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ABSTRACT

We show that hedonic price indexes may be biased when not all product characteristics are

observed. We derive two primary sources of bias.  The first is a classical selection problem that

arises due to changes over time in the values of unobserved characteristics. The second comes from

changes in the implicit prices of unobserved characteristics. Next, we show that the bias can be

corrected for under fairly general assumptions using extensions of factor analysis methods. We test

our methods empirically using a new comprehensive monthly data set for desktop personal computer

systems. For this data we find that the standard hedonic index has a slight upward bias of

approximately 1.4% per year. We also find that omitting an important characteristic (CPU

benchmark) causes a large bias in the index with standard methods, but that this bias is essentially

eliminated when the proposed correction is applied.
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1 Introduction

In recent years, U.S. statistical agencies have dramatically increased their use of hedonic

methods in constructing official price indexes. While the first use of hedonic methods in

the consumer price index did not occur until 19871, according to Landefeld and Grimm

(2000), approximately 18 percent of U.S. GDP final expenditures are now deflated using

indexes created using hedonic methods, and this number is rapidly growing.

Hedonic methods are being introduced into official indexes in order to correct for two

well known problems with traditional matched model methods. First, in markets with

rapid product turnover, the matched model index cannot be properly calculated because

it is impossible to measure the prices of new products before they enter and old products

after they exit. Pakes (2003) shows that if the matched model index is calculated only for

those products that remain in the sample, then it is subject to a selection bias because

the products that exit tend to be the ones that are less profitable. Second, the matched

model index does not account for quality change. All price changes go into the index,

even those associated with improvements in some product characteristics.

A long-standing problem with hedonic methods that has been widely recognized (Court

(1939), Griliches (1961), Triplett (1969), Griliches and Ohta (1986)) but remains un-

resolved is that typically not all product characteristics are observable by researchers

constructing price indexes. The importance of unobserved characteristics has been shown

in recent work on demand estimation (e.g., Berry, Levinsohn, and Pakes (1995), Nevo

(2001), Bajari and Benkard (2003), and others). Another indication that unobserved

characteristics may be important is the fact that it is often the case that hedonic price

regressions have a low goodness of fit as measured by the R2. For example, Pakes (2003)

reports R2’s for computers in the range of 0.26-0.52; Cockburn and Anis (1998) report

1 See Moulton (2001). Other official indexes such as the Census Bureau’s single family housing index
and the BEA computer price index used hedonic methods prior to their adoption in the consumer price
index.
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R2’s for arthritis drugs in the range of 0.26-0.29.2

These observations motivate our three main research questions. First, what explains

the errors made in the typical hedonic price regression? Candidate explanations include

measurement error in prices, unobserved product characteristics, and approximation error

due to functional form. The answer to this question is important because if price regression

errors reflect, for example, only measurement error in prices, then all of the assumptions

of standard hedonic methods are satisfied. Second, if the hedonic regression errors reflect

unobserved product characteristics, to what extent is there a bias in the price index?

Lastly, is it possible to construct hedonic price indexes that fully account for unobserved

characteristics?

In section 2 we show that if some product characteristics are not observed then hedonic

price indexes may be biased, and that this bias comes primarily from two sources.3 The

first is a classical selection problem that results when the average value of the unobserved

characteristics for products in the market changes over time. In OLS estimates, the

average value of the unobserved characteristics is absorbed into the period mean of the

hedonic regression. This introduces a bias when the estimated hedonic surface from one

period is used to predict the prices of products not observed in that period. For example,

if the average value of unobserved characteristics is improving over time then, in later

periods, hedonic methods would typically overpredict the prices of products that had

dropped out of the sample in previous periods. In this example the price index would

exhibit an upward bias.

The second source of bias is more subtle, and results from changes in the implicit prices of

the unobserved characteristics over time. Consider the following simple example. Suppose

that we wish to calculate a price index between two periods, t and t + 1. For simplicity,

2 Very low R2’s are not always the case. Berndt, Griliches, and Rappaport (1995) report R2’s of
0.77-0.83 for computers. Griliches (1961) reports R2’s in the range of 0.84-0.97 for automobiles.

3 There is also a third source of bias, that we believe will be less important in practice, that occurs if
the quantity weighted mean of the unobserved characteristics is substantially different from its unweighted
mean.
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assume that all products are observed in each period, so that both the matched model

index and the hedonic index are defined and there is no selection problem. Assume that

there are two observed characteristics, x1 and x2 (e.g., CPU speed and RAM), and one

unobserved characteristic, ξ (e.g., quality). Suppose that the relationship between prices

and product characteristics (both observed and unobserved) is linear so that in time

period t:

pj,t = β0,t + β1,tx1,j + β2,tx2,j + β3,tξj.

Note that the price function is allowed to vary over time because the coefficients may

change between periods.

Suppose that the econometrician is able to consistently estimate the intercept and the

coefficients for the observed product characteristics, β1,t and β2,t. Let pt(xj) denote the

predicted price of product j at time t using the hedonic surface:

pt(xj) = β0,t + β1,tx1,j + β2,tx2,j.

In our example, it is easy to see that the matched model index and the hedonic price

index differ due to changes in the valuation, β3,t, of the unobserved characteristic. The

matched model price adjustment between two periods t and t + 1 for product j is

pj,t+1 − pj,t = β0,t+1 − β0,t + (β1,t+1 − β1,t)x1,j + (β2,t+1 − β2,t)x2,j + (β3,t+1 − β3,t)ξj,

and the price adjustment using the hedonic surface is

pt+1(xj)− pt(xj) = β0,t+1 − β0,t + (β1,t+1 − β1,t)x1,j + (β2,t+1 − β2,t)x2,j.

In this example, the matched model adjustment is the correct adjustment and the hedonic

adjustment is incorrect. The hedonic adjustment leaves out the term that revalues the

unobserved characteristic, (β3,t+1 − β3,t)ξj. Since the aggregate price index is a weighted

average of the individual price adjustments, the aggregate price index typically would also

be incorrect.4

4 Note that in this simple example if E[ξj |xj ] = 0 then the hedonic adjustment is an unbiased estimate
of the true adjustment. However, we show in section 2 that typically there would still be a statistical
bias in the price index.
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In section 2, we present our basic model and derive an analytical expression for the

bias due to the two sources listed above. Table 1 provides an empirical example of

the bias obtained in the price index when an important characteristic is known to be

omitted. For our data on desktop personal computer systems (more details on the data

provided in section 4.1), the table shows chained Fisher price indexes constructed using a

standard hedonic approach (left) and then again using the same approach but with CPU

benchmark omitted (right). As can be seen in the table, the indexes with CPU benchmark

omitted exhibit substantial bias. Over just 29 months, the difference in overall inflation is

approximately 9%, with the biased indexes showing less deflation. This variation is larger

than any variation we were able to achieve through alternative methods of constructing

the index or alternative functional forms. We therefore view it as potentially significant.

In section 3 we show how factor analysis methods can be extended to construct a fairly

general statistical test for the presence, and even the dimension of the unobserved product

characteristics. The intuition for this test is that, for products with similar values of the

unobserved characteristics, the price regression errors should move similarly over time.

Next, we show how to use similar methods to construct hedonic indexes that account

for the unobserved characteristics. If the unobserved characteristic is single dimensional,

then it is possible to consistently estimate the hedonic surface (including recovering the

unobserved characteristics) using a completely general functional form. If the dimension

of the unobserved characteristics is two or greater, it is possible to consistently estimate

the hedonic surface so long as there is a representation of the surface that is additively

separable in the unobserved characteristics. Finally, we show that this methodology works,

in general, if the unobserved characteristics are correlated with each other and, in certain

cases, if they are correlated with the observed characteristics.

We apply our methods to a new data set for desktop personal computers. We find in this

data that the dimension of the unobserved characteristics is likely to be either two and

three. However, we also found that there was not enough data to get precise estimates
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of the price index when the unobserved characteristics were allowed to have dimension

greater than one. Given the comprehensiveness of the data, this result sheds doubt on the

practical ability to correct price indexes in the multi-dimensional case. However, these

difficulties were exacerbated in our data by the extremely high rate of product turnover

and the relatively high measurement error in the price data. Therefore, we believe that

correcting for a multi-dimensional unobservable may be possible in other data sets with

less rapid product turnover and better price measurement. Based upon the results of

using a single dimensional unobserved characteristic, we find that the standard hedonic

index is upwardly biased, by approximately 1.4% per year, and that this bias is primarily

due to selection. Specifically, the unobserved characteristics for computers are improving

over time, and this upwardly biases the standard hedonic price index.

We further test our estimation approach by leaving out an important characteristic (CPU

benchmark) and reestimating the price index. While the standard hedonic index is

severely biased in this case, our approach essentially removes the bias even if only a single

dimensional unobserved product characteristic is used (see also Table 9). Thus, although

the results above suggest that correcting the index for a multi-dimensional unobserv-

able may be difficult, these results show that corrections based on a single dimensional

unobservable provide a good approximation to the multi-dimensional case.

Our results suggest that there is a tradeoff between the hedonic and matched model

approaches. Hedonic methods are better at capturing quality change and also can solve

the product entry and exit problem of the matched model approach. However, hedonic

methods may be biased due to unobserved characteristics. Our approach of including

unobserved product characteristics in the hedonic index can be viewed as achieving a

middle ground between the two standard approaches. Our approach also lies between the

two standard approaches in terms of data requirements. A limitation of our approach

is that products must be observed in several time periods, or several spatially separated

markets, in order to estimate the vector of unobserved product characteristics. The

number of periods required depends on the dimension of the unobserved characteristics.
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This falls considerably short of that required to construct the matched model index, for

which every product must be observed in every period.

2 An Expression for the Bias Due to Unobserved

Characteristics in Hedonic Price Functions

2.1 Model and Notation

We assume that the econometrician has data for t = 0..T periods and, without loss of

generality, we assume that the base period of the price index is period t = 0.5 We assume

that each commodity, j, can be represented as a finite dimensional vector of attributes. In

most applications, the economist does not observe all of the product attributes relevant

to the consumer. Therefore, in the model, the economist perfectly observes the first K

attributes, which we denote by the vector xj = (xj1, ..., xjK), but does not observe an

L-vector of attributes ξj = (ξj1, ..., ξjL).

Let Ct be the set of products in market t and denote the set of products that are available

in both markets s and t as Cs,t = Cs ∩ Ct. Let Ft be the joint distribution of (x, ξ) in

market t, with support Xt ⊂ IRK+L, where Xt is assumed to be compact.

Implicit in the notation above is the assumption that products are readily identifiable in

the sense that it is possible to identify the same product across different time periods t.

Under this assumption, the entire vector of product characteristics, (xj, ξj), is fixed across

markets for each product. If a product’s characteristics change between two periods, then

we define the two products to be different products.

The assumption that a product’s characteristics stay fixed over time may be unrealistic

5 It would not change anything in our analysis to consider instead either T spatially separated markets,
or a total of T observations for a set of spatially separated markets over time.

6



in some industries. For example, if one characteristic of a product is the manufacturer’s

reputation for providing good service, then that could change over time even if the physical

aspects of the product do not. Examples of this might include the average hold time on

the company’s customer service hotline.

2.2 Price Index Formulas

In this paper, we concentrate on what we believe are the most commonly used forms of

the price index: plutocratic weighted average indexes with base period (Laspeyres’) or

reference period (Paasche) weights. We define the standard matched model indexes as

follows:

ML
t =

∑
j∈C0

pjtqj0∑
j∈C0

pj0qj0

, (1)

MP
t =

∑
j∈Ct

pjtqjt∑
j∈Ct

pj0qjt

. (2)

Standard results show that ML
t is an upper bound and MP

t is a lower bound to the exact

price index.6 In the empirical section of the paper we find that, due to a high rate

of product turnover, we must instead apply the “chained” versions of these indexes, in

which the weights are constantly updated from one period to the next.7 Therefore, we

also calculate chained Fisher indexes since several papers (e.g., Aizcorbe, Corrado, and

Doms (2003)) have argued that the chained Fisher index provides a better approximation

to the true index in markets with high product turnover.

Hedonic methods substitute prices predicted from the estimated hedonic surface, p(x),

into (1) and (2) in the place of actual prices, not all of which are observed. The primary

differences in hedonic methods arise in the details of how prices are predicted and whether

6 These correspond to the classical bounds of Konus (1924). See also Pakes (2003) for ways of deriving
these bounds more generally.

7 Note that the chained forms of these indexes no longer represent proper bounds and are therefore
simply approximations to the true index.
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the predicted prices should always be used, or whether they should only be used where

actual prices are unavailable, or some combination of these options. In this paper, we

compare the matched model indexes (ML
t and MP

t ) with hedonic indexes (HL
t and HP

t ) in

which all of the prices are replaced with prices predicted by the hedonic index:

HL
t =

∑
j∈C0

pt(xj)qj0∑
j∈C0

p0(xj)qj0

(3)

HP
t =

∑
j∈Ct

pt(xj)qjt∑
j∈Ct

p0(xj)qjt

(4)

Our approach differs slightly from the methods proposed by Pakes (2003), which substi-

tutes all prices in the numerator with prices predicted using the hedonic surface, but uses

actual prices in the denominator. It also differs from the method used by the BLS, which

uses a hybrid of the hedonic and matched model methods that substitutes predicted prices

only in cases where products drop out of the sample. However, our techniques can just

as easily be applied to hedonic indexes of those forms.8

2.3 An Analytical Expression of the Unobserved Characteristics

Bias for the Linear Case

In order to better understand how unobserved characteristics lead to bias in the aggregate

price index, in this section we derive analytical expressions for the bias in the index.

Because this is difficult to do in general, we concentrate on the simple case in which the

price function is linear. We thus write the price function as follows,

pjt = β0,t + x′jβx,t + ξ′jβξ,t, (5)

where both xj and ξj are vectors.

8 The alternative methods suggested in Pakes (2003) and used by the BLS are in part designed to
allow construction of the index under time constraints. We ignore these practical issues in this paper.
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In characterizing the bias in HL, it is helpful to rewrite the index as follows:

HL
t =

∑
j∈C0

pt(xj)qj0∑
j∈C0

p0(xj)qj0

= 1 +

∑
j∈C0

(pt(xj)− p0(xj))qj0∑
j∈C0

p0(xj)qj0

(6)

where the functions pt(xj) are the hedonic surface in period t which are only a function

of the observed characteristics as is common in practice.

Consider what happens if we estimate (5) using standard techniques. Suppose, for the

sake of simplicity, that we estimate (5) under the assumption that ξ and x are mean

independent, Et[ξ|x] = Et[ξ] = µt. If the mean independence assumption holds and there

are a large number of observations in each period, then the parameter estimates obtained

from the T regressions are:

β̃0,t ≈ β0,t + µ′
tβξ,t (7)

β̃x,t ≈ βx,t (8)

Note that the intercept captures the average change over time in both the price of ξ and

the mean of ξ.

We can now use (7) and (8), in conjunction with (6), to characterize the bias in H. The

bias in the numerator of HL is:

Bias(Num(HL))t = (µt − µ0)
′βξ,tQ0 +

∑
j∈C0

(µ0 − ξj)
′(βξ,t − βξ,0)qj0 (9)

where Q0 is total sales of the good in the base period. Similarly, the bias in the numerator

of HP is,

Bias(Num(HP ))t = (µt − µ0)
′βξ,0Qt +

∑
j∈Ct

(µt − ξj)
′(βξ,t − βξ,0)qjt (10)

where Qt is total sales of the good in the reference period.

The expressions for the bias in the numerator involve two main terms. The first term

depends on how much the mean of ξ changes over time and therefore reflects selection
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bias. If there is no selection, such that mean of ξ is constant over time, then the first term

is zero. The second term reflects the extent to which the unobserved characteristics are

revalued over time, (βξ,t − βξ,0). If the value of the unobserved characteristics is constant

over time then the second term is zero. These are the two sources of bias mentioned in

the introduction.9

The expressions for the bias in the denominator involve similar terms. The bias in the

denominator of HL is

Bias(Den(HL))t = βξ,0

∑
j∈C0

(µ0 − ξj)
′qj0, (11)

while the bias in the denominator of HP is

Bias(Den(HP ))t = βξ,t

∑
j∈Ct

(µt − ξj)
′qjt. (12)

The bias in the denominator of the index reflects the extent to which the quantity weighted

mean of the unobserved characteristic differs from its unweighted mean. It is difficult to

sign this bias in general since the quantity weights depend on consumer tastes. Assuming

that the unobserved characteristics carry positive prices, if demand is higher for goods

with higher values of the unobserved characteristics, then the denominator is downwardly

biased, leading to an upward bias in the index. Note also that the bias is constant over

time for the Laspeyre’s index, and likely to be fairly constant for the Paasche index. This

means that if the denominator is biased downward, then price changes in the index for

all periods will be biased upward. Based on our experiences, our prior is that this source

of bias is likely to be less important than the previous two.

The bias in the index as a whole is easiest to evaluate asymptotically since, by the Slutzky

theorem, the bias in the index can then be evaluated by considering the biases in the

numerator and denominator separately. This leaves three overall sources of bias: two in

9 Note that revaluation of the unobserved characteristics would not bias the index if there was no
selection and the quantity weighted mean of ξ was the same as its unweighted mean, µ. Interestingly,
this suggests that, if there were no selection problem, using quantity weights in the hedonic regression
would eliminate the unobserved characteristics bias in the index.
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the numerator (selection and repricing of the unobserved characteristic) and one in the

denominator (the difference between the quantity weighted mean of ξ and its unweighted

mean). The bias in the index will reflect the sum of these three sources.

In our opinion, there are many industries in which the mean of the unobserved charac-

teristics and the price of the unobserved characteristics are likely to change over time,

particularly high technology industries. In that case, it is likely that there would be

unobserved characteristics bias in standard hedonic indexes.

3 Modeling Unobservables in the Hedonic Price Func-

tion

In this section, we outline an approach to estimating hedonic price functions in the pres-

ence of unobserved characteristics. Our approach is similar to the factor analysis litera-

ture, especially Lawley and Maxwell (1971), Goldberger (1974), and Cragg and Donald

(1995, 1997), except that we have found it necessary to extend that literature in several

ways, most notably to account for selection.

3.1 The Hedonic Price Function

Bajari and Benkard (2003) provide a set of primitive conditions under which there exists

a price surface, denoted pt(xj, ξj), in each market t. For the remainder of the paper we

implicitly rely on the results of this theorem in the sense that we assume that there exists

a function mapping product characteristics to prices.10

10 In Bajari and Benkard (2003), ξj is single dimensional. However, extending the theorem to the case
in which ξ is L-dimensional is straightforward. If the assumptions of the theorem were to not hold, then
the hedonic approach could still be viewed as an approximation to the truth. However, we cannot say
how good the approximation would be without making additional assumptions.
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To simplify the analysis and estimation, we assume that the price function can be written

as additively separable in the observed and unobserved product characteristics and linear

in the unobserved characteristics,

pjt = ft(xj) + β′
ξ,tξj + νjt, (13)

where ft(·) is a function, possibly of unknown parametric form, and νjt represents mea-

surement error in the observed price.

Equation (13) places some restrictions on the functional form of the price function, but

retains perhaps more generality than it first appears. All of the analysis that follows is

general to nonlinear transformations of the right and left hand side variables. Additionally,

ft(·) can be a general nonparametric function within any one of those forms. Since we

allow for the unobserved product characteristics to be correlated with each other, higher

order terms in ξ may appear as additional dimensions.11 Since our analysis is general to

the case where ξ is correlated with x (if the relationship is stable over time — see section

3.3), interactions between ξ and x may also appear as additional dimensions. We allow for

measurement error in prices because in our experience with price data in I.O. applications

we have found this can happen for a variety of reasons, and furthermore, we believe it to

be true in our data.

For ease of exposition, in this section we maintain several assumptions that we later relax.

First, we assume that the unobserved product characteristics are mean independent of the

observed product characteristics. This assumption is common in the hedonics literature

implicitly, and also in the literature on demand estimation explicitly. It seems likely that

it is violated to some extent in practice so we show that it is possible to substantially

relax this assumption in section 3.3. Second, we assume that the measurement error is

iid and independent of x and ξ. It is straightforward to generalize the specification of the

measurement error in several ways, including AR(p), and heteroskedasticity of unknown

11 For example, if the price surface was a function of ξj1 and ξ2
j1, then we could let ξj2 ≡ ξ2

j1 and the
price surface would be of the form in (13). If the price surface was a function of ξj1, ξj2, and ξj1 ∗ ξj2,
then we could let ξj3 ≡ ξj1 ∗ ξj2 and the price surface would be of the form in (13).
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form. We consider the latter case below. Finally, the analysis is substantially easier

to follow if we assume that there is no selection in that data, i.e., we assume that the

distribution of ξj is constant over time. We add selection to the model in section 3.2.

3.1.1 Estimating ft(·)

Let εjt ≡ β′
ξ,tξj + νjt represent the error terms in the period-by-period hedonic price re-

gressions. Under the assumptions listed above, Et[εjt|x] = β′
ξ,tµ, where µ = E[ξj|xj] is

a constant. Therefore, the functions ft(·) can be estimated using standard techniques.

For example, if the parametric form of the functions ft(·) is known, then they could be

estimated using least squares. Otherwise, kernel or series based nonparametric regression

techniques could be used. Note that the ft(·) functions absorb the mean of the unobserv-

able, β′
ξ,tµ, so at this point the functions can only be estimated up to an additive constant

term.12 Because these estimation approaches are standard, we omit a detailed discussion

of them and proceed as if ft(·) were known.

3.1.2 Estimating βξ,t

What makes it possible to identify and estimate the complete model (13) is the fact

that this model places tight restrictions on the covariance matrix of the errors in the

hedonic regressions, εjt. In order to derive those restrictions we need first to make some

normalizations. The normalizations we use are standard to factor analysis and are without

loss of generality.13 We normalize the mean of ξ to be zero, E[ξj] = 0. We also normalize

ξ to have covariance matrix IL across all periods 0..T . The reason that the normalizations

are necessary is that ξ is not observable and thus has no inherent units. It is multiplied

by a coefficient vector that is also unknown. Thus, neither the mean nor the variance of ξ

12 If there is selection, then each function ft(·) absorbs the period mean of the unobservable, β′
ξ,tµt.

13 See Lawley and Maxwell (1971) for a good discussion. We remind readers that at this point we are
maintaining the assumption that there is no selection. In the event that there is selection, we have to be
careful in applying the normalizations. See section 3.2 for details.
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is identified separately from the coefficients βξ. Importantly, knowledge of the normalized

coefficients is sufficient for construction of the price index.

Let εj be the T -vector of errors for product j. Then under the assumptions given above,

Σ ≡ E[εjε
′
j] = βξβ

′
ξ + σ2

νIT . (14)

Without any restrictions, E[εjε
′
j] has T (T+1)

2
unique elements. However, our model con-

tains only T ∗ L + 1 parameters. Thus, for small values of L the model places significant

restrictions on this matrix. In fact, it is possible to estimate the entire matrix of parame-

ters βξ so long as L ≤ T
2

(approximately). Since most price index applications have data

for a large number of time periods or spatially separated markets, the model is typically

overidentified for reasonable values of L.

Estimation of βξ can be achieved in several ways. The traditional approach of the factor

analysis literature (e.g., Lawley and Maxwell (1971)) has been to assume normality for

the unobserved product characteristics and then use maximum likelihood. However, such

an approach would be inappropriate here because the model provides us with only first

and second moment information and nothing more. If we were to assume normality of the

unobserved product characteristics, then in conjunction with the normalization of their

covariance matrix to the IL matrix, we would be implicitly assuming full independence

of the unobserved product characteristics. We do not want to assume full independence

because we want to allow for functional form flexibility in (13). Thus, we instead proceed

using GMM with the moment conditions provided by (14).14

Assuming that there is no selection, the model can be estimated as follows. Let

S =
1

J

J∑
j=1

εjε
′
j. (15)

14 In a previous version of the paper we used likelihood methods and found that they led to an
overestimate of the number of unobserved product characteristics, L. We also ran monte carlo experiments
in which there were two unobserved characteristics: ξj , and ξ2

j . The GMM approach below correctly
identified that there were two unobserved characteristics. The MLE approach needed anywhere from 5-8
(independent) unobserved characteristics to match this data.
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Since (15) is the empirical counterpart to (14), our model gives us T (T + 1)/2 unique

moment conditions,

E[S] = Σ. (16)

The natural GMM estimator would minimize a quadratic form in these moment condi-

tions,

{β̂ξ, σ̂ν} = arg min(vechS − vechΣ)′A(vechS − vechΣ)

for some positive definite weight matrix A. Under standard conditions, β̂ξ and σ̂ν are

consistent and asymptotically normal for any positive definite weight matrix A. For

example, the I matrix could be used. Also under standard conditions,15

√
J(vechS − vechΣ) → N(0, V ),

and it is well known that the optimal weight matrix to use in the GMM objective function

is A = V −1.16

3.1.3 Hypothesis Tests for the Dimension L

The above estimation algorithm is conditional on knowing the dimension L. Cragg and

Donald (1997) shows that if the optimal weight matrix is used, then the value of the

objective function can also be used as a statistical test for the true dimension of the model.

The difficulty of applying the approach of Cragg and Donald (1997) in our application

comes in estimating V . Typically, a consistent estimator of V can be obtained using the

sample moments of εj. For example, an estimator for the covariance between the (q, r)

and (s, t) elements of S is given by,

1

N

N∑
j=1

(εj,qεj,rεj,sεj,t − Sq,rSs,t).

15 In our application the number of observations will typically vary by cell of S so the asymptotic
approximations have to be corrected appropriately.

16 See Hansen (1982).
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However, in our application products tend not to last longer than about twelve months,

so there are many combinations of (q, r, s, t) for which there are very few or even zero

observations. Thus, while it is still possible to estimate V , it is not possible to estimate it

very well, and in our experience not well enough to construct reliable hypothesis tests.17

We solve this problem by using subsamples of data for which V can be estimated well.

A potential problem with these hypothesis tests is that the errors used to calculate the

moment conditions (16) are estimated and are therefore not equal to the true error terms.

While this does not affect consistency of the index, the additional noise might influence

the hypothesis tests toward causing false rejections (i.e., toward supporting too many

unobserved factors). The extent of the problem would likely depend on the number of

first stage observations and the variance of the measurement error in price. One possible

solution to this problem would be to estimate the first and second stages jointly using

GMM.18 That is, the first stage consists of a set of OLS moments (one set for each time

period) given by

E[εjt|x] = 0.

These moments could be combined with those in (16) in one large joint GMM estimation

procedure. Hypothesis tests based on the joint GMM objective function would then

account for first stage estimation error. The problem with the joint approach is that it

has a massive data requirement. Each time period in the first stage estimation adds a set

of K moment conditions, leading to a total of NMOM = T ∗ (K + (T + 1)/2) moments.

In order to run hypothesis tests it is necessary to obtain a good estimate of the variance

covariance matrix of the moment conditions, which has NMOM ∗ (NMOM + 1)/2 unique

elements. For many data sets, including the one used in this paper, this will not be

possible. We discuss this issue further in the empirical section of the paper.

17 One problem we had was that the differing number of observations in every cell led to an estimate
of V which was not positive definite due to sampling error, and thus not invertible to obtain the weight
matrix.

18 We thank an anonymous referee for suggesting this solution.
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3.1.4 Estimating ξ

The two-step approach above provides estimates of all of the parameters of the model.

However, in order to construct price indexes, it is also necessary to estimate the vector of

unobserved product characteristics for each product. The vector of errors for each product

j can be written as

εjt = β′
ξ,tξj + νjt. (17)

At this point we assume that the parameters β′
ξ,t are known because they have been

previously estimated.

Since βξ,t is known and the measurement error is iid and independent of everything, equa-

tion (17) becomes a standard linear regression model with βξ,t as the observed covariates

and ξj as the unknown parameter vector. Estimation of the equation is straightforward

via OLS. A problem that is likely to be encountered is that (17) can only be estimated

for those products whose prices are observed in Tj ≥ L periods and, depending on the

variance of the measurement error, can only be estimated well if Tj is large. In that case,

if L > 1 it is not in general possible to estimate ξj for all products, and it may be difficult

to estimate ξj well unless Tj is large or the variance of the measurement error is small.

This also introduces some selection into the index as some products would have to be

dropped in calculating the index.

In application, βξ,t is not known, but is instead replaced by a consistent estimator β̂ξ,t.

This introduces finite sample bias into the estimates of ξ similar to that of measurement

error in the standard regression model. Since β̂ξ,t is consistent as the number of products

goes to infinity, this bias goes to zero with the number of products. Provided that there is

measurement error (σ2
ν > 0), consistency of ξ̂j also requires the number of time periods (or

spatially separated markets) to become large for each product. Consistency of ξ̂j would

thus be obtained as both the number of products and the number of time periods become

large.
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3.2 Selection

An important problem with proceeding using the GMM approach described above is

that there is substantial selection in our data for PC’s.19 As technology improves, lower

quality products exit while higher quality products enter. Thus, for example, it is unlikely

that the products that we observe in period 1 are a random sample of products from

the distribution of all products observed in all periods, as is required by the moment

conditions (16). In this section we allow there to be selection on both observed product

characteristics, xj, and unobserved product characteristics, ξj. We continue to assume

that the measurement error in price is iid and thus not subject to selection.

Selection introduces two main problems to the analysis. The first is that, even if the

mean of the unobserved product characteristics is normalized to zero overall, the mean of

the unobserved product characteristics is not necessarily zero among products observed

in any given period: µt ≡ Et[ξj|xj] 6= 0.20 One way that this shows up is that the errors

from the hedonic price regressions, εj,t, will include a term in the period mean of the

unobserved characteristics,

εj,t = β′
ξ,t(ξj − µt) + νjt.

This extra term must be accounted for when estimating ξj. This can be done using

multivariate and partitioned regression techniques or an equivalent iterative procedure.

The second problem caused by selection is that we only observe the covariance of the

errors in the price regression between two periods for products that are observed in both

periods. If selection influences these covariances, then it is impossible to calculate sample

moments that correspond to the population moments given by (16). Formally, for any pair

of periods s, t ∈ 0..T , the moments in (16) represent E[εj,sεj,t]. Instead, we observe the

sample counterpart to the population moment, E[εj,sεj,t|j ∈ Cs,t], where Cs,t represents the

set of products observed in periods s and t. Therefore, if we were to proceed as described

19 We are grateful to Ariel Pakes for helping us to clarify our thoughts in this section.
20 The same is true among products observed in any pair of periods s and t.
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above and ignore the selection problem, we may bias the estimates of βξ as well as the

statistical dimension tests.

Our approach to handling selection is two-fold. First, in running the hypothesis tests for

the dimension L on subsamples as described above, instead of using all data points for all

products observed at any point during the subsample, we reduce the data to a balanced

panel. Formally, we choose a balanced panel, Cs..t, representing all products observed in

all periods, s, ..., t. In running the statistical dimension tests, we then use the moment

conditions in (16) but only for products in the balanced panel,

E[S|j ∈ Cs..t] = Σ.

Note that the fact that we are using a balanced panel does mean that we are using a

selected group of products. For example, because these products were observed over the

entire panel, they are likely to be better than products that dropped out at some point.

The way that this selection would show up is that the unobserved characteristics in the

balanced panel would have a different (perhaps higher) mean and different covariance

matrix than an unselected sample would. However, the mean and covariance matrix are

normalized away in the estimation so the fact that they are different than what would be

obtained without selection does not matter. What matters for the estimation is that the

mean and covariance matrix are held constant across the moment conditions (the entire

matrix S). Holding the selection constant over the panel allows us to discern common

movements in the price regression errors, which allows us to estimate the coefficients, βξ.

As long as there are enough products in the balanced panel to identify the coefficients,

the selection no longer matters. The downside of the balanced panel approach is that it

forces us to throw out some of the information available in the data. The benefit is that

it allows us to test for the dimension L while allowing for selection without restrictions.

The approach of using a balanced panel does not allow us to estimate the price index as a

whole because very few, if any, products are observed in every period in the data. However,

we can extend the intuition of the balanced panel forward in several ways. Perhaps the
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easiest approach would be to chain together balanced panels for several subsamples of

the data in order to construct the whole index. This approach should in principle work,

but at the expense of not using all of the available information in the data. Instead, we

propose using the moment conditions from overlapping balanced panels in conjunction

with each other in order to estimate the overall index. However, in order to do this, we

have to explicitly account for the varying selection across different panels.

Suppose that we apply the factor analysis normalizations relative to the products in some

group Cη, such that the ξ’s for those products have mean zero and covariance matrix

IL. For example, the group Cη could be the balanced panel of all products observed in

all periods 1..10. Then, as above, these products provide us with a series of moment

conditions,

E[S|C1..10] = Ση ≡ βξβ
′
ξ + σ2

νI.

Now, consider a second group of products, Cτ . For example, Cτ could be the balanced

panel of all products observed in all periods 2..11. If we allow the selection process to be

completely unrestricted, then we know nothing about the mean and variance of ξ among

this second group relative to the normalization from the first group. However, we still

have an equivalent set of moment conditions,

E[S|C2..11] = Στ ≡ βξΨτβ
′
ξ + σ2

νI,

where Ψτ is the covariance matrix of ξj among products in Cτ . Because of the presence of

the new parameters, Ψτ , this second set of moment conditions does not provide as much

information as the first. However, for small dimensions L, they should still provide a

great deal of information. For example, if L = 1 then these moment conditions are simply

shifted by a constant relative to the first group. In this manner we can use many moment

conditions from successive overlapping balanced panels to estimate the parameters βξ

while allowing for selection without restriction. Note that this procedure introduces new

incidental parameters, Ψτ , for each set of moment conditions used, and therefore increases

the computational burden of the estimation.
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3.3 The Non-Independent Case

We have already shown that if the unobserved product characteristics are correlated with

each other, but independent of the observed characteristics, then we can estimate the

price index by normalizing them to be uncorrelated with each other. In this section, we

consider the case where the unobserved product characteristics are also correlated with

the observed product characteristics.

We consider the case where the functions ft(·) are estimated using a nonparametric series

estimator. This approach is suggested by Pakes (2003) and also used in the empirical

section of this paper. It also nests many parametric approaches, including linear, semi-log,

and log-log, and can be viewed as an approximation to other nonparametric approaches.

In that case, the price equation can be written as,

pjt = β0,t + β′
x,tφ(xj) + β′

ξ,tξj + νjt, (18)

where φ(xj) is a M × 1 vector of basis functions of xj and βx,t is a M × 1 vector of

parameters.

Without loss of generality, ξj can be written as,

ξj = µt + γtφ(xj) + ζjt, (19)

where Et[ζjt|φ(xj)] = 0 and γt is a L × M matrix of parameters. The expression (19)

represents the period t projection of ξj on φ(xj) with respect to the period t sampling

distribution of (xj, ξj).
21 In general, the relationship between ξj and φ(xj) may vary

over time, depending on such things as changes in production technology and selection.

However, suppose the projection were stable over time, such that

ξj = γφ(xj) + ζj, (20)

where Et[ζj|φ(xj)] = µt for all time periods, t. Then combining (18) and (20) gives

pjt = β0,t + (β′
x,t + β′

ξ,tγ)φ(xj) + β′
ξ,tζj + νjt, (21)

21 For clarification, µt and γt are the coefficients from a regression of ξj on φ(xj) for all products
observed in period t.
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This model is analogous to that estimated above for the independent case. Thus, using the

approach outlined above, we can consistently estimate the quantities β0,t, (β′
x,t + β′

ξ,tγ),

βξ,t, and ζj, under the correct assumption that Et[ζj|φ(xj)] = µt. The quantities βx,t,

γ, and ξj are not separately identified/estimable using this approach. However, we do

not require these quantities in order to evaluate pt(xj, ξj). The estimable quantities are

sufficient for evaluation of this function and thus sufficient for construction of the hedonic

price index. Thus, so long as the relationship between ξj and xj is stable over time, the

estimation approach described in the previous section provides consistent estimates of the

price index.

Though it is substantially more general than assuming that they are independent, the as-

sumption that the relationship between ξj and xj is stable over time is somewhat restric-

tive, particularly if we were considering long panels. However, it would also be possible to

use balanced panels in the first stage hedonic regressions to solve the correlation problem

more generally. The reason balanced panels would work is the same as before. They hold

the set of products fixed over time, thus making the relationship between ξj and xj fixed

over time.

4 Empirical Results

4.1 Data

Our data comes from PC Data Retail Hardware Monthly Report and includes quantity

sold, average sales price, and a long list of machine characteristics for desktop computers

sold over a 29 month period from August 1997 to December 1999. The data set reportedly

covers approximately 75% of U.S. retail computer sales. The price data is collected from

cash register receipts and is constructed by taking total sales of each product over a month

and dividing by quantity sold. It therefore represents the average retail sales price of the
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machine in that month.22

The characteristics data included 65 product characteristics, including 23 processor type

dummies and 9 operating system type dummies. In order to reduce the dimension of the

characteristics space, rather than use the 23 processor type dummies and the speed rating

of the chip as separate characteristics, we instead obtained CPU benchmarks for each

machine from The CPU Scorecard (www.cpuscorecard.com). Despite having considerable

variation, a regression of the CPU benchmark variable on processor dummies interacted

with speed of the chip had an R2 of 0.995, justifying its use in their place.

Of the remaining 41 characteristic fields, we eliminated those fields that were either not

reliable (not always recorded) or only applied to a handful of machines. However, despite

the need to drop several of the characteristics fields, we are left with an extremely rich set

of characteristics. The final characteristics set included nine operating system dummies

(Win 3.11, Win 3.1, NT 3.51, NT3.2, NT 4.0, NT, Win 98, Win 95, Other) plus CPU

benchmark, MMX, ram capacity, hard drive capacity, SCSI, CDROM, DVD, modem,

modem speed, NIC, monitor dummy, monitor size, zip drive, desktop (versus tower),

refurbished, dual hard drive, and dual processor, for a total of 26 characteristics.

Tables 2 and 3 contain summary statistics for the final data set. Table 2 shows that

there are approximately 600 machines per month in the data, representing an average of

approximately 300,000 units sold. The sales-weighted average price of machines drops by

approximately 40% over the 29 month period. The unweighted average price is generally

higher, but moves similarly. At the same time, Table 3 shows that sales-weighted average

CPU benchmark, and sales-weighted average hard drive capacity all go up by approxi-

mately a factor of four, while sales-weighted average ram goes up by a approximately a

22 In working with the raw data, we discovered two problems that we felt needed addressing. First,
the data for machines with very few sales was highly variable from month to month. Second, sometimes
machines are recorded as having been sold at very low prices (e.g., $0.01) when they were in fact taken off
the books for other reasons, such as because the unit was stolen. Thus, in order to remove both of these
problems, we dropped all price observations for units that sold fewer than 10 units in a given period.
After dropping these observations, 3853 machines remained, from an original sample of approximately
8000.
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factor of three. To summarize, prices for a constant quality machine are dropping rapidly

but consumers are also rapidly substituting toward higher quality machines. The net

result is that average purchase prices still drop by 50% over the 29 month period.

Table 3 shows that, despite the fact that our data only covers 29 months, there is con-

siderable shift in the boundaries of the characteristics space over time. The shift in the

minimum set of characteristics available is only slight. However, there is a considerable

shift upward in the maximum characteristics available, particularly with respect to CPU

benchmark and hard drive capacity. Table 3 also leaves out some shifts in the character-

istics space with respect to the other product characteristics. For example, in our data,

Windows NT 3.51 is unavailable after May 1998.

4.2 Price Index Calculations

4.2.1 Standard Indexes

Table 4 lists matched model price indexes calculated using the final data set. Even though

our data is quite high frequency relative to that used by the BLS, the standard matched

model indexes are quite unreliable here because there is so much attrition in the sample.

The standard indexes suffer from both a selection bias, present even in the initial periods,

and from considerable noise in later periods due to there being so few matched products

(note the drop from the Nov 1999 to Dec 1999). In our opinion, table 4 shows how difficult

it is to construct a matched model price index for a fast paced high technology industry

like personal computers. Even in such a short span as two years and even using a very

comprehensive data set covering nearly 4000 machines, it is nearly impossible to use the

matched model method to construct a reliable price index. On the other hand, there are

enough observations common to any two neighboring periods that the chained indexes

do not suffer from the same sampling noise problem. However, with the chained indexes

there is still a potential selection problem with respect to which products remain in the

24



market from period to period.

Table 5 shows standard hedonic indexes (H) calculated using the same data set. In

implementing the hedonic indexes it was necessary to choose a baseline functional form.

In the spirit of nonparametric estimation, in choosing the baseline functional form our

goal was to find the functional form that provided the best fit for the hedonic surface.

We tried several functional forms, including linear, semi-log,23 and log-log. An analysis of

the residuals from these functional forms over several time periods revealed that log-log

provided a very poor fit. The linear form fit the high end machines well but did not fit

the low end machines well (it vastly underpredicted price). The semi-log fit the low end

machines well, but showed some slight problems at the high end (slightly underpredicted

price). We judged that the best of the three was the semi-log so we proceed using this as

our baseline form.24

Coefficients in the hedonic regressions generally had the expected signs, the main excep-

tion being the “Modem” variable, which consistently was estimated to have a negative

coefficient.25 We speculate that this may be due to the fact that computers with modems

are generally intended for home use and may be of lower average quality in other respects

that are not observed.

The standard hedonic index and the matched model index are quite different over some

ranges (e.g., from Aug 1997 - Sep 1997), which probably reflects the selection problem in

the matched model indexes. However, their movement over the whole sample is surpris-

ingly similar. This result is contrary to the results of Pakes (2003), in which it is found

that the selection problem is so bad that the matched model indexes actually rise for some

periods instead of falling. We do not know for sure why our results differ so much in this

respect. However, we speculate that selection is not nearly as bad a problem in monthly

23 In the semi-log form, only the left hand side (price) is in log form.
24 Our judgement was based on a series of statistical tests as well as “eyeing” the fit via residual charts.

These results are also consistent with the arguments of Diewert (2003), which argues that the left hand
side variable in hedonic regressions should be in log form.

25 Individual coefficients are not reported because there were 29 regressions with approximately 26
coefficients each, for a total of 754 coefficient estimates.
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data as it is in yearly data. In our data it is typical for over 90% of the products in

one month to be observed in the next, whereas typically fewer than 10% are observed 12

months later.26 From a policy point of view, this evidence may suggest that it is worth-

while to use higher frequency data in industries that have a lot of product turnover. Note

that our results also show slightly faster rates of decline than those of Aizcorbe, Corrado,

and Doms (2003) for the period where the data overlaps.

We found that the standard (non-chained) hedonic indexes were subject to some variability

with respect to changing the functional form of the hedonic price function. This variability

arises because of the fact that the product space is changing over time. Because computers

are improving over time, in calculating the price index for periods that are far apart

in time it is typically necessary to extrapolate the hedonic price function outside the

range of characteristics space on which it was estimated. We found that this introduced

substantial variability into the index to the point where we are not confident in the results

of the non-chained indexes even for the best of the functional forms. On the other hand,

changing the functional form had very little effect on the chained indexes because very

little extrapolation was needed between adjacent periods.

Despite the fact that our data contains many characteristics, we found that the R2 statis-

tics in the hedonic regressions ranged from 0.40 to 0.78. While these were lower than

expected, they are in the same range as those found in Pakes (2003). They are lower than

those of Holdway (2000). However, Holdway (2000) uses data obtained solely from large

web-based retailers and is hence likely to be holding many unobserved factors constant.

This result suggests that either there are still some important characteristics, such as sales

outlet, or quality, that we do not observe, or that there is substantial measurement error

in prices.

Table 6 shows standard hedonic indexes (H) similar to those above except that a polyno-

mial series was used on the right hand side (as suggested by Pakes (2003)), but retaining

26 However, the fact that 90% of the products are observed from one month to the next does not
preclude selection being a bad problem.
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the semi-log form. In general these indexes resulted in better in sample fit of the hedo-

nic function, particularly for those periods in which fit was previously the poorest. A

large number of the coefficients on the second order terms were also statistically signif-

icant. However, this improvement comes at some cost with respect to prediction near

the boundaries of the sample in characteristics space. The result is that even with just a

second order polynomial, there are some wild fluctuations in the standard price indexes

(see the Paasche price index for July-December 1999). We found that going to higher

order polynomials further improves the fit of the model, but makes the price index even

wilder. Again, the problem was not as bad for the chained indexes, as can be seen in the

table.

Because of the unreliability of the non-chained indexes here and above, below we only

report results for the chained indexes. For similar reasons (sampling error), we use the

second order polynomial indexes, rather than the third order ones, as our base case index.

4.2.2 The Multidimensional Case

Table 7 reports p-values for hypothesis tests based on the GMM objective function for

various values of L. The first three columns are the baseline tests run for iid measurement

error and three subsamples of approximately ten periods that roughly divide the data into

three pieces. We chose to use ten period subsamples because ten periods provided enough

degrees of freedom to run tests for values of L up to about five while maintaining suffi-

ciently many observations in the balanced panel. Tests with smaller and larger subsamples

generated similar results, as did tests using different subsamples of ten periods. Results

from the three tests are slightly inconsistent, with the early periods requiring a higher

dimensional unobservable, but generally imply that the true dimension L is greater than

or equal to four.

Because the coverage of the data changes slightly over the panel and because the variance

in computer prices generally falls over our sample, we were concerned that the measure-
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ment error variance might not be constant over time. Thus, we re-ran the hypothesis

tests allowing for heteroskedasticity of unknown form in the measurement error. Relative

to the baseline tests, in order to allow for heteroskedasticity of unknown form, we need

only run the same estimation procedure but throwing out the moment conditions corre-

sponding to the diagonal of the covariance matrix in (16). Allowing for heteroskedasticity

of unknown form, all three tests suggest that we cannot reject that the true value is

L = 3. If we allow L to be large, it is impossible to test whether the measurement error

is heteroskedastic or not because the model can always match the data equally well by

increasing L. However, in our opinion, given the comprehensiveness of the characteristics

data, the result that L = 3 is more reasonable than those above. We also find further

support for heteroskedastic measurement error below.

We also worried that the large sample tests may over-reject due to the fact that first

stage estimates are used in place of the true error terms in the hypothesis tests. Since

our data did not contain enough data points to allow joint estimation of the two stages,

we instead simulated finite sample critical values using the coefficient estimates obtained

below and the assumption that both the unobserved characteristics and the measurement

error were normally distributed. The results of these tests showed that the finite sample

critical values were indeed larger than the asymptotic critical values. However, as shown

in Table 7, the hypothesis that L = 1 is still rejected in all cases. We therefore conclude

that in this data set, L ∈ {2, 3}.

Table 8 shows chained price indexes constructed for the L = 0 and L = 1 cases.27 Com-

paring the L = 0 and L = 1 cases, we find that correcting for unobserved characteristics

substantially reduces the index, by 2.9% over the 29 month period for the Fisher index.

The reason for this bias is primarily selection. We find that the unobserved characteristics

27 The L = 1 case was estimated using the moments from all balanced panels of length 3, 4, 5, 9, and
10 periods. We found that the results were extremely stable over choices of which panel lengths to use
(to within 0.1 in the overall index). The primary reason for choosing these period lengths was a trade
off between efficiency and computational burden. The more period lengths we use, the more efficient
the estimates, but at the expense of higher computational burden. We wanted to include several short
panels because they generally have more data points, as well as several long panels so as to incorporate
information from periods that are far apart in the data.
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are substantially improving over time (their normalized mean moves steadily upward from

approximately -0.3 to 0.2 over the period). The standard hedonic index (L = 0) absorbs

the mean unobserved characteristic in each period into the intercept of the price function.

Then, in predicting the prices of goods from previous periods that were not observed in

later ones, it overpredicts their prices, raising the overall index. Most of this movement in

the average unobserved characteristic takes place during the first 18 months in the data,

which is also reflected in the estimated indexes.

We found that allowing for heteroskedastic measurement error did significantly affect the

parameter estimates and, based on this, we feel that this is the correct specification.

However, we found that it had very little impact on the overall price index. The primary

effect was to increase the rate of price deflation in early periods, and slow the rate of price

deflation midway through the sample.

Unfortunately, we found that we were unable to estimate the price index for L > 1 cases

in our data because it was not possible to estimate a two-dimensional ξ very precisely for

many products. We found that there was so much noise in the estimates of ξ that the price

index calculations were also too noisy to be reliable. Thus, since we found that L ∈ {2, 3}

above, the L = 1 case has to be viewed as an approximation to the true index. In view of

the comprehensive nature of our data, this finding leads us to be slightly pessimistic with

respect to the ability to correct for multiple unobserved factors in other industries.

However, there are several factors that also make this data more difficult to work with

than other industries. One is the high rate of product turnover, which leads to products

often only being observed in a handful of periods. If products are observed more often,

estimation of multiple factors becomes easier. Another is the fact that our data was not

collected as carefully as that of the BLS. With less measurement error, estimation would

also be easier.
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4.2.3 Omitting An Important Characteristic

Table 9 tests our approach for the case when an important characteristic, the CPU bench-

mark, is known to be omitted. We compare the estimated price index when all of the

observed product characteristics are included (as above), against those constructed using

all of the observed characteristics except CPU benchmark. This experiment tests the

ability of the approach to reduce the bias from unobserved product characteristics for a

case in which the bias is quantifiable. Note that in our model leaving out CPU benchmark

is equivalent to leaving out several characteristics since our base case model uses a second

order polynomial in all of the continuous characteristics.

In the first two columns of Table 9 we compute standard chained Fisher indexes first

including all characteristics, and then omitting CPU benchmark. As indicated above,

the results show that a substantial bias occurs in this case. Over the entire period, the

difference between the two indexes is approximately 9%.

In the third and fourth columns of the table, we report the same results after controlling

for the unobserved characteristics. The two indexes do not agree entirely, but are much

closer than the two standard indexes. Over the entire sample, the difference is now just

2.3%. In fact, the first, third, and fourth columns of the table are remarkably similar.

We also calculated the correlation between the estimated values of ξ and the left out

CPU benchmark variable to see if the estimated ξ’s reflected the left out characteristic.

We found the correlation with CPU benchmark was 0.41. We take this as evidence that

the procedure is working the way it is supposed to. Note that when CPU benchmark

is omitted, the unobserved characteristics only pick up the residual correlation of CPU

benchmark with prices once the effect of RAM and Hard Drive and the other character-

istics is already accounted for. Thus, we view the 0.41 figure as being quite high.

In theory, with enough data, the procedure should provide the same results whether or

not CPU is included, so what explains the fact that the results are not 100% consistent?
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Part of the difference between the two is almost surely explainable by the fact that we

were unable to estimate the index for higher values of L. The procedure is using a single

dimensional unobservable to try to match the previous results (L ∈ {2, 3}), plus now CPU

benchmark is left out, so we should expect that L ≥ 4. Thus, the procedure is relying on

an approximation. A second reason for the difference would be if the relationship between

CPU benchmark and the other observed characteristics among the observed products is

changing substantially over the sample period.

5 Conclusions

In conclusion, we have presented both theoretical and empirical evidence that omitted

product characteristics can lead to a severe bias in hedonic price indexes. Moreover, we

have shown that, at least for our data on desktop PC’s, this bias is of practical relevance.

In the case of PC’s we have found evidence that there is a selection bias in the standard

hedonic index that biases the index upward by about 1.4% per year in our sample.

Given the comprehensiveness of the characteristics data available for computers, we found

it somewhat surprising that the unobserved characteristics bias was this large. In other

industries where hedonic techniques are currently used by the BLS, such as housing and

apparel, we might expect it to be more difficult to collect such comprehensive data and

thus more likely that there are important unobserved characteristics. On the other hand,

mitigating this effect is the fact that unobserved characteristics in these industries are

likely to change less quickly over time, reducing the selection bias.

We have also presented an approach for constructing hedonic indexes that control for

unobserved product characteristics under quite general assumptions. This approach can

be viewed as a middle ground between the standard hedonic approach and the matched

model approach. The drawback of our approach is that it requires more data than the

standard hedonic approach because it requires data on the same products over several
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time periods. However, its data requirements fall far short of those of the matched model

approach. Our methodology also shows how to do factor analysis more generally for

unbalanced panels when selection is present.
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7 Tables and Graphs
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Table 1: Left Out Characteristics Bias
Chained Fisher Indexes

Period All Chars. Included CPU Benchmark Omitted
Aug ’97 100.0 100.0
Sep ’97 92.3 93.4
Oct ’97 85.3 86.8
Nov ’97 81.0 83.9
Dec ’97 76.0 78.8
Jan ’98 66.9 68.9
Feb ’98 65.1 68.4
Mar ’98 62.0 65.8
Apr ’98 59.3 64.3
May ’98 54.3 59.1
Jun ’98 51.4 56.4
Jul ’98 47.8 53.0

Aug ’98 43.5 49.5
Sep ’98 41.0 47.7
Oct ’98 37.4 43.7
Nov ’98 35.5 42.3
Dec ’98 32.0 38.5
Jan ’99 29.7 37.0
Feb ’99 28.8 37.1
Mar ’99 27.9 37.5
Apr ’99 27.2 37.3
May ’99 25.4 34.9
Jun ’99 22.5 30.4
Jul ’99 21.5 30.7

Aug ’99 20.1 29.5
Sep ’99 18.2 27.6
Oct ’99 17.4 27.4
Nov ’99 16.6 26.5
Dec ’99 15.7 25.1
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Table 2: Summary of Computer Data

Unique Total Avg. Price Avg. Price
Period Machines Sales (Unweighted) (Sales-Weighted)

Aug ’97 577 226029 1396 1422
Sep ’97 556 239417 1408 1437
Oct ’97 562 211610 1411 1423
Nov ’97 517 265070 1358 1351
Dec ’97 524 345153 1308 1321
Jan ’98 572 328028 1224 1200
Feb ’98 525 331262 1172 1217
Mar ’98 614 371337 1187 1194
Apr ’98 601 260173 1206 1179
May ’98 547 210834 1182 1134
Jun ’98 660 278002 1160 1111
Jul ’98 563 250110 1156 1133

Aug ’98 615 345183 1177 1092
Sep ’98 649 393909 1131 1113
Oct ’98 647 296737 1128 1032
Nov ’98 563 428776 1046 1099
Dec ’98 644 592138 1042 995
Jan ’99 593 406644 981 1028
Feb ’99 569 371586 998 1056
Mar ’99 675 452156 1025 1046
Apr ’99 635 313716 977 1061
May ’99 608 285353 968 1033
Jun ’99 692 378476 947 1002
Jul ’99 614 330798 878 1020

Aug ’99 616 478200 841 992
Sep ’99 672 571820 848 953
Oct ’99 710 379487 866 914
Nov ’99 661 484269 861 925
Dec ’99 747 664983 912 879
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Table 3: Summary of Product Characteristics

CPU Benchmark RAM Hard Drive Capacity
Period Avg∗ S.D.∗ Min Max Avg∗ S.D.∗ Min Max Avg∗ S.D.∗ Min Max

Aug ’97 333 178 17 781 24 12 4 128 2340 1147 420 7000
Sep ’97 343 194 17 855 25 14 4 128 2509 1219 420 7000
Oct ’97 383 203 17 855 27 14 4 128 2733 1292 420 7000
Nov ’97 400 216 17 982 26 12 4 128 2817 1355 420 7000
Dec ’97 422 213 17 982 27 12 8 128 2910 1382 420 8000
Jan ’98 428 219 17 982 27 12 4 128 2998 1538 250 12000
Feb ’98 472 222 17 982 30 14 4 128 3174 1587 420 12000
Mar ’98 501 226 17 1130 31 15 8 128 3302 1718 420 12000
Apr ’98 532 236 17 1131 32 15 4 128 3474 1826 80 12000
May ’98 572 237 17 1131 33 15 8 128 3665 1832 500 12000
Jun ’98 599 251 17 1131 36 18 8 128 3900 2004 420 12000
Jul ’98 661 252 17 1131 39 19 8 128 4239 2065 800 12000

Aug ’98 700 248 17 1344 41 21 8 128 4464 2148 500 12000
Sep ’98 730 256 17 1240 44 23 8 128 4697 2364 420 16800
Oct ’98 743 271 17 1240 45 24 8 128 4794 2407 540 16800
Nov ’98 802 261 17 1240 49 27 8 256 5127 2481 850 16800
Dec ’98 806 265 17 1270 51 30 8 256 5292 2644 250 18000
Jan ’99 843 264 17 1468 53 30 8 256 5490 2696 250 19000
Feb ’99 899 249 17 1651 57 32 8 256 5919 2982 250 19000
Mar ’99 929 285 17 1651 57 30 8 256 6058 3105 250 20000
Apr ’99 991 275 17 1651 60 29 8 256 6449 3307 250 32000
May ’99 1049 276 17 1780 63 30 16 256 6925 3337 250 20400
Jun ’99 1080 303 17 1814 64 31 4 256 7221 3651 340 32000
Jul ’99 1151 287 17 1930 68 37 16 512 7608 3789 500 32000

Aug ’99 1183 299 17 2254 69 34 16 256 7765 3829 500 27000
Sep ’99 1237 328 17 2347 72 35 16 256 8202 4197 500 27000
Oct ’99 1278 343 17 2399 72 33 16 256 8545 4362 64 27000
Nov ’99 1329 343 17 2510 73 33 16 256 9027 4556 64 36500
Dec ’99 1339 381 17 2544 73 35 8 256 9167 4905 64 40000
∗Averages and standard deviations are sales weighted.
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Table 4: Matched Model Indexes
Chained Chained Chained

Period N(L) Laspeyre’s Paasche Fisher N Laspeyre’s Paasche Fisher
Aug ’97 NA 100.0 100.0 100.0 NA 100.0 100.0 100.0
Sep ’97 425 96.0 96.2 96.1 425 96.0 96.2 96.1
Oct ’97 353 91.2 91.7 91.5 405 91.9 92.6 92.3
Nov ’97 294 82.5 81.1 81.8 412 85.5 84.1 84.8
Dec ’97 266 77.6 76.6 77.1 400 81.3 79.5 80.4
Jan ’98 253 70.3 72.0 71.2 405 75.8 73.8 74.8
Feb ’98 206 67.3 67.8 67.5 416 69.7 69.7 69.7
Mar ’98 198 60.0 59.8 59.9 431 67.0 66.0 66.5
Apr ’98 172 59.0 63.2 61.0 473 62.6 61.9 62.2
May ’98 122 56.8 62.5 59.6 427 58.8 58.6 58.7
Jun ’98 147 50.7 56.0 53.2 439 53.8 52.6 53.2
Jul ’98 88 49.7 53.6 51.6 429 49.3 48.8 49.1

Aug ’98 83 50.6 46.8 48.7 443 46.1 46.0 46.1
Sep ’98 91 65.1 43.7 53.3 453 43.7 43.3 43.5
Oct ’98 103 44.9 44.9 44.9 478 39.7 40.4 40.1
Nov ’98 49 57.3 68.9 62.8 429 37.1 37.6 37.4
Dec ’98 73 36.4 41.3 38.8 459 35.5 35.8 35.7
Jan ’99 45 53.3 45.0 49.0 447 31.8 33.3 32.5
Feb ’99 27 77.9 59.7 68.2 419 30.4 32.3 31.3
Mar ’99 37 87.9 98.2 92.9 449 29.0 30.6 29.8
Apr ’99 12 86.9 105. 95.7 471 27.7 29.1 28.4
May ’99 4 16.3 33.5 23.4 426 26.6 28.0 27.3
Jun ’99 13 14.4 47.7 26.2 459 24.9 26.2 25.6
Jul ’99 1 65.5 65.5 65.5 468 23.0 24.6 23.8

Aug ’99 2 23.9 47.9 33.8 459 21.8 22.9 22.4
Sep ’99 1 65.4 65.4 65.4 473 20.8 21.6 21.2
Oct ’99 2 62.3 61.2 61.7 499 19.2 20.6 19.9
Nov ’99 2 58.3 58.9 58.6 509 18.1 19.8 18.9
Dec ’99 5 13.1 20.1 16.3 532 17.7 19.5 18.5
N(L) is number of units used to construct Laspeyre’s index.
N is number of units used to construct Chained indexes.
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Table 5: Standard Hedonic Indexes (H)

Chained Chained Chained
Period N(L) Laspeyre’s Paasche Fisher N Laspeyre’s Paasche Fisher

Aug ’97 NA 100.0 100.0 100.0 NA 100.0 100.0 100.0
Sep ’97 550 92.9 92.5 92.7 541 92.9 92.5 92.7
Oct ’97 550 86.0 86.4 86.2 545 86.5 86.8 86.6
Nov ’97 550 84.4 82.5 83.4 502 83.9 83.2 83.5
Dec ’97 550 79.3 78.1 78.7 518 78.3 77.9 78.1
Jan ’98 550 67.7 69.0 68.3 561 68.1 67.3 67.7
Feb ’98 550 70.3 67.6 69.0 517 67.7 67.0 67.3
Mar ’98 550 68.4 66.2 67.3 594 65.0 64.4 64.7
Apr ’98 550 66.5 63.5 65.0 583 63.4 62.9 63.1
May ’98 550 59.3 59.5 59.4 533 57.7 57.4 57.5
Jun ’98 550 59.1 52.8 55.9 642 53.4 53.4 53.4
Jul ’98 550 56.1 45.2 50.4 547 49.6 50.6 50.1

Aug ’98 550 51.3 40.3 45.5 600 45.4 45.9 45.6
Sep ’98 550 57.7 39.7 47.9 635 43.5 43.9 43.7
Oct ’98 550 47.7 35.4 41.1 635 39.2 40.6 39.9
Nov ’98 550 58.3 32.6 43.5 550 38.1 38.5 38.3
Dec ’98 550 43.9 28.5 35.4 624 34.6 34.8 34.7
Jan ’99 550 49.1 30.5 38.7 579 32.0 32.5 32.3
Feb ’99 550 53.7 31.1 40.8 556 31.7 32.4 32.0
Mar ’99 550 52.2 30.1 39.6 659 30.9 31.9 31.4
Apr ’99 550 47.9 32.1 39.2 622 29.8 30.3 30.0
May ’99 550 32.0 31.6 31.8 593 27.2 27.7 27.5
Jun ’99 550 24.8 27.6 26.1 663 23.9 24.4 24.1
Jul ’99 550 29.3 26.1 27.7 588 22.9 23.3 23.1

Aug ’99 550 30.1 21.9 25.7 588 21.3 21.5 21.4
Sep ’99 550 27.8 19.5 23.3 646 19.4 19.4 19.4
Oct ’99 550 25.4 18.9 21.9 677 18.9 18.7 18.8
Nov ’99 550 26.2 17.5 21.4 626 17.9 17.7 17.8
Dec ’99 550 16.5 16.4 16.4 705 16.8 16.7 16.7
Functional form is semi-log. R2 ranges from 0.40-0.78.
N(L) is number of units used to construct Laspeyre’s index.
N(CL) is number of units used for Chained Laspeyre’s index.

40



Table 6: Nonparametric Hedonic Indexes (H)

Order: 2 2 2 2 2 3 3 3
Period N(L) L P N(CL) CL CP CF CL CP CF

Aug ’97 NA 100.0 100.0 NA 100.0 100.0 100.0 100.0 100.0 100.0
Sep ’97 550 92.4 92.2 541 92.4 92.2 92.3 92.6 92.7 92.6
Oct ’97 550 84.5 85.4 545 85.1 85.5 85.3 85.7 86.4 86.0
Nov ’97 550 82.1 80.6 502 81.6 80.4 81.0 81.5 80.9 81.2
Dec ’97 550 77.6 75.8 518 76.7 75.4 76.0 76.6 76.2 76.4
Jan ’98 550 64.6 66.9 561 67.7 66.2 66.9 67.7 68.2 67.9
Feb ’98 550 66.8 64.3 517 66.0 64.3 65.1 65.5 65.8 65.6
Mar ’98 550 64.6 62.3 594 62.9 61.2 62.0 62.0 62.7 62.4
Apr ’98 550 63.5 59.2 583 60.1 58.5 59.3 59.5 60.0 59.8
May ’98 550 56.4 54.6 533 54.9 53.6 54.3 54.4 54.9 54.7
Jun ’98 550 56.0 50.1 642 51.6 51.3 51.4 51.2 52.3 51.8
Jul ’98 550 54.7 45.5 547 47.4 48.2 47.8 47.1 49.6 48.3

Aug ’98 550 50.3 40.0 600 43.5 43.5 43.5 43.2 44.5 43.8
Sep ’98 550 59.2 38.8 635 40.9 41.0 41.0 40.6 41.9 41.3
Oct ’98 550 47.4 41.5 635 36.9 38.0 37.4 36.5 38.3 37.4
Nov ’98 550 60.5 38.9 550 35.4 35.6 35.5 35.3 39.7 37.4
Dec ’98 550 46.8 38.5 624 31.9 32.0 32.0 32.7 36.9 34.7
Jan ’99 550 53.9 35.7 579 29.7 29.7 29.7 30.6 34.2 32.4
Feb ’99 550 63.2 36.1 556 28.9 28.7 28.8 29.7 33.1 31.4
Mar ’99 550 59.4 35.9 659 28.0 27.7 27.9 28.8 32.1 30.4
Apr ’99 550 54.2 36.0 622 27.6 26.8 27.2 28.4 31.2 29.8
May ’99 550 31.2 32.0 593 25.8 25.0 25.4 26.2 28.9 27.5
Jun ’99 550 20.6 31.2 663 22.8 22.1 22.5 22.9 25.2 24.0
Jul ’99 550 23.8 13612488 588 21.9 21.0 21.5 22.1 24.1 23.1

Aug ’99 550 23.7 48.9 588 20.6 19.6 20.1 20.8 22.4 21.6
Sep ’99 550 22.1 523.9 646 18.7 17.8 18.2 18.8 20.3 19.6
Oct ’99 550 24.8 2153.1 677 18.0 16.9 17.4 18.0 19.4 18.7
Nov ’99 550 25.0 2115.6 626 17.2 16.1 16.6 17.1 18.3 17.7
Dec ’99 550 13.4 5073.8 705 16.2 15.3 15.7 16.2 17.6 16.8
Functional form is semi-log with polynomial series. R2 ranges from 0.50-0.79.
N(L) is number of units used to construct Laspeyre’s index.
N(CL) is number of units used for Chained Laspeyre’s index.
Order is polynomial order.
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Table 7: P-Values For Dimensionality Tests

Homoskedastic M.E. Heteroskedastic M.E.
Subsample (Months): 1-10 11-20 21-29 1-10 11-20 21-29
Large Sample Tests:

Dimension (L)
0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.046
3 0.000 0.001 0.006 0.147 0.913 0.958
4 0.001 0.244 0.749 0.757 0.963 —
5 0.025 0.248 — — — —

Small Sample Tests:
Dimension (L)

0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.003 0.000

Number of Obs: 93 58 137 93 58 137
“—”: too few degrees of freedom to calculate.
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Table 8: Chained Price Indexes for L = 0 and L = 1
Homosk. M.E. Heterosk. M.E.

Dimension L = 0 L = 1 L = 1

Period CL CP CF CL CP CF CL CP CF
Aug ’97 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sep ’97 92.4 92.2 92.3 93.9 93.8 93.8 93.1 93.1 93.8
Oct ’97 85.1 85.5 85.3 86.7 87.0 86.9 85.8 86.3 86.9
Nov ’97 81.6 80.4 81.0 82.1 81.0 81.5 81.1 80.3 81.4
Dec ’97 76.7 75.4 76.0 76.8 75.6 76.2 75.9 74.9 76.1
Jan ’98 67.7 66.2 66.9 70.5 69.6 70.0 70.2 69.5 70.0
Feb ’98 66.0 64.3 65.1 66.2 65.2 65.7 65.2 64.4 65.6
Mar ’98 62.9 61.2 62.0 61.7 61.0 61.3 60.9 60.4 61.2
Apr ’98 60.1 58.5 59.3 58.4 57.8 58.1 57.6 57.2 58.0
May ’98 54.9 53.6 54.3 53.8 53.4 53.6 53.2 53.0 53.7
Jun ’98 51.6 51.3 51.4 49.4 50.2 49.8 48.9 49.9 49.8
Jul ’98 47.4 48.2 47.8 45.0 46.9 46.0 44.5 46.5 45.9

Aug ’98 43.5 43.5 43.5 41.3 42.4 41.8 40.9 42.2 41.8
Sep ’98 40.9 41.0 41.0 37.6 38.6 38.1 37.0 38.2 38.0
Oct ’98 36.9 38.0 37.4 33.5 35.4 34.5 33.5 35.5 34.4
Nov ’98 35.4 35.6 35.5 30.9 31.7 31.3 30.5 31.4 31.3
Dec ’98 31.9 32.0 32.0 28.2 29.2 28.7 28.2 29.1 28.7
Jan ’99 29.7 29.7 29.7 24.9 25.9 25.4 25.1 25.9 25.6
Feb ’99 28.9 28.7 28.8 23.2 24.1 23.7 23.2 24.1 23.9
Mar ’99 28.0 27.7 27.9 22.4 23.5 22.9 22.4 23.6 23.1
Apr ’99 27.6 26.8 27.2 21.8 22.5 22.2 21.8 22.4 22.4
May ’99 25.8 25.0 25.4 20.1 20.8 20.5 20.0 20.6 20.6
Jun ’99 22.8 22.1 22.5 18.1 18.6 18.4 18.1 18.6 18.6
Jul ’99 21.9 21.0 21.5 17.1 17.5 17.3 17.0 17.4 17.5

Aug ’99 20.6 19.6 20.1 16.0 16.3 16.2 16.0 16.2 16.3
Sep ’99 18.7 17.8 18.2 14.6 14.8 14.7 14.6 14.7 14.8
Oct ’99 18.0 16.9 17.4 13.8 14.0 13.9 13.8 13.9 14.0
Nov ’99 17.2 16.1 16.6 13.0 13.1 13.1 13.0 13.1 13.2
Dec ’99 16.2 15.3 15.7 12.8 12.9 12.8 12.8 12.9 12.9

43



Table 9: Chained Price Indexes: Multidimensional Cases with and without CPU Bench-
mark

Chained Fisher Indexes
Standard Indexes Corrected Indexes

Period All Chars. CPU Omit. All Chars. CPU Omit.
Aug ’97 100.0 100.0 100.0 100.0
Sep ’97 92.3 93.4 93.8 93.6
Oct ’97 85.3 86.8 86.9 86.8
Nov ’97 81.0 83.9 81.4 82.8
Dec ’97 76.0 78.8 76.1 77.2
Jan ’98 66.9 68.9 70.0 69.6
Feb ’98 65.1 68.4 65.6 67.8
Mar ’98 62.0 65.8 61.2 64.3
Apr ’98 59.3 64.3 58.0 61.4
May ’98 54.3 59.1 53.7 57.2
Jun ’98 51.4 56.4 49.8 53.0
Jul ’98 47.8 53.0 45.9 48.9

Aug ’98 43.5 49.5 41.8 45.7
Sep ’98 41.0 47.7 38.0 41.8
Oct ’98 37.4 43.7 34.4 38.3
Nov ’98 35.5 42.3 31.3 34.8
Dec ’98 32.0 38.5 28.7 32.2
Jan ’99 29.7 37.0 25.6 29.2
Feb ’99 28.8 37.1 23.9 27.9
Mar ’99 27.9 37.5 23.1 27.7
Apr ’99 27.2 37.3 22.4 26.4
May ’99 25.4 34.9 20.6 23.8
Jun ’99 22.5 30.4 18.6 21.3
Jul ’99 21.5 30.7 17.5 20.3

Aug ’99 20.1 29.5 16.3 19.1
Sep ’99 18.2 27.6 14.8 17.3
Oct ’99 17.4 27.4 14.0 16.5
Nov ’99 16.6 26.5 13.2 15.6
Dec ’99 15.7 25.1 12.9 15.2

Average N 573 573 573 573
Corrected indexes robust to heteroskedastic measurement error.
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