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Weak Instruments and What To Do About Them
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(updated July 25, 2018)
3-4:20pm 1. Weak instruments in the wild Stock
2. Detecting weak instruments Stock
4:20-4:40pm Break
4:40-6pm 3. Inference with weak instruments | Andrews

4. Open issues and recent research Andrews
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Overview and Summary

Topic: 1V regression with a single included endogenous regressor, control
variables, and non-homoskedastic errors.
e This covers heteroskedasticity, HAC, cluster, etc.
e \We assume that consistent robust SEs exist for the reduced form & first stage
regressions.
e Early literature (through ~2006): homoskedastic case
e This mini-course focuses on weak instruments in the non-homoskedastic
case (I.e., the relevant case).

Outline
1) So what?
2) Detecting weak instruments
3) Estimation (brief)
4) Weak instrument-robust inference about parameter of interest (5)
5) Extensions
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So what? (1) Theory

An instrumental variable is weak if its correlation with the included

endogenous regressor is small.
1. “small” depends on the inference problem at hand, and on the sample size

With weak instruments, TSLS is biased towards OLS, and TSLS tests have

the wrong size. 07
0.6
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So what? (2) Simulation

DGP: 8 AER papers 2014-2018
(Sample: 17 that use 1V; 16 with a single X; 8 in simulation sample)

Median t-Statistic

Median of TSLS t-statistic under the null
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So what? (3) Practice (the “in the wild” bit)

Histogram of first-stage Fs in AER papers (108 specifications), 2014-2018

25

e The first-stage F tests the
hypothesis that the first-stage
coefficients are zero.

e Of the 17 papers, all but 1 report
first-stage Fs for at least one
specification; the histogram is of
the 108 specifications that report
a first-stage F (72 of which are
<50 and are in the plot).

e Great that
authors/editors/referees are
aware of the potential
Importance Of Weak 0 5 10 15 2|(;irst SZ:age '3:0 35 40 45 50
Instruments, as evidence by
nearly all papers reporting first stages Fs.

e The spike at F =10 is “interesting”
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Detecting Weak Instruments

It is convenient to have a way to decide if instruments are strong (TSLS “works™)
or weak (use weak-instrument robust methods).

The standard method is “the” first-stage F. Candidates:

FN — nonrobust
FR — robust (HR, HAC, cluster), also called Kleibergen-Paap (2006)
FE — Effective first-stage F statistic of Montiel Olea and Plueger (2013)

Actually there are other candidates too, not used and not to be discussed here
including Hahn-Hausman (2002), Shea’s (1997) partial R?
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Detecting weak instruments in practice

Reported first-stage F’s: what authors say they use

25
Reported Category
[ Kleibergen-Paap
5% [ INo discussion

15 -

10

0
0 10 20 30 40 50

First Stage F
Candidates: FN — nonrobust

FR —robust (HR, HAC, cluster), also called Kleibergen-Paap (2006)
FE — Effective first-stage F statistic of Montiel Olea and Plueger (2013)
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Detecting weak instruments in practice, ctd

Actual first-stage F’s: what authors actually use

25
Actual Category
[ INon-robust
Robust

20 - [ ]Unknown |

15

10

0
0 10 20 30 40 50

First Stage F

Candidates: FN — nonrobust
FR —robust (HR, HAC, cluster), also called Kleibergen-Paap (2006)
FE — Effective first-stage F statistic of Montiel Olea and Plueger (2013)
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Our recommendations (1 included endogenous reqressor)
e Do:
o Use the Montiel Olea-Pflueger (2013) effective first-stage F statistic
FET = FN x correction factor for non-homoskedasticity
o Report FE”
o Compare FE" to MOP critical values (weakivtest.ado), or to 10.
o If FET> MOP critical value, or > 10 for rule-of-thumb method, use TSLS
Inference; else use weak-instrument robust inference.

e Don’t
o use/report p-values of test of z = 0 (null of irrelevant instruments)
o use/report nonrobust first stage F (FY)
o use/report usual robust first-stage F (except OK for k = 1 where FR = FE)
o use/report Kleibergen-Paap (2006) statistic (same thing).
o compare HR/HAC/Kleibergen-Paap to Stock-Yogo critical values
o reject a paper because F& < 10!
Instead, tell the authors to use weak-1V robust inference.

1-9



Notation and Review of IV Regression

IV regression model with a single endogenous regressor and k instruments
Y =X.B+W'y, +¢ (Structural equation) (1)
X, =Z w+W, y, +V. (First stage) (2)

where W includes the constant. Substitute (2) into (1):
Y. =Z'6+W, y, +U. (Reduced form) (3)

where 0 = zff and ¢, =U, — BV, .

OLS

o
—E 56+ X;.
Oy

e OLS is in general inconsistent: /3

e /3 can be estimated by IV using the k instruments Z.

e By Frisch-Waugh, you can eliminate W by regressing Y, X, Z against W and
using the residuals. This applies to everything we cover in the linear model
so we drop W henceforth.
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Setup: Y. =X.f+e¢ (Structural equation) (1)
X, =Z'n+V (First stage) (2)
Y. =2'6+U,, S=rB,e=U-pV. (Reduced form) (3)

The two conditions for instrument validity
(i) Relevance: cov(Z,X) #0 or 7 # 0 (general k)
(i) Exogeneity:  cov(Z,e) =0

The IV estimator when k =1 (Wright 1926)
cov(Z,Y)=cov(Z, X +¢&)=cov(Z,X)p+cov(Z,¢)

—cov(Z,X)B by (i)

SO
cov(Z,Y) .
= by (ii
p cov(Z, X) y (i
IV estimator:
o NDYTZY§
v _ i= 11 —
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Setup: Y. =X.f+e¢ (Structural equation) (1)
X, =Z'n+V (First stage) (2)
Y. =2'6+U,, S=rB,e=U-pV. (Reduced form) (3)

k > 1: Two stage least squares (TSLS)

N XY . _ _
= =L where X. =predicted value from first stage
A !

i=1 |
- XZ(Zz'z)*z'Y
- X'2(2'2)*z'X
- E'C?ZZ5 , where Q,, =n*Y" Z.Z.
#Qu :
The weak instruments problem is a “divide by zero” problem
e cov(Z,X) is nearly zero; or x Is nearly zero; or

o 7'Q,,7 is noisy

e Weak 1V is a subset of weak identification (Stock-Wright 2000, Nelson-
Starts 2006, Andrews-Cheng 2012)
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Statistics for measuring instrument strength

Non-robust; EN szz
Robust: FR — ﬂ-zkzm
oY} N A /\2
MOP Effective F: F& = 2Qu?% _ KOy

tr (2”2Q2221’2' ) tr (z”zsz ) )

N

compare to TSLS: g™ =2 20

Intuition

e FN measures the right thing (n’QZZn) but gets the SEs wrong
e FR measures the wrong thing (7 ), but gets the SEs rlght
e FEM measures the right thing and gets SEs right “on average”
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Distributional assumptions

Setup: X, =Z'w+V, (First stage) (2)
Y =Z'6+U, o=nB,e=U-pV. (Reduced form) (3)
Jn(6-6) o
CLT: —4 5N (0, )Y ), 2" 1s HR/HAC/Cluster (henceforth, “HR”)
\/ﬁ(ﬁ — 7[)
. - 5 %) Y. X .
(i) CLT limit holds exactly: °I_N > |, where = * ¥ |=n'Y
7% T :S7u5 §:7n7

(i1) Reduced form variance & moment matrices are all known: X, Qzz

A lot is going on here!
e HR/HAC/cluster variance estimators are consistent
e 1950s-1970s finite-sample normal (fixed Z’s) literature
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A lot is going on here, ctd

From

to 5) ~N [(ﬂzj where ¥ = (255 25”) =n'yY
T T PN I
e Weak IV asymptotics (Staiger-Stock 1997): z=C/+/n.
kKFR =#5 "% (In) (2.2 /n)(Vnz)
- (\/ﬁ(ﬁ — )+ \/ﬁﬂ), i;}(\/ﬁ(ﬁ —7T)+ \/ﬁﬂ')
=(Vn(#- ﬂ)+c) S (Vn(2-7)+C)— 1 e o

e Limit experiment interpretation (Hirano-Porter 2015)
e Uniformity (D. Andrews-Cheng 2012)
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Homework problem
2 2
Letk=2and Q,, =I,. Suppose X :[G“ Gug’j®[a) Oz)ln.
Ouyv Oy
1) Show that:
a) tr(z’Q,, 2" = (a)2 + a)_z)a\f In.

b) FNEE[(A+ZM)2@2+(ZZ+z”’2)za)2}
Q) Frxo(2+2,) (342,)

2 2
O EE (/11 + z”,l) o’ +(/12 + zﬁ,z) o
6() +C()

2) Adopt the weak instrument nesting z = n"¥2C, where Cy, C2 # 0. Show that as

C() —> 00:

a) “bias”of ™ - Bz, /o= plim( O — ,B)

b) F"— 5o

c) F{—Loo

d F¥ ——>y
3) Discuss
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Work out the detalls for k = 1 first.
Preliminaries:
(a) Use distributional assumption (i)

S ) > X .
o ~N > | where T=| ® T |=ny
7% 7T }:7n5 257w7

to write,

N

~ 2 2
f‘gﬂ%,where Yol N|o| S Zor
T = 72._+'€L/ﬂ- gblﬂ' §:7n5 25737

(b) Connect to the structural regression:
22)'Ze=6-#p=(5+y,)—(x+y,)B=(5-B)+(v,—w,B)

=y,, where v, =y;-y p
(c) Standardize:
A~r+y,=(A+2,)Z)

Z 1
",where A=z and | ° |~ N|0, P
W, = Z;;E:ii? 277 P 1

(d) Project & orthogonalize:
z =pz_+n ,where n~N(0,1-p%), nlz,,p :2m/\/2&92m
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What parameter governs departures from usual asymptotics (k = 1)?

_p +(§_”'B ) add and subtract 76

T

~ [+ Ve use representations in (a) and (b)
Tty

A+Z.

74

1/2
Z 2 : : L
=f+—= LZ% j standardize using representation in (c)

1/2
Z 2 n 2 : —
= [+ —= 2 2 using projection (d
p /1+zﬂ(2 j /1+zﬂ[2 j Jprol (@)

v/4 v/4

“bias” “noise”

Parameter measuring instrument strength (k = 1) is 4> = z°/% __
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“Bias” part of IV representation

112

SV Z 2 12
— z ¢ | where A=X""r
P p A+z [Z j g

Instrument strength depends on 42
e Strong instruments: A1* — oo, usual asymptotic distribution
e [rrelevant instruments: z=0so0 A =0:

7 21/2

7 T v/4

Y —p= 28” i [ 2 j ~ Cauchy centered at ii

v/

: 2 _ .
o In homoskedastic case, 28” = 08;’ = p||m(IBOLS _,3)
T GV

e In the homoskedastic case, A° = the concentration parameter (old Edgeworth
expansion/finite sample distribution literature)
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Instrument strength, k = 1, ctd.

How big does 4 need to be? A “bias” heuristic:

E(B"-B) __ o
SRy
z |4
} 1+z /A

2
CE[Z |1y =g B =L
p) A FE

e For bias, relative to unidentified case, to be <0.1, need A2 > 10.

e But we don’t know A! S0, we need a statistic with a distribution that depends
on A, which we can use to back out an estimate/test/rule of thumb.

e This is the Nagar (1959) expansion for the bias
e How do the three candidate first-stage Fs fare?
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Distributions of the three first-stage Fs, k=1

AT ~ A D
First note that, when k = 1, FR = FEf; pEf _ 1/sz — = 7 _ER
2 2/
(z 29, 5V ) >
Distributions
A2
Eff =R _ T 2 2
F ,F :i :(/1+ZV) Nll;ﬂ,z
#Out_ 7 .
Flen—Z— = ———=(1+27,)°"—
Oy Gv/anz v/ 77
Implications

FR FE can be used for inference about 22 when k = 1
e Estimation: EF® =E(1+z, )2 =2%+1,50 A*=F® -1
e Testing: Ho: “bias” < 0.1. Reject Ho if FET > critical value.

e Rule of thumb: F¢" < 10 will detect weak IVs with probability that increases
as A2 gets smaller
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Implications, ctd.

FN=(1+z,)°

2/
ZZ

FE FR=(A+z,)

FN is misleading in the HR case.
e Suppose X is large (i.e., first stage HR SEs are a lot bigger than NR SEs)

* *

2
FN=(1+z,)° S X X

0\3 / Qz G\f / Qz
where 2 = 74/%,,. For £ large, A*~0, and F" ~

XZ —> 00
/ ZZ 1

I.e., Instruments are in the limit irrelevant — but F, — .

In the k = 1 case, FR = FE™, These differ in the k > 1 case, where FE™ is preferred.
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Homework problem
2 2
Letk=2and Q,, =I,. Suppose X :[G“ Gug’j®[a) Oz)ln.
Ouyv Oy
1) Show that:
a) tr(z’Q,, 2" = (a)2 + a)_z)a\f In.

b) FNEE[(A+ZM)2@2+(ZZ+z”’2)za)2}
Q) Frxo(2+2,) (342,)

2 2
O EE (/11 + z”,l) o’ +(/12 + zﬁ,z) o
60 +C()
2) Adopt the weak instrument nesting z = n"¥2C, where Cy, C2 # 0. Show that as
C() —> 00:
a) “bias”of ™ -fB~0c,, /ol= plim(ﬁOLS —,B)
b) F"— 5o
c) F{—Loo
d F¥ ——>y
3) Discuss
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Homework problem solution

2 2
Letk=2and Q,, = |,. Suppose Z:[G“ GUV)@[CO Oz)ln and 71, m2# 0

o, O. 0 w
1(a)  Direct calculation: tr(2°Q,,X"%") = (a)2 + a)‘z)a\f /In

1(b)-(d): We have already done the work to get the expressions below following
“~”_and the final expressions come from substitution of Qzz and X:

#'Q, 7 (/1+zﬂ)’ n=2?Q, 2" (A+z,)

b FN A 74
) kav ko
_ E[(ﬂi + zﬁ,l)2 o° + (/12 + zﬁ,z)2 a)ZJ
ARN=] A '
(c) FR=ﬂzl:”ﬂ;(AJFZV)k(/%LZV):%(/1+zﬂ)'(ﬁ+zﬂ)

@  FE - #'Q,, 7 (A+7z, )Z”ZQZZZ% (A+2,)

( 12 sz 21/2') (ZUZQZZ 21/2’)
B (/11 + ZM)2 o’ + (2,2 +z,, )2 @

2 -2
W +o

112
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Homework problem solution, ctd.

2) Adopt the weak instrument nesting = = n"Y2C, where C1, C2 # 0. Show that as
COZ —> 00:
a) “bias”of 1 -f~0, /0l = pllm( [ —,6’)
Last part first: pIim(ﬂAOLS —,8) =0, /ot =0, /0. because m = n¥2C,
Next obtain the expression (several tedious steps),
(A+2_)HRz,
(A+z2 )H(1+2))

“BiaS” part IéTSLS _IB ~

2
O /
where H =32Q 32 =| ¢ ollnand R=x"% 31 = Gg;’ .
0 w” oy

For the weak instrument nesting,

5 O /12
/7,:2”71[/2%:{6\3(0()) Zj/n} T
@
_ o' 0 27 | ) = Co'lao,
0 w C,w/ o,
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Homework problem solution, ctd.

Now substitute these expressions for A, H, and R into the “bias” part:

2
(/1+zﬂ)'(w Ozjzﬂ
0 w o
&V
2 2
(1+zﬁ)'(a; Ozj(ﬂwzﬁ) Ov

_ (C, /o, + zmla)) 2,0+ (C, /o, + zﬁ,za)_l) Zﬁ,za)_1 O,y
(C,loy +12,,0)°+(C,/o0, +7,,07)°

HTSLS ~
g =p=

2
Oy

-17)| O«
=(1+0, (@ ))( 02]

\Y
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Homework problem solution, ctd.
Remaining parts by substitution and taking limits:

by F" E%_(ﬂl-FZﬂ’l)z a)2+(/12 +z7[,2)2 a)z}
11 2 1\2 1, ,
=5 (Cllav +z”’la)) +(C2/GV+Z7[’20) ) }NECO i +0, (o)
(c) FF ;%(ﬂﬁzﬂ)’(ﬂwz”)
— %[(Cla)l o, + Zﬁ’l)2 + (Cza)/ oy+Z,, )2}
2
zlc—zza)2+0p(a))—>oo
Oy
EN a)zzf[ +0, (w) )
(d) F= = D%+ o2 = a)’21+a)92 = Z72r,1+Op(a) 1) ~Z12

3) Discuss
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OK, FEf — but what cutoff?
, Q 21/2
FE =(A+z,) H(A+2z,), where H = e
tr(Z °Q,,2%)
~ weighted average of noncentral y*’s — depends on full matrix H,
0 <eigenvalues (H) <1

Hierarchy of options
1. Testing approach: test null of A'H A > some threshold (e.g. 10% bias)

a) (MOP Monte Carlo method) Given H, compute cutoff A'H A critical value
by simulation

b) (MOP Paitnik-Nagar method) Approximate weighted average of noncentral
¥°’s by noncentral y*; compute cutoff value of A’"H A using Nagar
approximation to the bias, with some maximal allowable bias. Implemented in
weakivtest.ado.

c) (MOP simple method) Pick a maximal allowable bias (or size distortion) and
use their “simple” critical values (based on noncentral y* bounding
distribution). These are simple, but conservative.

2. Consistent sequence approach: “Weak” if F¥" <« , k., — oo (but what is «,?)

Rule-of-thumb approach: “Weak” if FE" < 10
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k=1 case, additional comments about FEf and FR

Z

T

ET

Y -p=

A4z,

t|V:BIV_IBO ~

E

j, where 1 =% "*r

Vv/4

SE(BY) [

"~y

I:R :FEff

Z&'

1_2(
A

(/1+zﬂ)'(/l+ Z,)

—1/2 !

where p =
2

e EE

)1/2

(Z

e By maximizing over p you can find worst case size distortion for usual 1V t-
stat testing So. This depends on 4, which can be estimated from FR = F&,

e These are the same expressions, with different definition of 4, as in
homoskedastic case (special to k = 1)

e Critical values for k = 1 — two choices:

e Nagar bias < 10%: 23 (5% critical value from ;(12;12:10) (MOP)

e Maximum t" size distortion of 0.10: 16.4; of 0.15: 9.0
e But with k = 1 there are fully robust methods that are easy and have very
strong theoretical properties (AR) (Lecture 3).
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Detecting weak instruments with multiple included endogenous regressors

Methods are based on multivariate F: Cragg-Donald statistic and robust variants

e Nonrobust:
o Minimum eigenvalue of Cragg-Donald statistic, Stock-Yogo (2005)
critical values
o Sanderson-Windmeijer (2016)
e HR: Main method used is Kleibergen-Paap statistic, which is HR Cragg-
Donald.
o But recall that this doesn’t work (theory) for 1 X, and having multiple X’s
doesn’t improve things.
e MOP Effective F: Hasn’t been developed.

More work is needed....
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What if you plan to use efficient 2-step GMM, not TSLS?

Everything above is tailored to TSLS!

e Suppose that, if you have strong instruments, you use efficient 2-step GMM:
1 n
B :m ,where & = EZZiZi' (éi(l) )2
722 :

where g ) is the residual from a first-stage estimate of 4, e.g. TSLS.

e Things get complicated because the first step (TSLS) isn’t consistent with
weak Instruments.

o ¥_converges in distribution to a random limit
o If ¥  were known (infeasible),

(A+7z, ) yYzy-lizg

e EE

(A+2,) =5 z””(mz )

nrwoEE T

,BGMM B

In general none of the F’s discussed so far get at the right object,
ATVEs ISV 3 1ir(ZY22 1YY | (And this is “right” only if Z.. is known.)

T EE T e EE T
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OK - now what should you do if you have weak instruments?
Wrong answer: reject the paper.

Size distortion from screening based on first stage F
.

0.9

© o
~ fes

o
o

Size of 5% t-Test, Screened on Effective F>10
o o o
w N (@]

©
N

©
N

%

® ®
&
@

I T

»°® S

!
5)

10

16 20 25 30
Average Effective F-Statistic

Isaiah’s will discuss further...

35 40 45 50
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Estimation — What have we learned/state of knowledge

k=1

e There does not exist an unbiased or asymptotically-unbiased IV estimator
(folk theorem; Hirano and Porter 2015).

e Only one moment condition, so weighting (HR) isn’t an issue

o LIML=TSLS=IV doesn’t have moments...

e Fuller seems to have advantage over 1V in terms of “bias” (location) In
simulations (e.g., Hahn, Hausman, Kuersteiner (2004), I. Andrews and
Armstrong 2017) (so should k-class).

e |f you know a-priori the sign of z, then unbiased, strong-instrument efficient
estimation is possible (I. Andrews and Armstrong 2017)
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Estimation — What have we learned/state of knowledge, ctd.

k>1
e There does not exist an unbiased or asymptotically-unbiased IV estimator
(folk theorem; Hirano and Porter 2015).

e The IV estimators that were developed in the 60s-90s (LIML, k-class, double
k-class, JIVE, Fuller) are special to the homoskedastic case, and in general
lose their good properties in the HR case

e Different IV estimators place different weights on the moments, and thus in
general have different LATES

o With heterogeneity, the LIML estimand (Fuller too?) can be outside the
convex hull of the LATEs of the individual instruments (Kolesar 2013)

e For GMM applications estimating a structural parameter (e.g. New
Keynesian Phillips Curve, etc.), the LATE concerns don’t apply, however
when the moment conditions are nonlinear in @, things get difficult.

e If you know a-priori the sign of z, then unbiased estimation is possible (1.
Andrews and Armstrong 2017)
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