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Abstract

The covariance between US Treasury bond returns and stock returns has moved
considerably over time. While it was slightly positive on average in the period 1953—
2005, it was particularly high in the early 1980’s and negative in the early 2000’s. This
paper specifies and estimates a model in which the nominal term structure of interest
rates is driven by four state variables: the real interest rate, risk aversion, expected
inflation, and the covariance between nominal variables and the real economy. Log
nominal bond yields and term premia are quadratic in these state variables, with
term premia determined mainly by the product of risk aversion and the nominal-real
covariance. The concavity of the yield curve—the level of intermediate-term bond
yields, relative to the average of short- and long-term bond yields—is a good proxy
for the level of term premia.



1 Introduction

Are nominal bonds risky investments, which investors must be rewarded to hold?
Or are they safe investments, whose price movements are either inconsequential or
possibly even beneficial to investors as a hedge against other risks?

This question can be answered in a number of ways. A first approach is to measure
the covariance of nominal bond returns with some measure of investor well-being.
According to the Capital Asset Pricing Model (CAPM), for example, investor well-
being can be summarized by the level of aggregate wealth. It follows that the risk of
bonds can be measured by the covariance of bond returns with returns on the market
portfolio, often proxied by a broad stock index. According to the Consumption
CAPM, investor well-being can be summarized by the level of aggregate consumption
and so the risk of bonds can be measured by the covariance of bond returns with
aggregate consumption growth.

A second approach is to measure the risk premium on nominal bonds, either from
average realized excess returns on bonds or from the average yield spread on long-
term bonds over short-term bills. If this risk premium is large, then presumably
investors regard bonds as risky.

These approaches are appealing because they are straightforward and direct. Un-
fortunately, the answers they give appear to depend sensitively on the particular sam-
ple period that is used. The covariance of nominal bond returns with stock returns,
for example, is extremely unstable over time and even switches sign (Guidolin and
Timmermann 2004, Baele, Bekaert, and Inghelbrecht 2007, Viceira 2007). In some
periods, notably the late 1970’s and early 1980’s, bond and stock returns move closely
together, implying that bonds have a high CAPM beta and are relatively risky. In
other periods, notably the late 1990’s and early 2000’s, bond and stock returns are
negatively correlated, implying that bonds have a negative beta and can be used to
hedge shocks to aggregate wealth. The average level of the yield spread is also un-
stable over time as pointed out by Fama (2006) among others. An intriguing fact is
that the movements in the average yield spread seem to line up to some degree with
the movements in the CAPM beta of bonds. The average yield spread was high in
the early 1980’s and much lower in the late 1990’s.

A third approach to measuring the risks of bonds is to decompose bond returns
into several components arising from different underlying shocks. Nominal bond



returns are driven by movements in real interest rates, inflation expectations, and
the risk premium on nominal bonds over short-term bills. The variances of these
components, and their correlations with investor well-being, determine the overall
risk of nominal bonds. Campbell and Ammer (1993), for example, estimate that
over the period 1952-1987, real interest rate shocks moved stocks and bonds in the
same direction but had relatively low volatility; shocks to long-term expected inflation
moved stocks and bonds in opposite directions; and shocks to risk premia again moved
stocks and bonds in the same direction. The overall effect of these opposing forces was
a relatively low correlation between stock and bond returns. However Campbell and
Ammer assume that the underlying shocks have constant variances and correlations
throughout their sample period, and so their approach fails to explain changes in
covariances over time.?

Economic theory provides some guidance in modelling the risks of underlying
shocks to bond returns. For example, consumption shocks raise real interest rates
if consumption growth is positively autocorrelated (Campbell 1986, Gollier 2005); in
this case real bonds hedge consumption risk and should have negative risk premia. If
the level of consumption is stationary around a trend, however, consumption growth is
negatively autocorrelated, real bonds are exposed to consumption risk, and real bond
premia should be positive. Inflation shocks are positively correlated with economic
growth if demand shocks move the macroeconomy up and down a stable Phillips
Curve; but inflation is negatively correlated with economic growth if supply shocks
move the Phillips Curve in and out. Shocks to risk premia move stocks and bonds in
the same direction if bonds are risky, and in opposite directions if bonds are hedges
against risk (Connolly, Stivers, and Sun 2005). These shocks may be correlated with
shocks to consumption if investors’ risk aversion moves with the state of the economy,
as in models with habit formation (Campbell and Cochrane 1999).

In this paper we specify and estimate a term structure model that is designed to
allow the correlations of shocks, in particular the correlation of inflation with real
variables, to change over time. By specifying stochastic processes for real interest
rates, expected inflation, and investor risk aversion, we can solve for the complete
term structure at each point in time and understand the way in which bond market
risks have evolved.

Our approach extends a number of recent term structure models. Bekaert, En-
gstrom, and Grenadier (BEG, 2004), Wachter (2006), and Buraschi and Jiltsov (2007)

2See also Barsky (1989) and Shiller and Beltratti (1992).



all specify term structure models in which risk aversion varies over time, influencing
the shape of the yield curve. These papers take care to remain in the affine class
(Dai and Singleton 2002). BEG and other recent authors including Mamaysky (2002)
and d’Addona and Kind (2005) extend affine term structure models to price stocks
as well as bonds. Our introduction of a time-varying correlation between inflation
and real shocks takes us outside the affine class; our model, like those of Constan-
tinides (1992) and Ahn, Dittmar and Gallant (2002), is linear-quadratic. To solve
it, we use a general result on the expected value of the exponential of a non-central
chi-squared distribution which we take from the Appendix to Campbell, Chan, and
Viceira (2003). We estimate our model using a Kalman filter approach, an extension
of the method used in Campbell and Viceira (2001, 2002).

The organization of the paper is as follows. Section 2 presents our model of the
nominal term structure. Section 3 describes our estimation method and presents
parameter estimates and historical fitted values for the unobservable state variables
of the model. Section 4 discusses the implications of the model for the shape of the
yield curve and the movements of risk premia on nominal bonds. Section 5 concludes.

2 A Quadratic Bond Pricing Model

We start by formulating a model which, in the spirit of Campbell and Viceira (2001,
2002), accounts for the term structure of both real interest rates and nominal interest
rates. However, unlike their model, this model allows for time variation in the risk
premia on both real and nominal assets, and for time variation in the correlation
between the real economy and inflation and thus between the excess returns on real
assets and the returns on nominal assets. The model for the real term structure of
interest rates allows for time variation in both real interest rates and risk premia,
yet it is simple enough that real bond prices have an exponential affine structure.
The nominal side of the model allows for time variation in expected inflation, the
volatility of inflation, and the conditional correlation of inflation with the real side
of the economy. This results in a nominal term structure where bond yields are
linear-quadratic functions of the vector of state variables.



2.1 An affine model of the real term structure

We pose a model for the term structure of real interest rates that has a simple linear
structure. We assume that the log of the real stochastic discount factor (SDF) m; 1 =
log (M;1) follows a linear-quadratic, conditionally heteroskedastic process:
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—Mypy1 = T + %nzt? + ZEm 41, (1)

where both x; and z; follow standard AR(1) processes,
Ter1r =y (1= @) + @t + €41, (2)
zep1 =ty (1= 0,) + 0.2 + €041, (3)

and €, 441, €z4+1, and €,,441 are jointly normally distributed zero-mean shocks with
constant variance-covariance matrix. We allow these shocks to be cross-correlated,
and adopt the notation 0? to describe the variance of shock ¢;, and o;; to describe
the covariance between shock ¢; and shock ¢;. In this model, o, always appears
premultiplied by z; in all pricing equations. This implies that we are unable to
identify o, separately from z;. Thus without loss of generality we set o, to an
arbitrary value of 1.

Even though shocks ¢ are homoskedastic, the log real SDF itself is conditionally
heteroskedastic, with
Vary (myyq) = 27.

Thus the state variable z; determines time-variation in the volatility of the SDF or,
equivalently, in the price of aggregate market risk. In fact, we can interpret our
model for the real SDF as a reduced form of a structural model in which aggregate
risk aversion changes over time as a function of z;, as in the habit consumption model
of Campbell and Cochrane (1999). While our model does not constrain z; to remain
always positive, our empirical estimates do have this property.

The second state variable x; determines the dynamics of the short-term log real
interest rate. The price of a single-period zero-coupon real bond satisfies

Py = B¢ [exp {m41}],

so that its yield y;; = —log(P;+) equals
1
Yie = — B¢ [mia] — 5 Var; (me1) = 24 (4)
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Thus the model (1)-(3) allows for time variation in risk premia, yet it preserves simple
linear dynamics for the short-term real interest rate.

This model implies that the real term structure of interest rates is affine in the
state variables x; and z;. Standard calculations (Campbell, Lo, and MacKinlay 1997,
Chapter 11) show that the price of a zero-coupon real bond with n periods to maturity
is given by

P,: =exp{A, + Bynti + Bipnzt},

where
Av = Ayt Bopoipty (1= 0,) + Bepap, (1 - ¢.)
—l—%Binlai + %Bg,nlai + Bepn-1Bin-1042,
Bin=—1+ By n-10,,
and

Bz,n = Bz,n—1¢z - Bx,n—lamx - Bz,n—lamz7

with A; =0, B,; = —1, and B,; = 0. Note that B,, < 0 for all n when ¢, > 0.
Details of these calculations are presented in the Appendix to this paper (Campbell,
Sunderam, and Viceira 2007).

The excess log return on a n-period zero-coupon real bond over a 1-period real
bond is given by

Tnt+l —T1t+1 = Pn-1t+1 — Pnt + D1t
2 2 2 2
= - <_Bx,n—1ax + _Bz,n—laz + B:p,nle,nIU:pz>

+ (Bx,n—lamx + Bz,n—lamz) 2t
+Bx,n—15x,t+1 + Bz,n—lgz,t—i-l; (5)

where the first term is a Jensen’s inequality correction, the second term describes the
log of the expected excess return on real bonds, and the third term describes shocks
to realized excess returns. Note that 7141 = y1 4.

It follows from (5) that the conditional risk premium on real bonds is

1
Et [Tn,t—H - Tl,t+1] + 5 Vart (rn,t—l—l - rl,t—i—l) - (Bx,n—lamx + Bz,n—lamz) Zt, (6)



which is proportional to the state variable z;. The coefficient of proportionality is
(Bym—10mz + Bz n—10m.), which can take either sign. It is zero, and thus real bond
risk premia are zero, when o,,, = 0, that is, when shocks to real interest rates are
uncorrelated with the stochastic discount factor.®> Real bond risk premia are also
zero when the state variable z; is zero, for then the stochastic discount factor is a
constant which implies risk-neutral asset pricing.

To gain intuition about the behavior of risk premia on real bonds, consider the
simple case where 0,,, = 0 and 0,,,, > 0. Since B, ,_; < 0, this implies that real
bond risk premia are negative. The reason for this is that with positive o,,,, the real
interest rate tends to rise in good times and fall in bad times. Since real bond returns
move opposite the real interest rate, real bonds are countercyclical assets that hedge
against economic downturns and command a negative risk premium. FEmpirically,
however, we estimate a negative o,,,; this implies procyclical real bond returns that
command a positive risk premium, increasing with the level of risk aversion.

2.2 Pricing equities

We want our model to fit the changing covariance of bonds and stocks, and so we
must specify a process for the equity return within the model. Following Campbell
and Viceira (2001), we model shocks to realized stock returns as a linear combination
of shocks to the real rate and shocks to the log stochastic discount factor:

Tet1 — Bt Tett1 = Beg€att1 + BemEmit+1 T Eeit+1s (7)

where e, ;41 is an identically and independently distributed shock uncorrelated with all
other shocks in the model. This shock captures variation in equity returns unrelated
to real interest rates, and unpriced because uncorrelated with the SDF.

Substituting (7) into the no-arbitrage condition E; [M;1R:11] = 1, the conditional
equity risk premium is given by

1
Et[Fe+1 — m141] + 5 Var; (Test1 — rie41) = (5eg¢0xm + 5em072n) Zt- (8)

The equity premium, like all risk premia in our model, is proportional to risk aversion
2. It depends not only on the direct sensitivity of stock returns to the SDF, but also

3Note that o, = 0 implies not only B, , =0, but also B, ,, =0, for all n.
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on the sensitivity of stock returns to the real interest rate and the covariance of the
real interest rate with the SDF.

2.3 A model of time-varying inflation risk

To price nominal bonds, we need to specify a model for inflation or, more precisely, for
the reciprocal of inflation, which determines the real value of the nominal payments
made by the bonds. We assume that log inflation m; = log (II;) follows a linear
conditionally heteroskedastic process:

e T
T =& + 5 Vi + VEnir, (9)

where expected log inflation &, and v, follow
Si1 = He (1 - ¢g) + 0 + Ve v, (10)

Yip1 = My (1 - 9%) + Qypth + ey i, (11)

and €41, €¢41, and €441 are again jointly normally distributed zero-mean shocks
with a constant variance-covariance matrix. We allow these shocks to be cross-
correlated with the shocks to my;.1, z;41, and 2,41, and use the same notation as
in section 2.1 to denote their variances and covariances.

A large empirical literature in macroeconomics has documented changing volatility
in inflation. In fact, the popular ARCH model of conditional heteroskedasticity
(Engle 1982) was first applied to inflation. Our model captures this heteroskedasticity
using a persistent state variable 1),. We assume that this variable drives the volatility
of expected inflation as well as the volatility of realized inflation. Since we model
1, as an AR(1) process, it can change sign. The sign of v, does not affect the
variances of expected or realized inflation or the covariance between them, because
these moments depend on the square 1/)?. However the sign of ¢, does determine the
sign of the covariance between expected and realized inflation, on the one hand, and
the real economy, on the other hand.

The process for realized inflation, equation (9), is formally similar to the process
for the log SDF (1), in the sense that it includes a Jensen’s inequality correction
term. The inclusion of this term simplifies the process for the reciprocal of inflation



by making the log of the conditional mean of 1/II;,; the negative of expected log
inflation &,. This in turn simplifies the pricing of short-term nominal bonds.

The real cash flow on a 1-period nominal bond is simply 1/II;,;. Thus the price
of the bond is given by

Pﬁt = B¢ [exp {mes1 — T} (12)
so the log short-term nominal rate yft 41 = —log ( Pﬁt) is
$ 1
yl,t+1 = — Lk [mt+1 - 7Tt+1] - 5 Vart (th — 7Tt+1)
= Tt +& — Omnzity, (13)

where we have used the fact that exp {m;,; — m41} is conditionally lognormally dis-
tributed given our assumptions.

Equation (13) shows that the log of the nominal short rate is the sum of the log
real interest rate, expected log inflation, and a nonlinear term that accounts for the
correlation between shocks to inflation and shocks to the stochastic discount factor.
If inflation is uncorrelated with the SDF (o,,, = 0), the nonlinear term is zero and
the Fisher equation holds: that is, the nominal short rate is simply the real short rate
plus expected inflation.

It is straightforward to show that the nonlinear term in (13) is the expected
excess return on a single-period nominal bond over a single-period real bond. Thus
it measures the inflation risk premium at the short end of the term structure. It
equals the conditional covariance between realized inflation and the log of the SDF":

COVt (mt+1, 7Tt+1) = —O'mﬂ—Zt?,bt. (14)

When this covariance is positive, short-term nominal bonds are risky assets that have
a positive risk premium because they tend to have unexpectedly low real payoffs
in bad times. Of course, this premium increases with risk aversion z;. When the
covariance is negative, short-term nominal bonds hedge real risk; they command a
negative risk premium which becomes even more negative as aggregate risk aversion
increases.

The covariance between inflation and the SDF is determined by the product of
two state variables, z; and 1,. Although both variables influence the magnitude of
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the covariance, its sign is determined in practice only by 1), because, even though we
do not constrain z; to be positive, we estimate it to be so in our sample, consistent
with the notion that z; is a proxy for aggregate risk aversion. Therefore, the state
variable 1), controls not only the conditional volatility of inflation, but also the sign
of the correlation between inflation and the SDF.

This property of the single-period nominal risk premium carries over to the entire
nominal term structure. In our model the risk premium on real assets varies over
time and increases or decreases as a function of aggregate risk aversion, as shown in
(6) or (8). The risk premium on nominal bonds varies over time as a function of
both aggregate risk aversion and the covariance between inflation and the real side of
the economy. If this covariance switches sign, so will the risk premium on nominal
bonds. At times when inflation is procyclical—as will be the case if the macroecon-
omy moves along a stable Phillips Curve—nominal bond returns are countercyclical,
making nominal bonds desirable hedges against business cycle risk. At times when
inflation is countercyclical—as will be the case if the economy is affected by supply
shocks or changing inflation expectations that shift the Phillips Curve in or out—
nominal bond returns are procyclical and investors demand a positive risk premium
to hold them.

The conditional covariance between the SDF and inflation also determines the
covariance between the excess returns on real and nominal assets. Consider for
example the conditional covariance between the return on a one-period nominal bond
and the return on equities. From (7) and (9), this covariance is given by

Cov, (Te,t+1 — T1,6+1, yitﬂ — M1 — Tl,t+1) = — (ﬁexam + 5em0m7r) Q/Jt,

which moves over time and can change sign. This implies that we can identify the
dynamics of the state variable 1, from the dynamics of the conditional covariance of
between equities and nominal bonds.

2.4 The nominal term structure

Equation (13) shows that the log nominal short rate is a linear-quadratic function of
the state variables in our model. We show in the Appendix that this property carries
over to the entire zero-coupon nominal term structure. The price of a n-period zero-
coupon nominal bond is an exponential linear-quadratic function of the vector of state



variables:

Py, = exp { A} + B} x4+ B,z + BE &y + By, + CF20 + CF 07 + Oz}

(15)
where the coefficients Ai, Bf’n, and C’f,n solve a set of recursive equations given in
the Appendix. These coefficients are functions of the maturity of the bond (n) and
the coefficients that determine the stochastic processes for real and nominal variables.
From equation (13), it is immediate to see that B | = Bf | = =1, C%, | = 0z, and
that the remaining coefficients are zero at n = 1.

We can now characterize the log return on long-term nominal zero-coupon bonds in
excess of the short-term nominal interest rate. Since bond prices are not exponential
linear functions of the state variables, their returns are not conditionally lognormally
distributed. But we can still find an analytical expression for their conditional ex-
pected returns. We show in the Appendix that the log of the conditional expected
gross excess return on an n-period zero-coupon nominal bond is given by

— Ex [Tit—&—l} = Az,nzt + )‘1/),7177/},5 + 5Z,n'z152 + 5¢,n¢? + ﬁzw,nzﬂ/}t’ (16)

n,t

AP
log E; [P—$

where rft = yft is known at time ¢, and the coefficients \; , and 3, ,, are functions
of the coefficients A3, Bfn, and C’En and thus are functions of bond maturity and the

underlying stochastic processes for real and nominal variables. Explicit expressions
for A\;,, and f3;,, are given in Appendix X.

Equation (15) shows that our model implies a nominal term structure of interest
rates which is a linear-quadratic function of the vector of state variables. Log bond
prices are affine functions of the short-term real interest rate (x;) and expected in-
flation (§,), and quadratic functions of risk aversion (z;) and inflation volatility (v,).
Thus our model naturally generates four factors that explain bond yields. Equa-
tion (16) shows that expected log bond excess returns are time varying. They vary
quadratically with risk aversion and inflation volatility, and linearly with the covari-
ance between the log real SDF and inflation (2;1,). In this model, bond risk premia
can be either positive or negative as 1), switches sign over time.
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2.5 Special cases

Our general quadratic term structure model nests three important constrained mod-
els. First, if we constrain z; and 1), to be constant, our model reduces to the two-factor
affine yield model of Campbell and Viceira (2001, 2002), where both real bond risk
premia and nominal bond risk premia are constant, and the factors are the short-term
real interest rate (x;) and expected inflation (§,). Second, if we constrain only v, to
be constant over time, our model becomes a three-factor affine yield model where
both real bond risk premia and nominal bond risk premia vary in proportion to ag-
gregate risk aversion (z;). This model captures the spirit of recent work on the term
structure of interest rates by Bekaert, Engstrom, and Grenadier (2004), Buraschi and
Jiltsov (2006), Wachter (2006) and others in which time-varying risk aversion is the
only cause of time variation in bond risk premia. Finally, if we constrain only z;
to be constant over time, our model reduces to a single-factor affine yield model for
the term structure of real interest rates, and a linear-quadratic model for the term
structure of nominal interest rates. In this constrained model, real bond risk premia
are constant, but nominal bond risk premia vary with inflation volatility.

Since the coefficients of the nominal bond pricing function are complicated func-
tions of the parameters of the model, we now present estimates of these parameters,
and discuss the properties of bond prices and bond returns given our estimates.

3 Model Estimation

3.1 Data and estimation methodology

The term structure model presented in Section 2 generates nominal bond yields which
are linear-quadratic functions of a vector of latent state variables. We now take this
model to the data, and present estimates of the model based on a standard Kalman
filter approach. Given the nonlinear structure of the model, this inherently linear
approach does not produce maximum likelihood estimates of the parameters of the
model, but rather quasi-maximum likelihood estimates. Although these estimates are
not efficient, they are still consistent and asymptotically normal. They also provide
us with a reasonable check of the ability of our data to explain important aspects
of the time series and cross-sectional behavior of interest rates. Moreover, these
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estimates provide useful initial values for the Efficient Method of Moments of Gallant
and Tauchen (1996), which we plan to implement in the future to obtain efficient
estimates of the parameters of the model.

The Kalman filter approach starts with the specification of a system of measure-
ment equations that relate observable variables to the vector of state variables. The
filter uses these equations to infer the behavior of the latent state variables of the
model.

Our first set of measurement equations relates observable nominal bond yields to
the vector of state variables. Specifically, we use the relation between nominal zero-
coupon bond log yields y$ , = —log(P$,)/n and the vector of state variables implied
by equation (15). We use monthly yields on constant maturity 3-month, 1-year, 3-
year and 10-year zero-coupon nominal bonds for the period January 1953-December
2005. This dataset is spliced together from two sources. From January 1953 through
July 1971 we use data from McCulloch and Kwon (1993) and from August 1971
through December 2005, we use data from the Federal Reserve Board constructed by
Giirkaynak, Sack, and Wright (2006). We assume that bond yields are measured with
errors, which are uncorrelated with each other and with the structural shocks of the
model.

To this set of equations we add a second set of four measurement equations. The
first equation in this set is given by equation (9), which relates observed inflation
rates to expected inflation and inflation volatility, plus a measurement error term.
The second is the equation for realized log equity returns r.;.; implied by (4), (7),

and (8).

The third additional measurement equation uses the dividend yield on equities
D.:/P.: to identify z; as

e,t

Pe,t

=do +diz +€p/pit1, (17)

where €p/ps41 is @ measurement error term uncorrelated with the fundamental shocks
of the model. This measurement equation is motivated by the fact that the dividend
yield is known to forecast future equity returns, and that in our model expected equity
excess returns are proportional to z;, as shown in (8). Thus we are effectively proxying
aggregate risk aversion with a linear transformation of the aggregate dividend yield
on equities.
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The fourth additional measurement equation uses the implication of our model
that the conditional covariance between equity returns and nominal bond returns is
time varying. The Appendix derives an expression for this conditional covariance,
a linear function of z; and v,. Following Viceira (2007), we construct the realized
covariance between daily stock returns and bond returns using a 1-year rolling win-
dow, and assume that this covariance measures the true conditional covariance with
error. Given that equation (17) identifies z;, this final measurement equation helps
us identify 1),.

To implement our additional measurement equations, we use monthly observations
of CPI inflation, monthly total returns and dividend yields on the value-weighted
portfolio comprising the stocks traded in the NYSE, AMEX and NASDAQ, and
daily total returns on bonds and equities extracted from CRSP. To compute dividend
yields, we use the standard procedure of using a 1-year backward-looking average of
dividends to deal with intra-year seasonal effects in dividends.

The Kalman filter uses the system of measurement equations we have just for-
mulated, together with the set of transition equations (2), (3), (10), and (11) that
describe the dynamics of the state variables, to construct a pseudo-likelihood function.
We then use numerical methods to find the set of parameter values that maximize
this function and the asymptotic standard errors of the parameter estimates.

3.2 Parameter estimates

Table 1 presents monthly estimates of our general model over the period January 1953-
December 2005. The table also estimates the three constrained models described in
Section 2.5. These are the models that constrain z;, or v,, or both variables to be
constant over time. The estimates of the general model and the constant-z; model are
quasi-maximum likelihood estimates, since in those models log prices are non linear
functions of the underlying state variables. The estimates of the constant-i), model
and the constant-z;-and-1), model are true maximum likelihood estimates, since these
models fall within the affine yield class. The table reports parameter estimates in
natural units, together with their asymptotic standard errors.

Table 1 shows that the state variables in the model are all highly persistent.
They all have autoregressive coefficients above .95 and, in the case of log expected
inflation (&,) and aggregate risk aversion (z;), the point estimate of the autoregressive
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coefficient is exactly one, although the standard errors around the estimates are fairly
large. The model estimates expected inflation to be much more persistent than real
interest rates in the postwar period. This result is consistent with the estimates
of the model with constant z; and 1, in Campbell and Viceira (2001, 2002) using
data through 1999.* The estimated persistence of risk aversion z; is not surprising in
light of observation equation (17), which links z; to the equity dividend yield, since
the dividend yield is known to be highly persistent and possibly even nonstationary
(Stambaugh 1999, Lewellen 2004, Campbell and Yogo, 2006).

The high persistence of the processes for the state variables makes it difficult
to estimate their unconditional means. Accordingly, we have estimated our model
requiring that the unconditional mean of the log real interest rate z; equals the
average ex-post log real interest rate in our sample period. This average is 1.54% per
annum, which implies a value for p, of 0.001283, as reported in Table 1. We also
require that the unconditional mean of the log inflation rate m; equals the average log
inflation rate in our period, which is 3.63% per annum. This in turn implies a value
for i of 0.0029.5

Table 1 shows large differences in the volatility of shocks to the state variables.
The estimated one-month conditional volatility of the annualized real interest rate is
about 14 basis points, and the average one-month conditional volatility of annualized
expected inflation is about 5 basis points. Both of these estimates are statistically
significant. The unconditional standard deviations of the real interest rate and ex-
pected inflation are of course much larger because of the high persistence of these
processes; in fact, the population unconditional standard deviation of expected infla-
tion is undefined because this process is estimated to have a unit root. We estimate
the average conditional volatility of realized inflation to be about 1.88%.% Finally,

*Campbell and Viceira do find that when the estimation period includes only the years after
1982, real interest rates appear to be more persistent than expected inflation, reflecting the change
in monetary policy that started in the early 1980’s under Federal Reserve chairman Paul Volcker.
We have not yet estimated our quadratic term structure model over this subsample.

®Equation (9) implies that

o2
pe ~ B [mesa] — % (3 + %)

from which we can extract j, after replacing E [m¢4+1] with its sample mean, and the moments of 1,
with their estimated values.

1/2
6The average volatility of expected inflation is computed as (/%2;; + O’i) o¢, and the average
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shocks to risk aversion have an annualized conditional volatility of about 1.84%.

Table 1 also reports the covariance structure of the shocks. We estimate o, to be
negative, which implies that the real interest rate is countercyclical, real bond returns
are procyclical, and term premia on real bonds are positive. We also estimate o,,, to
be negative, which according to equation (14) implies a positive average correlation
between the SDF and inflation, since both z; and v, have positive means. Thus on
average, we estimate inflation to be countercyclical, which implies a positive inflation
risk premium in the nominal term structure.

In the equity market, we estimate positive loadings of stock returns on both shocks
to the real interest rate (3,,) and shocks to the negative of the log SDF (,,,). The
first loading would imply a negative equity premium but the second implies a positive
equity premium, and this effect dominates.

The constrained models in Table 1 produce estimates for their unconstrained
parameters which are generally in line with those of the unconstrained model. In
particular, the constrained models also produce highly persistent processes, fit a more
persistent process for expected inflation than for the real rate, and deliver negative
estimates of 0,,, and, with the exception of the constant-z; model, of o,,,. Finally,
Table 1 reports the losses in log likelihood from imposing the constraints. These losses
are extremely large, essentially because of our auxiliary measurement equations for
the dividend yield and the conditional covariance of bond and stock returns. The
loss in log likelihood is considerably larger when we constrain inflation volatility to
be constant than when we constrain risk aversion to be constant.

3.3 Fitted state variables

Figure 1 plots the fitted time series of the latent state variables implied by our model
estimates. Panel A in Figure 1 plots the time series of the short-term real interest
rate. Panel A shows that short-term real rates were higher on average in the first
half of our sample than in the second half, and reached a maximum of about 9.5%
in the early 1980’s. However, they appear to be more volatile in the second half of
the sample where, interestingly, we estimate the real interest rate to be significantly
negative at different points in time, particularly in the recessions of the early 1990’s

1/2
volatility of realized inflation as (,u?p + U?p) fo
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and early 2000’s. This increased real interest rate volatility is in contrast with recent
estimates of volatility in macroeconomic variables showing that growth, investment,
and inflation volatility declined in the 1980’s and 1990’s (Stock and Watson, 2002).

Panel B in Figure 1 plots the time series of z;. This is effectively a scaled version of
the dividend yield given our assumption in equation (17) that the dividend yield is a
multiple of z; plus white noise measurement error. Consistent with our interpretation
of z; as aggregate risk aversion, the model chooses the scale factor in (17) so that z
is positive everywhere.

Panel C in Figure 1 plots the time series of expected inflation. Expected inflation
exhibits a familiar hump shape over the postwar period. It was low, even negative,
in the 1950’s and 1960’s, increased during the 1970’s and reached maximum values
of about 10% in the first half of the 1980’s. Since then, it has experienced a secular
decline to about 1% at the end of the sample. The volatility of expected inflation
also shows a hump shape; its decline in the second half of the sample is consistent
with the results in Stock and Watson (2002).

Finally, Panel D in Figure 1 shows the time series of v¢),. As we have noted,
this variable is identified through the covariance of stock returns and bond returns.
Panel D is to a close approximation a scaled version of the realized covariance of
stock returns and bond returns, whose time series behavior we discuss below. It is
important to note though that ¢, can and does switch sign over time. Sign switches
tend to be persistent, though there are also transitory changes in sign that appear to
be related to “flight-to-quality” events in the bond and stock markets. In particular,
we estimate 1), to be slightly negative on average for most of the 1950’s and 1960’s,
positive or highly positive on average for most of 1970’s, 1980’s and the first half of
the 1990’s, and negative on average afterwards. The volatility of 1, appears to have
increased significantly in the period that started in the 1970’s. During this period,
1, has experimented brief periods in which it was either highly positive, such as in
the early 1980’s, or highly significantly negative, such as 1987.

Figure 2 provides a sense of the fit of the model in the time series dimension. These
figures plot the observed and model-fitted time series of the covariance between stock
returns and bond returns, the equity dividend yield, the 3-month nominal bond yield,
and the 10-year nominal bond yield. The fitted time series of these variables almost
perfectly overlap with the observed time series, reflecting the fact that the estimation
algorithm achieves a good fit to the time series of stock and bond yields and the
stock-bond covariance.
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Panel A in Figure 2 plots the covariance between stock returns and bond returns.
Consistent with the results in Viceira (2007), this covariance was negative in the
1950’s, relatively stable around zero in the 1960’s, and much more volatile since the
1970’s. The stock-bond covariance was highly positive in the early 1980’s, and since
then it appears to have undergone a secular decline.

The remaining panels of the figure plot relatively familiar financial time series.
The equity dividend yield, shown in Panel B, trended down throughout the 1950’s
and the 1960’s. This trend reversed during the 1970’s, when the dividend yield moved
up and reached a maximum in the early 1980’s. Since then, it has experienced a
steady decline, with only a small reversal in the early 2000’s.

Panels C and D show the time series of the observed and fitted short-term and
long-term nominal interest rates. Both short-term and nominal long-term interest
rates exhibit a pronounced hump shape, similar to the pattern we fit for expected
inflation, and shown in Panel B of Figure 1. In fact, visual inspection of the plot of
the time series of expected inflation and the time series of the 10-year nominal yield
shows that they are extremely similar. The short-term nominal rate is considerably
more volatile than the long-term nominal rate.

Table 2 reports fitted sample moments derived from these estimates, not only for
our full model but also for our three constrained models. The mean ex post real
interest rate is slightly lower than the mean ex ante real interest rate, because the
mean ex post inflation rate is slightly higher than the mean ex ante inflation rate;
our sample period had a slight preponderance of positive inflation surprises. The
model does a good job of matching the historical moments of the real interest rate and
inflation. The full model implies modest positive term premia, which are generally
lower than those implied by our restricted models, and fits the realized returns on
three-year bonds better than those models.
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4 Implications for the Nominal Term Structure

4.1 State variables and the yield curve

Given our estimated term structure model, we can now analyze the impact of each
of our four state variables on the nominal yield curve, and thus get a sense of which
components of the curve they affect the most. To this end, we plot in Figure 3 the
zero-coupon log nominal yield curves generated by our model when one of the state
variables is at its in-sample mean, maximum, and minimum, while all other state
variables are at their in-sample means. Panels A through Panel D illustrate the yield
curves that obtain when we vary zy, 2, §,, and v, respectively. We plot maturities
up to 10 years, or 120 months.

The central line in each of panels in Figure 3 describes the yield curve generated
by our model when all state variables are evaluated at their in-sample mean. This
yield curve has a positive slope, with a spread between the 10-year rate and the 1-
month rate of about 110 basis points. This spread is similar to the historical average
spread in our sample period. The curve is more concave at maturities up to five years,
and considerably flatter at longer maturities. The intercept of the curve implies a
short-term nominal interest rate of about 5.4%, in line with the average short-term
nominal interest rate in our sample.

Panel A in Figure 3 shows that changes in the real interest rate move the short
end of the nominal yield curve but have almost no effect on the long end of the yield
curve; thus they alter the slope of the curve. This effect is intuitive given that we
have estimated a mean-reverting real interest rate process with a half-life of about

13 quarters. Such a process should not have a large effect on a 10-year zero-coupon
bond yield.

Panel B shows that changes in z; have almost no effect on the intercept of the
nominal yield curve, but have noticeable effects on the long end of the curve. When
other state variables are at their in-sample means, nominal bonds are moderately risky
and thus their yields increase when risk aversion z; increases. This effect is much
more powerful for long-term bonds than for short-term bonds. Thus risk aversion,
like the real interest rate, alters the slope of the nominal yield curve but it does so
by moving the long end of the curve rather than the short end.

18



Panel C shows that changes in expected inflation affect short- and long-term
nominal yields almost equally, causing parallel shifts in the level of the nominal yield
curve. This effect reflects the extremely high persistence that we have estimated for
expected inflation.

The most interesting results are those shown in Panel D of Figure 3. Here we
see that changes in 1), have almost no effect on the short end of the yield curve, but
they have strong effects on both the middle of the curve and the long end. When
1, moves from its sample mean to its sample maximum, intermediate-term bond
yields rise but long-term bond yields do not. This reflects two opposing effects of 1),
on yields. On the one hand, when 1), increases nominal bonds have higher return
volatility, and through Jensen’s Inequality this lowers the bond yield that is needed
to deliver any given expected simple return. This effect is much stronger for long-
term nominal bonds; in the terminology of the fixed-income literature, these bonds
have much greater “convexity” than short- or intermediate-term bonds. On the
other hand, when 1, increases, nominal bonds become more systematically risky and
investors demand a higher risk premium. As v, moves from its sample mean to its
sample maximum, the two effects roughly cancel at the long end of the yield curve
but the greater risk premium dominates in the middle of the yield curve, driving
intermediate yields up relative to both short and long-term yields.

As 1, moves from its sample mean to its sample minimum, however, it moves
from slightly positive to slightly negative and there is relatively little change in the
volatility of bond returns. Thus the convexity effect is small relative to the risk
premium effect, and in panel D we see that the long end of the yield curve falls when
1, approaches its sample minimum.

Figure 3 allows us to relate our model to traditional factor models of the term
structure of interest rates, and to provide an economic identification of those factors.
Traditional analyses distinguish a a “level” factor, a “slope” factor, and a “curvature”
factor. The first of these moves the yield curve in parallel; the second moves the short
end relative to the long end; and the third moves intermediate-term yields relative to
short and long yields. Figure 3 suggests that in our model, expected inflation is the
level factor; the short-term real interest rate and risk aversion both contribute to the
slope factor; and the covariance of nominal and real variables drives the curvature
factor and, when it is not too high, the slope factor.
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4.2 The determinants of bond risk premia

In the previous section we saw that both risk aversion z; and the nominal-real covari-
ance 1), are important determinants of long-term nominal interest rates in our model.
The reason for this is that these variables have powerful effects on risk premia. In
fact, the main determinant of nominal bond risk premia is the product z:1),.

Figure 4 illustrates this by plotting the time series of the monthly risk premium on
a 10-year nominal zero-coupon bond, log Ey[Prig ¢ 1/Piyo] — Ee[r§ 111], together with
the time series of 2,9, scaled to have approximately the same standard deviation. In
principle, we know from equation (16) that the nominal-bond risk premium in our
model is a linear combination of z;, 1,, their squares, and their cross-product. The
figure shows that in practice, the cross-product z;1), generates most of the variation
in the risk premium..

Our model fits the time series of postwar US bond risk premia with three periods
that broadly coincide with three distinct periods for capital market and macroeco-
nomic conditions. The first period includes most of the 1950’s and 1960’s. This was
a period of a stable tradeoff between growth and inflation and sharply declining risk
aversion, and our estimated bond risk premia reflect that; they are positive early in
the period, negative for most of the 1950’s, and close to zero in the 1960’s. The second
period includes the 1970’s and the first half of the 1980’s. This was a period of an
unstable relation between inflation and growth, a declining stock market, and increas-
ing risk aversion. Our estimated bond risk premia during this period are positive on
average, with considerable volatility. The third period runs from the mid-1980’s until
the end of our sample period. This period has been characterized by a return to stable
growth and inflation, a rising stock market, and declining risk aversion. Estimated
bond risk premia show a declining trend in both their mean and their volatility, and
become negative at the end of the sample.

Our fitted bond risk premia also exhibit short episodes where they reach extreme
positive or negative values. These episodes are related to the occurrence of extreme
economic or financial events, such as the large increases in interest rates in the early
1980’s during the Volcker period, which drove bond risk premia sharply higher, or the
stock market crash of October 1987, which produced a “flight to quality” and sharply
lower bond risk premia.

Figure 5 explores the impact of changes in 2z, and 1), in more detail. Panel A in the
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figure plots bond risk premia as a function of maturity n when all state variables are
at their sample mean, and z; is at its mean, minimum, and maximum values. Panel
B is identical in structure to Panel A, except that it varies 1, instead of z;. Panel C
varies the product z;1,.

Consistent with the analysis of the impact of state variables on bond yields shown
in Figure 3, Panel A shows that z; always increases bond risk premia, and that the
impact is increasing in the maturity of the bond. However, even at a maturity of 20
years, the conditional bond risk premium evaluated at the maximum value of z; is
only slightly larger than 2% per annum. By contrast, Panel B shows that 1, has a
very pronounced effect on bond risk premia: The conditional risk premium on a 20-
year bond evaluated at the maximum value of 1), is about 15% per annum. Moreover,
conditional bond risk premia are increasingly negative as a function of maturity when
1, is at its sample minimum. Panel C shows a similar pattern to Panel B, but the
positive risk premia at the maximum are accentuated while the negative risk premia
at the minimum are less extreme. The reason is that in our sample period, large
positive values of ¥, coincided with large positive values of z;, whereas large negative
values of 1, coincided with much smaller values of z;.

We saw in Figure 3 that the nominal-real correlation 1), influences the curvature
of the yield curve as well as its slope. Other factors in our model, such as the real
interest rate, also influence the slope of the yield curve but do not have much effect
on its curvature. Given the dominant influence of 1/, on bond risk premia, illustrated
in Figure 5, the curvature of the yield curve may be a good empirical proxy for risk
premia on nominal bonds.

In fact, an empirical result of this sort has been reported by Cochrane and Pi-
azzesi (2005). Using econometric methods originally developed by Hansen and Ho-
drick (1983), and implemented in the term structure context by Stambaugh (1988),
Cochrane and Piazzesi show that a single linear combination of forward rates is a
good predictor of excess bond returns at a wide range of maturities. Interestingly,
this combination of forward rates is tent-shaped, with a peak at 3 or 4 years, imply-
ing that bond risk premia are high when intermediate-term interest rates are high
relative to both shorter-term and longer-term rates; that is, they are high when the
yield curve is strongly concave.

Table 3 reports a similar exercise to that of Cochrane and Piazzesi. Using both
our raw data and the fitted yield curves from our estimated models, we regress both
ten-year and three-year realized excess returns onto the yield spread and onto our
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estimated optimal combination of forward rates, which we call “Tent”. These regres-
sions are fairly similar in the data and in all of our models, since all the models track
the in-sample behavior of the yield curve fairly well. Like Cochrane and Piazzesi,
we find that the tent variable produces a higher R? statistic and stronger statistical
significance than does the yield spread.

Each of our models implies a different history for the expected (as opposed to the
realized) excess bond return. We regress our model-implied expected returns onto
the yield spread and the tent variable, and again find that the tent variable delivers
a better fit. The difference in fit is particularly pronounced in our full model where
both z; and 1, move over time.

Finally, we regress realized returns onto the expected excess returns implied by
each of our models. We obtain coefficients close to one for our full model, but
smaller and even in one case negative coefficients for our restricted models. This
finding strongly suggests that our full model is necessary to explain the predictability
of excess bond returns in our postwar US dataset.

5 Conclusion

In this paper we have argued that changing covariances between nominal and real
variables are of central importance in understanding the term structure of nominal
interest rates. Analyses of asset allocation traditionally assume that broad asset
classes have a stable structure of risk over time; our empirical results suggest that in
the case of nominal bonds and stocks, at least, this assumption is seriously misleading.

Our term structure model implies that the risk premia of nominal bonds have
changed over the decades, in part with movements in risk aversion that are proxied
by changes in the equity dividend yield, and in part with changes in the covariance
between inflation and the real economy. Nominal bond risk premia were particularly
high in the early 1980’s, when bonds covaried strongly with stocks and risk aversion
was high; they were negative in the early 2000’s, when bonds covaried negatively with
stocks, but at this time risk aversion was relatively low, so negative bond risk premia
were modest in magnitude.

Our model explains the finding of Cochrane and Piazzesi (2005) that a tent-shaped
linear combination of forward rates, with a peak at 3 or 4 years, predicts excess bond
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returns at all maturities better than maturity-specific yield spreads. In our model,
the covariance between inflation and the real economy has opposing effects on longer-
term bond yields. It raises them by increasing the risk premium, but it lowers
them through a Jensen’s Inequality effect of increasing volatility. In the language
of fixed-income investors, longer-term bonds have “convexity” which becomes more
valuable when volatility is high. At the long end of the yield curve, these two
effects roughly cancel for high levels of the nominal-real covariance, whereas at the
intermediate portion of the curve, the risk premium effect dominates. Hence, the
level of intermediate yields relative to short- and long-term yields is a good proxy for
the nominal-real covariance and hence for the risk premium on nominal bonds.

The results we have presented are preliminary and this research can be extended
in a number of directions. First, we can use alternative estimation methods, such as

the Efficient Method of Moments of Gallant and Tauchen (1996), to properly handle
econometric difficulties caused by the nonlinearity of our term structure model.

Second, we can derive stock returns from primitive assumptions on the dividend
process, as in the recent literature on affine models of stock and bond pricing (Ma-
maysky 2002, Bekaert, Engstrom, and Grenadier 2004, d’Addona and Kind 2005).

Third, we can ask our model to fit a wider range of conditional second moments for
asset returns; this may require us to generalize the model to allow heteroskedasticity
in real as well as nominal variables.

Fourth, we can ask our model to fit data from the last ten years on the yields
of TIPS (Treasury inflation-protected securities) as well as the longer time series for
nominal bond yields. This additional source of information will allow us to ask,
for example, whether real bond returns have stable covariances with stock returns as
implied by our model.

Fifth, we can explore the relation between our covariance state variable 1/, and the
state of monetary policy and the macroeconomy. We have suggested that a positive
1, corresponds to an environment in which the Phillips Curve is unstable, while a
negative 1), reflects a stable Phillips Curve. It would be desirable to use data on
inflation and output more directly to explore this interpretation.

Sixth, we can enrich our description of the real interest rate. To the extent that
the short-term real interest rate is controlled by the Federal Reserve, its covariance
with the stochastic discount factor and the stock market reflects the policy rule of the
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monetary authority. For example, the hypothesis that the Federal Reserve cuts the
real interest rate when the stock market is weak, and raises it when the stock market
is strong (the so-called “Greenspan put”) would imply a negative covariance between
x; and my. If such policy behavior has altered over time, then this covariance too
would be time-varying rather than constant.

Finally, we can apply our model to other countries with different inflation histories.
One particularly interesting country is the UK, where inflation-indexed bonds have
been actively traded since the mid-1980’s.
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Figure 1: Time series of state variables. Panel A (top left) shows the real interest rate
xt, panel B (top right) shows risk aversion z;, panel C (bottom left) shows expected
inflation &,, and panel D (bottom right) shows the covariance of real and nominal
variables 1,.
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Panel A (top left) shows the fitted and actual

covariance of bond and stock returns. Panel B (top right) shows the fitted and actual
dividend-price ratio on the aggregate stock market. Panel C (bottom left) shows the
fitted and actual short-term nominal interest rate. Panel D (bottom right) shows the

fitted and actual long-term nominal interest rate.

30



. Mean .
B Max x B
gl — — —Minx o
N 10 N
© T
> >
c c
< | -] <
— 5 - ===~ 4 ~
ke - ko)
2 - =7 2
> P >

o0& 5

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Maturity (months) Maturity (months)

15 7
. Mean .
9 Max & R
] — — —Ming o
10 N
© ©
3 =}
c c
< | 7 <
~ 5 4 ~
° e}
o o
> I i >

0 ‘ . ’ ‘ : 5 ‘ . ‘ ‘ :

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Maturity (months) Maturity (months)

Figure 3: Yield curves in relation to state variables. Each panel shows the yield
curves that prevail when one state variable is at its sample minimum, mean, and
maximum, holding all other state variables at their mean. Panel A (top left) varies
the real interest rate x;, Panel B (top right) varies risk aversion z;, Panel C (bottom
left) varies expected inflation £,, and Panel D (bottom right) varies the covariance of
nominal and real variables ;.
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Figure 4: The risk premium on 10-year nominal zero-coupon bonds. The figure plots
the expected excess return on 10-year nominal zero-coupon bonds, together with the
cross-product of state variables z;1),.
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Figure 5: Term premia and state variables.
return on nominal bonds as a function of maturity, when one state variable is at its
sample minimum, mean, and maximum, and all other state variables are at their
sample means. Panel A (top left) varies risk aversion z;, Panel B (top right) varies
the covariance of nominal and real variables ¢,, and Panel C (bottom left) varies the

Maturity (months)

cross-product z,1),.
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Table 1: Parameter Estimates, 1953:1-2005:12
Standard errors in parentheses
Covariances and their s.e.'s are multiplied by 1e7

Full model Constant z Constant W Constant z and ¥
M_X 0.003 0.002 0.002 0.002
(0.001) (0.002) (0.000) (0.000)
M_E 0.002 0.000 0.000 0.003
(0.001) (0.011) (0.010) (0.039)
M_2z 0.791 0.204 0.197 0.158
(0.029) (0.012) (0.011) (0.003)
p_W 0.025 0.264 0.357 0.034
(0.004) (0.009) (0.008) (0.001)
P_X 0.964 0.962 0.956 0.948
(0.033) (0.031) (0.031) (0.037)
¢_¢& 1.000 1.000 0.999 1.000
(0.065) (0.063) (0.049) (0.083)
¢_z 1.000 0.991
(0.259) (0.241)
o_ W 0.957 0.917
(0.003) (0.002)
O_X 0.001 0.001 0.004 0.000
(0.000) (0.001) (0.000) (0.000)
o_¢ 0.005 0.004 0.005 0.007
(0.001) (0.000) (0.000) (0.000)
0.z 0.005 0.038
(0.009) (0.000)
o V¥ 0.022 0.175
(0.077) (0.052)
o_T 0.164 0.027 0.038 0.087
(0.004) (0.002) (0.004) (0.002)
a(x,&) -0.114 -0.185 -48.651 -6.180
(0.013) (14.23) (15.42) (165.43)
a(x,z) -0.866 -1385.186
(0.022) (394.31)
a(x,¥) 2.721 61.744
(128.87) (331.30)
a(x,m) -1.385 373.608 -1828.266 -2426.206
(245.05) (29613) (10.68) (29181)
a(x,T) 2.039 32.712 1641.075 16.340
(44.21) (245.05) (100944) (221.97)
a(§,z) 0.137 35.066
(0.012) (251177)
a(g,¥) -29.260 20.215
(83883) (62.58)
a(x,m) -20010.460 1249.589 767.449 -4693.761
(297.37) (0.013) (6802) (141.29)
a(x,T) 0.007 -41.765 -13029.359 240.900
(12.40) (5008) (10949) (245.05)
a(z,¥) 521.408
(61.19)
a(z,m) 2.317 227.706
(0.012) (140.68)




a(z,m) -2.055 11616.570
(1501) (271.40)
a(¥,m) 17.742 3588.713
(90.79) (140.68)
o(W,m) -0.449 2841.709
(768.62) (271.40)
o(m,m) -0.021 -3425.235 -6080.120 -9955.811
(143.25) (105.54) (119.05) (155.30)
Bex 16.389 25.858 24.101 32.573
(3.905) (3.151) (3.823) (2.925)
Bem 0.043 0.056 0.059 0.050
(0.001) (0.002) (0.001) (0.002)
do 0.007 0.010 0.004 0.010
(0.000) (0.000) (0.008) (0.000)
d1 0.313 0.308 0.305 0.126
(0.002) (0.002) (0.002) (0.002)
Change in 0 -3531 -5641 -8179

Log-Likelihood



Table 2: Fitted Sample Moments

Full model Constant z Constant W Constant z and W Data
Ex ante real rate, mean 1.850 0.828 1.604 2.291
Ex ante real rate, stdev 0.561 0.558 0.545 0.543
Ex post real rate, mean 1.513 0.719 1.496 2.169 1.540
Ex post real rate, stdev 0.730 0.519 0.620 0.698 0.895
Expected inflation, mean 3.517 4.596 3.773 3.083
Expected inflation, stdev 0.706 0.703 0.757 0.754
Realized inflation, mean 3.626 4.593 3.816 3.144 3.772
Realized inflation, stdev 0.918 0.704 0.810 0.861 1.053
10 yr expected excess
return, mean 0.639 1.623 0.995 1.918
10 yr expected excess
return, stdev 0.474 0.838 0.079 0.000
Conditional stdev of 10 yr
excess return 9.219
3 yr expected excess
return, mean 0.212 0.136 0.871 1.225
3 yr expected excess
return, stdev 0.157 0.165 0.070 0.000
Conditional stdev of 3 yr
excess return 4.019
10yr realized return, mean|  0.910 0.685 0.848 0.812 1.040
10yr realized return, stdev 9.576 10.101 9.976 9.964 11.59
3yr realized return, mean 0.640 1.461 0.998 0.998 0.646
3yr realized return, stdev 2.981 3.851 3.848 3.839 3.112




Table 3: Predictability of Excess Bond Returns
T-statistics in parentheses

Full model Constant z Constant W Constant z and ¥ Data
10yr RXR = a+bSPR 2.617 4,544 2.671 2.649 2.631
(9.303) (9.642) (9.542) (9.879) (7.659)
R2 0.130 0.130 0.132 0.130 0.136
10yr RXR = a+bEXR 0.870 0.367 -2.951 0
(3.651) (2.647) (-2.024) (0)
R2 0.025 0.012 0.014 0
10yr RXR = a+bTent 0.027 0.029 0.029 0.030 0.0318
(12.800) (13.064) (13.877) (12.064) (11.264)
R2 0.214 0.215 0.241 0.244 0.266
10yr EXR = a+bSPR 0.183 0.012 0.057 0
(3.744) (0.136) (7.052) (0)
R2 0.151 0.239 0.934 0
10yr EXR = a+bTent 0.003 0.001 0.000 0
(10.303) (12.282) (3.929) 0)
R2 0.356 0.385 0.931 0
3yr RXR = a+bSPR 1.049 0.592 0.873 0.846 1.186
(6.634) (6.865) (5.366) (5.201) 8.701
R2 0.105 0.144 0.093 0.092 0.145
3yr RXR = a+bEXR 1.183 0.633 0.325 0
(5.566) (3.052) (0.654) (0)
R2 0.098 0.093 0.052 0
3yr RXR = a+bTent 0.007 0.007 0.010 0.006 0.008
(9.677) (10.412) (9.652) (9.341) (12.356)
R2 0.170 0.216 0.175 0.168 0.230
3yr EXR = a+bSPR 0.061 0.028 0.066 0
(3.744) (0.990) (5.009) (0)
R2 0.151 0.055 0.932 0
3yr EXR = a+bTent 0.001 0.000 0.000 0
(10.302) (9.064) (3.929) (0)
R2 0.256 0.162 0.931 0
Tent = a+b*psi_t 14.198 0.951
(11.502) (12.068)
R2 0.288 0.299
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