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Abstract

Despite the considerable time and federal funding poured into training scientists, little attention

has been given to the role of graduate programs and postdoctoral appointments on future careers –

even as STEM trainees spend longer time in these positions. Basic information – such as the number

of postdoctoral researchers at each institution – has proven difficult to collect, and the relevant data

is spread across various sources. Thus, to assist meta-researchers, this white paper compiles a list of

available resources that can be used to study the long-term career outcomes of STEM Ph.Ds. It also

identifies shortcomings in current data collection and possibilities for future research avenues.
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1 Introduction

A considerable amount of federal funding and time is spent training the next generation of scientists. The
U.S. annually appropriates $2.8-$3.4 billion on science, technology, engineering, and mathematics (STEM)
education programs: two programs alone – the National Science Foundation (NSF)’s Graduate Research
Fellowships and the National Institutes of Health (NIH)’s Ruth L. Kirschstein National Research Service
Awards – contribute $332 million on supporting graduate students and $473 million on supporting post-
doctoral researchers respectively.(Granovskiy 2018) Each year, U.S. universities confer approximately 45,000
STEM doctorate degrees, who spend on average 6.8 years in graduate school.(Science and Engineering Indi-
cators 2018) The majority of STEM doctoral recipients then move into postdoctoral appointments, spending
on average 1.73 years in these positions.(Cheng n.d.)

At the same time, the STEM fields are known for having a “leaky” pipeline: only 31.37% of biological
science Ph.D.s and 22.08% of chemistry Ph.D.s ever move into a tenure-track position.(Cheng n.d.) Ap-
proximately 25% of biomedical Ph.Ds. hold non-research positions outside of academia, and nearly 50%
of biomedical Ph.Ds. state their occupation is only somewhat or not at all related to their field of train-
ing.(Stephan 2013) These “leaks” are especially prevalent among underrepresented populations: while women
constitute approximately 45% of postdoctoral fellows in the biomedical sciences, they make up approximately
29% of tenure-track investigators.(Martinez et al. 2007) Underrepresented minorities make up approximately
11% of biomedical postdoctoral fellows but only 6% of tenure-track professors.(Meyer et al. 2018) This ho-
mogenous workforce – especially at the higher levels – can have a detrimental impact, as previous research
confirms the importance of diversity on scientific innovation.(Gewin 2018)

Given the extensive federal funding and time poured into training scientists, it is important to address
what factors contribute to the leaky pipeline. Thus far, little attention has been given to the role of graduate
programs and postdoctoral appointments on future careers - despite the lengthening amount of time scientists
spend in these positions. Even basic information - such as the number of postdoctoral researchers at each
institution - have proven difficult to collect.(Biomedical Workforce Working Group Report 2012) This white
paper thus has 2 goals: 1) to compile a list of available resources that can be used in studying the long-term
career outcomes of STEM Ph.D.s, and 2) to identify gaps in the literature that could be filled with additional
data collection. It is organized as follows: Section 2 describes longitudinal surveys, following the scientific
workforce over time. Section 3 describes snapshot of scientist careers at one moment in time. Section 4
describes career-related experiments involving STEM doctorates. Section 5 describes databases of scientist
records. Finally, Section 6 concludes with future avenues for data collection and research in scientist careers.

2 Longitudinal Surveys

2.1 NSF Survey of Earned Doctorates (SED) & Survey of Doctorate Recipients
(SDR)

These two surveys combined provide the most longitudinal, comprehensive description of the U.S. scien-
tific trainee workforce. Beginning in 1957, the Survey of Earned Doctorates (SED; formerly called the
Doctoral Records File) is an annual census of all individuals receiving research doctorates from accredited
U.S. institutions in that academic year.1 Administered when a student applies for graduation, the sur-

1An earlier version of the DRF contains limited information - sex, institution, field, and year of doctorate - for Ph.Ds. who
graduated in 1920-1956.
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vey collects information on doctoral recipients’ demographics (including date of birth, country of birth,
citizenship, race, sex, marital status, parental status), education through the doctorate, and immediate
post-graduation plans. More information about the SED, including annual questionnaires, can be found at
https://www.nsf.gov/statistics/srvydoctorates/#sd&qs.

From the SED, a nationally representative subset of individuals receiving their first science, engineering,
and health research doctorate is selected to be followed in the longitudinal Survey of Doctorate Recipi-
ents (SDR). This biennial survey - which can be linked to SED responses - asks individuals for updates
on their educational history (including any additional degrees earned or types of training done), employ-
ment (including job changes, occupation, tenure-status, salary, compensation, work activities, and satis-
faction), and lifestyle (such as marital or parental status changes). Unfortunately, the SDR does not
consistently ask about academically-focused job characteristics, such as number of publications, patents,
and government support. Individuals are followed until they reach 76 years of age (or are otherwise un-
able to respond). More information about the SDR, including annual questionnaires, can be found at
https://www.nsf.gov/statistics/srvydoctoratework/#sd&qs.

While the SDR was first implemented in 1973, it has undergone several changes over the years; caution
should be used to ensure that longitudinal studies across these survey waves are consistent. The 1993
SDR saw a major redesign: the survey layout was reformatted; questions on post-Ph.D. education, current
employment, and demographics were reworded and expanded; and the target population was refocused to
only include individuals who received U.S. doctorates in science, engineering and health fields.(Characteristics
of Doctoral Scientists and Engineers in the United States: 1993 1996) Since then, many of the core questions
have remained the same, so year-to-year comparisons can be made among the 1993-2017 waves. However,
the sample’s included individuals may vary from year to year, as substantial changes have been made to the
survey’s target population. Starting in 2010, the SDR began to survey individuals who have moved abroad
in the International SDR (or ISDR) - rather than dropping them from the sample: for the 2010 and 2013
waves, the sample design accounts for individuals residing outside of the U.S. who received doctorate degrees
since 2001; starting in 2015, all SED individuals were included in sampling - regardless of academic year of
award or post-graduation reesidency. The 2015 wave also saw a major expansion of the SDR sample from
approximately 47,000 individuals to 120,000 individuals. To accomplish that increase in sampling, a new
sample was selected from the entire SED: the 2015 wave only includes 16,075 individuals from the 2013 SDR;
the remainder was newly selected from the 2013-2015 SED.(Foley 2015)

A limited selection of variables are available for public use and can be downloaded from the Scien-
tists and Engineers Statistical Data System at https://ncsesdata.nsf.gov/datadownload/. For access to
restricted use microdata, the NSF has a standardized licensed application with instructions available at
https://www.nsf.gov/statistics/license/index.cfm. Note that the application now restricts to waves after the
1993 redesign; individuals seeking earlier SDR data may need to separately contact the NSF. Given the
extensive data collected and relative ease of obtaining a license, the SED and SDR are popular resources for
researchers studying the careers of scientists: Ginther and Kahn 2017 utilize the 1981-2013 waves of the SDR
matched to the 1980-2013 SED to examine the impact starting in a postdoctoral position on the employment
sector and salaries of biomedical Ph.D.s; they estimate ex-postdocs gave up 17-21% of their present value of
income over the first 15 years of their careers relative to Ph.Ds. with no postdoctoral experience. Lan 2012
uses the SED to examine the impact of increased permanent visas through the Chinese Student Protection
Act of 1992 on postdoctoral participation; he finds that permanent visa holders are 24% less likely to take
postdoctoral positions than temporary visa holders. Kahn and Macgarvie 2018 combine data from the 2010-
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2015 waves of the ISDR with country-based limits on EB-2 green cards to estimate the relationship between
visa delays and stay rates of international doctorates: each year of visa delay leads to a 2.4 percentage point
decline in Chinese graduate stay rates, while Indian graduate students are only affected by very long delays
(those facing >5.5 years of delay have a 8.9 percentage point lower stay rate). Agarwal and Ohyama 2013
use the 1995-2006 SDR to fit a life cycle model of human capital investments sorting heterogeneous scientists
into different career trajectories; they find evidence of sorting by ability for basic over applied academic
research and sorting by nonmonetary returns into academia over industry. Mishagina 2009 examines the
occupational choices of science and engineering doctorates - in particular, retention in STEM fields - using
the 1973-2001 SDR and 1957-2005 SED; she finds that while 72% of doctorates start their careers in R&D
tasks, only 45% were still in R&D 30 years later - with 80% of switchers moving into applied tasks.

2.2 Science & Engineering Ph.D. & Postdoctoral Survey (SEPPS)

Filling in gaps about science trainees’ preferences, expectations, and abilities, Roach and Sauermann 2016
administer the extensive Science & Engineering Ph.D. & Postdoctoral Survey (SEPPS) to nearly 6,000 Ph.D.
candidates across 39 research-intensive universities and 5 major STEM fields, following them in 2010, 2013,
and 2016. SEPPS’s longitudinal structure allows them to examine individuals from the early vs. late stages
of their Ph.D. (as in Roach and Sauermann 2017); from Ph.D. to postdoc (as in Roach and Sauermann 2016);
and a smaller sample from postdoc to postdoc. The survey covers a wide range of measures including career
preferences; objective ability (e.g. number of publications, patents, and fellowships); subjective ability
(e.g. self-reported research ability relative to peers); expectations about the job market (e.g. percent of
field on tenure-track 5 years post-graduation, expected salary); expectations about one’s own career (e.g.
probability of being on tenure-track within 5 years); and reasons for pursuing postdoctoral positions. Of
particular note is how the surveys shed light on non-academic and even non-research careers: Roach and
Sauermann 2014 find that over 1/3 of Ph.D. candidates most likely to seek positions in industrial research
are not willing to take a lower salary for the opportunity to publish, and Roach and Sauermann 2017 find
that 20% of early Ph.D.s are not interested in academic careers - rising to 45% of individuals later in their
Ph.D.s. To shed more light on this matter, the surveys also include questions on Ph.D. and postdoc interest
in industry careers and entrepreneurship. The authors have generously provided a public-use dataset at
http://dx.doi.org/10.7910/DVN/DHSM1F; for further information on the survey, researchers should contact
the authors directly.

2.3 National Postdoc Association (NPA) Survey

To better understand the institutional context of postdoctoral researchers, the National Postdoc Association
(NPA) survey the resources available to postdocs at each member university. The NPA survey is distributed
to postdoctoral offices at NPA’s member institutions; 74 institutions completed the 2013 wave, and 102
completed the 2016 wave. The survey asks about institutional and postdoctoral population demographics;
structure of the institution’s postdoc office; postdoc policies (e.g. term limits, exit survey practices); mini-
mum postdoc stipend policies (in particular, whether institutions adopt the NIH recommended stipend scale
- see Subsection 5.5); postdoc benefits (e.g. health insurance, maternity/paternity leave, retirement plans);
and professional development/training offerings. The 2016 wave also overlapped with expected changes to
the Fair Labor Standards Act (FLSA), which would have increased minimum postdoctoral stipends but was
overturned shortly before implementation in December 2016; in response, the NPA sent a follow-up ques-

5



tionnaire to its member institutions to confirm if there were any changes to their responses on postdoctoral
compensation. The survey results are detailed in the 2014 and 2017 NPA Institutional Policy Reports;
researchers interested in the using the institution-level data should contact the NPA directly.(Ferguson,
Huang, et al. 2014; Ferguson, McTighe, et al. 2017) While these surveys do not survey individual postdocs,
this institution-level data could be merged with individual-level data to form a more complete picture of
their postdoctoral appointments.

3 Snapshot Surveys

3.1 NSF Survey of Graduate Students and Postdoctorates in Science and En-
gineering (GSS)

While the NSF SED and SDR focuses on individuals who received their doctorates from U.S. universities,
which previous research indicates misses a significant proportion of foreign-born STEM doctorates working in
the U.S.,2 the NSF Survey of Graduate Students and Postdoctorates in Science and Engineering (GSS) is an
annual count of all research-based graduate students, postdoctoral appointees, and doctorate-level nonfaculty
researchers at U.S. universities - regardless of where they received their degrees. The data is publicly available
at https://www.nsf.gov/statistics/srvygradpostdoc/pub_data.cfm and can be used to assess general shifts
in graduate enrollment and postdoctoral appointments.

The GSS does have several limitations: the survey is limited in scope to each university’s tabulations
by field of study, U.S. citizenship status, race/ethnicity, gender, part-time or full-time status, and largest
mechanism of financial support. It does not include non-academic institutions - such as research centers and
federal agencies - and prior to 2017, did not distinguish between Master’s and Ph.D. programs in counting
graduate students. Because the GSS is distributed to academic institutions and not individuals, it only
gives aggregate information and is dependent on the academic institution keeping an accurate count of the
number of researchers at their facilities. This is especially problematic in counting the number of postdoctoral
appointees, which may be classified under different titles (e.g. “postdoc” vs. “fellow”) at different universities;
are transient in nature; and - particularly if postdoctoral hiring is handled solely by principal investigators
- may not be consistently tracked by universities. In 2010, the GSS was redesigned to improve the accuracy
of postdoctoral counts, though there remain concerns that the GSS may still be underestimating the total
number of postdoctoral researchers.(Einaudi et al. 2013; Pickett et al. 2017) With these caveats in mind,
the data is one of the longest running surveys on the U.S. science trainees and thus gives a good sketch of
long-term general trends in the scientific labor force.

3.2 Job Preferences: Stern 2004

Stern 2004 surveys Ph.D. biologists who are (just) completing a job search to determine their preferences for
job characteristics - in particular, their willingness to trade off a higher salary for more science-oriented jobs.
The survey contains five parts: 1) resume information about the respondent’s background and demographics;
2) length and outcome of job search; 3) comparing job offers and an ordinal ranking of offers; 4) cardinal
comparison (generally in magnitude and intensity of characteristics) of each individual offer; and 5) ranking of
the importance of different job characteristics. The survey was distributed to current postdoctoral researchers

2The 2005 Sigma Xi survey (see Subsection 3.3) estimates that 79% of foreign-born postdoctorates working in the U.S.
received their doctorates outside of the U.S.(Davis 2005)
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whose funding was expiring at four U.S. research institutions; participants in two American Association for
the Advancement of Science (AAAS)-sponsored Biology Job Fairs in Cambridge, MA and Palo Alto, CA;
and post-Ph.D. biologists with resumes posted to www.biomednet.com. While the overall dataset consists
of 107 biologists receiving a total of 223 job offers, the paper focuses on individuals who received multiple
research job offers. 66 individuals had multiple job offers; this allows for applicant fixed effects, controlling
for heterogeneity such as overall ability or attractiveness to employers. Eliminating non-research jobs - such
as management consulting or lab management - gives more similar job comparisons, reducing the sample
down to 164 job offers. Because some individuals only completed the ordinal or cardinal comparisons between
jobs, the analysis separates into two samples: a cardinal sample of 121 job offers across 52 individuals and
an ordinal sample of 134 job offers across 51 individuals. Using this reduced sample, Stern 2004 finds that
a 1 standard deviation increase in “science index” - defined as a linear combination of the job’s allowance
for publishing in external journals, Likert scale rating of incentives to publish in refereed outside journals,
and allowance for continuation of current research project as a postdoc - is associated with a more than
6% reduction in predicted wage. He does note that - relative to the variance associated with each of the
measured job characteristics - the single-offer averages are not substantially different from the multiple-offer
averages. Thus, it may be possible to utilize the remaining single-offer sample in further analysis.

3.3 Postdoc Experience: Sigma Xi, National Postdoc Survey (NPS)

The 2005 Sigma Xi survey - one of the first major U.S. postdoctoral surveys - collects information on
7,600 postdoctoral researchers from 46 institutions, including 18 of the top 20 academic employers and the
National Institutes of Health (NIH).(Davis 2005) The questionnaire asks respondents about their demo-
graphics (race, ethnicity, citizenship, location obtained doctorate, age, and family structure); postdoctoral
satisfaction; salaries and benefits; career expectations; mentorship; and postdoctoral administration. Ap-
proximately 1/3 of the survey were considered “core” questions and asked of all respondents; to manage
the time needed to fill out the survey, the remaining questions were randomly administered within each
institution’s participating population. These questions have been made available on the Sigma Xi website at
http://postdoc.sigmaxi.org/questions. Unfortunately, due to a system issue, the raw survey data is no longer
available to researchers. While the Sigma Xi survey ultimately was a one-shot survey, its questionnaire can
provide inspiration for future postdoctoral surveys. Researchers may find it helpful to examine Sigma Xi’s
extensive list of survey questions in designing their own postdoctoral surveys.

One of the surveys inspired by Sigma Xi, the National Postdoc Survey (NPS) is a postdoctoral survey
“designed from a postdoc perspective.” Created by postdoctoral researchers primarily associated with the
University of Chicago, the 2016 inaugural survey contains responses from 7,603 primarily life science post-
doctoral researchers at 351 U.S. institutions; a second wave wrapped up on December 31, 2019. Compared to
previously mentioned postdoctoral surveys, the NPS focuses more on asking about the postdoc-PI relation-
ship; availability of professional development programs; finances, benefits, and cost of living; and postdoc
satisfaction. It also asks about demographics; grants and publications; job market perceptions and career
plans (including back-up plans); and reasons for taking on postdoctoral positions. The results of the 2016
survey are documented in McConnell et al. 2018; they find that formal mentorship training is positively
correlated with postdoctoral satisfaction and preference for mentor’s career choice. The paper also goes into
depth on the protocol and includes the survey instrument in their “Additional Files” section. Summary data
for institutions, fields, and regions with more than 50 respondents are available upon request; researchers
should contact the study authors for more information.
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4 Experiments

4.1 NIH Broadening Experiences in Scientific Training (BEST)

In 2013, the NIH created the Director’s Broadening Experiences in Scientific Training (BEST) program. Insti-
tutions awarded a 5-year BEST grant implement an experimental training opportunity to prepare biomedical
graduate students and postdoctoral researchers for a variety of - particularly non-academic - career options.
10 awards were made in 2013, followed by another 7 in 2014.(Coalition of Next Generation Life Sciences
n.d.)3 While each program is individualized to the institution, they primarily used a combination of the
following tools: having trainees fill out Individual Development Plan (IDP); offering general skills and pro-
fessional development workshops (e.g. leadership, communication); holding seminars geared towards specific
career paths (e.g. entrepreneurship, pharma); outside mentorship; and short-term shadowing or internship
experiences. Additionally, BEST encourages its institutions to track the career outcomes of their biomedical
graduate students and postdoctoral researchers over time. (At least two institutions have published the
results of such tracking: Wayne State University in Mathur, Cano, et al. 2018 and University of California
San Francisco in Silva, Jarlais, et al. 2016.) Program evaluations and related publications are shared on the
BEST consortium website at http://www.nihbest.org/publications/. Because most programs are open to
all biomedical graduate students and postdoctoral researchers at the university, BEST program evaluations
tend to take differences in pre- and post- program surveys or interviews and correlate with demographics
(such as gender, race, GRE score, etc.).(Mathur, Chow, et al. 2018; Petrie et al. 2017) There are some pos-
sibilities for further rigorous causal estimation: for example, Emory and Georgia Tech’s combined program
uses a cohort model, which takes in 30 new Ph.D. and postdoctoral scientists a year - leaving the remainder
as a possible control group. Programs offering internships also tend to offer differing levels of involvement
- from 1-day shadowing to 6-month internships - which may allow for the testing of exposure effects not
yet calculated by the current evaluations.(Schnoes et al. 2018; Chatterjee et al. 2019). Future partnership
with BEST institutions may result in further understanding of the causal impacts of these career training
programs.

4.2 Hypothetical Choices: Ganguli and Gaulé 2018, Janger and Nowotny 2016

Two papers utilize hypothetical choice experiments to measure scientists’ willingness to pay for certain job
features - in particular, being an academic. In their 2017 survey of 1,605 current chemistry doctoral students,
Ganguli and Gaulé 2018 ask respondents to imagine they have multiple job offers and select the percent chance
(out of 100) they would accept one offer over the other. To test the respondent’s preference for academic
positions, the three hypothetical job offers are 1) research scientist at industry firm; 2) postdoctoral researcher
at top U.S. university; and 3) teaching-focused assistant professor. To test the respondent’s preference for
location, they ask respondents to choose between two postdoctoral job offers that differ in either a U.S.
university or a foreign university. The authors find that the mean probability of choosing the industry
option is approximately 50% for both U.S. and foreign students; of choosing the postdoctoral appointment is
10.2 percentage points higher for foreign students (33.0% vs. 22.8%); and of choosing the teaching assistant
professorship is 9.3 percentage points higher for U.S. students (26.2% vs. 16.9%). They also find that on
average, foreign students actually have a 12.4 percentage point stronger preference for U.S. postdoctoral
positions than foreign positions (60.5% vs. 48.1%). These trends hold even when controlling for graduate

3The 17 BEST sites and their program summaries are available here: http://www.nihbest.org/about/17-research-sites/
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school, gender, marital status, enrollment year, and field of study.
Similarly, Janger and Nowotny 2016 utilize the hypothetical choice methodology in a large-scale survey

of more than 10,000 European researchers across different career stages. Part of the EU-funded “Mobility
of Researchers 2” (MORE2) project, the survey asks 3,790 early-stage researchers and 6,425 later-stage,
independent researchers for their choice between 3 randomly allocated, academic jobs.(Support for continued
data collection and analysis concerning mobility patterns and career paths of researchers 2013) The job choices
vary in salaries and benefits; country quality of life relative to the country the respondent currently working;
and job characteristics (e.g. time for own research, funding, and opportunities for career advancement).
The authors find that at average wages, a $1,000 wage increase raises the probability of choosing a job offer
by approximately 0.8 percentage points for early-stage researchers and 0.9 percentage points for later-stage
researchers. Using the coefficients of a conditional logit regression, the authors calculate the willingness to pay
for various job features: in particular, early-stage researchers are willing to pay $2,100 for each additional
contract year; $18,659 for tenure possible contigent on performance and job availability; and $21,026 for
tenure contingent purely on research performance.

5 Databases

5.1 IRIS UMETRICS

Hosted by the University of Michigan’s Institute for Research on Innovation & Science (IRIS), the “Uni-
versities: Measuring the Impacts of Research on Innovation, Competitiveness, and Science” (UMETRICS)
project collects administrative data from over 30 member universities4 to examine the social and economic
impact of academic research. The core files contain university-sponsored award and grant level data on
project expenditures; direct employee wages; vendor purchases; and subaward transactions. Employee data
can be linked to ProQuest dissertation data (see Subsection 5.4), publications, patents, NSF SED data (see
Subsection 2.1), and Census earnings data. Awards can be linked to their grants’ original application data
through partnerships with the NIH, NSF, and the US Department of Agriculture. Since its inception in 2013,
approximately 100 researchers have accessed the UMETRICS data; among other projects, they have analyzed
the earnings outcomes of Ph.D. recipients (Zolas et al. 2015); the relationship between geographic proximity
of vendors and university research expenditures (Goldschlag et al. 2019); and the impact of declining federal
R&D funding on the organization of research groups (Funk et al. 2019). Researchers interested in using the
UMETRICS data can apply through their online form at https://iris.isr.umich.edu/research-data/access/.
Individuals affiliated with IRIS member institutions can access the data for free, while non-IRIS affiliated
individuals are charged a non-refundable seat fee of $1,250 ($625 for students). Approved projects can then
access deidentified data through a secure virtual data enclave.

5.2 Coalition of Next Generation Life Sciences (CNGLS)

In December 2017, the Coalition of Next Generation Life Sciences (CNGLS) was founded with the goal of
providing career transparency for life science trainees. Over 50 member institutions have pledged to publicly
release data on the career outcomes of their life science Ph.Ds. and postdoctoral researchers - including
the admissions and matriculation of Ph.D. students; median time-to-degree and completion data for Ph.D.
programs; Ph.D. and postdoctoral demographics - particularly by gender, underrepresented minority status,

4A full list of IRIS members can be found at https://iris.isr.umich.edu/iris-members-map/.
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and citizenship status; median time in postdoctoral positions at the institution; and Ph.D. and postdoctoral
alumni careers. CNGLS provides member institutions reporting guidelines, which allows for cross-institution
comparisons. Of particular note is work done by Silva, Mejía, et al. 2019 at the University of California
San Francisco (UCSF): meta-researchers may find their paper a helpful blueprint for how to collect and
categorize the career outcomes of Ph.D. and postdoctoral career outcomes. Member institutions host their
data on their own websites, which is linked on the CNGLS website at http://nglscoalition.org/coalition-data/.
Unfortunately, universities do not provide the raw data counts; instead, most provide data visualizations
through Tableau graphs - oftentimes across multiple webpages. Thus, meta-researchers hoping to use data
from CNGLS institutions may need to scrape the information off each individual institution website.

5.3 Grants: Research Portfolio Online Reporting Tools Expenditures & Results
(RePORTER)

As part of the federal government’s goals for public transparency and accountability, information on re-
search projects funded by select agencies5 can be accessed through their online repository, the Research
Portfolio Online Reporting Tools Expenditures and Results (RePORTER). This system gives yearly funding
success rates - defined as the percentage of reviewed grant applications that receive funding - and allows
the general public to query for the projects, publications, patents, and clinical studies tied to each grant.
Meta-researchers can also take advantage of downloading bulk RePORTER data through their ExPORTER
system, which conveniently packages information on all funded projects in each fiscal year since 1985.6 For
each project, ExPORTER collects information on the principal investigators’ names; project title and ab-
stract; grant type; administering institute or center; budget start and end dates; grantee organization; total
cost (as well as divided into direct and indirect costs). It links to MEDLINE and PubMed publication data
(see Subsection 5.4 for more detail; RePORTER data includes author list, journal information, and publi-
cation date); federal patent data (patent ID and title); and clinical studies (title, ClinicalTrials.gov ID, and
current stage). Publication data is refreshed every year, while patents and clinical studies data are refreshed
every week.

Thus far, the RePORTER data has been extensively used to examine the relationship between research
funding and outputs - for example, how targeted grant opportunities can shift scientists’ research direction
(Myers 2019); how interruptions in grant funding affect scientists’ research activity (Tham 2019); and the
direct and indirect channels through which federal funding affects patenting (Li et al. 2017). In order to
study the impact of federal funding on the careers of established scientists, RePORTER data at the principal
investigator level could feasibly be linked to CVs and other career outcomes. For example, Azoulay et al.
2017 pull together an extensive number of data sources - including RePORTER data - to follow 10,051 elite
life scientists over time; they find that scientists who’ve recently received NIH funding are less likely to move,
which they attribute to the high transaction costs of transferring funds between institutions. To study the
impact on science trainees would be more time-intensive, as only the principal investigators’ are listed on
RePORTER’s project information. However, it may be possible to do so by linking principal investigators
to their lab employees at the time of funding or by identifying trainees from linked publication data.

For projects outside of U.S.-funded life sciences, a Federal RePORTER and a World RePORT system
5This is primarily the NIH, but the system also includes grants funded by the Administration for Children and Families

(ACF), Agency for Healthcare Research and Quality (AHRQ), Centers for Disease Control and Prevention (CDC), Health
Resources and Services Administration (HRSA), U.S. Food and Drug Administration (FDA), and Veterans Affairs (VA).

6Additionally, ExPORTER’s predecessor, CRISP, contains project data from FY1970-2009. However, CRISP data is not
linked to publications, patents, or clinical studies data.
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have been established. Since fiscal year 2000, the Federal RePORTER annually collects funding data from
the Department of Defense (DOD), Department of Education (DOE), Environmental Portection Agency
(EPA), Department of Health and Human Services (HHS), National Aeronautics and Space Administration
(NASA), and National Science Foundation (NSF). Publications are linked to project data from the EPA;
NSF; and select HHS, DOD, and USDA departments. Thus far, Federal RePORTER data is not linked
to patents data. Since fiscal year 2012, the World RePORT highlights biomedical research investments
from some of the world’s largest funding organizations: it currently includes the Bill & Melinda Gates
Foundation, the Canadian Institutes of Health Research, European Commission, European & Developing
Countries Clinical Trials Partnership, Medical Research Council, Institut Pasteur, Swedish International
Development Cooperation Agency, Swedish Research Council, and Wellcome Trust. However, the World
RePORT currently does not link projects funded by these organizations to their publications or patents.
While these two online repositories are limited compared to the NIH RePORTER, future expansions may
allow for more extensive study - especially of non-biomedical and non-U.S. research.

5.4 Publications & Citations: ProQuest, MEDLINE/PubMed, ORCID, Sco-
pus, Web of Science

Several online databases provide information on scientific publications and their citation history. They are
generally used to search a scientist’s publication record: one queries the online database with the scientist’s
name - perhaps joined with their affiliation and field of study to reduce mismatches for common names
- and is returned a list of publication names, abstracts, journal information, links to the full text, and
yearly citations. Some databases may also allow searches for a scientist’s other work, such as clinical trials,
conference proceedings, and patents.

Some of the most commonly used databases include ProQuest, MEDLINE/PubMed, ORCID, Scopus, and
Web of Science - though several others exist as well. The ProQuest Dissertations and Theses database is the
largest repository of primarily U.S. graduate dissertations and theses, containing over 4 million theses from
over 3,000 universities. Each year, more than 130,000 works are added to the database. In addition to the full-
texts (primarily for theses from 1997 onward), ProQuest includes metadata such as the author name, advisor
name, committee members, department, university, publication year, and degree date. MEDLINE is the
National Library of Medicine’s journal citation database, containing over 26 million references to biomedical
publications from more than 5,200 journals since 1946; it is primarily accessed through the freely available
PubMed, which includes additional citation databases for more than 30 million references. For biomedical
meta-research, the premiere database is MEDLINE/PubMed; for example, it is the source from which
RePORTER (see Subsection 5.3) links funding to publication data. For fields beyond biomedical research,
Scopus and Web of Science are two subscription-based services that cover a wide variety of academic fields.
Scopus contains approximately 1.4 billion citations from more than 24,600 journals and 5,000 publishers
since 1970; it also automatically constructs author profiles - of which it has approximately 16 million. Web
of Science contains approximately 1.7 billion citations from over 21,100 high-impact journals since 1900. In
comparison to Scopus, Web of Science focuses on “high influence” publications and covers fewer non-U.S.
and interdisciplinary research. Most researchers will obtain access through their academic institutions, which
typically subscribes to one of the two.

One drawback of these online databases is the possibility of mismatch between authors and publications
due to common names. To correct for this, ORCID is an online database that provides scientists with
a persistent digital identifier that they can connect to their affiliations, grants, publications, etc. Because
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researchers must register for an identifier and link to their work themselves - rather than being automatically
generated - ORCID is smaller than the other databases mentioned. Its advantage as its network grows is
that it provides a more complete publication work with less possibility of mismatch.

On their own, publication and citation data are limited in their research usability. They are generally
combined with additional scientist information as proxies for scientific ability or productivity. For example,
Ross et al. 2019 measure how research quality - as proxied by the number of citations and publications
- declines over a scientist’s career. Buffington et al. 2016 identify Ph.D. recipients in the UMETRICS
data (see Subsection 5.1) using ProQuest’s Dissertation and Thesis Database, then matches onto career
placement and earnings data from the Census; they find that - once broad dissertation topic and funding
source are controlled for - there is no gender difference in the likelihood of working in lucrative sectors and
that the estimated wage gap drops by about two-thirds to 11 percent. To examine Ph.D.s’ preferences over
employment outcomes through revealed preference, Conti and Visentin 2015 utilize Scopus publication data
to determine the within-field research ranking of universities; the R&D intensiveness of companies; and the
research quality of trainees and their supervisors. Balsmeier and Pellens 2014 use cumulative number of
publications in the Web of Science database as a proxy for scientist productivity, finding that having an
additional publication decreases a scientist’s propensity to leave academe by 6%.

5.5 Stipends: NIH Guidelines, Future of Research, PhDStipends.com, & Post-
docSalaries.com

Meta-researchers may be interested in looking at Ph.D. and postdoctoral stipends, especially as science
advocacy groups argue low stipends may disincentivize talented individuals from remaining in STEM fields.
For the biomedical field, a good starting point is the NIH Ruth L. Kirschstein National Research Service
Award (NRSA) postdoctoral stipend guidelines. These give the NIH recommended stipend amount for
a postdoctoral researcher with a certain number of years of experience at the institution. The NIH has
published their historical stipend guidelines on their website and releases an announcement of annual stipend
amounts each year.(Kirschstein-NRSA Stipend History 2016, Ruth L. Kirschstein National Research Service
Award (NRSA) Stipends, Tuition/Fees and Other Budgetary Levels Effective for Fiscal Year 2020 2020).
Deemed the “gold standard” for minimum stipend amounts, many institutions peg their postdoctoral stipends
to the NIH guidelines - even for postdoctoral researchers not funded by the NIH.(Ferguson, McTighe, et
al. 2017) In their Institutional Policy Reports (see Subsection 2.3), the NPA estimates that 52% of their
member institutions set minimum postdoctoral stipends to the NIH NRSA amount in 2013; even with a
large increase to the NIH NRSA stipend guideline in 2016, 61% of their member institutions continued to
peg their postdoctoral stipends to the NIH NRSA amount.(Ferguson, Huang, et al. 2014,Ferguson, McTighe,
et al. 2017).

Several grassroots advocacy groups have also collected information on science trainee stipends to improve
transparency. In 2016, Boston-based Future of Research submitted Freedom of Information Act (FOIA) re-
quests to U.S. public institutions with at least 300 postdoctoral researchers, obtaining the salaries and job
titles for over 13,000 postdoctoral researchers at 52 public U.S. institutions; additionally, 1 private uni-
versity - Boston University - contributed stipend data. They find that 22.7% of postdoctoral researchers
had salaries within $25 of the NIH NRSA minimum stipend of $47,484, with 61.0% of postdoctoral re-
searchers having stipends between $40,000-$49,999.99.(Athanasiadou. et al. 2017) The group also publicly
provides the de-identified, individual-level data on job title, university, and stipend on their website at
https://www.futureofresearch.org/investigating-postdoc-salaries/.
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However, because their dataset is mostly limited to postdoctoral researchers at public institutions, Future
of Research encourages Ph.D. and postdoctoral researchers to anonymously submit their historical and
current stipend information to PhDStipends.com and PostdocSalaries.com, which both publicly display the
results of submitted stipend information on their website. PhDStipends.com has over 8,000 submissions that
give university; department; overall pay; living wage ratio (measured using the Poverty in America Living
Wage Calculator for a single person with no dependents); academic year; program year; and any additional
comments. PostdocSalaries.com has over 1,500 submissions that give institution; department; title; salary;
living wage ratio; benefits; whether this is a negotiated offer; academic year; years since Ph.D.; whether the
institution continues the postdoctoral researcher an employee; and any additional comments.

5.6 Academic Family Tree

Several efforts have been made to link STEM trainees to their mentors, creating an academic genealogy of
researchers. The largest - the Academic Family Tree - started with neuroscience in January 2005 and has
since expanded to approximately 748,100 people across over 60 fields of study.7 This open-source database
links scientists from mentor to mentee in an intuitive “family tree” structure, with start and end dates of
training for each mentee. It also connects to their publication history through the PubMed database and
to their NIH and NSF funding data through the Federal RePORTER (Star Metrics) system.8 Using the
Academic Family Tree, Liénard et al. 2018 examine the impact of graduate and postdoctoral mentorship by
examining 18,856 “triples” of researchers - consisting of a trainee, a graduate mentor, and a postdoctoral
mentor; they find that the postdoctoral mentor has a larger influence than the graduate mentor on a trainee’s
odds of continuing in academia and own training of new scientists.

There are a few caveats with using the Academic Family Tree for further research. Because the Academic
Family Tree is open-source, it depends on user inputs to identify mentor-mentee relationships and thus is
not a universal representation of academic relationships. The trees also tend to focus on academic research
relationships, so STEM trainees who leave academia or are no longer doing academic research are less likely
to be in this database. As the number of Academic Family Tree contributors grows, it may be able to provide
a more complete picture of mentor-mentee relationships.

5.7 Diverse Scientists: Request a Woman in STEMM, CAISE

For researchers studying diversity in STEM, there are several databases listing female and minority scientists.
Originally created to encourage more diversity in seminar speakers and journalism quotes, meta-researchers
could potentially draw from these databases to create scientist samples. The Database of Databases of
Diverse Speakers in STEM acts a starting point, compiling a list of databases that collect information on
underrepresented groups in STEM. Each database may focus on a different subset of research fields and
included groups. For example, the Request a Woman in STEMM (formerly “Request a Woman Scientist”)
database consists of over 7,500 women from 174 scientific disciplines and 133 countries.(McCullagh et al.
2019) Women in science, technology, engineering, mathematics, and medicine (STEMM) can provide their
contact information, career stage, degree, scientific discipline, geographic location, self-identifying dimensions
of representation, and professional availability (i.e. willingness to be a seminar speaker, speak to a journalist,

7They have linked to other Academic Family Tree projects at https://neurotree.org/neurotree/faq.php, such as the Mathe-
matics Genealogy Project, the Family Tree of Trade Economists, and Brown University’s planetary geology family tree.

8As PubMed and RePORTER primarily focuses on biomedical fields, these scientists are more likely to list publication and
funding data on the Academic Family Tree website.
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etc.). Similarly, the Counting All for Inclusion in STEM Equity (CAISE) database collects information
on historically marginalized individuals (HMI) with terminal STEM degrees who are currently conducting
research at an academic institution. This includes their contact information, HMI identifiers, field of study,
a link to their professional website, and professional availability. Given that the nature of these databases
to bring awareness to and more easily contact underrepresented groups in STEM, the listed individuals may
be willing to contribute to surveys - particularly on diversity in STEM - or can provide a starting sample of
scientists to merge onto other datasets, such as their publications, patents, and career paths.

5.8 Professional Associations

In addition to the data sources that have already been mentioned in this white paper, consider partnerships
with science advocacy groups, professional associations, and honor societies to generate new data on the
careers of scientists. Among many others, this includes the American Association of Arts and Sciences
(AAAS), American Society for Biochemistry and Molecular Biology (ASBMB), American Chemical Society
(ACS), engineering honor society Tau Beta Pi (TBP), and American Physics Society (APS). Not only can
they provide first-hand knowledge about the types of careers pursued in their field, these organizations
may have existing career programs that could be leveraged in meta-research experiments. For example, APS
offers an industry mentorship program, matching physics graduate students and postdoctoral researchers with
physicists who have experience working in industry. Professional associations can also assist in constructing
a large sample of STEM trainees. As they maintain contact information for working professionals in their
field, they can help meta-researchers distribute surveys or administer other data collection processes to
their membership. For example, Sigma Xi and the National Postdoc Survey - mentioned in Subsection 3.3
- have distributed their survey through the National Postdoctoral Association (see Subection 2.3) and by
contacting individual institutions’ postdoctoral offices. Especially if meta-researchers are interested in a
particular field, professional associations are a good starting point to examine what career projects have
already been implemented and to contact a large group of professionals in the field.

6 Future Avenues

This white paper has outlined existing sources for studying the long-term career paths of scientists, though
each come with their limitations. The majority of surveys focus on individuals in the biomedical sciences
who received their Ph.Ds. from U.S. institutions; much is left to be learned about the estimated 71% of
STEM Ph.Ds. in other fields and 47% of STEM postdoctoral researchers working in the U.S. who received
their degrees abroad.(Cheng n.d., Davis 2005) Several databases can indirectly shed light on the career paths
of scientists, piecing together data from federal grants (see Subsection 5.3), publications (see Subection 5.4),
mentorship (see Subection 5.6). For a subset of schools, organizations have already begun the work of merging
these various databases together; in particular, UMETRICS (see Subsection 5.1) is working on combining
lab-level employee data with grants, publications, patents, and Census earnings data. However, more work is
needed to construct a nationally representative sample of STEM trainees with complete career paths, ability
proxies, and preference measures. Future partnerships with science advocacy and professional associations
may assist with constructing such a data sample. While such an endeavor will take a considerable amount
of work, it would open many more opportunities to study the long-term careers of scientists.
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