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Overview and Summary 

 

Topic: IV regression with a single included endogenous regressor, control 

variables, and non-homoskedastic errors. 

 This covers heteroskedasticity, HAC, cluster, etc. 

 We assume that consistent robust SEs exist for the reduced form & first stage 

regressions. 

 Early literature (through ~2006): homoskedastic case 

 This mini-course focuses on weak instruments in the non-homoskedastic 

case (i.e., the relevant case). 

 

Outline 

1) So what? 

2) Detecting weak instruments 

3) Estimation (brief) 

4) Weak instrument-robust inference about parameter of interest (β) 

5) Extensions 
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So what? (1) Theory 

 

An instrumental variable is weak if its correlation with the included 

endogenous regressor is small. 

1. “small” depends on the inference problem at hand, and on the sample size 

 

With weak instruments, TSLS is biased towards OLS, and TSLS tests have 

the wrong size.  

 

Distribution of the TSLS 

t-statistic (Nelson-Startz 

(1990a,b)) 

 Dark line = irrelevant 

instruments 

 dashed light line = strong 

instruments  

 intermediate cases = weak 

instruments 
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So what? (2) Simulation 

 

DGP: 8 AER papers 2014-2018  
(Sample: 17 that use IV; 16 with a single X; 8 in simulation sample) 

 

Median of TSLS t-statistic under the null 
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So what? (3) Practice (the “in the wild” bit) 

 

Histogram of first-stage Fs in AER papers (108 specifications), 2014-2018 

 
 The first-stage F tests the 

hypothesis that the first-stage 

coefficients are zero. 

 Of the 17 papers, all but 1 report 

first-stage Fs for at least one 

specification; the histogram is of 

the 108 specifications that report 

a first-stage F (72 of which are 

<50 and are in the plot).  

 

 Great that 

authors/editors/referees are 

aware of the potential 

importance of weak 

instruments, as evidence by 

nearly all papers reporting first stages Fs. 

 

 The spike at F = 10 is “interesting” 
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Detecting Weak Instruments 

 

It is convenient to have a way to decide if instruments are strong (TSLS “works”) 

or weak (use weak-instrument robust methods). 

 

The standard method is “the” first-stage F. Candidates: 

FN – nonrobust 

FR – robust (HR, HAC, cluster), also called Kleibergen-Paap (2006) 

FE – Effective first-stage F statistic of Montiel Olea and Plueger (2013) 

 

Actually there are other candidates too, not used and not to be discussed here 

including Hahn-Hausman (2002), Shea’s (1997) partial R2 
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Detecting weak instruments in practice 

 

Reported first-stage F’s: what authors say they use 

 
Candidates:  FN – nonrobust 

FR – robust (HR, HAC, cluster), also called Kleibergen-Paap (2006) 

FE – Effective first-stage F statistic of Montiel Olea and Plueger (2013) 
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Detecting weak instruments in practice, ctd 

 

Actual first-stage F’s: what authors actually use 

 
Candidates:  FN – nonrobust 

FR – robust (HR, HAC, cluster), also called Kleibergen-Paap (2006) 

FE – Effective first-stage F statistic of Montiel Olea and Plueger (2013) 
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Our recommendations (1 included endogenous regressor) 

 Do:  

o Use the Montiel Olea-Pflueger (2013) effective first-stage F statistic 

FEff = FN × correction factor for non-homoskedasticity 

o Report FEff 

o Compare FEff to MOP critical values (weakivtest.ado), or to 10. 

o If FEff ≥ MOP critical value, or ≥ 10 for rule-of-thumb method, use TSLS 

inference; else use weak-instrument robust inference. 

 

 Don’t  

o use/report p-values of test of π = 0 (null of irrelevant instruments) 

o use/report nonrobust first stage F (FN) 

o use/report usual robust first-stage F (except OK for k = 1 where FR = FEff) 

o use/report Kleibergen-Paap (2006) statistic (same thing). 

o compare HR/HAC/Kleibergen-Paap to Stock-Yogo critical values 

o reject a paper because FEff < 10!  

Instead, tell the authors to use weak-IV robust inference. 
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Notation and Review of IV Regression 
 

IV regression model with a single endogenous regressor and k instruments 

1i i i iY X W         (Structural equation) (1) 

2i i i iX Z W V        (First stage)    (2) 

 

where W includes the constant. Substitute (2) into (1): 

 

3i i i iY Z W U         (Reduced form)   (3) 

 

where δ = πβ and i i iU V    . 

 

 OLS is in general inconsistent: 
2

ˆ pOLS X

X


 


  .  

 β can be estimated by IV using the k instruments Z. 

 By Frisch-Waugh, you can eliminate W by regressing Y, X, Z against W and 

using the residuals. This applies to everything we cover in the linear model 

so we drop W henceforth.  
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Setup:  i i iY X           (Structural equation) (1) 

i i iX Z V         (First stage)    (2) 

,    i i iY Z U     , ε = U – βV.  (Reduced form)   (3) 
__________________________________________________________________________________________________________________________________________________________________________________ 

 

The two conditions for instrument validity 

(i) Relevance:   cov(Z,X) ≠ 0  or π ≠ 0 (general k) 

(ii) Exogeneity:  cov(Z,ε) = 0  

 

The IV estimator when k = 1 (Wright 1926) 

  
cov( , ) cov( , ) cov( , ) cov( , )

cov( , )        by (i)

Z Y Z X Z X Z

Z X

   



   


 

so 

    
cov( , )

        by (ii)
cov( , )

Z Y

Z X
   

IV estimator: 

    

1

1

1

1

ˆ
ˆ

ˆ

n

i iIV i

n

i ii

n Z Y

n Z X














 



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Setup:  i i iY X           (Structural equation) (1) 

i i iX Z V         (First stage)    (2) 

,    i i iY Z U     , ε = U – βV.  (Reduced form)   (3) 
__________________________________________________________________________________________________________________________________________________________________________________ 

 

k > 1: Two stage least squares (TSLS) 
1

1

1 2

1

1

1

ˆ
ˆ ˆ,      where  predicted value from first stage

ˆ

 

ˆ ˆˆ ˆ,          where  
ˆˆ ˆ

n

i iTSLS i
in

ii

nZZ
ZZ i ii

ZZ

n X Y
X

n X

Q
Q n Z Z

Q



 

 













 

  


  


 









-1

-1

X Z(Z Z) Z Y

X Z(Z Z) Z X
 

The weak instruments problem is a “divide by zero” problem  

 cov(Z,X) is nearly zero; or π is nearly zero; or 

 ˆˆ ˆ
ZZQ   is noisy 

 Weak IV is a subset of weak identification (Stock-Wright 2000, Nelson-

Starts 2006, Andrews-Cheng 2012) 
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Statistics for measuring instrument strength  

 

Non-robust:    
2

ˆˆ ˆ

ˆ

N ZZ

V

Q
F n

k

 




   

Robust:    
1ˆˆ ˆRF

k

 
  

MOP Effective F: 

   
2

1/2 1/2 1/2 1/2

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

Eff NVZZ

ZZ ZZ

kQ
F F

tr Q tr Q   

 
 

    
 

 

compare to TSLS: 
ˆ ˆˆˆ
ˆˆ ˆ

TSLS ZZ

ZZ

Q

Q

 


 





 

 

Intuition 

 FN measures the right thing ( ZZQ  ), but gets the SEs wrong  

 FR measures the wrong thing (
1

  ), but gets the SEs right 

 FEff measures the right thing and gets SEs right “on average” 
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Distributional assumptions  
 

Setup:  
i i iX Z V         (First stage)    (2) 

,    i i iY Z U     , ε = U – βV.  (Reduced form)   (3) 
 

CLT: 
 
 

 *

ˆ

0, ,
ˆ

d
n

N

n

 

 

 
  
  

 Σ* is HR/HAC/Cluster (henceforth, “HR”) 

 

(i) CLT limit holds exactly: 1 *
ˆ

, ,   where  
ˆ

N n
 

 






       

                 

 

(ii) Reduced form variance & moment matrices are all known: Σ, QZZ 

 

A lot is going on here! 

 HR/HAC/cluster variance estimators are consistent 

 1950s-1970s finite-sample normal (fixed Z’s) literature 
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A lot is going on here, ctd 

 

From   
 
 

 *

ˆ

0,
ˆ

d
n

N

n

 

 

 
  
  

 

to   1 *
ˆ

, ,   where  
ˆ

N n
 

 






       

                 

 

 

 Weak IV asymptotics (Staiger-Stock 1997): /C n  . 

    

     

      *

1 1

* 1

* 1 2

;

ˆ ˆˆ ˆ ˆ ˆ/

ˆˆ ˆ

ˆˆ ˆ

R

d

k C C

kF n n n

n n n n

n C n C


 





   

     

    

 








   


     


      

  

 Limit experiment interpretation (Hirano-Porter 2015) 

 Uniformity (D. Andrews-Cheng 2012) 
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Homework problem 

Let k = 2 and 2
ˆ

ZZQ I . Suppose 
2 2

2 2

0
/

0

U UV

UV V

n
  

  

   
     

  
. 

1) Show that: 

a)  1/2 1/2 2 2 2( ) /ZZ Vtr Q n         . 

b)    
2 22 2

1 ,1 2 ,2

1

2

NF z z        
 

 

c)    
1

2

RF z z      

d) 
   

2 22 2

1 ,1 2 ,2

2 2

Eff
z z

F
    

 





  



 

2) Adopt the weak instrument nesting π = n-1/2C, where C1, C2 ≠ 0. Show that as 
2  : 

a)  “bias” of   2ˆ ˆ= plimTSLS OLS

V V         

b) pNF    
c) pRF   

d) 
2

1

dEffF    

3) Discuss 
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Work out the details for k = 1 first.  

Preliminaries: 

(a) Use distributional assumption (i) 

   1 *
ˆ

, ,   where  
ˆ

N n
 

 






       

                 

 

 to write, 

ˆ

ˆ





  

  

 

 
, where  0,N

  

  





     
    

     
 

(b) Connect to the structural regression: 

       ˆ ˆ

,   where    

   

   

           

    

           

  

-1
(Z Z) Z ε

  

(c) Standardize: 

  1/2

1/2

ˆ ~ z

z

  

  

   



   

 
, where 1/2

    and  
1

~ 0,
1

z
N

z









    
    

    
  

(d) Project & orthogonalize: 

z z     , where 2~ (0,1 ),   vN z     ,         
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What parameter governs departures from usual asymptotics (k = 1)? 

 

  

1/2

1/2

ˆ
ˆ

ˆ

ˆˆ ˆ( )
ˆ   add and subtract 

ˆ

   use representations in (a) and (b)

standardize using representation in (c)

  

IV

z

z

z

z z





 

 

  

   






  







 







 



 


 


 
   

  

    
     

      
using projection (d)

 

     “bias”      “noise” 

 

Parameter measuring instrument strength (k = 1) is 2 2

    
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“Bias” part of IV representation 

 

ˆ IV z

z

 

 

 


 
   

  
, where 1/2

    

 

Instrument strength depends on λ2 

 Strong instruments: 2 , usual asymptotic distribution 

 Irrelevant instruments: π = 0 so λ = 0:  
1/2

1/2
ˆ IV

z

 

  


 

  
    

  
 ~ Cauchy centered at 






 

o In homoskedastic case,  2
ˆplim OLSV

V

 




 




  


 

 In the homoskedastic case, λ2 = the concentration parameter (old Edgeworth 

expansion/finite sample distribution literature) 
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Instrument strength, k = 1, ctd. 

 

How big does λ need to be? A “bias” heuristic:  

 

2

2 2

ˆ

/

1 /

1
1 ...

IVE z
E

z

z
E

z

z z z
E E



  





  

 







   




  




    
          

    

 

 

 For bias, relative to unidentified case, to be <0.1, need λ2 > 10. 

 But we don’t know λ! So, we need a statistic with a distribution that depends 

on λ, which we can use to back out an estimate/test/rule of thumb. 

 This is the Nagar (1959) expansion for the bias 

 How do the three candidate first-stage Fs fare? 
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Distributions of the three first-stage Fs, k = 1 

First note that, when k = 1, FR = FEff: 

 
2

1/2 1/2

ˆˆ ˆ ˆ

ˆˆˆ ˆ

Eff RZZ

ZZ

Q
F F

tr Q  

  
  

 
 

Distributions 

2

2
2 2

1;

ˆ
, ( )

ˆ
Eff R

vF F z





   


 

*2
2

2 22

ˆˆ ˆ ˆ
( )

ˆˆ ˆ

N ZZ

V V ZZV ZZ

Q
F n z

QnQ




  


 

 
     

 

Implications 

FR, FEff can be used for inference about λ2 when k = 1 

 Estimation:  
2 2 1eff

VEF E z     , so 
2ˆ 1EffF    

 Testing: H0: “bias” ≤ 0.1. Reject H0 if FEff > critical value.  

 Rule of thumb: Feff < 10 will detect weak IVs with probability that increases 

as λ2 gets smaller 
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Implications, ctd. 
*

2

2
( )N

V

V ZZ

F z
Q





   

 
2

,Eff R

VF F z   

 

FN is misleading in the HR case. 

 Suppose 
*

  is large (i.e., first stage HR SEs are a lot bigger than NR SEs) 

2

* *
2 2

2 2 1;
( )N

V

V ZZ V ZZ

F z
Q Q

 


 

 

 
    

where λ2 = π2/Σππ. For 
*

  large, 2 0  , and 
*

2

12
~N

V ZZ

F
Q

 



   

i.e., Instruments are in the limit irrelevant – but NF  . 

 

In the k = 1 case, FR = FEff. These differ in the k > 1 case, where FEff is preferred. 
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Homework problem 

Let k = 2 and 2
ˆ

ZZQ I . Suppose 
2 2

2 2

0
/

0

U UV

UV V

n
  

  

   
     

  
. 

1) Show that: 

a)  1/2 1/2 2 2 2( ) /ZZ Vtr Q n         . 

b)    
2 22 2

1 ,1 2 ,2

1

2

NF z z        
 

 

c)    
1

2

RF z z      

d) 
   

2 22 2

1 ,1 2 ,2

2 2

Eff
z z

F
    

 





  



 

2) Adopt the weak instrument nesting π = n-1/2C, where C1, C2 ≠ 0. Show that as 
2  : 

a)  “bias” of   2ˆ ˆ~ = plimTSLS OLS

V V        

b) pNF    
c) pRF   

d) 
2

1

dEffF    

3) Discuss 
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Homework problem solution 

Let k = 2 and 2
ˆ

ZZQ I . Suppose 
2 2

2 2

0
/

0

U UV

UV V

n
  

  

   
     

  
 and π1, π2 ≠ 0 

1(a)  Direct calculation:  1/2 1/2 2 2 2( ) /ZZ Vtr Q n         

1(b)-(d): We have already done the work to get the expressions below following 

“~”, and the final expressions come from substitution of QZZ and Σ: 

   

   

1/2 1/2

2 2

2 22 2

1 ,1 2 ,2

ˆˆˆ ˆ
(b)       

1

2

zzN zz

V V

z n Q zn Q
F

k k

z z

   

 

  

 

   

    
 

    
 

 

   
   

1ˆˆ ˆ 1
(c)       

2

V VR z z
F z z

k k


 

  
 

         

 
   

 
   

1/2 1/2

1/2 1/2 1/2 1/2

2 22 2

1 ,1 2 ,2

2 2

ˆˆˆ ˆ
(d)       

ˆˆ ˆ

zzEff ZZ

ZZ ZZ

z Q zQ
F

tr Q tr Q

z z

   

   

 

  

   

 





    
 

    

  



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Homework problem solution, ctd. 

 

2) Adopt the weak instrument nesting π = n-1/2C, where C1, C2 ≠ 0. Show that as 
2  : 

a) “bias” of   2ˆ ˆ~ plimTSLS OLS

V V         

Last part first:   2 2ˆplim OLS

X X V V          because π = n1/2C. 

Next obtain the expression (several tedious steps), 

“Bias” part  
( )ˆ

( ) ( )

TSLS z HRz

z H z

 

 


 

 


 

 
  

 where 
2

1/2 1/2 2

2

0
/

0
ZZ VH Q n 






 
     

 
 and 

1/2 1/2

22

V

V

R I
  





       . 

  For the weak instrument nesting, 
/12

2

1/2 2

2

11

1/2 1

2

0
/

0

/0
/

/0

V

V

V

V

n

C
n

C




   



 
 

 









  
     

  

  
    
   
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Homework problem solution, ctd. 

 

Now substitute these expressions for λ, H, and R into the “bias” part: 

 

 

2

2

22

2

1 1

1 ,1 ,1 2 ,2 ,2

2 1 2 2

1 ,1 2 ,2

1

2

0
( )

0ˆ
0

( ) ( )
0

( / ) ( / )

( / ) ( / )

1 ( )

TSLS V

V

V V V

V V V

V
p

V

z z

z z

C z z C z z

C z C z

O

 



 

    

 






 
 


 



      

    










 





 
  
  

 
  
 

    
  

    

 
   

 
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Homework problem solution, ctd. 

Remaining parts by substitution and taking limits: 

   

   

2 22 2

1 ,1 2 ,2

22 1 2 2

1 ,1 2 ,2 1

1
(b)       

2

1 1
/ / ( )

2 2

N

V V p

F z z

C z C z O

 

 

   

      





    
 

     
  

 

   

   
2 21

1 ,1 2 ,2

2
22

2

1
(c)       

2

1
/ /

2

1
( )

2

R

V V

p

V

F z z

C z C z

C
O

 

 

 

   

 




  

    
  

  

 

2 2

,1 2 1 2

,1 12 2 2 2

( )
(d)       ( ) ~

N
pEff

p

z OF
F z O





 
 

   



 


   

 
 

 

3) Discuss  
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OK, FEff – but what cutoff? 

   
1/2 1/2

1/2 1/2
,   where   

( )

Eff ZZ

ZZ

Q
F z H z H

tr Q

 
 

 

 
    
 

 

  ~ weighted average of noncentral χ2’s – depends on full matrix H,  

0 ≤ eigenvalues (H) ≤ 1 

 

Hierarchy of options 

1. Testing approach: test null of H   ≥ some threshold (e.g. 10% bias) 

a) (MOP Monte Carlo method) Given Ĥ , compute cutoff Ĥ  ; critical value 

by simulation 

b) (MOP Paitnik-Nagar method) Approximate weighted average of noncentral 

χ2’s by noncentral χ2; compute cutoff value of H   using Nagar 

approximation to the bias, with some maximal allowable bias. Implemented in 

weakivtest.ado. 

c) (MOP simple method) Pick a maximal allowable bias (or size distortion) and 

use their “simple” critical values (based on noncentral χ2 bounding 

distribution). These are simple, but conservative. 

2. Consistent sequence approach: “Weak” if FEff < n  , n   (but what is n ?) 

3. Rule-of-thumb approach: “Weak” if FEff < 10  
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k=1 case, additional comments about FEff and FR 

ˆ IV z

z

 

 

 


 
   

  
, where 1/2

    

0

1/2
2

ˆ

ˆ( )
1 2

IV
IV

IV

z
t

SE
z z

z z



 

 

 




 


 

    
     

      

, where 
 

1/2



 





 

  

      R EffF F z z       

 

 By maximizing over ρ you can find worst case size distortion for usual IV t-

stat testing β0. This depends on λ, which can be estimated from FR = FEff. 

 These are the same expressions, with different definition of λ, as in 

homoskedastic case (special to k = 1) 

 Critical values for k = 1 – two choices: 

 Nagar bias ≤ 10%: 23 (5% critical value from 2

2

1; 0



) (MOP) 

 Maximum tIV size distortion of 0.10: 16.4; of 0.15: 9.0 

 But with k = 1 there are fully robust methods that are easy and have very 

strong theoretical properties (AR) (Lecture 3).  
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Detecting weak instruments with multiple included endogenous regressors 

 

Methods are based on multivariate F: Cragg-Donald statistic and robust variants 

 Nonrobust:  

o Minimum eigenvalue of Cragg-Donald statistic, Stock-Yogo (2005) 

critical values  

o Sanderson-Windmeijer (2016)  

 HR: Main method used is Kleibergen-Paap statistic, which is HR Cragg-

Donald. 

o But recall that this doesn’t work (theory) for 1 X, and having multiple X’s 

doesn’t improve things. 

 MOP Effective F: Hasn’t been developed. 

 

More work is needed…. 
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What if you plan to use efficient 2-step GMM, not TSLS? 

 

Everything above is tailored to TSLS! 

 Suppose that, if you have strong instruments, you use efficient 2-step GMM: 
1

1

ˆˆˆˆ
ˆˆ ˆ

GMM 



 


 









 , where  

2
(1)

1

1ˆ ˆ
n

i i i

i

Z Z
n

 


     

where 
(1)

î  is the residual from a first-stage estimate of β, e.g. TSLS. 

 

 Things get complicated because the first step (TSLS) isn’t consistent with 

weak instruments. 

o ˆ
 converges in distribution to a random limit 

o If   were known (infeasible), 

 

   

1/2 1/2

1/2 1 1/2

ˆGMM z z

z z

   

    


 

 





  
 

     

 

In general none of the F’s discussed so far get at the right object, 
1/2 1 1/2 1/2 1 1/2/ ( )tr              . (And this is “right” only if Σεε is known.) 
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OK – now what should you do if you have weak instruments? 

Wrong answer: reject the paper. 

 

Size distortion from screening based on first stage F 
  

 

 

 
 

Isaiah’s will discuss further… 
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Estimation – What have we learned/state of knowledge 

 

k = 1 

 There does not exist an unbiased or asymptotically-unbiased IV estimator 

(folk theorem; Hirano and Porter 2015). 

 Only one moment condition, so weighting (HR) isn’t an issue 

 LIML=TSLS=IV doesn’t have moments… 

 Fuller seems to have advantage over IV in terms of “bias” (location) in 

simulations (e.g., Hahn, Hausman, Kuersteiner (2004), I. Andrews and 

Armstrong 2017) (so should k-class). 

 If you know a-priori the sign of π, then unbiased, strong-instrument efficient 

estimation is possible (I. Andrews and Armstrong 2017) 
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Estimation – What have we learned/state of knowledge, ctd. 

 

k > 1 

 There does not exist an unbiased or asymptotically-unbiased IV estimator 

(folk theorem; Hirano and Porter 2015). 

 The IV estimators that were developed in the 60s-90s (LIML, k-class, double 

k-class, JIVE, Fuller) are special to the homoskedastic case, and in general 

lose their good properties in the HR case 

 Different IV estimators place different weights on the moments, and thus in 

general have different LATEs 

 With heterogeneity, the LIML estimand (Fuller too?) can be outside the 

convex hull of the LATEs of the individual instruments (Kolesár 2013) 

 For GMM applications estimating a structural parameter (e.g. New 

Keynesian Phillips Curve, etc.), the LATE concerns don’t apply, however 

when the moment conditions are nonlinear in θ, things get difficult. 

 If you know a-priori the sign of π, then unbiased estimation is possible (I. 

Andrews and Armstrong 2017)  
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