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This papers presents an analysis of the financial market effects of demo-
graphic change. We first develop a stylized overlapping generations model
to derive qualitative general equilibrium predictions on the effects of de-
mographic change on the equity premium, the return differential between
a risky and a risk-free investment. As our key insight, we show that the ex-
ante equity premium increases when a smaller cohort enters the economy.
We then develop a large scale overlapping generations model to provide
a realistic quantitative assessment of the effects of demographic change
on the equity premium for the U.S. economy. Our simulation model pre-
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1 Introduction

As in all major industrialized countries the U.S. population is aging reducing
the fraction of the population in working age. This process is driven by falling
mortality rates and declining birth rates, which substantially reduces population
growth rates. Based on United Nations (2002), figure 1 compresses the stylized
facts on demographic change by displaying the predicted time paths of two key
demographic indicators for the U.S.. The solid line in the figure (left scale) is the
predicted working age to population ratio – here defined as the number of the
working age population of age 20-64 to the total adult population of age 20-110
– and the dashed line (right scale) is the corresponding time path of the old age
dependency ratio – here defined as the number of the population of age 65 and
older as a fraction of the working age population. According to this data and
our definitions, while the working age to population ratio is projected to decrease
by roughly 10 percentage points between 2005 and 2030, which we take as the
base years of comparison throughout the paper, the old age dependency ratio
increases by about 16 percentage points.1 These projected developments will
make raw labor a scarce factor relative to physical capital with ensuing decreases
of the rate of return to capital.

Figure 1: Facts on Future Demographic Change
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Notes: Blue solid line: working age to population ratio (WAPR). Green dashed line: old age
dependency ratio (OADR).
Source: Own calculations based on United Nations (2002).

1The choice of year 2030 as a base year of comparison is motivated by the insight that demo-
graphic developments somewhat flatten out after 2030, cf. figure 1, and because demographic
projections are inherently more uncertain after a horizon of about 30 years.
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What will be the financial market consequences of these demographic de-
velopments? No consensus has been reached in the academic literature on this
prominent question posed by Abel (2001, 2003), Poterba (2001) and several oth-
ers. Despite significant effects of demographic change on the rate of return to
capital, it has recently been argued that the size of these effects seems too small
such that the catchphrase “asset market meltdown” is not justified in the con-
text of population aging, cf., e.g., Börsch-Supan, Ludwig, and Winter (2006)
and Krüger and Ludwig (2007). Quite in contrast, there is little agreement on
the qualitative as well as the quantitative effects of demographic change on the
differential returns between risky and risk-free assets (Bakshi and Chen 1994;
Brooks 2002; Börsch-Supan, Ludwig, and Sommer 2003; Geanakoplos, Magill,
and Quinzii 2004). While Brooks (2002) reports substantial increases in the eq-
uity premium, the approximate calculations in Börsch-Supan, Ludwig, and Som-
mer (2003) rather suggest a small increase. Geanakoplos, Magill, and Quinzii
(2004) conclude that “the equity premium is smaller when the population of
savers is older” which the authors interpret as a contradiction to the findings of
Bakshi and Chen (1994) and Brooks (2002).

Against this background, the contribution of the present paper is twofold. In
a first step we develop a modified two-generations-overlapping Diamond (1965)
economy. The two most important features we add to the Diamond model is risky
production and a risk-free government bond in positive supply. These extensions
provide us with an analytically tractable framework to consistently analyze the
causal links between demographic change (aging) and the equity premium in
general equilibrium. Such a consistent theoretical treatment is missing in the
existing literature. As the central result of our theoretical analysis we show that
the equity premium increases when a small cohort enters the labor market.

In a second step we extend our simplifying two generations model to a multi-
generation OLG model in the tradition of Auerbach and Kotlikoff (1987). Any
serious attempt to quantify the effects of demographic change on asset prices
should be based on simulation models with a realistic periodicity of one to at
most five years. Models that run at a lower frequency implicitly impose restric-
tions on household’s ability to adjust their portfolio which may severely bias the
predictions. The periodicity of our model is therefore annual and we calibrate
the model to the projected trends of U.S. demography in the coming decades.
Our framework thereby enables us to provide a realistic quantitative assessment
of the effects of aging on the equity premium in general equilibrium. We show
that the expected decrease of the risky rate of return to capital until 2030 is
in the order of magnitude of about 1.2 percentage points. The decrease of the
risk-free interest rate on government bonds is slightly higher such that the equity
premium increases by about 0.28 percentage points.

Our quantitative analysis contributes to and borrows model elements from
several strands of the literature. We extend the analysis by Brooks (2002) – who
uses an OLG model with only 4 generations – to a more realistic annual periodic-
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ity. While such a large-scale model is, in our opinion, key for providing a realistic
quantitative assessment, it also potentially implies tremendous computational
costs. To overcome these we adopt the risky human capital framework developed
in Krebs (2003) and Krebs and Wilson (2004) in an overlapping generations setup.
Consequently, there are three assets in the economy: risky human capital, risky
physical capital and risk-free government bonds. This setup considerably simpli-
fies the numerical solution of the model’s household sector for given expectations
on aggregate prices, also see Merton (1969) and Samuelson (1969). On the ag-
gregate side, while the current version of the paper applies a “semi-deterministic
solution method, we will follow the literature (e.g., Gomes and Michaelides (2006)
and Storesletten, Telmer, and Yaron (2007)) in future versions and compute an
approximate rational expectations equilibrium in our model by applying a variant
of the Krusell-Smith methodology (Krusell and Smith 1997; Krusell and Smith
1998) that we suitable modify to account for the fact that demographic change
enters the model through a time-varying exogenous process.

The remainder of this paper is structured as follows. In section 2 we develop
our stylized two generations OLG model in order to illustrate the key mechanisms
at work in our quantitative model and to derive the qualitative conclusions on
the relationship between demographic change and the equity premium. Section 3
extends the simplified setup of our two period model to a large scale overlapping
generations model and section 4 discusses calibration and the numerical solution.
Section 5 presents the simulation results of our quantitative model. Finally,
section 6 concludes.

2 A Stylized OLG Economy

Our stylized two generations OLG model is a simplified version of the model
developed in Kuhle (2007). We extend the Diamond (1965) model by introducing
aggregate risk to the production function. As a consequence of aggregate risk,
future output and interest rates are unknown to the representative agent. This
adds an additional choice to the household problem: the individual has to decide
how to allocate savings between risky capital and risk free government bonds.

2.1 Population

The working age population is assumed to grow at an exogenously given rate nt.
Hence we have

Nt+1 = (1 + nt)Nt. (1)

Below, we focus on the following scenario: an exogenously given baby boom/bust,
i.e. the growth rate nt will be in-(de-)creased for one period.
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2.2 Firms

The production technology is given by a continuous constant returns to scale
aggregate production function,

Y = ztFt(Kt, Nt); FK > 0, FKK < 0, FN > 0, FNN < 0, (2)

where the signs of the respective partial derivatives with respect to the inputs
capital K and labor N ensure that Ft(·) is concave. Production is subject to
an aggregate technology shock zt. This technology shock is assumed to be log-
normally distributed and hence output and factor prices are log-normal too.

Once the respective realization of the shock is known, each firm will rent
capital and hire labor up to the point where the marginal products are equal to
the market prices such that

rt = zt
∂F

∂Kt

(3)

wt = zt
∂F

∂Nt

(4)

2.3 Government Debt

In order to appreciate the fact that the government is the only entity supplying
bonds that are (in absence of inflation risks) risk free we introduce a government
that pursues a certain debt policy. Different debt policies of the government
are perceivable and Kuhle (2007) discuss two such policies. Here, we focus the
analysis on a policy that holds the debt to GDP ratio constant as suggested by
the Maastricht criteria. The budget constraint of the government is given by

Bt+1 + Ntτ = (1 + rf
t )Bt + Gt. (5)

where Bt is the amount of outstanding and Bt+1 the amount of newly issued debt
in period t and rf

t = 1
qt−1

− 1 is the rate of interest on government debt which
was issued at time t− 1 at price qt−1. Government consumption is given by Gt.

In the following we will assume that the rate of interest earned on government
debt is deterministic, i.e., at time t the government issues debt with a guaranteed
rate of return rf

t+1. Hence, in an economy that is inhabited by risk averse agents
with concave utility, the rate of return on government debt will always be below
the expected return on risky capital, i.e., the expected equity premium must be
positive.

For our Maastricht policy of constant per GDP debt, where

Bt+1

Yt

= b ∀t (6)

5



we can now use (6) to solve (5) for per capita government consumption as

gt = τ +

(
yt − (1 + rf

t )

(1 + nt−1)
yt−1

)
b. (7)

In the following we keep the tax rate τ constant such that equation (7) determines
per capita government consumption gt.

2.4 The Household

The representative household lives for two periods and supplies labor inelastically
in the first period only. Towards the end of the first period the household faces a
consumption/saving and a portfolio decision. As in Abel (1999) and Bohn (2001)
preferences over current and future consumption, ct,0 and ct+1,1, respectively, are
described by a simplified Epstein and Zin (1989) utility function:

ut = ln(ct,0) + β
1

1− θ
lnEt[(ct+1,1)

1−θ]; 0 < θ 6= 1, 0 < β < 1. (8)

Equation (8) indicates that we use a utility function where the elasticity of
inter-temporal substitution is set to unity, which implies that the individual sav-
ings/consumption decision is independent of the interest rate. This assumption
is reasonable as long as the influence of changes in the rate of interest on savings
is not too large. The assumption is also necessary to keep the general equilibrium
analysis tractable. The parameter θ is the coefficient of relative risk aversion with
respect to second period consumption and, as Epstein and Zin (1989) discuss, al-
lows to disentangle the distinct concepts of intertemporal substitution and the
preferences with respect to temporal risks.

The present value budget constraint to the household problem can be written
as:

Wt = wt − τ = at+1 + ct,0; at+1 = ab
t+1 + as

t+1, (9)

ct+1,1 =
(
(1 + rf

t+1)a
b
t+1 + (1 + rt+1)a

s
t+1

)
, (10)

where Wt is the total wealth of a young agent, at+1 are the asset holdings (savings)
after first period consumption is realized whereby ab

t+1 and as
t+1 are the respective

amounts invested into the risk free and risky asset. Denoting the portfolio share

of risky assets by ωt+1 =
as

t+1

at+1
and the share of risk-free assets by 1− ωt+1 =

ab
t+1

at+1

yields, according to (8), the following household problem:

max
ct,ωt+1,at+1

ut = ln(Wt − at+1)+

β ln(at+1) +
β

1− θ
lnEt

[(
1 + rf

t+1 + ωt+1

(
rt+1 − rf

t+1

))1−θ
]

.
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Optimal savings are then given by

at+1 =
β

1 + β
Wt, (11)

where the propensity to save out of wealth is β
1+β

. The implicit condition for
ωt+1, the optimal portfolio share in the risky asset, is the first-order condition

Et

(
[1 + rf

t+1 + ωt+1

(
rt+1 − rf

t+1

)−θ

(rt+1 − rf
t+1)

)
= 0. (12)

To abbreviate subsequent expressions we define R as a shorthand for principal
and interest earned on one dollar invested in the portfolio such that

Rt+1 ≡ 1 + rf
t+1 + ωt(rt+1 + rf

t+1). (13)

Condition (12) allows to derive the following proposition.

Proposition 1. The signs of the partial derivatives of the portfolio share with
respect to the risk-free (risky) rate of return and the coefficient of relative risk
aversion, respectively, are as follows:

dω

drf
< 0;

dω

dr
> 0; θ ≤ 1 (14)

dω

dθ
< 0 ∀θ. (15)

Proof. See Kuhle (2007).

As proposition 1 indicates we cannot determine the sign of ωr and ωrf un-
ambiguously for θ > 1. In the following we will assume that an increase of the
expected risky (risk-free) return will, ceteris paribus, increase (decrease) the share
ω invested in the risky asset, irrespective of the value of θ.

2.5 Equilibrium

After having completed the partial analysis of the firm, the government and the
household we can now turn towards the conditions for the bond, equity and asset
markets. Accordingly, the capital market equilibrium condition reads as

Nt+1kt+1 = Ntωt+1
β

1 + β
Wt. (16)

The bond market equilibrium condition with a Maastricht policy reads as

Ntytb
g = Nt(1− ωt+1)

β

1 + β
Wt. (17)
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Finally, the asset market equilibrium condition is given by

Nt+1(kt+1 + b) = Nt
β

1 + β
Wt. (18)

It is important to note that the equilibrium conditions (16) and (17), for the
capital and bond market form a system of two linearly independent equations
that imply the equilibrium path of the two interest rates, r and rf . Adding (16)
and (17) yields the linearly dependent asset market equilibrium condition (18).
The resulting ex-ante equity premium is given by

µt+1 = rt+1 − rf
t+1. (19)

2.6 The Impact of a Baby-Boom on the Equity-Premium

In this subsection we discuss the short run implications of a baby boom/bust i.e.
a high/low realization of nt in the instance of a constant debt to output ratio
(Maastricht policy). Total differentiation of equations (16) and (17) with respect
to dnt, dkt+1, drf

t+1 and drt+1 yields, after using (3) and rearranging:

drt+1

dnt

= − kt+1

(1 + nt)
f ′′(kt+1) > 0, (20)

and

dωt

dnt

= ωrf

drf
t+1

dnt

+ ωr
drt+1

dnt

= 0. (21)

Interpretation of these two equations is straightforward: since a change in the
growth rate of population does not change government taxes, the present value
of lifetime income Wt out of which individuals save a constant fraction remains
unchanged. Thus an increase in the relative size of the next cohort lowers the
capital intensity and increases the expected future return on risky investments, cf.
equation (20). Equation (21) follows from the bond market equilibrium condition
and indicates that, for drt+1

dnt
> 0, the government has to offer a higher risk-free

rate to sell a given amount of debt. With respect to the ex-ante equity premium
we can now use the individual portfolio choice behavior described in Kuhle (2007)
to show that

dµt+1

dnt

< 0. (22)

We can therefore state the following proposition:

Proposition 2. A baby bust (boom) will increase (decrease) the equity premium.

Proof. See Kuhle (2007).
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With respect to our stylized economy we have now come full circle. We
have sketched a tractable model, which allows to study the relation between
the age distribution in the economy and the equity premium. Contrary to the
previous literature, i.e. Brooks (2004) and Geanakoplos, Magill, and Quinzii
(2004), who discuss economies where government bonds are in zero net supply,
we have appreciated the fact that the government is the only entity that can
supply safe debt.

In such a framework, we find that the entrance of a small cohort into the
labor market leads to an increase in the capital intensity, and thus to a lower
risky rate. At the same time the government issues a given amount of debt. To
allow for market clearing, the share invested in the risk-free asset has to remain
constant. This implies that the risk-free rate must decrease alongside with the
risky rate. To this point the change in the equity premium is ambiguous.

The resulting change in the equity premium is then basically independent of
the age distribution, since it purely follows from the portfolio adjustment of the
current working population. This adjustment process indicates that the equity
premium has to increase since the risky rate has to fall by less than the risk-free
rate to keep the portfolio shares constant.

3 Quantitative Model

Our quantitative model is based on Ludwig (2007) and extends the simple model
from the previous section to a multi-period setup as in Auerbach and Kotlikoff
(1987) and also adds additional idiosyncratic risks. On the household side, the
novelty in this paper is to assume that human capital of households is a choice
variable rather than being exogenously given. We implement this feature by
adopting the risky human capital framework developed in Krebs (2003) and Krebs
and Wilson (2004) in an overlapping generations setup. In each period, a house-
hold of a given age chooses to invest a fraction of her overall wealth in human
capital, respectively financial assets. As for the fraction of wealth invested in fi-
nancial assets, the household solves a standard portfolio allocation problem as in
our simple model by choosing how much to invest into risky physical capital and
risk-free government bonds.2 Consequently, there are three assets in the econ-
omy: risky human capital, risky physical capital and risk-free government bonds.
In this setup, once portfolio allocation decisions are made and for given expecta-
tions on aggregate prices, household consumption and savings policies are linear
functions of total household wealth, cf. Merton (1969) and Samuelson (1969).
This feature of our model is particularly useful because it enables us to solve a
large-scale OLG model with rather complex economic and population dynamics

2In contrast to the simple model, our multi-period setup in this section implies that the
bond is risk-free only for one period, which, in our context, corresponds to one calendar year.
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without incurring tremendous computational costs. On the firm side, our model
is standard.

3.1 Risk and Time

Time is discrete and runs from t = 0, . . . ,∞ whereby one period corresponds to
one calendar year. Aggregate risk is represented by an event tree. The economy
starts with some fixed event s0, and each node of the tree is a history of exogenous
shocks st = (s0, s1, . . . , st). The shocks are assumed to follow a Markov chain with
finite support S and strictly positive transition matrix π. Let π(st | s0) denote the
probability that the node st occurs. For notational convenience, unless needed,
we will suppress the dependency of variables on st but it is understood that all
choice variables are history dependent. We allow for two aggregate shocks, a
productivity shock as in the simple model and an additional shock to the depre-
ciation rate of physical capital, see subsection 3.3. In addition, households are
subject to idiosyncratic depreciations shocks of their human capital depreciation,
see subsection 3.6.

3.2 Demographics

The economy is populated with J +1 overlapping generations and the underlying
population dynamics are the exogenous driving force our model. Households
enter the model at the age of 20 (j = 0) and live at most until 110 (j = J = 90).
Population of age j in time period t is given recursively as

Nt,j =

{
Nt−1,j−1ςt−1,j−1 for j = 1, . . . , J∑jf

j=0 ft−1,j−1Nt−1,j−1 for j = 0

where ςt,j denotes time and age-specific survival rates and ft,j are age-specific
fertility rates whereby jf is the age of menopause. Defining the time specific
Leslie matrices Πl

t we can compress the population dynamics as

Nt,j = ΠtNt−1,j−1, Π0 given, whereby (23)

Πl
t =




ft,0 . . . ft,jf
0 . . . 0

ςt,0 0 . . . . . . . . . . . .
0 ςt,1 . . . . . . . . . 0
. . .
0 0 . . . . . . . . . ςt,J−1




Processes governing mortality and fertility are assumed to be non-stochastic.

3.3 Production

In contrast to our simple model of section 2 we here specify an explicit technology
by assuming that firms employ a standard Cobb-Douglas production function. As
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the number of firms is indeterminate, we assume one representative firm in the
economy that produces total output at time t, Yt, by

Yt = ztK
α
t H1−α

t . (24)

Kt denotes the aggregate stock of physical capital, Ht is the aggregate stock of
human capital and z is a productivity shock whereby zt = z(st).

Profit maximization gives

rt + δt = ztαkα−1
t (25)

and
rh
t = z(st)(1− α)kα

t (26)

where kt = Kt

Ht
is capital intensity, rt is the rate of return to physical capital

and rh
t is the rate of return to aggregate human capital. Following Krüger and

Kübler (2006), Storesletten, Telmer, and Yaron (2007), Gomes and Michaelides
(2006) and others we here assume that the depreciation rate of physical capital,
δt = δ(st) is stochastic.

3.4 Government

Government policy is as in our simple model of section 2 whereby we replace
the lump-sum taxes τ by taxes on human capital income at the time constant
rate τh. Furthermore, we assume that the government taxes bequested wealth of
households at a confiscatory rate of 100% and denote this income from bequest
taxation by Tt. Accordingly, the government budget constraint is given by

Bt+1 + τhrh
t Ht + Tt = (1 + rf

t )Bt + Gt. (27)

3.5 Preferences

The life-time utility function of a household born in period t is given by

E0

J∑
j=0

βjϕt,ju(ct+j,j) (28)

where E is the expectations operator, β is the raw time discount factor and ct,j

is consumption at time t, age j. ϕt,j is the probability of an agent born in period
t to survive until age j, hence

ϕt,j =

j−1∏
i=0

ςt+i,i

11



where ςt,i are the age-specific probabilities to survive in period t from age i to
i + 1.

In contrast to the simple model of section 2, we work with standard CRRA
preferences. The per period utility function is accordingly given by

u(ct,j) =

{
1

1−θ
c1−θ
t,j if θ 6= 1

ln(ct,j) if θ = 1
(29)

where θ is the coefficient of relative risk aversion.

3.6 Endowments

When entering the economy at age j = 0, households are endowed with an initial
level of human capital, ht,0 = h0 for all t = 0, 1, . . .. Each period, households
choose to invest a fraction of their total wealth - which, as we shall demonstrate
below, is the sum of financial assets and human capital - in financial assets,
respectively in human capital. Let iht,j denote the investment in human capital.

As in Huggett, Ventrua, and Yaron (2007), human capital earns a gross rate
of return of rh

t lj whereby the two components are the marginal product of human
capital, rh

t , cf. equation (26) and a labor supply component lj that varies across
age. The labor supply component is calibrated to match the actual hump-shaped
average age specific labor supply patterns in the data and is therefore constant
across time. Details on the calibration of {lj} are provided below. As the return
from the labor component, lj, is hump-shaped and goes to zero for ages above
80 (j = 60)3, the household at some age chooses to drive down human capital
investments such that next periods human capital stock hits the lower bound of
zero, that is, the household chooses to retire. Consequently, retirement in our
model is endogenous at some age jr

t .
In addition, returns to human capital are subject to human capital taxes, τh,

such that the net return on human capital is given by rh
t+1lj+1(1−τh). Notice that

τh just replaces the lump-sum taxes we used in our simple model in section 2.
Furthermore, human capital adjustments are assumed to be costly. Adjustment
costs enable us to calibrate the average return on human capital relative to the
return on physical capital, see below. In order to preserve analytical tractability,
adjustment costs are linear and governed by the adjustment cost parameter γh.

Before the investment decision is made, the household is hit by an idiosyn-
cratic shock to the depreciation rate of human capital, δh. The shock is additive
and denoted by η = η(st). Although the shock is idiosyncratic, it depends on
the current state of the economy, st, because, as further discussed below, the
variance of idiosyncratic human capital shocks depend on the current state of the
economy. Collecting all these elements, the human capital accumulation equation

3This is the maximum age with data on age-specific labor supply.
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in period t, age j, is given by

ht+1,j+1 = ht,j(1− δh + η) + iht,j, h ≥ 0. (30)

As for the investment in financial assets, the household chooses to invest in
period t, age j, a fraction in risky physical capital and a fraction in government
bonds. Let ωs

t,j be the fraction of holdings of risky physical capital in period
t, age j. Accordingly, let ωb

t,j = 1 − ωs
t,j be bond holdings. Consequently, the

dynamic asset accumulation equation in period t, age j, is given by

at+1,j+1 = at,j(1 + rf
t + ωs

t,j(rt − rf
t )) + rh

t lj(1− τh)ht,j − (1 + γh)iht,j − ct,j (31)

In the following we work on equations (30) and (31) in order to derive a
recursive law of motion of total wealth of households. Total wealth will be defined
below. Combining (30) and (31) we have

at+1,j+1 + ht+1,j+1 = at,j(1 + rf
t + ωs

t,j(rt − rf
t ))+

ht,j(1 + rh
t lj(1− τh)− δh + η)− γhiht,j − ct,j

Again using (30) in the above we get

at+1,j+1 +ht+1,j+1 = at,j(1+ rf
t +ωs

t,j(rt− rf
t ))+ht,j(1+ rh

t lj(1− τh)− δh + η)−
γh

(
ht+1,j+1 − ht,j(1− δh + η)

)− ct,j

and therefore

at+1,j+1 + ht+1,j+1

(
1 + γh

)
= at,j(1 + rf

t + ωs
t,j(rt − rf

t ))+

ht,j

(
rh
t lj(1− τh) +

(
1 + γh

)
(1− δh + η)

)− ct,j

Next, let h̃t,j = ht,j

(
1 + γh

)
and r̃h

t,j =
rh
t

1+γh lj(1− τh)− δh + η, then

at+1,j+1 + h̃t+1,j+1 = at,j(1 + rf
t + ωs

t,j(rt − rf
t )) + h̃t,j(1 + r̃h

t,j)− ct,j

Now define by ω̂s
t,j =

ωs
t,jat,j

wt,j
and by ω̂b

t,j =
(1−ωs

t,j)at,j

wt,j
the share of total

“wealth”, wt,j = at,j + h̃t,j, invested in physical capital and bonds, respectively,

and let ω̂h
t,j =

h̃t,j

wt,j
be the share invested in human capital including the adjust-

ment costs. Observe that ω̂b
t,j = 1 − ω̂s

t,j − ω̂h
t,j. We then finally have a dynamic

budget constraint in terms of total wealth which is given by

wt+1,j+1 = wt,j(1 + rf
t + ω̂s

t,j(rt − rf
t ) + ω̂h

t,j(r̃
h
t,j − rf

t ))− ct,j (32)

= wt,jRt,j − ct,j,

where Rt,j is the return on the total portfolio in period t, age j.
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3.7 The household problem and equilibrium

We now define recursively the household problem for a given law of motion of the
aggregate state of the economy. Rather than using wt,j as a state variable, it is
convenient to solve the household problem in terms of total resources available.
Let xt,j = wt,jRt,j be total resources, or, alternatively, “cash-on-hand” (Deaton
1991). Observe that

xt+1,j+1 = (xt,j − ct,j)Rt+1,j+1. (33)

Furthermore, it is convenient to express next period’s values with symbol ′,
irrespective of whether next period values are only time dependent or age and
time dependent. The states of the household problem are the exogenous states
t, j and s, the endogenous cash-on-hand of the household, x, as well as the
endogenous aggregate state of the economy, G, with associated law of motion
G′ = Φ(G, s, s′). The household problem in period t, age j is then given by

V (x; s, t, j; G) = max
c,ω̂s′,ω̂h

′
,x′
{u(c) + βςEV (x′; s′, t + 1, j + 1; G′)} (34)

subject to

x′ = (x− c)R′

R′ = 1 + rf ′ + ω̂s′(r′ − rf ′) + ω̂h
′
(r̃h

′ − rf ′)

G′ = Φ(G, s, s′).

The expectation E above is taken with respect to the realization of tomorrow’s
aggregate state s′ conditional on state s today and thereby with respect to the
technology shocks, z′, the aggregate physical capital depreciation shock, δ′, and
the idiosyncratic depreciation shock η′ which all are functions of tomorrow’s state
s′.

Using results derived in Samuelson (1969) we can now state the following
property of the optimal consumption policy functions.

Proposition 3. Denote by ω̂s?′
and ω̂h

?′
the optimal portfolio decisions that are

the solutions to

E
[
(R′m′)−θ

(r′ − rf ′)
]

= 0

E
[
(R′m′)−θ

(r̃h
′ − rf ′)

]
= 0

where m′ denotes the marginal propensity to consume out of cash-on-hand in the
next period. Then the optimal consumption function is linear in cash-on-hand,

c = m · x
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whereby the marginal propensity m to consume out of cash-on-hand x is given by

m =
(ςβR?′)−

1
θ

1 + (ςβR?′)−
1
θ

where

R?′ = E
[
m′−θ

(1 + rf ′ + ω̂s?
(r′ − rf ′) + ω̂h

?
(r̃h

′ − rf ′))1−θ
]
.

Proof. See Ludwig (2007).

As in our simple model of section 2 the portfolio decisions do not depend on
current cash-on-hand and the policy functions of consumption are linear. These
features are due to the homotheticity of preferences and are particularly useful
in the numerical solution of our simulation model.

Equilibrium in the economy is defined recursively and requires market clearing
in all periods, while optimal decisions and aggregation conditions have to hold.
Details on the formal definition of equilibrium are provided in Ludwig (2007).

4 Calibration and numerical solution

4.1 Calibration

Calibration of our model is in part by reference to other studies and in part by
informal matching of moments procedures. Many of these choices are somewhat
ad hoc and future versions of the paper will have a much more careful calibra-
tion. Table 1 summarizes some of our structural model parameters. Parameters
governing stochastic processes are described in the text.

Table 1: Calibration parameters

Firm sector
Capital share, α 0.33
Mean depreciation rate of capital, δ0 0.05
Household sector
Discount factor, β 0.96
Coefficient of relative risk aversion, θ 4.0
Initial human capital, h0 1.0
Mean depreciation rate of human capital, δh 0.01
Adjustment costs to human capital, γh 2.0
Government sector
Debt to GDP ratio, b 0.38
Taxes on human capital income, τh 0.28
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Aggregate states and shocks. We assume that aggregate risk is driven by
a four state Markov chain with support S = {s1, . . . , s4} and transition matrix
π = (πij). Each aggregate state maps into a combination of low or high technology
shocks and low or high physical capital depreciation. Precisely, we assume that

zt = z(st) =

{
1 + zl for s ∈ s1, s2

1− zh for s ∈ s3, s4

and δt = δ(st) =

{
δ0 + ψ for s ∈ s1, s3

δ0 − ψ for s ∈ s2, s4.

(35)
The 4× 4 transition matrix of the aggregate state is given by

Π =

[
(0.879)2×2 (0.121)2×2

(0.121)2×2 (0.879)2×2

]
. (36)

The transition probabilities are based on an estimation of deviations of Solow
residuals from linear trends for the U.S. economy, cf. Silos (2004). The support
of the technology shocks z is set to {0.9795, 1.0205} such that zl = zh = 0.0205
which is based on the same estimation. The values of shocks to the aggregate
depreciation rate of physical capital are based on Gomes and Michaelides (2006)
and set to ψ = 0.16.

Population data. Our annual and age-specific demographic data for the
population dynamics in (23) are based on the United Nations population projec-
tions United Nations (2002). More details on the construction of these data are
provided in Krüger and Ludwig (2007).

Production sector. The value of the capital share parameter α = 0.33
is based on an estimation of the aggregate production function for the U.S., cf.
Krüger and Ludwig (2007) and lies in the usual range considered in the literature.
The value of the mean depreciation rate of physical capital, δ0 = 0.05 is also
standard and corresponds with empirical estimates.

Household sector. The value of household’s raw time discount factor β =
0.96 is at the lower range of values considered in the literature and provides us
with a hump-shaped consumption profile with a peak around the age of 70 which
is a bit late compared to the data, cf. Fernández-Villaverde and Krüger (2006).
Higher values of the discount factor would imply a consumption profile peaking
even later in life and we therefore opted for this value. The coefficient of relative
risk aversion θ is at the upper bound of the usual interval [1, 4] considered in
the literature. With this value, our model generates an equity premium of 3.5
percentage points in 2005. A value of θ = 2 would have resulted in an equity
premium of roughly 1.5 percentage points and we therefore chose the higher
value. Due to our homothetic preferences, the initial level of human capital h0 is
irrelevant and we normalize human capital by setting h0 = 1.

The mean depreciation rate of human capital δh is set to 0.01 which is in the
range of values estimated by Ludwig, Schelkle, and Vogel (2007). Idiosyncratic
depreciation shocks to human capital, η, are uncorrelated but the variance of η
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depends on the current state of the economy (Constantinides and Duffie 1996).
We thereby follow the approach of Storesletten, Telmer, and Yaron (2007) and
set the standard deviation σ(η) to

σ(η) =

{
0.2 for s ∈ s1, s2

0.1 for s ∈ s3, s4

. (37)

which is within the range considered in Krebs and Wilson (2004).
The age-specific hours {lj} are taken as the averages of labor supply shares

for the U.S. for the period 1960− 2003 based on the OECD and are additionally
weighted by a correction factor for hours worked. As far as the adjustment cost
parameter to human capital γh is concerned we have determined it such that the
model generates a reasonable capital to output ratio in our base year 2005. This
explains the choice of γh = 2.0. With these values, the year 2005 capital output
ratio is 2.75 which gives an expected rate of return to risky physical capital of
0.07 and an average rate of return to human capital of ¯̃rh = 0.036.

Government sector. The aggregate supply of government bonds is set to
38% of GDP which is based on U.S. data, cf. Gomes and Michaelides (2006). The
tax rate on human capital is set to τh = 0.28 which is an estimate of effective
average tax rates on labor income for the U.S. based on Ruggeri and Vincent
(2000).

4.2 Solution method

Below, we report results from a simulation based on a “semi-deterministic” so-
lution of our model. More precisely, we solve the model by setting all shocks
to their expected values and also assume that agents have correct expectations
about the dynamics of the relevant aggregate state variables such that they can
correctly predict the expected capital intensity kt and the bond price qt. This
approximate solution of our model can be solved by application of standard proce-
dures for the solution of deterministic OLG models, cf. Ludwig (2006). Precisely,
we loop on the capital intensity {kt} and the expected ex-ante equity premium,
{µe

t} = {Et−1rt − rf
t }, until convergence of the time paths of these variables.

Results in future versions of this paper will be based on a stochastic simulation
using a modified Krusell-Smith (Krusell and Smith 1997; Krusell and Smith 1998)
method for solution. Details of this extension are discussed in Ludwig (2007).

Although the current solution procedure is approximate, we are confident that
a more elaborate model will not change our predictions on the time paths of the
average expected risky interest rate, {rt}, the average risk-free interest rate {rf

t },
respectively the average expected ex-ante equity premium, {µe

t}. Whether this
conjecture is correct depends on the linearity of decision rules and the importance
of Jensen’s inequality for our predictions. Since the savings decisions are linear
functions of current state variables, non-linearities enter into our model only by

17



the portfolio allocation decisions. When computing averages of portfolio decision
rules, our approximation errors are however relatively small.

5 Results

As a starting point, we first look in figure 2 at the projected time paths for the
physical capital to output ratio – K

Y
, the solid line – and the human capital to

output ratio – H
Y

, the dashed line. Notice that the time paths of these figures
inherit the properties of the exogenous demographic variation already shown in
figure 1. That is, as the working age to population ratio decreases, the human
capital to output ratio decreases and the low frequency fluctuations of the pop-
ulation data map into these macroeconomic aggregates. The physical capital to
output ratio is predicted to increase from an initial value of about 2.75 in 2005
to 3.05 in 2030, an increase of about 10 percent. At the same time, the ratio of
human capital to output decreases by roughly 5 percent.

Figure 2: Ratios of Physical Capital and Human Capital to Output
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Notes: Blue solid line: physical capital to output ratio (K
Y ). Green dashed line: human capital

to output ratio (H
Y ).

Source: Own calculations based on United Nations (2002).

In correspondence with the relative abundance of physical capital and scarcity
of human capital in the economy, the rates of return to the two risky production
factors are projected to decrease, respectively to increase. Of key importance for
our analysis is the projected decrease of the rate of return to physical capital, the
risky asset held by households. According to figure 3 it is projected to decrease
by a bit more than 1 percentage point until 2030 which is in the range of results
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reported in many other studies, cf. Börsch-Supan, Ludwig, and Winter (2006),
Krüger and Ludwig (2007) and the literature cited therein.

Figure 3: Rates of Return to Physical and Human Capital
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Notes: Blue solid line: rate of return to physical capital (r). Green dashed line: rate of return
to human capital (rh).
Source: Own calculations based on United Nations (2002).

Based on the intuition developed in our simple model of section 2 we can
expect that the rate of return to risk-free assets is also going to decrease with
the aging of population. Furthermore, although the structure of the quantitative
model differs in many respects from our simple model, we can expect that the
return on government bonds, the risk-free interest rate, decreases by more than
the return on risky physical capital. That these conjectures are right is also
supported by the life-cycle profiles of holdings of risky assets (physical capital)
and risk-free government bonds displayed in figure 4 for cohorts born in year 2005.
As the graphs in the figure show, our model predicts positive bond demand of
households for ages of 56 and older. Since the mass of these older agents is
increasing in an aging society and because overall bond supply is determined by
a government policy that is neutral with respect to demographic change, we can
expect that the return to risk-free government bonds decreases. Furthermore,
life-cycle bond holdings exceed life-cycle holdings of risky capital for ages of 61
and older. We can therefore also expect that the bond return decreases by more
than the return on risky capital and that therefore the equity premium increases.

Figure 5 finally shows the projected time paths of the bond return – rf
t , solid

line – and the expected ex-ante equity premium – µe
t , dashed line. As is readily

observed, the bond return decreases by slightly more than the rate of return to
risky capital and the equity premium indeed increases. The effect is, however,
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Figure 4: Life Cycle Holdings of Risky Assets and Risk-Free Bonds
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Notes: Life-cycle holdings of risky assets and risk-free governments in year 2005. Blue solid
line: risky assets. Green dashed line: risk-free government bonds.
Source: Own calculations based on United Nations (2002).

not very large: from 2005 to 2030, our model predicts an increase of the equity
premium by roughly 0.28 percentage points. Notice that this translates into an
overall decrease of the risk-free rate of return by 1.5 percentage points.

6 Conclusion

As the population in all major industrialized countries the U.S. population is
aging, bringing with it a potentially large impact on the returns to the risky
production factors physical and human capital and risk-free government bonds.
Against this background, this paper, first, develops a stylized theoretical two-
generations model to illustrate the qualitative effects of demographic change on
asset prices with a particular emphasis on the equity premium. We show that the
equity premium increases when a small cohort enters the economy. Second, we
develop a large-scale simulation model to provide a realistic quantitative answer
on the order of magnitude by which rates of returns to different asset categories
are affected by demographic change. We show that the expected rate of return to
risky physical capital decreases until 2030 by roughly 1.2 percentage points and
that the expected equity premium is going to increase by about 0.28 percentage
points.
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Figure 5: Bond return and Equity Premium
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Börsch-Supan, A., A. Ludwig, and M. Sommer (2003). Demographie und
Kapitalmärkte - Die Auswirkungen der Bevölkerungsalterung auf Aktien-,
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Fernández-Villaverde, J. and D. Krüger (2006). Consumption over the Life Cy-
cle: Facts from Consumer Expenditure Survey Data. Review of Economics
and Statistics 89(3), 552–565. mimeo.

Geanakoplos, J., M. Magill, and M. Quinzii (2004). Demography and the Long-
Run Predictability of the Stock Market. Brookings Papers on Economic
Activity 1, 241–307.

Gomes, F. and A. Michaelides (2006). Asset Pricing with Limited Risk Sharing
and Heterogeneous Agents. Review of Financial Studies . forthcoming.

Huggett, M., G. Ventrua, and A. Yaron (2007). Sources of Lifetime Inequality.
Working Paper.

Krebs, T. (2003). Human Capital Risk and Economic Growth. Quarterly Jour-
nal of Economics 118, 709–745.

Krebs, T. and B. Wilson (2004). Asset Returns in an Endogenous Growth
Model with Incomplete Markets. Journal of Economic Dynamics and Con-
trol , 817–839.
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