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ABSTRACT

When studying solutions to long-term environmental problems such as climate change, it is

important to consider the role that technological change may play. Nonetheless, to date few

economic models of climate change explicitly model the link between policy and technological

change. There is a growing body of evidence that the incentives offered by prices and environmental

regulations have a strong influence on both the creation and adoption of new technologies. In several

recent papers, I have used patent data to examine the links between environmental policy and

technological change. In addition, I have used the results of this research to calibrate the ENTICE

model (for ENdogenous Technological change) of climate change, which links energy-related R&D

to changes in the price of carbon. Drawing on my experiences from empirical studies on innovation

and from modeling the climate change problem, in this paper I review some of the key lessons from

recent empirical work using patents to study environmental innovation and diffusion, and discuss

its implications for modeling climate change policy. I conclude by offering suggestions for future

research.
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Debates about the sustainability of environmental policy (or the lack thereof) often revolve 

around the potential effects that technological change may have.  Nonetheless, most economic models of 

long-term environmental policies such as climate change treat technology as exogenous.  Since these 

policies are likely to have a large impact on the pace and direction of technological change, such models 

miss the important link between policy and innovation. One reason for this omission is that, until recently, 

few empirical studies of innovation and environmental policy existed.1 

My own research has focused on filling this gap.  In several recent papers (Popp 2001, 2002, 

2003a), I use patent data to examine the links between environmental policy and technological change.  

Patent data offer several advantages when studying environmentally-friendly technological change.  

Detailed patent classification systems make identifying advances in narrowly-defined technological fields 

straightforward.  Furthermore, since inventors can apply for patents in multiple countries, patents can also 

be used to track the diffusion of technologies across countries.  I have used the results of this research to 

calibrate the ENTICE model (for ENdogenous Technological change) of climate change.  The ENTICE 

model is a variant of the well-known DICE model of climate change (Nordhaus 1994) that links energy-

related R&D to changes in the price of carbon.  Drawing on my experiences from empirical studies on 

innovation and from modeling the climate change problem, in this paper I review some of the key lessons 

from recent empirical work using patents to study environmental innovation.  Using the ENTICE model 

as a an application of these lessons, I discuss the implications for modeling long-run environmental 

problems, and how ignoring the lessons learned from empirical work helps explain differences found in 

various papers.  I conclude by offering suggestions for future research. 

 

I. Theoretical Background 

The process of technological change proceeds in stages (Schumpeter 1942).  First, an idea must 

be born.  This stage is known as invention.  New ideas are then developed into commercially viable 

                                                 
1 Although recent models, such as those presented in this special issue, help to fill this gap in the research, the wide 
range of results presented in these models suggest there is still much work to be done. 
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products.  This stage is innovation.  Typically, these two stages of technological change are studied 

together.  Finally, to have an effect on the economy, individuals must choose to make use of the new 

innovation.  This adoption process is known as diffusion.  At each stage, incentives, either in the form of 

prices or regulations, will affect the development and adoption of new technologies.  This section reviews 

the theoretical literature linking economic incentives to the process of technological change. 

 

A. Induced Innovation 

The idea that the creation of ideas through invention and innovation will be influenced by 

economic incentives is not new.  The concept of induced innovation was first introduced by John Hicks 

(1932), who noted that changes in factor prices would lead to innovation to economize on usage of the 

more expensive factor.  Theoretical papers by Ahmad (1966), Kamien and Schwartz (1968), and 

Binswanger (1974, 1978a, 1978b) formalized Hicks’ notion and established the theory of induced 

innovation.  Binswanger notes that not only will an increase in the cost of a factor of production lead to an 

increase in R&D focused on reducing use of that factor, but also that changes in the productivity of such 

R&D will affect inducement.  This suggests the importance of considering the marginal productivity of 

research.  As I will discuss later, there is evidence that, within a given field, the productivity of research 

declines over time.  As a result, an increase in energy prices should lead to an immediate increase in R&D 

on energy conservation, but this increase need not be long-lived. 

In the environmental literature, the relationship between innovation and policy has been explored 

under two broad themes.2  Papers such as Magat (1978), Milliman and Prince (1989), and Fisher et al. 

(1998) use theoretical models to compare the effects of various environmental policy mechanisms (e.g. 

command and control regulation, emissions taxes, or tradable permits) on environmentally-friendly 

innovation.  In general, these papers predict that market-based policies, such as a tax or tradable permit, 

will induce more environmentally-friendly innovation than a command and control policy.   

                                                 
2 A comprehensive survey of the literature on technological change and the environment may be found in Jaffe, 
Newell, and Stavins (2003).  Jaffe, Newell, and Stavins (1999) discuss the implications of energy-efficiency 
technologies on climate policy. 
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Although economists readily recognized the potential importance of linking technological change 

to climate policy, modeling such links was made difficult by the lack of empirical studies on the 

magnitude of such induced innovation effects.  Recently, as measures of innovative activity such as 

patents have become more readily available, empirical economists have begun to estimate the effects that 

prices and environmental policies have on environmentally-friendly innovation.  Using international 

patent data, Lanjouw and Mody (1996) find a correlation across nations between patenting in 

environmental fields and pollution abatement expenditures.  Jaffe and Palmer (1997) look at the same 

relationship across US industries.  Comparing pollution abatement data and innovation data across these 

industries, they estimate a positive elasticity of pollution control R&D with respect to pollution control 

expenditures of 0.15.  However, they do not find evidence of a relationship between patenting and 

pollution abatement expenditures. 

In each of these studies, pollution abatement expenditures serve as a proxy for the stringency of 

environmental regulation.  Other papers use energy prices and related regulations as the mechanism that 

induces innovation.  Although the observed price changes might not be policy-related, the results can also 

be applied to situations where policy affects prices, such as a carbon tax.  Newell et al. (1999) use an 

approach closely related to hedonic techniques to study the effect of both energy prices and energy 

efficiency regulations on technological advances in energy efficiency for air conditioners and natural gas 

water heaters.  They find that energy prices have the largest inducement effect, although they do not 

estimate a price elasticity.  In a series of studies (Popp 2001, 2002), I use patent data to estimate both the 

relationship between energy prices and innovative activity and the effect that this induced knowledge has 

on energy consumption.  The results of these papers are discussed in greater detail in the subsequent 

sections. 

 

B. Diffusion 

Of course, induced invention and innovation is only half the story.  Technological advances are of 

little use unless society makes use of the innovation.  Thus, diffusion is also important.  Diffusion is likely 
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to play a particularly important role for problems dealing with long-term consequences, such as climate 

change.  Most innovation takes place in highly industrialized countries.  In 1998, 85 percent of all R&D 

done in the OECD countries was done in just 7 countries.  In fact, roughly 44 percent of all OECD R&D 

was done in the United States alone. (National Science Board, 2002)  For example, as policymakers pay 

increased attention to potential increases in fossil fuel consumption for fast-growing countries such as 

China, it is important to not only pay attention to how policy will help induce the development of new 

technologies, but how policy can help encourage the adoption of these technologies in developing 

countries.  

Studies of the diffusion of individual technologies consistently find that diffusion is a gradual 

process.  Typically, the rate of diffusion can be represented by a sigmoid, or “S-shaped” curve over time: 

the rate of adoption rises slowly at first, speeds up, and then levels off as market saturation approaches.  

Figure 1 illustrates such a curve, with market penetration plotted on the y-axis, and the passage of time 

plotted on the x-axis. 

Traditionally, researchers have used one of two approaches to modeling diffusion of a new 

technology.  The epidemic model of diffusion proposes that information is the primary factor limiting 

diffusion.  Adoption is slow at first, as few people (or firms) know about the technology.  However, as 

more people adopt the technology, knowledge of the technology spreads quickly, leading to a period of 

rapid adoption.  Economists often use the analogy of a contagious disease to describe this period of 

adoption – the more people “infected” by the technology, the more likely that others will also be 

“infected”.  Eventually, few potential adopters remain, as nearly everyone has adopted the technology, so 

that the rate of adoption levels off again.  Using this framework, Griliches (1957) noted that the rate of 

diffusion is at least partially determined by economic factors, such as the expected rate of return for 

adoption.  Other work using the epidemic model, such as Mansfield (1968), Davies (1979), and Oster 

(1982), typically focus on firm characteristics, such as firm size, to explain variations in the rate of 

diffusion.  In this framework, environmental policy enters as one of the economic factors affecting 

adoption. 
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The second approach to studying diffusion focuses is the probit model (David 1969).  The probit 

model focuses on heterogeneity among firms.  In this model, firm heterogeneity leads to a distribution of 

expected return from adopting the new technology.  Since adoption is costly, only firms above a threshold 

great enough to justify the costs of adoption will choose to adopt the technology at any given time.  Over 

time, the technology gets cheaper, and its quality improves, so that more firms cross the adoption 

threshold.3  In this framework, environmental policy enters by increasing the expected returns from 

adopting environmentally-friendly technology, and thus increasing the likelihood that firms will cross the 

threshold. 

Although there is a broad economics literature on diffusion, both at the national and international 

level, few articles link diffusion and environmental policy.  Rose and Joskow (1990) find that the 

adoption of fuel-saving technology by U.S. electric utilities is positively correlated with fuel prices.  Jaffe 

and Stavins (1995) find that higher energy prices lead to greater use of insulation in new home 

construction, but that the costs of installation are a more important consideration.  Both Gray and 

Shadbegian (1998) and Kerr and Newell (2001) show that environmental regulations increase the 

probability of adopting environmentally-friendly technologies, and that the response varies by firm 

characteristics.   

Similarly, at the international level, there is a large body of research on technological diffusion in 

general (surveyed by Keller 2001), but little work focusing specifically on environmental technologies.  

One exception is Lanjouw and Mody (1996).  Using patent data from the US, Japan, Germany, and 14 

low-and middle-income countries, they find that environmentally-friendly innovation increases as 

pollution abatement cost expenditures in the country increase.  For the US, Japan, and Germany, the 

majority of these patents are typically domestic patents.  For the developing countries, the majority of 

these patents come from foreign countries, highlighting the importance of diffusion. Given the importance 

                                                 
3 Note that the two models suggest different interpretations of the gradual rate of diffusion.  The epidemic model 
suggests that adoption generates positive externalities, and is thus slower than would be optimal.  Conversely, the 
probit model suggests that gradual diffusion is optimal, as differences in adoption decisions simply result from 
profit-maximizing decisions by heterogeneous firms. 
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of diffusion for bringing new environmental technologies to developing countries, understanding the 

general lessons from empirical work on international diffusion is important.  These lessons are discussed 

in Section V. 

 

II. Using Patent Data to Study Environmental Technological Change 

Several possible data sources exist for studying technological change and the environment.  R&D 

data offer a straightforward measure of innovative activity.  Diffusion studies often make use of adoption 

data for specific technologies.  In comparison, patent data are not as straightforward.  Patent counts 

should be expected to increase as R&D activity increases, but the correlation need not be exact.  

Furthermore, the existence of a patent does not mean that the technology has been adopted.  Indeed, 

studies of the economic value of patents find that most patents have little commercial value, suggesting 

that adoption of most patented inventions is not widespread (see, for example, Lanjouw et al. 1998).  

Nonetheless, patent data offer several advantages when studying technological change and its effect on 

the environment. 

Unlike more aggregate data such as R&D expenditures, patents provide a detailed record of each 

invention.  From the bibliographic data on a patent, the researcher can learn the identity and home country 

of the inventor, read a description of the invention, and see references to earlier patents.  Using this data, 

it is possible for researchers to collect data in highly disaggregated forms.  Whereas R&D data are 

typically available only for specific industries or general applications,4 patent classifications can be used 

to distinguish between different types of R&D at great detail, such as air pollution control devices 

designed to reduce NOX emissions versus devices designed to control SO2 emissions.5  In addition, 

economists have found that patents, sorted by their date of application, provide a good indicator of R&D 

                                                 
4 For example, in the US, R&D data is available from 1972-1994 for air pollution control, but it is not broken down 
by pollutant. 
5 For example, US patent classes 423/235-423/239 pertain to control of “nitrogen or (a) nitrogenous component”, 
and patent classes 423/242 – 423/244 and 423/569 – 423/570 pertain to control of sulfur compounds.  Using patent 
databases, it is possible to download all patents in these classes. 
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activity (see, for example, Griliches 1990).  As a result, patent counts not only serve as a measure of 

innovative output, but are indicative of the level of innovative activity itself. 

Furthermore, patent data are available from many different countries.  Sources such as the 

European Patent Office make available data from virtually every country.6  Of course, such data can be 

used to examine levels of innovative activity across countries.  In addition, unlike R&D data, international 

patent data can be used to track patterns of diffusion.  The legal protections granted by a patent only apply 

in the country in which the patent has been granted.  Thus, inventors who intend to market a product in 

several countries may choose to patent in each potential market.  Economists have used patent families – 

sets of patents related to the same invention that have been filed in various countries – to track diffusion 

of knowledge across countries (e.g. Lanjouw and Mody 1996). 

Finally, when a patent is granted, it contains citations to earlier patents that are related to the 

current invention.  The citations are placed in the patent after consultations among the applicant, his or 

her patent attorney, and the patent examiner. It is the applicant’s responsibility to list any related previous 

patents of which he or she is aware.  In addition, the examiner, who specializes in just a few patent 

classifications, will add other patents to the citations, as well as subtracting any irrelevant patents cited by 

the inventor. Patent citations narrow the reach of the new patent by placing the patents cited outside the 

realm of the current patent, so it is important that all relevant patents be included in the citations.7  For the 

same reason, inventors have an incentive to make sure that no unnecessary patents are cited. As a result, 

the previous patents cited by a new patent should be a good indicator of previous knowledge that was 

utilized by the inventor.8 

                                                 
6 Details about the data available through the esp@cnet, the European Patent Office’s interface for world patent 
data, can be found at http://ep.espacenet.com/. 
7  “Outside the realm” means that the patent holder cannot file an infringement suit against someone whose 
invention infringes on qualities of the patented invention that were also included in patents cited by the patent 
holder. 
8 The key assumption here is that a citation made to a previous patent indicates a flow of knowledge from the cited 
patent to the citing patent, so that patents cited more frequently are considered more valuable to future inventors.  
Jaffe, Fogarty, and Banks (1998) investigate the validity of this assumption, using evidence from citations made to 
NASA patents. They conclude that, although there is noise in the citation process, aggregate citation patterns 
represent knowledge spillovers, although the spillover may be indirect. 
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In recent years, several economists have used patent citations as a measure of knowledge flows.  

Papers using citation data to capture the flows of knowledge across inventors (such as across institutions 

or across nations) include Jaffe, Fogarty, and Banks (1998), Jaffe and Trajtenberg (1996), Caballero and 

Jaffe (1993), Jaffe, Henderson, and Trajtenberg (1993), and Johnson and Popp (2003).  Similarly, Popp 

(2002) uses patent citation data to proxy for knowledge flows across time, by using citation-weighted 

patent counts as a measure of knowledge available for future inventors to build upon. 

Nonetheless, when working with patent data, it is important to be aware of its limitations. The 

existing literature on the benefits and drawbacks of using patent data is quite large.9  Most importantly, 

the quality of individual patents varies widely. Some inventions are extremely valuable, whereas others 

are of almost no commercial value. This is partly a result of the random nature of the inventive process.  

Accordingly, the results of studies using patent data are best interpreted as the effect of an “average” 

patent, rather than any specific invention.  

In addition, although the decision to file a patent obviously follows from the decision to perform 

R&D, not all successful research results are patented.  In return for receiving the monopoly rights inferred 

by a patent, the inventor is required to publicly disclose the invention.   Rather than make this disclosure, 

inventors may prefer to keep an invention secret.  Surveys of inventors indicate that the rate at which new 

innovations are patented varies across industry (Levin et al. 1987).  As such, this propensity must be 

controlled for.10 

 

                                                 
9 Griliches (1990) provides a useful survey. 
10 For example, in Popp (2002), which studies advances in energy technologies, I control for changes in the 
propensity to patent by using the percentage of all successful domestic patent applications per year in each 
technology field as the measure of innovative activity. Policy changes that affect patenting in all patent 
classifications would lead to a change in both the total number of patent applications and the number of pollution 
control patent applications in a given year. For example, a change in patent law that increases the propensity to 
patent by five percent would increase both the numerator and the denominator of my measure of innovation by five 
percent.  Although this still requires that the propensity to patent did not vary independently within the pollution 
control industry, such an assumption is not nearly as strong as assuming the overall propensity to patent has 
remained constant. 
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III. Key Lessons from Empirical Studies of Innovation 

Much of my research has focused on using patent data to study the links between policy and 

environmentally-friendly innovation.  In my empirical work, I aim both to better understand how policy 

affects the evolution of technology, as well as to develop estimates of the magnitudes of these effects.  I 

use these estimates to calibrate a simulation of climate change policy with induced technological change.  

In this section I offer several key lessons from this research. Section IV follows with the implications of 

this work for climate policy. 

 

Lesson #1: Innovation responds quickly to incentives 

Perhaps the most striking finding in my empirical work is the speed at which innovative activity 

responds to incentives.  Consider, for example, Figure 2, taken from Popp (2002), which shows how 

patenting activity for various energy technologies responded to changes in energy prices.  As is typical in 

the economics of innovation literature, the patents in this figure are sorted by their application date.  As 

noted earlier, patents sorted by application date are a good indicator of R&D activity.  Technologies such 

as solar energy experienced large jumps in patenting activity immediately following the first energy 

crisis. For example, in 1972 there were just 10 solar energy patents.  This figure jumps to 36 in 1973, 104 

in 1974, and 218 by 1975.   

Using a distributed lag model, Popp (2002) estimates the elasticity of energy patenting activity 

with respect to energy prices for 11 different technologies.  The distributed lag model is consistent with 

an adaptive expectations model of prices, in which expected future prices depend on a weighted average 

of past prices, so that  

(1) 1,
1

2,
2

1,,
*
, E

t
tEtEtEtE PPPPP −
−− +++= λλλ L , 

where P*E,t is the expected price at time t, and PE,t represents actual energy prices in year t.  The 

adjustment coefficient, λ, represents the weights placed on past observations.  Popp (2002) finds a long-

run energy R&D elasticity of 0.354, and an adjustment coefficient of 0.829.  As such, the mean lag occurs 



Lessons From Patents: Using Patents To Measure Technological Change in Environmental Models 10 

in 3.71 years, and the median lag in 4.86 years.  The interpretation here is that over one-half of the full 

effect of an energy price increase on R&D will have been experienced after just five years.  Thus, prices 

(or other regulations that increase the cost of using fossil fuels) can be expected to stimulate new research 

quickly. 

 

Lesson #2: Innovation in a given field experiences diminishing returns over time 

Referring again to Figure 2, note that not only does energy R&D respond quickly to energy 

prices, but it also drops off more quickly than energy prices.  Energy prices do not reach a peak until 

1981.  Nonetheless, patenting activity in most technologies peaks in the late 1970s.  Had the returns to 

energy R&D remained constant over time, we would expect patenting activities in these fields to remain 

high until prices began to fall.  These results suggest that the possibility of diminishing returns to research 

should be explored. 

Popp (2002) shows that the returns to R&D are an important determinant of the level of 

innovative activity.  Inventors “stand on the shoulders” of their predecessors.  As a result, the quality of 

the existing knowledge on which an inventor can build is an important, positive contributor to the level of 

innovative activity in a given year.  I use patent citations as evidence of the existing state of technology 

when an invention was completed.  Citations to an earlier patent suggest that the previous patent provided 

technological knowledge upon which the current inventor could build. Frequent citations to a patent 

provide evidence that the knowledge embodied in that invention has been particularly useful to other 

inventors. To verify the importance of the existing knowledge stock on innovative activity, I use citation 

data to create stocks of patented knowledge, where patents in the stock are weighted by their propensity to 

be cited.  I find that the stocks have a significant positive effect on energy R&D activity. 

Furthermore, patterns of citation suggest that diminishing returns are important.  I find the 

likelihood of citations to new energy patents falls over time, suggesting that the quality of knowledge 
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available for inventors to build upon also falls.11  The intuition here is that, as more and more discoveries 

are made, it gets harder to develop a new innovation that improves upon the existing technology.  Since 

the quality of the knowledge stock is an important determinant of the level of innovative activity, 

decreasing quality of the knowledge stock over time means that diminishing returns to R&D investment 

will result in lower levels of induced R&D over time. 

In addition, although diminishing returns are important, such returns should not vary 

monotonically.  Rather, as it is prior research that affects the potential success of future inventors, the 

returns to research should vary along with the quality of the existing pool of research.  To verify the value 

of using patent citation data to measure the returns to research, Popp (2002) also includes regressions in 

which the stock of knowledge is replaced by a time trend.  If diminishing returns proceed monotonically 

over time, a negative time trend should work as well as the weighted knowledge stocks.  That, however, is 

not the case.  These regressions prove unreliable.  In fact, the elasticity of energy R&D to energy prices 

appears negative when a time trend is used in place of the knowledge stocks.  Since diminishing returns 

are a bigger problem when the level of energy R&D is highest, not controlling for them counteracts the 

positive effect of prices on energy R&D. 

Finally, it is important to note that the notion of diminishing returns within a given field is not 

inconsistent with the general notion that there are increasing returns to research.  Here, diminishing 

returns refers to the expected returns on the inputs of the R&D process – the likelihood of success from 

additional R&D dollars spent in the energy field falls as more dollars are spent.  When economists refer to 

increasing returns to research, they are referring to the returns on the output of research.  These increasing 

returns result from the public goods nature of knowledge – once an invention is created, it can benefit 

everyone, and thus any individual inventor is likely to capture only a subset of the social value of his or 

her invention.  Furthermore, as the expected returns to research in any one field decrease, we would 

expect researchers to shift more resources to more promising fields.  Thus, diminishing returns over time 

                                                 
11 Note that since the probability of a patent being cited depends not only on the quality of the patent, but also on the 
number of patents that follow, it is important to look at probability of citation, rather than raw citation counts. 
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within a field need not result in diminishing returns for all research over time.  However, when focusing 

on innovation in a single field, such as energy-saving research in a climate change model, including 

diminishing returns is important. 

 

Lesson #3 – A Time Trend is Not a Substitute for Technological Change 

Typically, papers that attempt to assess the impact of technological change have done so using a 

time trend to control for technological advances.  Unfortunately, such results may be misleading when 

translated into climate models incorporating induced innovation.  The very notion of induced innovation 

suggests that changes such as new policies or price shocks should change the nature of R&D.  Using a 

time trend to proxy for technological change does not allow for such a reaction.  In addition, using a time 

trend only captures the overall effect of technological change.  For example, low energy prices make it 

likely that energy use per unit output will increase, making technological change appear energy-using.  

That does not mean, however, that no energy saving technologies are created and adopted during periods 

of low energy prices.  

Examples of the problem of interpreting time trends can be found by comparing empirical studies 

from different eras.  In a study of U.S. industrial energy consumption from 1958 to 1974, Jorgenson and 

Fraumeni (1981) found that technological change was energy-using – energy use per unit output increased 

over time.  Of course, the time period of their data would not include any of the energy saving 

innovations developed after the energy crises of the 1970s.  Indeed, more recent work using a time trend 

to capture technological change finds that technology is energy saving.  Examples include Berndt et al. 

(1993), Mountain et al. (1989) and Sterner (1990).  Similarly, two empirical studies on the effect of new 

flue gas desulfurization (FGD) technologies use time trends to reach different conclusions on 

technological change.  Looking at scrubbers installed by 1992, Bellas (1998) finds no significant evidence 

of technological change in abatement technology.  In contrast, Carlson et al. (2000) find that about 20%, 

or $50, of the change in marginal abatement costs that have occurred from 1985 to 1995 can be attributed 

to technological change.  Such a change would be predicted by economic theory predicting market based 
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policies induce more technological change, as Bellas’ data includes few scrubbers installed after passage 

of the 1990 CAA, and none installed after trading in SO2 permits began.  As shown in Popp (2003a), one 

reason for this change is that the nature of R&D shifted after permit trading began.  

To illustrate the use of patents to estimate the effect of technological change, Popp (2001) uses 

energy patents to estimate the effect of new technology on energy consumption. In that paper, I use patent 

data to create stocks of knowledge.  First, I match energy patents with the industries that use the 

inventions.  Then, I create stocks of energy knowledge, which are used as an explanatory variable in a 

system of cost functions for 13 energy intensive industries.  The knowledge stocks are defined as: 

(2)  ∑
∞

=

+−− −=
0

,
)1()(

, )1( 21

s
si

ss
ti PATeeK ββ , 

where Ki,t represents the knowledge stock in industry i at time t, s represents an index of years up to and 

including year t, PATi,s represents the number of energy patents used by industry i in year s, β1 represents 

a rate of decay, and β2 is a rate of diffusion.  The stocks allow me to estimate the effect of a new patent on 

energy consumption.  By combining these results with the induced innovation results discussed above, I 

calculate the effect of induced innovation as the combined effect of all new patents induced by a price 

change.  I find that induced innovation accounts for approximately one-third of the change in energy 

consumption that occurs after a price change.  Furthermore, the estimated elasticities of energy use with 

respect to price found in that paper are lower than typically found, as they include only the effect of factor 

substitution.  By comparison, when the regressions from Popp (2001) are run using only a time trend to 

represent technological change, the resulting energy price elasticities are consistent with those found in 

other studies, and are comparable to the combined induced innovation elasticity and energy price 

elasticity estimated using knowledge stocks.  Table 1, taken from Popp (2001), illustrates these results for 

selected technologies. 

The table shows the short-run breakdown in the effects on energy consumption from a change in 

energy prices.  The elasticity of energy use with respect to induced innovation is the percent change in 

energy consumption resulting from the new technologies induced by a one percent change in energy 
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prices.  The elasticity of energy use with respect to price is the change in energy consumption resulting 

from factor substitution.  Column three shows the total effect of a change in energy prices.  It is the sum 

of the elasticities in columns one and two.  Column 4 presents the percentage of the total elasticity that is 

due to induced innovation.  Finally, column 5 gives the elasticity of energy with respect to price from a 

regression that excludes the knowledge stocks, so that only a time trend is used to capture technological 

change.  Note that these elasticities are comparable to the combined elasticities presented in column 3.  

One implication here is that even models calibrated on typical estimates of energy price elasticity include 

some effects of technological change in them.  Incorporating endogenous technological change into these 

models reveals the marginal effect of additional innovation induced by policy, but not the total effect of 

all technological innovations. 

 

Lesson #4 – The Social Returns to Environmental Research are High 

This lesson is not unique to environmental research.  Consistently, economists studying the 

returns to research have found that the social returns are higher than the private returns to R&D.  The 

reason for this is that the knowledge created by such research is a public good.  Once new knowledge is 

publicly available, it can be applied repeatedly without decay.  Moreover, without public policy, such as 

intellectual property rights, others cannot be excluded from making use of the new knowledge.  As such, 

firms are unable to capture the entire social value of their research investment, and thus underinvest in 

research.  Examples of such studies include Mansfield (1977, 1996), Pakes (1985), Jaffe (1986), and Hall 

(1995). 

My research of environmental and energy technologies confirms that the social returns to 

research in these fields are comparable to that in other fields.  As such, it provides a useful guide for 

calibrating the returns to R&D in climate policy models.  In Popp (2001), I examine the effect of new 

knowledge, measure by patents, on energy consumption in 13 energy-intensive industries.  The median 

patent leads to $14.5 million dollars in long-run energy savings.  In comparison, these industries spend an 

average of $2.25 million of R&D per patent.  Using similar techniques, Popp (2003a) examines the effect 
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of flue gas desulfurization (FGD) unit innovation on coal-fired electric power plants.  Included in that 

paper is an estimate of the cost-savings that result from innovation.  A single patent provides a present 

value of $6 million in total cost savings across the industry.   On average, about $1.5 million of R&D are 

spent per patent granted.12 

 

Lesson #5 – The type of policy used affects the nature of new innovations 

Theoretical papers concerning the innovation incentives offered by various environmental 

policies consistently find that market mechanisms, such as emissions fees or tradable permits, offer 

greater incentives for innovation.  Although most empirical work verifies these predictions, it is important 

to note that the superiority of market mechanisms for encouraging innovation depend not only on the level 

of innovation induced, but also on the quality of innovation induced. 

As an example of this, Popp (2003a) finds that the level of innovation for FGD units was actually 

higher before tradable sulfur dioxide (SO2) permits were introduced by the 1990 Clean Air Act (CAA).  

However, the nature of innovation changed after passage of the Act.  Before the 1990 Clean Air Act, most 

new coal-fired electric utilities were required to install FGD units with a removal efficiency of 90%.13  

Since installation of FGD units was mandatory, innovation focused on reducing the operating costs of 

these units.  However, since there were no incentives for firms to exceed the 90% limit, innovation had no 

effect on the removal efficiency of FGD units.  

In contrast, by offering fewer permits, the 1990 CAA required greater SO2 emissions reductions, 

but did not specify how those reductions be met.  While some firms chose to use more efficient FGD 

                                                 
12 Two caveats are important.  First, these studies focused on energy-intensive industries, where the likelihood of 
significant savings was high.  Care should be taken in generalizing the results to other, less energy-intensive sectors.  
At the macro level, this implies that the rate of return may be lower if significant energy R&D efforts are directed at 
less promising research areas.  Furthermore, this lesson should not be read as implying that public R&D dollars 
should be non-discriminately directed towards energy research, because past successes do not guarantee future high 
rates of return.  Private rates of return are high because firms tend to direct research towards more promising 
projects. 
13 Specifically, plants needed to either achieve emission rates less than 1.2 lbs SO2/million Btu heat input and reduce 
90 percent of their potential SO2 emissions (a 90% removal efficiency) or achieve emission rates less than 0.6 lbs 
SO2/million Btu heat input and achieve 70% removal efficiency.  Potential SO2 emissions are calculated based on 
the sulfur content of the fuel burned. 
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units, others were able to achieve reductions using alternative techniques, such as low-sulfur coal 

(Ellerman et al. 1997).  While the overall level of FGD innovation was lower after passage of the 1990 

CAA, the post-1990 innovations had a more positive environmental effect.  During the 1990 CAA 

regime, the knowledge created each year increased the removal efficiency of FGD units by 1.71%.  

Indeed, in 1995 (the first year of trading in the SO2 permit program), 11 new FGD units with a removal 

efficiency of 95% or higher were installed. 

One possibility for the lower level of innovation is that fewer firms need to innovate in the post-

90 regime.  Regulations requiring a specific technology gave every affected firm incentive to innovate in 

ways that lowered the costs of compliance.  However, the greater flexibility of permit trading offers firms 

several ways to comply.  Some firms could lower pollution by switching to cleaner coal.  Other firms, if 

necessary, could simply purchase permits from firms with lower marginal abatement costs.  Only a subset 

of firms found that installing more efficient scrubbers to be the best method for meeting new pollution 

reduction targets. 

Nonetheless, because of the public goods nature of new knowledge, having fewer innovating 

firms, but more promising innovations developed, is more beneficial to society.  Once the know-how to 

produce 95% efficient scrubbers exists, it can be adopted by other firms.14  As an analogy, consider 

research to develop more fuel efficient cars.  Society would benefit more from one firm that develops the 

ability to reduce emissions completely by developing a cost-effective solar-powered car, as opposed to 

several firms developing cars with slightly greater fuel efficiency.  Given this, it is important for 

policymakers to be cognizant of not only the level of research induced by policy, but how different 

policies may shape the outcome of this research. 

 

                                                 
14 This assumes that there is a regulatory incentive to do so.  Compared to emissions fees, this is a weakness of 
tradable permits, as the total emissions level remains fixed even after a more promising technology is found, as 
adopters of the new technology are able to sell unused permits to other firms. 
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IV. Implications for Climate Change 

Despite the growing evidence that environmental policy influences the direction of technological 

change, few climate change models directly incorporate links between policy and technology.15  Those 

that do typically model innovation in one of two ways.  Bottom-up models include a detailed specification 

of energy systems.  These models typically do not include detailed modeling of the overall 

macroeconomy, and typically model induced technological change in a learning-by-doing framework, in 

which the costs of various technologies decrease with experience.  Examples include Gerlagh and van der 

Zwaan (2003), Manne and Richels (2002), Grübler and Messner (1998), and Messner (1997).  Top-down  

models focus on the links between environmental policy and macroeconomic performance.  Endogenous 

technological change in these models typically comes through accumulated investment in research and 

development (R&D).  Recent models of this nature include Goulder and Schneider (1999), Nordhaus 

(2002), and Buonanno et al. (2003).  

However, none of the existing models make use of empirical estimates on the nature of 

technological change to calibrate the model.  In recent work, I have begun to use the results of these 

empirical studies to explore the effect of induced technological change (ITC) in models of climate 

change.  I use the estimates obtained in previous work to guide the development and calibration of a top-

down model of endogenous technological change that is supported by empirical evidence.  My work 

builds on the well-known DICE model of climate change (1994).  The DICE model is a dynamic growth 

model of the global economy that includes links between economic activity, carbon emissions, and the 

climate.  Because it includes both costs and benefits of climate change, it allows the modeler to simulate 

optimal paths for control of carbon emissions.  I modify the basic DICE model to include a fossil fuel 

                                                 
15 The results of Chakravorty, Roumasset, and Tse (1997) show why considering the link between policy and 
technological change is important.  They present a simulation showing that the development of alternative fuels 
lowers the projected temperature increases caused by global warming from 3-6 degrees centigrade to just 1-2 
degrees centigrade.  Unfortunately, they do not model the development of such technologies, but rather assume that 
they continue to develop at historical rates.  Since much of the development of alternatives such as solar energy 
occurred during the period of high energy prices during the late 1970s, assuming that historical rate of technological 
progress will continue without policy stimulation is unrealistic, and may lead to overly optimistic results. 
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sector and an energy research sector.16  The modified model is called ENTICE, for ENdogenous 

Technological change.  

Although the DICE model is a greatly simplified macroeconomic representation of the global 

economy and the environment, the relative transparency of the model makes sensitivity analysis 

straightforward.  Existing models of technological change and the environment include differing 

assumptions about features such as imperfect research markets, the potential crowding out effects of 

energy R&D, and key elasticities.  The ENTICE framework allows detailed sensitivity analysis of these 

assumptions, helping to rectify the differences found in various models.  To illustrate the importance of 

the lessons presented earlier, in this section I highlight key results from this still ongoing work. 

 

Implication #1: The Long-Run Effects of Technological Change are Important 

To compare welfare with and without induced technological change, I calculate the net economic 

impact for an optimal climate change policy with and without ITC.  The net economic impact of a policy 

is the present value of consumption under the policy minus the present value of consumption in the base 

case, in which carbon emissions are uncontrolled.  Because the DICE model and its variants incorporate 

environmental damages into the model, it is possible to calculate an optimal carbon policy, in which the 

marginal costs of carbon abatement equal the marginal benefits of lower emissions.  Typically, 

simulations involving these models find that the optimal policy is to go slow.  Since carbon emissions 

remain in the atmosphere for several hundred years, the marginal damages resulting from any new 

emissions are modest.  Thus, gradually phasing in carbon reduction lowers the opportunity cost of 

reducing emissions without having much impact on the global climate.   

In the base case of the ENTICE model, ITC increases net economic welfare by 8.3% over a 

model with exogenous technological change.  However, environmental benefits are negligible.  Even after 

100 years, there is practically no change (less than 1%) in average global temperature when ITC is added 

                                                 
16 The fossil fuel sector is similar to that used in the RICE model, which is the regional version of DICE.  Details 
can be found in Popp (2003b). 
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to the model.  Nor is there much change in the optimal level of the carbon tax.  Rather, welfare benefits 

come from cost savings, in that emissions goals can be reached more cheaply.   

Also notable is that the cumulative effect of R&D is important.  Figure 3 compares net welfare 

with endogenous and exogenous technological change.  The figure shows the cumulative welfare gains 

over time for simulations without a backstop technology.  Note that, in the years immediately after the 

implementation of the carbon tax, the welfare gains are actually lower when ITC is included in the model.  

Although R&D responds quickly to the carbon tax, in these early years, the opportunity costs of 

performing additional R&D outweigh the potential benefits of more efficient energy technology. 

However, since the benefits of R&D are cumulative, future research builds on these early successes, and 

by 2125, the welfare gains from the model with ITC surpass those in the exogenous technology 

simulations.  As noted in Lesson #2 above, the productivity of future research depends on the productivity 

of the knowledge on which they can build.  Thus, research done today not only offers the benefit of 

potential energy savings, but also serves to make future research more productive.   

Finally, note that the difference between the exogenous and ITC case soon stabilizes.  Here we 

see the importance of diminishing returns over time.  Over time, finding new research successes in the 

energy savings field becomes more and more difficult, so that the welfare gains from ITC cannot grow 

continuously. 

 

Implication #2 – The opportunity cost of R&D is important 

Recall from Lesson #4 that the social returns of R&D are typically higher than the private returns.  

This offers an important limitation to the effect of ITC.  To the extent that energy R&D crowds out other 

forms of research, similarly productive research in other areas is reduced.   

Based on the results from lesson #4 above, in the ENTICE model, I assume energy R&D 

spending has a social rate of return four times greater than its private rate of return.  Fifty percent 

crowding out is assumed – that is, half of new energy R&D spending displaces other R&D spending, 

which also has a social rate of return four times greater than its private rate of return.  The rate of 
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crowding out is based on changes in U.S. private sector R&D that occurred between 1972-1998.  

Sensitivity analysis shows that the opportunity cost is an important limitation on the potential benefits of 

ITC.   When crowding out is removed from the ENTICE model, welfare gains from ITC increase to as 

much as 43.6%, compared to 8.3% in the base case with partial crowding out.  Similarly, with complete 

crowding out, the welfare gain from ITC falls to as little as 2.1%.17  Such results help to explain the 

differences between models.  For example, Nordhaus (2002), who finds little impact for ITC, assumes a 

fixed supply of R&D labor, so that complete crowding out of other R&D occurs as energy R&D 

increases.  In comparision, Buonanno et al. (2003) assume that environmental R&D and other R&D are 

complements, rather than substitutes.  Not surprisingly, they find a much larger potential impact for ITC.  

In addition, these results explain why top-down models assuming a learning curve, but not including 

policy-induced innovation, tend to find larger benefits from technological change than bottom-down 

models.  Although learning by doing models do include an opportunity cost from increasing investment in 

alternative energy sources, this cost is simply the loss of one dollar of potential investment elsewhere, as 

opposed to the loss of more productive R&D dollars from elsewhere in the economy.  As a result, 

learning-by-doing models will overstate the potential gains from technological improvements. 

An important policy implication of crowding out is that it limits the potential of ITC under more 

restrictive climate policies.  Since more restrictive policies induce more energy R&D than the optimal 

policy derived in ENTICE, the opportunity cost of lost R&D in other sectors becomes greater. To see this, 

consider the results of a simulation restricting global carbon emissions at 1995 levels, taken from Popp 

(2003b).  Whereas including ITC improved welfare by 8.3% in the optimal policy simulation, welfare 

only improves by 5.6% in this simulation when ITC is included.  The importance of crowding out for this 

result can be seen by eliminating crowding out from the simulation.  Doing so increases the net welfare 

                                                 
17 In Popp (2003b), I present upper and lower bounds of the influence of opportunity cost in the ENTICE model. 
The upper bound estimates assume that R&D levels change as the opportunity costs change.  The lower bound 
estimates change the opportunity cost, but constrain R&D to remain at the base case levels.  The later can be 
interpreted as the gains from removing the assumption of partial crowding out.  They are not the gains that would 
result if the government intervened to remedy the problem of partial crowding out. 
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gain by 46%. A similar experiment in the optimal policy scenario only increases the welfare gain by just 

14%.18 

 

Implication #3 – Market failures for knowledge are important 

As noted in lesson #4, the high rates of return that make the opportunity cost of R&D important 

are the result of market failures in markets for knowledge.  The public goods nature of knowledge causes 

firms to underinvest in R&D.  To model these imperfections, the base ENTICE model constrains the 

social rate of return on R&D to be four times greater than that of the return on other investment.  The 

problem of underinvestment could be addressed by subsidies to energy R&D, if government investments 

in R&D are set so that all social returns are captured.  Models that do not include market failures, such as 

Buonanno et al. (2003) implicitly assume that government R&D subsidies sufficient to correct all market 

failures are in place. 

Simulations removing the constraint on returns to R&D suggest that the returns on such subsidies 

could be quite significant.  The gain from ETC for the optimal policy improves to 14.0% when energy 

subsidies are considered.  Similarly, adding R&D subsidies to the endogenous R&D case increases the net 

welfare gain to seven percent in the more restrictive policy case. 

 

V. Future Research – Whither Diffusion? 

The simulation results presented above, while preliminary, not only suggest important policy 

implications, but also fruitful avenues for future research.  In particular, one area of great importance is 

the diffusion of new energy technologies, particularly across countries.  In nearly all of the models 

discussed above, diffusion is not an issue.19  For example, both R&DICE and ENTICE are global models.  

As such, once a technology is available, it can be used worldwide.  Similarly, Goulder and Schneider’s 

model focuses only on the United States.  Assuming quick diffusion of technologies within a country is 

                                                 
18 These results use the lower bound of the opportunity costs simulations.  This holds R&D the same in both the high 
and low opportunity cost case, to isolate the opportunity cost of the induced research in the base case. 
19 Buonanno et al. (2003) is an exception. 
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reasonable, and supported by empirical evidence (see, for example, Popp 2001).  However, there is no 

reason to expect that diffusion between countries should occur at the same rate.  For example, research at 

the domestic level might be needed to adopt foreign knowledge to domestic conditions.  Just as the 

empirical literature on knowledge spillovers finds that spillovers are greatest among similar industries, we 

would also expect adoption of technologies to be quickest in similar countries.20 

At the international level, there is a large body of research on technological diffusion in general 

(surveyed by Keller 2001), but little work focusing specifically on environmental technologies.  As noted 

earlier, the one exception is Lanjouw and Mody (1996).  Suggesting the importance of diffusion, they find 

that the majority of environmental technology patents in developing countries come from foreign 

countries.  Moreover, they find that policies in one nation may affect innovation of technologies in a 

second nation.  Looking at motor vehicles, they note that the majority of vehicle air emissions patents 

granted in the U.S. are from foreign nations, even though the US was the first country to adopt strict 

emissions standards. 

Given the importance of diffusion for bringing new environmental technologies to developing 

countries, understanding the general lessons from empirical work on international diffusion is important.  

There are two potential avenues through which foreign knowledge can have an influence in the domestic 

economy.  First, foreign inventions may be adopted directly by domestic firms.  Second, rather than being 

directly adopted by domestic users, foreign knowledge may affect the productivity of domestic R&D.  

The “blueprints” represented by foreign patents may serve to inspire additional innovation by domestic 

inventors.  Such productivity increases are knowledge spillovers, as the knowledge represented by the 

foreign patent creates a positive externality – knowledge from abroad that is borrowed by the domestic 

inventor (Griliches 1979). 

                                                 
20 At the industry level, Cohen and Levinthal (1989) show that firm R&D increases the ability of firms to absorb 
knowledge spillovers.  If such R&D is needed for spillovers to occur, the opportunity cost of this R&D must be 
considered.  Although such considerations are not included in a global model such as ENTICE, they are important 
for sector-specific computable general equilibrium (CGE) models. 
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Since most R&D takes place in just a few countries, both types of diffusion are important.  For 

direct adoption, many of the same lessons from diffusion studies within a country apply here as well.  In 

particular, local conditions are an important determinant of the rate of diffusion across countries.  

Regarding knowledge spillovers, researchers have followed several strategies.  At a macro level, several 

papers, most notably Coe and Helpman (1995), have estimated the effects of domestic and foreign R&D 

stocks on total factor productivity (TFP) growth.  Typically, the foreign R&D stocks are weighted by 

international trade flows, so that these papers attempt to measure the effect of international trade on 

knowledge flows.  Such papers typically find a positive effect for foreign R&D, although this effect may 

vary by country.  In general, the relative contribution of foreign knowledge is inversely related to 

economic size and level of development (Keller 2001).  At a more micro level, studies looking at the 

effect of foreign direct investment (FDI) and foreign knowledge spillovers find mixed results.  Whether 

the effect of FDI on growth is positive or negative depends on individual industry and country 

characteristics, with inward FDI being more successful for developed countries (Keller 2001).   

Such results suggest that diffusion may limit the success of induced innovation as developing 

countries begin to make greater use of fossil fuels.  Since nearly all R&D is performed in the world’s 

richest nations, diffusion of newly developed environmental technologies will be necessary if technology 

is to play a role in mitigating future carbon emissions from the developing world.  Research on both the 

factors that affect the flows of environmentally-friendly technologies across countries, as well as research 

on the speed at which such knowledge diffuses, will greatly improve our ability to model the potential 

effects of technology on the climate change problem.  Patents are likely to be a useful tool for such 

research.  Since patents are filed in multiple countries, patent data makes it possible to track the usage of 

inventions across countries.  Such data should be an invaluable source as studies of diffusion progress. 
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Figure 1 – The S-shaped diffusion curve 
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Figure 3 – Welfare gains over time in the ENTICE model 
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Source: Popp (2003b) 
 
The figure shows the cumulative gains in welfare from an optimal carbon tax.  Note that 
welfare in the induced innovation is initially lower than exogenous R&D, but that 
induced innovation leads to larger long run improvements than in a simulation with 
exogenous technological change. 
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Table 1 – Induced Innovation and the Elasticity of Energy Consumption 

 (1) (2) (3) (4) (5) 
      
Industry elasticity 

of energy 
use with 

respect to 
induced 

innovation

elasticity 
of energy 
use with 

respect to 
price 

total 
elasticity 
of energy 
use with 

respect to 
price 

% of 
elasticity 
due to 

induced 
innovation 

price 
elasticity 
without 

knowledge 
stocks 

Chemicals -0.319 -1.378 -1.697 19% -1.652 
Copper -0.018 -0.235 -0.253 7% -0.220 
Electrometallurgical -1.827 -1.596 -3.423 53% -1.478 
Pulp & Paper -0.037 -0.250 -0.287 13% -0.307 

 

Source: Popp (2001) 

 

The table shows the short-run breakdown in the effects on energy consumption from a 
change in energy prices.  The elasticity of energy use with respect to induced innovation 
is the percent change in energy consumption resulting from the new technologies induced 
by a one percent change in energy prices.  The elasticity of energy use with respect to 
price is the change in energy consumption resulting from factor substitution.  Column 
three shows the total effect of a change in energy prices.  It is the sum of the elasticities in 
columns one and two.  Column 4 presents the percentage of the total elasticity that is due 
to induced innovation.  Finally, column 5 gives the elasticity of energy with respect to 
price from a regression that excludes the knowledge stocks, so that only a time trend is 
used to capture technological change.  Note that these elasticities are comparable to the 
combined elasticities presented in column 3. 




