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The Story So Far...

Conventional t-test-based confidence intervals can under-cover
true parameter value when instruments are weak
Effective First-stage F-statistic provides a guide to bias

But screening applications on F-statistics can induce size
distortions

This section: identification-robust confidence sets
Ensure correct coverage regardless of instrument strength
No need to screen on first stage

Avoids pretesting bias
Avoids throwing away applications with valid instruments just
because weak
Confidence sets can be informative even with weak
instruments



Reminder: Normal Model

To discuss these issues, continue to consider the normal model(
δ̂
π̂

)
∼ N

((
δ
π

)
,Σ

)
where

δ̂ is the reduced-form OLS coefficient
π̂ is the first-stage OLS coefficient
Σ is known

IV model implies δ = πβ



Negative Result
Initial Question: can we obtain correct coverage by adjusting
our standard errors?

Confidence interval
[
β̂ ± b

(
δ̂, π̂
)]

for some b (·, ·)

Answer: no (unless b
(
δ̂, π̂
)
can be infinite)

Gleser and Hwang (1989) and Dufour (1997) show that for
any robust confidence set CS with coverage 1− α,

Prβ,π {β ∈ CS} ≥ 1− α for all β, π,

we must have

Prβ,π {CS has infinite length} > 0 for all β, π

Inutition: in case with π = 0, must cover every value β with
probability 1− α

Adjusting our (finite) standard errors isn’t enough: need
alternative approach



Test Inversion

Leading alternative: test inversion
Idea: Define a family of tests φ (·) where

φ (β0) test for H0 : β = β0
φ (β0) = 1 if reject H0, 0 otherwise

Suppose φ (β0) has size α for all β0, i.e.

Eβ0,π [φ (β0)] ≤ α for all β0, π

If we form CS by collecting the non-rejected values

CS = {β : φ (β) = 0}

then CS has coverage 1− α
Called test inversion

Hence, to form an identification-robust confidence set, we only
need to form identification-robust tests of H0 : β = β0



Restriction Implied By IV Model

To implement test inversion, need to find a test
To construct robust test, use restrictions that hold regardless
of instrument strength

IV model implies that δ − πβ = 0

Under H0 : β = β0,

δ̂ − π̂β0 ∼ N (0,Ω (β0))

for
Ω(β0) = Σδδ − β0(Σδπ + Σπδ) + β2

0Σππ

Holds regardless of instrument strength



AR Statistic

Building on this observation, can introduce AR statistic

AR (β0) =
(
δ̂ − π̂β0

)′
Ω (β0)−1

(
δ̂ − π̂β0

)
Originally introduced by Anderson and Rubin (1949) for
homoskedastic normal case
Here, generalization to non-homoskedastic case

Under H0 : β = β0, AR (β0) ∼ χ2
k for all π

Recall k = dim (Zi )

AR test φAR (β0) = 1
{
AR (β0) > χ2

k,1−α

}
χ2
k,1−α the 1− α quantile of a χ2

k distribution

AR Confidence set CSAR =
{
β : AR (β) ≤ χ2

k,1−α

}
AR test and CS fully robust to weak instruments



The Form of AR Confidence Sets

CSAR can behave in counterintuitive ways
In just-identified setting (k = dim (X ) = 1) can take form of:

bounded interval: CSAR = [a, b]
real line: CSAR = (−∞,∞)
real line excluding bounded interval: CSAR = (−∞, a] ∪ [b,∞)

In over-identified settings can also be empty, CSAR = ∅
In overidentifed non-homoskedastic settings, can take
additional forms



The Form of AR Confidence Sets

Infinite confidence sets strange-looking...
but have natural explanation

Unboundedness consistent with Gleser and Hwang (1989),
Dufour (1997)
Moreover, can show that

lim
β0→±∞

AR (β0) = π̂′Σ−1
ππ π̂ = k · FR

Implies that CSAR unbounded if and only if first-stage F-test
cannot reject π = 0 at level α

Unbounded AR confidence sets arise only when cannot reject
that model totally unidentified



The Form of AR Confidence Sets

Empty confidence sets more awkward
Arise from fact that AR tests H0 : δ = πβ0. Can be
decomposed into

Parameteric restriction β = β0
Overidentifying restrictions δ ∝ π if k > 1

If k = 1, no overidentifying restrictions to test

Empty AR confidence sets can be interpreted as a rejection of
the overidentifying restrictions

Unfortunate feature: how to interpret a small CS?
Confidence sets non-empty with probability one in
just-identified case



Optimality of AR in Just-Identified Models

In just-identified case with single endogenous regressor, AR is
optimal

101 out of 230 specifications in our AER sample are
just-identified with a single endogenous regressor

Moreira (2009) shows that AR test uniformly most powerful
unbiased
AR equivalent to two-sided t-test when instruments are strong
In just-identified settings, strong case for using AR CS

Optimal among CS robust to weak instruments
No loss of power relative to t-test if instruments strong



AR Tests in Applications

To examine practical impact of using CSAR , return to our AER
sample
Limit attention to just-identified specifications with single
endogenous regressor where can estimate variance-covariance
matrix of

(
δ̂, π̂
)

Yields 36 specifications
Comparing 95% t and AR confidence sets, find infinite AR CS
in two cases. In remaining cases:

AR confidence sets 56.5% longer on average in all
specifications
20.3% longer on average in specifications that report F>10
0.04% longer on average in specifications that report F>50



AR Tests in Overidentified Models

Strong argument for using AR in just-identified settings
AR tests and CS perform worse in over-identified settings

As already noted, CSAR may be empty
Also inefficient under strong instruments

Tests violations of H0 : β = β0, and of overidentifying
restrictions
If only care about parametric restrictions, “wastes” degrees of
freedom



Improving Efficiency in Over-identified Settings

To obtain efficiency under strong instruments, need alternative
tests
For example, tests based on t-statistic

t (β0) =

∣∣∣β̂ − β0

∣∣∣
σ̂β̂

Problem: distribution of t (β0) under H0 : β = β0 depends on
π

Already know this: distribution of t-statistic depends on
instrument strength
Since π unknown, not clear what critical values to use with
t (β0)



Conditional Critical Values

Moreira (2003): conditional critical values
Originally for homoskedastic case. Here discuss generalization

Idea: Find a sufficient statistic D (β0) for π under H0 : β = β0

Means conditional distribution of t (β0) |D (β0) doesn’t depend
on π under H0
Once condition on D (β0) , can compute data-dependent
critical values cα (D (β0))

Question: how to find D (β0)



Conditional Critical Values
Idea for sufficient statistic: separate parts of

(
δ̂, π̂
)
that

do/don’t depend on π
Define

g (β) = δ̂ − π̂β
Let

D(β) = π̂ − (Σπδ − Σππβ) Ω(β)−1g(β),

denote π̂ orthogonalized with respect to g (β)
Under H0 : β = β0(

g(β0)
D(β0)

)
∼ N

((
0
π

)
,

(
Ω (β0) 0

0 Ψ(β0)

))
Conditional distribution of g(β0) given D (β0) doesn’t depend
on π under H0 : β = β0

g (β0) |D (β0) ∼ N (0,Ω (β0))

(g(β0),D (β0)) one-to-one transformation of
(
δ̂, π̂
)

⇒D (β0) is sufficient statistic for π



Conditional Critical Values

To construct conditional distribution of t (β0) |D (β0):
1 Fix D (β0) at observed value
2 Repeatedly draw g∗ (β0) ∼ N (0,Ω (β0))

3 Construct
(
δ̂∗, π̂∗

)
from (g∗ (β0) ,D (β0))

4 Calculate t∗ (β0) based on
(
δ̂∗, π̂∗

)
Conditional critical value cα (D (β0)): 1− α quantile of t∗ (β0)



Conditional Critical Values

Conditional t-test that rejects when t (β0) exceeds cα (D (β0))

φ (β0) = 1 {t (β0) > cα (D (β0))}

is fully robust to weak instruments,

Eβ0,π [φ (β0)] = α for all π

Conditioning not specific to t (β0), works for any statistic
s (β0)

In each case construct data-dependent critical value
cα (D (β0))
Yields tests that control size

Question what statistic s (β0) to use



Alternative Test Statistics
Many possible choices of statistic s (β0)

t-statistic

t (β0) =

∣∣∣β̂ − β0

∣∣∣
σ̂β̂

Score statistic (Kleibergen 2002, 2005)

K (β0) = g (β0)′Ω (β0)−1 D (β0)×(
D (β0)′Ω (β0)−1 D (β0)

)−1
D (β0)′Ω (β0)−1 g (β0)

AR statistic

AR (β0) = g (β0)′Ω (β0)−1 g (β0)

LR statistic

LR (β0) = 2
(
max
β,π

` (β, π)−max
π
` (β0, π)

)



Properties

Different test statistics imply different cα (D (β0))

For t and LR, need data-dependent critical values
Conditional distributions AR (β0) |D (β0) and K (β0) |D (β0)
don’t depend on D (β0)

Can use χ2
k and χ2

1 critical values, respectively

Conditional t, K, and LR tests efficient under strong
instruments

AR test inefficient in overidentified models
Under weak instruments, also yield different power properties

Conditional two-sided t-test poor power
K test sometimes poor power
Conditional LR (CLR) test performs well (in homoskedastic
case)

See D. Andrews Moreira and Stock (2006), (2007) Plots



Near-Optimality of CLR Test

D. Andrews, Moreira, and Stock (2006) show that CLR test
near-optimal

In homoskedastic case with single endogenous regressor

Power close to upper bound for a natural class of tests over a
wide range of parameter values
Consensus in literature that CLR is a good test for
homoskedastic settings

... but homoskedasticity assumption unappealing



Tests for Non-Homoskedastic Models
Variety of CLR extensions for non-homoskedastic case

D. Andrews Moreira and Stock (2004), Kleibergen (2005), D.
Andrews and Guggenberger (2015), I. Andrews (2016), I.
Andrews and Mikusheva (2016)
All efficient with strong instruments, but only simulation
evidence on power with weak instruments

Alternative: tests proposed that maximize weighted average
power

Maximize integral of power function with respect to some
weights
Moreira and Moreira (2015), Montiel Olea (2017), Moreira and
Ridder (2018)
Question: what are “right” weights?

Many options, but so far no consensus on what tests should be
used in over-identified and non-homoskedastic models

In just-identified setting, use AR
In over-identified settings, use something that’s efficient under
strong instruments



Two-Step Confidence Sets

Robust confidence sets not widely used in practice
When reported, usually only after authors find evidence of
weak instruments
In AER sample, reported in 2 papers. Minimal first-stage F of
2.3 and 6.3, respectively

If only report robust confidence set when F small, can view as
constructing confidence set in two steps

If F ≥ 10, report t-statistic confidence set
If F < 10, report robust CS

Screening applications on first-stage F can generate very bad
behavior. Does two-step CS do the same?

Positive results for FN in homoskedastic case based on Stock
and Yogo (2005)
Negative result for FN in non-homoskedastic case based on
Montiel Olea and Pflueger (2013), for FR with conventional
critical values based on I. Andrews (2018)

Negative results based on extreme forms of
non-homoskedasticity: open question how bad in practice



Implementation

Implementations of some weak-IV tests are in Stata package
weakiv, available on SSC

Finlay, Magnusson, and Schaffer
Versions of CLR, AR, K, and other tests applicable to
non-homoskedastic models
Can be used with fixed effects, clustered standard errors, etc.
Stata Journal article on previous version of package: Finlay
and Magnusson (2009)



Summary

A number of tests and confidence sets are available that are
fully robust to weak instruments

Avoid pretesting bias, discarding applications
Many efficient under strong instruments

In just-identified models, strong case for using AR CS
Covers many applications

In over-identified models, less clear
CLR if assume homoskedastic
No consensus for non-homoskedastic case
...other than using something efficient under strong
instruments
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Power Comparisons

Figure: Power of AR, K, and C LR tests in homoskedastic case (from D.
Andrews, Moreira, and Stock (2006))



Power Comparisons

Figure: Power of Conditional t-and LR-tests in homokedastic (from D.
Andrews, Moreira, and Stock (2007)) Return
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Outline

Two goals for this section
1 Examine practical importance of issues covered so far

Simulations calibrated to specifications published in AER
2 Discuss other open questions and recent research on weak

instruments



AER Simulation Specifications

To assess practical importance of weak instrument issues,
calibrate simulations to AER data
Specifications from AER articles (excluding Papers and
Proceedings) from 2014-2018 that:

1 Published in main text
2 Allow us to estimate variance matrix Σ of

(
δ̂, π̂
)

Mostly papers with replication data
In one other case, back out Σ from published results

Yields 124 specifications from 8 papers
All specifications have a single endogenous variable



Simulation Design

To focus attention on weak instrument issues, simulations use
normal model (

δ̂
π̂

)
∼ N

((
δ
π

)
,Σ

)
with Σ known, δ = πβ

Simulations fix β, π, and Σ at estimated values
Abstracts away from:

Non-normality of δ̂, π̂
Estimation error in Σ
Will return to these later

Any disortions must arise from weak instruments



Distribution of t-Statistics

Theoretical results show t-tests can perform poorly when
instruments weak

Distribution of t-statistics may not be centered at zero
Rejection probability of 5% t-tests may be much larger

In each of our 124 AER specifications simulate
Median t-statistic

Med

(
β̂ − β0

σ̂β̂

)
Size of 5% t-tests

Pr


∣∣∣β̂ − β0

∣∣∣
σ̂β̂

> 1.96


Plot against average effective first-stage F-stat

Little action for E
[
FE
]
> 50. Limit plot to E

[
FE
]
≤ 50

Includes 106 of 124 specifications



Distribution of t-Statistics
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Distribution of t-Statistics
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Distribution of t-Statistics

Weak instrument issues apparent in some specifications
Median t-statistic far from zero
Size of nominal 5% t-test much larger than 5%

Problems limited to specifications with a small average
effective F-stat

No large distortions in specifications with E
[
F E
]
> 10

Population rule of thumb seems to work pretty well
Not a theorem!

Weak instrument issues appear relevant for some recently-published
specifications, but only in cases with E

[
FE
]
small



Screening on F-Statistics

Given that average effective F-statistics seem to capture weak
instrument issues, tempting to screen applications on F

e.g. only pursue applications with F E > 10

Distribution of F-statistics in AER sample suggests may be
common
As already discussed, can introduce size distortions
Examine effect in our AER specifications

For each specification, calculate size of 5% t-test conditional
on F E > 10



Screening on F-Statistics
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Screening on F-Statistics

Screening leads to much larger size for some specifications
Not specific to F E , same issues appear for FN , FR

Not specific to threshold of 10: if move threshold, get
distortions in neighborhood of new cutoff

Screening on F-statistics can make published results less reliable



Robust Confidence Sets

Rather than screening applications on FE , can compute robust
confidence sets

Guaranteed to have correct coverage regardless of instrument
strength

For illustration, here consider Anderson-Rubin (AR)
Plot size of AR tests in AER specifications



Robust Confidence Sets
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Robust Confidence Sets

AR size is flat at 5% regardless of instrument strength
AR also efficient in just-identified case

For over-identified models, variety of robust tests and
confidence sets available

Many ensure efficiency in strongly-identified case
All again ensure correct size regardless of instrument strength

Robust confidence sets eliminate size distortions from weak
instruments



Two-Step Confidence Sets

Robust confidence sets currently little-used in practice
When used, often because weak identification is suspected

When used in this way, can be viewed as alternative to
screening on F-statistic. For example

If F E ≥ 10, report t-statistic
If F E < 10, report AR

Alternatively, could use Montiel Olea and Pflueger (2013)
critical values
May introduce size distortions, but not clear how large

Examine performance in our AER specifications



Two-Step Confidence Sets
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Two-Step Confidence Sets

Observe some size distortions for specifications with
E
[
FE
]
≈ 10

True size never above 10% in these simulations
Results similar if instead use Montiel Olea and Pflueger (2013)
critical values

Also not a theorem!

Deciding to use a robust confidence set based on FE isn’t
theoretically guaranteed to work, but cost appears small in our AER
specifications



Summary of Simulation Results

1 Weak instruments appear to be a problem in some published
specifications

2 Bad behavior largely limited to specifications with E
[
FE
]
< 10

3 Screening on FE can amplify problems
4 Robust confidence sets eliminate size distortions
5 Choosing whether to report robust CS based on FE introduces

some distortions, but small



Questions from Simulations: Performance of F-Statistics

Simulation results suggest some questions
1 Theoretical justification for FE in Montiel Olea and Pflueger

(2013) only concerns bias. Appears to also diagnose size
problems reasonably well. Can this be formalized?

2 Two-step confidence sets based on FE work reasonably well in
simulations. Can this be formalized?



Questions from Simulations: Normal Approximation

Our simulations take
(
δ̂, π̂
)
to be normally distributed with

known variance
Focuses attention solely on distortions from weak instruments

Results from Young (2018) suggest may be problematic
Based on sample of papers from AEA journals (larger than,
but overlaps with, our AER sample)

Young (2018) finds that
1 A small number of observations have a large influence on

estimates and p-values
2 Variance estimates Σ̂ often extremely noisy in simulation
3 As a result of noisy estimates Σ̂, AR tests can have large size

distortions in over-identified settings

Further exploration of interaction between weak instruments
and issues discussed by Young (2018) of considerable interest



Other Research: Subvector Inference

Some applications have more than one endogenous regressor
19 out of 230 specifications in AER sample

Most tests previously discussed extend to tests of dim (X ) × 1
vector β in settings with multiple endogenous variables

Imply joint confidence sets for full vector
Joint confidence sets rarely reported in strong-instrument
settings. Instead, usually report e.g. estimates and standard
errors for each element of β separately

Write β = (β1, β2) , and want confidence set for β1 alone
If assume instruments strong for β2, simple solution

“Strong for β2” meaning strong if treat β1 as known
Plug appropriate estimate β̂2 (β1) into robust test statistics
(see e.g. Stock and Wright (2000))

If instruments weak for β2, hard problem



Other Research: Subvector Inference

One option projection method
Form joint confidence set for (β1, β2), and collect implied set
of values for β1
Can have very low power

Several recent papers seeking to improve power of projection
method

Smaller critical values for AR statistic in homoskedastic case:
Guggenberger et al. (2012)
Modified projection approach to improve power in
well-identified case: Chaudhuri and Zivot (2011), D. Andrews
(2017)

Active area of research



Subvector Inference: Implementation

Stata package weakiv can
Compute joint confidence sets for β
Plug in estimates for strongly identified β2
Implement projection method

Package twostepweakiv (also on SSC/Github) implements
refined projection based on Chaudhuri and Zivot (2011)

Stata Journal article: Sun (Forthcoming)
Nearly-efficient inference on β1 under strong identification
Also implements two-step CS with guaranteed coverage



Other Research: Nonlinear Models

All the results discussed for IV apply directly to linear GMM
GMM moments linear in parameters

Many (though not all) generalize to nonlinear GMM
No known analog of first-stage F-statistic

Alternative for approach detecting weak identification: I.
Andrews (2018)

Many procedures for robust inference, e.g. Stock and Wright
(2000), Kleibergen (2005), D. Andrews and Guggenberger
(2015), I. Andrews and Mikusheva (2016)



The End

Thank you!
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