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The Story So Far...

@ Conventional t-test-based confidence intervals can under-cover
true parameter value when instruments are weak

o Effective First-stage F-statistic provides a guide to bias

e But screening applications on F-statistics can induce size
distortions

@ This section: identification-robust confidence sets

e Ensure correct coverage regardless of instrument strength
e No need to screen on first stage
e Avoids pretesting bias
e Avoids throwing away applications with valid instruments just
because weak
o Confidence sets can be informative even with weak
instruments



Reminder: Normal Model

@ To discuss these issues, continue to consider the normal model
(#)~n((2)=)
Y T
where

o § is the reduced-form OLS coefficient
e 7 is the first-stage OLS coefficient

e X is known

@ IV model implies § = 78



Negative Result

@ Initial Question: can we obtain correct coverage by adjusting
our standard errors?

o Confidence interval [B +b (S,fr)} for some b (-, ")
e Answer: no (unless b (S,fr) can be infinite)

@ Gleser and Hwang (1989) and Dufour (1997) show that for
any robust confidence set CS with coverage 1 — «,

Prg-{8 € CS} >1—aforall 3, m,
we must have

Prs = { CS has infinite length} > 0 for all 3,

e Inutition: in case with m = 0, must cover every value 8 with
probability 1 — «

@ Adjusting our (finite) standard errors isn't enough: need
alternative approach



Test Inversion

o Leading alternative: test inversion
o |dea: Define a family of tests ¢ (-) where

o &(Bo) test for Hy : B = fo
o &(Bo) =1if reject Hp, O otherwise

@ Suppose ¢ (/3p) has size « for all o, i.e.

Egy.x [¢ (Bo)] < a for all o,

@ If we form CS by collecting the non-rejected values

CS={B:9(B)=0}

then CS has coverage 1 — «
o Called test inversion

@ Hence, to form an identification-robust confidence set, we only
need to form identification-robust tests of Hy : 8 = B9



Restriction Implied By IV Model

@ To implement test inversion, need to find a test

@ To construct robust test, use restrictions that hold regardless
of instrument strength

o IV model implies that § — 75 =0
@ Under Hp : 8 = P,

8 — #Bo ~ N (0,9 (5o))

for
Q(Bo) = Tss — Bo(Lor + Lns) + BT rr

o Holds regardless of instrument strength



AR Statistic

@ Building on this observation, can introduce AR statistic
N / 1/
AR () = (5 = #60) (50" (5 - 7o)

o Originally introduced by Anderson and Rubin (1949) for
homoskedastic normal case
o Here, generalization to non-homoskedastic case

e Under Hy : 8= o, AR (Bo) ~ Xi for all =
o Recall k =dim(Z)

o AR test ¢ar (Bo) =1 {AR(ﬁo) > Xi,lfa}

® X%1_o the 1 —a quantile of a x distribution
o AR Confidence set CSap = {5 tAR () < Xi71_a}

@ AR test and CS fully robust to weak instruments



The Form of AR Confidence Sets

@ CSpgr can behave in counterintuitive ways
@ In just-identified setting (k = dim (X) = 1) can take form of:
o bounded interval: CSag = [a, b]
o real line: CSar = (—00, )
o real line excluding bounded interval: CSag = (—o0, a] U [b, o0)
@ In over-identified settings can also be empty, CSagr =0

o In overidentifed non-homoskedastic settings, can take
additional forms



The Form of AR Confidence Sets

Infinite confidence sets strange-looking...
e but have natural explanation

@ Unboundedness consistent with Gleser and Hwang (1989),
Dufour (1997)

Moreover, can show that

lim AR (Bo) = #'L 4 = k- FF

Bo—>:|:oo

o Implies that CSar unbounded if and only if first-stage F-test
cannot reject m = 0 at level «

Unbounded AR confidence sets arise only when cannot reject
that model totally unidentified



The Form of AR Confidence Sets

e Empty confidence sets more awkward
@ Arise from fact that AR tests Hy : 6 = w8y. Can be
decomposed into

e Parameteric restriction 5 = 3
o Overidentifying restrictions § oc 7 if k > 1

e If k =1, no overidentifying restrictions to test
@ Empty AR confidence sets can be interpreted as a rejection of
the overidentifying restrictions
e Unfortunate feature: how to interpret a small CS?
o Confidence sets non-empty with probability one in
just-identified case



Optimality of AR in Just-ldentified Models

@ In just-identified case with single endogenous regressor, AR is
optimal
e 101 out of 230 specifications in our AER sample are
just-identified with a single endogenous regressor
@ Moreira (2009) shows that AR test uniformly most powerful
unbiased

@ AR equivalent to two-sided t-test when instruments are strong

@ In just-identified settings, strong case for using AR CS

e Optimal among CS robust to weak instruments
o No loss of power relative to t-test if instruments strong



AR Tests in Applications

@ To examine practical impact of using CSag, return to our AER
sample

o Limit attention to just-identified specifications with single
endogenous regressor where can estimate variance-covariance
matrix of <3, 7?)

o Yields 36 specifications

@ Comparing 95% t and AR confidence sets, find infinite AR CS

in two cases. In remaining cases:

e AR confidence sets 56.5% longer on average in all
specifications

o 20.3% longer on average in specifications that report F>10

o 0.04% longer on average in specifications that report F>50



AR Tests in Overidentified Models

@ Strong argument for using AR in just-identified settings

@ AR tests and CS perform worse in over-identified settings
o As already noted, CSag may be empty

@ Also inefficient under strong instruments

o Tests violations of Hy : 8 = [, and of overidentifying
restrictions
o If only care about parametric restrictions, “wastes’ degrees of

freedom



Improving Efficiency in Over-identified Settings

@ To obtain efficiency under strong instruments, need alternative
tests

@ For example, tests based on t-statistic

B 6l
(o) = 5
B
@ Problem: distribution of t(5g) under Hy : 5 = [y depends on
T
o Already know this: distribution of t-statistic depends on
instrument strength
e Since m unknown, not clear what critical values to use with

t (bo)



Conditional Critical Values

@ Moreira (2003): conditional critical values
e Originally for homoskedastic case. Here discuss generalization
e Idea: Find a sufficient statistic D (o) for m under Ho : 8 = B

e Means conditional distribution of ¢ (5g) |D (o) doesn't depend
on 7 under Hy

e Once condition on D (fp), can compute data-dependent
critical values ¢, (D (5o))

@ Question: how to find D ()



Conditional Critical Values
o Idea for sufficient statistic: separate parts of (3,7?) that

do/don't depend on 7
@ Define

o Let
D(B) = # — (Fns — TrnB) QB) (),
denote 7 orthogonalized with respect to g (53)
e Under Hp : B = 5y

< g(bo) >~/\/<< 0 > <Q(50) 0 >>
D(Bo) T )’ 0 W(po)
o Conditional distribution of g(5o) given D (o) doesn’t depend
on 7 under Hy : 3 = Bo
g (Bo) D (Bo) ~ N (0,2(f0))

o (g(5o), D(Bo)) one-to-one transformation of (A, 7’%)
o =D (fy) is sufficient statistic for 7



Conditional Critical Values

@ To construct conditional distribution of ¢ (o) |D (5o):
@ Fix D(Bo) at observed value
© Repeatedly draw g* (5o) ~ N (0, (5o))
© Construct (3*77?*) from (g* (Bo), D (Bo))

Q@ Calculate t* (3p) based on (3*,7?*)
e Conditional critical value ¢, (D (50)): 1 — « quantile of t* (o)



Conditional Critical Values

e Conditional t-test that rejects when t () exceeds c, (D (6o))

¢ (Bo) = 1{t(Bo) > ca (D (Bo))}

is fully robust to weak instruments,

Egy [¢ (Bo)] = a for all w

e Conditioning not specific to t (fp), works for any statistic

s (o)

e In each case construct data-dependent critical value

ca (D (fo))

o Yields tests that control size

@ Question what statistic s (/3p) to use



Alternative Test Statistics
Many possible choices of statistic s ()
@ t-statistic

- L2
t(bo) = —

98
@ Score statistic (Kleibergen 2002, 2005)

K (50) = g (Bo) 2 (Bo) " D (Bo) x

(D (50 (50 D(50)) D (o) 2 (Bo) & (40)

@ AR statistic

AR (80) = g (o) 2 (Bo) " & (o)

@ LR statistic

LR (Bo) =2 (rg:irxﬁ(ﬁ, ) — mﬁaxﬂ(ﬁo, 7r)>



Properties

o Different test statistics imply different ¢, (D (50))

e For t and LR, need data-dependent critical values
o Conditional distributions AR (8o) |D (o) and K (Bo) |D (o)
don't depend on D ()

o Can use x2 and x? critical values, respectively

Conditional t, K, and LR tests efficient under strong
instruments

o AR test inefficient in overidentified models
@ Under weak instruments, also yield different power properties

e Conditional two-sided t-test poor power

e K test sometimes poor power

o Conditional LR (CLR) test performs well (in homoskedastic
case)

See D. Andrews Moreira and Stock (2006), (2007)



Near-Optimality of CLR Test

e D. Andrews, Moreira, and Stock (2006) show that CLR test
near-optimal
e In homoskedastic case with single endogenous regressor
@ Power close to upper bound for a natural class of tests over a
wide range of parameter values

@ Consensus in literature that CLR is a good test for
homoskedastic settings

o ... but homoskedasticity assumption unappealing



Tests for Non-Homoskedastic Models

@ Variety of CLR extensions for non-homoskedastic case
o D. Andrews Moreira and Stock (2004), Kleibergen (2005), D.
Andrews and Guggenberger (2015), I. Andrews (2016), I.
Andrews and Mikusheva (2016)
o All efficient with strong instruments, but only simulation
evidence on power with weak instruments
o Alternative: tests proposed that maximize weighted average
power
e Maximize integral of power function with respect to some
weights
o Moreira and Moreira (2015), Montiel Olea (2017), Moreira and
Ridder (2018)
o Question: what are “right” weights?
@ Many options, but so far no consensus on what tests should be
used in over-identified and non-homoskedastic models
o In just-identified setting, use AR
o In over-identified settings, use something that's efficient under
strong instruments



Two-Step Confidence Sets

@ Robust confidence sets not widely used in practice
e When reported, usually only after authors find evidence of
weak instruments
e In AER sample, reported in 2 papers. Minimal first-stage F of
2.3 and 6.3, respectively
@ If only report robust confidence set when F small, can view as
constructing confidence set in two steps
e If F > 10, report t-statistic confidence set
e If F <10, report robust CS

@ Screening applications on first-stage F can generate very bad
behavior. Does two-step CS do the same?

o Positive results for FV in homoskedastic case based on Stock
and Yogo (2005)

o Negative result for FV in non-homoskedastic case based on
Montiel Olea and Pflueger (2013), for FR with conventional
critical values based on I. Andrews (2018)

o Negative results based on extreme forms of
non-homoskedasticity: open question how bad in practice



Implementation

@ Implementations of some weak-IV tests are in Stata package
weakiv, available on SSC
e Finlay, Magnusson, and Schaffer
e Versions of CLR, AR, K, and other tests applicable to
non-homoskedastic models
e Can be used with fixed effects, clustered standard errors, etc.

e Stata Journal article on previous version of package: Finlay
and Magnusson (2009)



Summary

@ A number of tests and confidence sets are available that are
fully robust to weak instruments

e Avoid pretesting bias, discarding applications
e Many efficient under strong instruments

@ In just-identified models, strong case for using AR CS
o Covers many applications

@ In over-identified models, less clear

o CLR if assume homoskedastic

e No consensus for non-homoskedastic case

e ...other than using something efficient under strong
instruments
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Figure: Power of AR, K, and C LR tests in homoskedastic case (from D.
Andrews, Moreira, and Stock (2006))



Power Comparisons
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Outline

Two goals for this section
@ Examine practical importance of issues covered so far
e Simulations calibrated to specifications published in AER

@ Discuss other open questions and recent research on weak
instruments



AER Simulation Specifications

@ To assess practical importance of weak instrument issues,
calibrate simulations to AER data

@ Specifications from AER articles (excluding Papers and
Proceedings) from 2014-2018 that:

@ Published in main text
@ Allow us to estimate variance matrix ¥ of (6,7?)

o Mostly papers with replication data
o In one other case, back out X from published results

@ Yields 124 specifications from 8 papers
o All specifications have a single endogenous variable



Simulation Design

@ To focus attention on weak instrument issues, simulations use

normal model
( (E )NN<< 5 )7 )
Y Y

with £ known, § = 73
@ Simulations fix 3, m, and X at estimated values

@ Abstracts away from:

o Non-normality of §, #
e Estimation error in
o Will return to these later

@ Any disortions must arise from weak instruments



Distribution of t-Statistics

@ Theoretical results show t-tests can perform poorly when
instruments weak

o Distribution of t-statistics may not be centered at zero
o Rejection probability of 5% t-tests may be much larger

@ In each of our 124 AER specifications simulate

e Median t-statistic
Ved (6 ﬁo)
s

e Size of 5% t-tests

@ Plot against average effective first-stage F-stat

o Little action for E [FE] > 50. Limit plot to E [FE] <50
e Includes 106 of 124 specifications



Distribution of t-Statistics
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Distribution of t-Statistics
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Distribution of t-Statistics

o Weak instrument issues apparent in some specifications
o Median t-statistic far from zero
o Size of nominal 5% t-test much larger than 5%
@ Problems limited to specifications with a small average
effective F-stat

o No large distortions in specifications with E [FE} > 10
e Population rule of thumb seems to work pretty well

o Not a theorem!

Weak instrument issues appear relevant for some recently-published
specifications, but only in cases with E [FE] small



Screening on F-Statistics

e Given that average effective F-statistics seem to capture weak
instrument issues, tempting to screen applications on F

e e.g. only pursue applications with FE > 10
@ Distribution of F-statistics in AER sample suggests may be
common
@ As already discussed, can introduce size distortions
@ Examine effect in our AER specifications

o For each specification, calculate size of 5% t-test conditional
on FE > 10



Screening on F-Statistics
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Screening on F-Statistics

@ Screening leads to much larger size for some specifications

o Not specific to FE, same issues appear for FV, FR
o Not specific to threshold of 10: if move threshold, get
distortions in neighborhood of new cutoff

Screening on F-statistics can make published results less reliable



Robust Confidence Sets

@ Rather than screening applications on F£, can compute robust
confidence sets

o Guaranteed to have correct coverage regardless of instrument
strength

e For illustration, here consider Anderson-Rubin (AR)
o Plot size of AR tests in AER specifications



Robust Confidence Sets
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Robust Confidence Sets

o AR size is flat at 5% regardless of instrument strength
e AR also efficient in just-identified case
@ For over-identified models, variety of robust tests and
confidence sets available

e Many ensure efficiency in strongly-identified case
o All again ensure correct size regardless of instrument strength

Robust confidence sets eliminate size distortions from weak
instruments



Two-Step Confidence Sets

@ Robust confidence sets currently little-used in practice
o When used, often because weak identification is suspected

@ When used in this way, can be viewed as alternative to
screening on F-statistic. For example

o If FE > 10, report t-statistic
o If FE < 10, report AR
o Alternatively, could use Montiel Olea and Pflueger (2013)
critical values
e May introduce size distortions, but not clear how large
o Examine performance in our AER specifications



Two-Step Confidence Sets
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Two-Step Confidence Sets

@ Observe some size distortions for specifications with
E[FE] ~ 10
o True size never above 10% in these simulations
o Results similar if instead use Montiel Olea and Pflueger (2013)
critical values

@ Also not a theorem!
Deciding to use a robust confidence set based on FE isn't

theoretically guaranteed to work, but cost appears small in our AER
specifications



Summary of Simulation Results

©

© 000

Weak instruments appear to be a problem in some published
specifications

Bad behavior largely limited to specifications with E [FE] < 10
Screening on FE can amplify problems
Robust confidence sets eliminate size distortions

Choosing whether to report robust CS based on FE introduces
some distortions, but small



Questions from Simulations: Performance of F-Statistics

Simulation results suggest some questions
@ Theoretical justification for FE in Montiel Olea and Pflueger
(2013) only concerns bias. Appears to also diagnose size
problems reasonably well. Can this be formalized?
@ Two-step confidence sets based on FE work reasonably well in
simulations. Can this be formalized?



Questions from Simulations: Normal Approximation

@ Our simulations take (3, 7?) to be normally distributed with

known variance
o Focuses attention solely on distortions from weak instruments

@ Results from Young (2018) suggest may be problematic
o Based on sample of papers from AEA journals (larger than,
but overlaps with, our AER sample)
@ Young (2018) finds that
© A small number of observations have a large influence on
estimates and p-values
@ Variance estimates 3 often extremely noisy in simulation
© As a result of noisy estimates i AR tests can have large size
distortions in over-identified settings

@ Further exploration of interaction between weak instruments
and issues discussed by Young (2018) of considerable interest



Other Research: Subvector Inference

Some applications have more than one endogenous regressor
e 19 out of 230 specifications in AER sample

@ Most tests previously discussed extend to tests of dim (X) x 1
vector f3 in settings with multiple endogenous variables

e Imply joint confidence sets for full vector

Joint confidence sets rarely reported in strong-instrument
settings. Instead, usually report e.g. estimates and standard
errors for each element of 3 separately

o Write 8 = (51, 52), and want confidence set for 31 alone
@ If assume instruments strong for 3,, simple solution

e “Strong for 82" meaning strong if treat 81 as known
o Plug appropriate estimate [, (1) into robust test statistics
(see e.g. Stock and Wright (2000))

If instruments weak for (3, hard problem



Other Research: Subvector Inference

@ One option projection method
e Form joint confidence set for (51, 32), and collect implied set
of values for 3;
e Can have very low power

@ Several recent papers seeking to improve power of projection
method

o Smaller critical values for AR statistic in homoskedastic case:
Guggenberger et al. (2012)

o Modified projection approach to improve power in
well-identified case: Chaudhuri and Zivot (2011), D. Andrews
(2017)

@ Active area of research



Subvector Inference: Implementation

@ Stata package weakiv can

e Compute joint confidence sets for 3
o Plug in estimates for strongly identified (3,
e Implement projection method
e Package twostepweakiv (also on SSC/Github) implements
refined projection based on Chaudhuri and Zivot (2011)
e Stata Journal article: Sun (Forthcoming)
o Nearly-efficient inference on 31 under strong identification
e Also implements two-step CS with guaranteed coverage



Other Research: Nonlinear Models

@ All the results discussed for IV apply directly to linear GMM
o GMM moments linear in parameters
e Many (though not all) generalize to nonlinear GMM
o No known analog of first-stage F-statistic
o Alternative for approach detecting weak identification: .
Andrews (2018)
e Many procedures for robust inference, e.g. Stock and Wright
(2000), Kleibergen (2005), D. Andrews and Guggenberger
(2015), I. Andrews and Mikusheva (2016)



The End

Thank you!



References

@ Andrews D. 2017. Identification-robust subvector inference.
Unpublished Manuscript

@ Andrews D, Guggenberger P. 2015. Identification- and
singularity-robust inference for moment condition models.
Unpublished Manuscript

@ Andrews |. 2018. Valid two-step identification-robust
confidence sets for gmm. Review of Economics and Statistics
100:337-348

o Andrews |, Mikusheva A. 2016. Conditional inference with a
functional nuisance parameter. Econometrica 84:1571-1612.

@ Chaudhuri S, Zivot E. 2011. A new method of
projection-based inference in gmm with weakly identified
nuisance parameters. Journal of Econometrics 164:239-251

o Guggenberger P, Kleibergen F, Mavroeidis S, Chen L. 2012.
On the asymptotic sizes of subset anderson—rubin and lagrange
multiplier tests in linear instrumental variables regression.
Econometrica 80:2649-2666



References

@ Kleibergen F. 2005. Testing parameters in gmm without
assuming they are identified. Econometrica 73:1103-1123

@ Montiel Olea J, Pflueger C. 2013. A robust test for weak
instruments. Journal of Business and Economic Statistics
31:358-369

@ Sun L. Forthcoming. Implementing valid two-step
identification-robust confidence sets for linear
instrumental-variables models. Stata Journal

@ Stock J, Wright J. 2000. Gmm with weak identification.
Econometrica 68:1055-1096

@ Young A. 2018. Consistency without inference: Instrumental
variables in practical application. Unpublished Manuscript



