index these as 2, . . . ,J  1. Let xi be

observed covariates for unit i that are not (or would

not be) affected by the policy; xi may contain

period t  2 covariates provided they are not

affected by the policy. Generally, we can estimate

the effect of the policy as
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y12 −∑
j2

J1

wjyj2,     (41)

where wj are nonnegative weights that add up to

one. How to choose the weights to best estimate the

intervention effect?

∙ ADH propose choosing the weights so as to

minimize the distance between y11,x1 and

∑j2
J1wj  yj1,xj, say. That is, functions of the

pre-treatment outcomes and the predictors of

post-treatment outcomes.

∙ ADH propose permutation methods for inference,

which require estimating a placebo treatment effect

for each region, using the same synthetic control

method as for the region that underwent the

intervention.
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