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ABSTRACT

This paper explores the relationship between the closely linked concepts of E-stability and least-

squares learnability, featured in recent work by Evans and Honkapohja (1999, 2001), and the

minimum-state-variable (MSV) solution defined by McCallum (1983) and used by many researchers

for rational expectations (RE) analysis. It is shown that the MSV solution, which is unique by

construction, is E-stable--and therefore LS learnable when nonexplosive--in all linear RE models

that satisfy conditions for being "well formulated." The latter property involves two requirements.

The first is that values of the model's parameters are restricted so as to avoid any infinite

discontinuity, of the steady state values of endogenous variables, in response to small changes in

these parameters. (It is expressed in terms of the eigenvalues of a matrix that is the sum of those

attached to the one-period-ahead and one-period-lagged values of the endogenous variables in a

first-order vector formulation of the model.) The second, which is needed infrequently, is that the

parameters are restricted to prevent any infinite discontinuities in the MSV response coefficients.
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1. Introduction 

 Much recent research in economics, especially in monetary economics, has focused 

on issues involving analytical indeterminacy—multiplicity of stable rational expectations 

solutions—often in dynamic general equilibrium models based on optimizing behavior by 

individual agents.1  In this context, the recent appearance of major publications by Evans and 

Honkapohja (1999, 2001) has stimulated new interest in the relationship between the linked 

concepts of E-stability and least-squares learnability, featured in their work,2 and the 

minimum-state-variable solution concept promoted by McCallum (1983, 1999), which 

identifies a unique rational expectations solution in all linear models.3  In the present paper it 

will be argued that the connection is much tighter, at least for linear models, than is generally 

believed.  Indeed, it will be shown that, for all linear models (within a very wide class) that 

satisfy the property of being well formulated, the unique minimum-state-variable (MSV) 

solution is E-stable and therefore least-squares (LS) learnable.4  There are a few existing 

examples of MSV solutions that are not E-stable, which have been mentioned and given 

some emphasis by Evans and Honkapohja (1992, 2001).  But these examples pertain to 

models that are not plausible economically for the relevant range of parameter values; 

restrictions on these parameters that are necessary for the models to be well formulated have 

the effect of ruling out the range that permits E-instability.  Thus the paper’s results provide a 

newly developed reason for believing that the MSV solution will generally be the one that is 

                                                 
1 In monetary economics such issues include indeterminacy under inflation forecast targeting (Woodford, 1994; 
Bernanke and Woodford, 1997; King, 2000), deflationary traps (Benhabib, Schmitt-Grohe, and Uribe, 2001), 
the fiscal theory of the price level (Sims, 1994; Woodford, 1995; Cochrane, 1998; Kotcherlakota and Phelan, 
1999; McCallum, 2001), and the validity of the “Taylor Principle” (Woodford, 2002).  For a useful overview of 
several related points, see Bullard and Mitra (2002). 
2 Evans and Honkapohja (1999) is an extensive survey article in the Taylor-Woodford Handbook of Macro- 
economics, whereas their (2001) is an ambitious treatise published by Princeton University Press. 
3 The point that the MSV solution is unique by construction is reviewed in Section 2.   
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economically relevant.  In this sense, the paper amounts to a strong, albeit delayed, response 

to Lucas’s (1986, p. S419) observation that “it is unclear what the behavioral rationale for 

this principle [i.e., general adoption of the MSV solution] is.”  In particular, the paper shows 

that the learnability rationale suggested in Lucas’s paper provides considerable support for 

the MSV solution concept.5 

 In exploring the featured relationship, it is necessary to be unambiguous about the 

concept of a MSV solution.  Throughout that term will be used to designate the unique 

solution—unique by construction—described in McCallum (1983, 1999).  This is the way 

that the term was used by Evans (1986, 1989) and Evans and Honkapohja (1992) but differs 

from the terminology in the latter’s more recent publications (1999, p. 496; 2001, p. 194), 

which permits multiple solutions to be given the MSV adjective.  Either terminology could 

be used, of course, but the one adopted here is more appropriate for the issue at hand.  In 

particular, it is more convenient (as well as more aesthetically pleasing) to refer to the 

pertinent solution as “the MSV solution” rather than as “the MSV solution that is singled out 

by the procedure defined by McCallum (1983, 1999).”   

 The outline of the paper is as follows.  In Section 2, the concepts of E-stability, LS 

learnability, and MSV solutions are briefly reviewed.  Then in Section 3 the main existing 

example of a linear model in which the MSV solution is not E-stable is examined, and it is 

argued that the range of parameter values necessary for this result renders the model 

implausible economically.  That argument is rather ad hoc in nature, however, so Section 4 

proposes some general requirements for a model to be regarded as well formulated.  

                                                                                                                                                       
4 The specific requirement for being well formulated is explained below.   E-stability implies LS learnability in 
most cases, but the implication is not entirely general, especially when the solution is explosive. 
5 The paper does not present any claims, however, concerning the presence or absence of E-stability for non-
MSV solutions.  
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Basically, these requirements rule out parameter configurations that permit infinite 

discontinuities in the model’s properties.  The first two applications of these requirements are 

developed in Section 5.  There it is shown that, for two leading univariate models featured by 

Evans and Honkapohja (1999, 2001), the proposed requirements for being well formulated 

suffice to guarantee that the MSV solution is E-stable.  Then Section 6 turns to multivariate 

models and develops an extension of the argument that applies quite generally to linear RE 

models.  Finally, Section 7 provides a brief summary and conclusion. 

2. Concepts and Issues 

 It will be useful to begin with a short review of E-stability, LS learnability, and MSV 

solutions.  Evans (1985, 1986), building upon a result of DeCanio (1979), developed iterative 

E-stability as a selection criterion for RE models with multiple solutions.6  The basic 

presumption is that individual agents will not be endowed with perfect knowledge of the 

economic system’s structure, so it must be considered whether plausible correction 

mechanisms are convergent.  Consider the example model: 

(1) yt = α + aEtyt+1 + cyt-1 + ut, 

where ut = ρut-1 + εt with ρ < 1 and εt being white noise.7  With this specification, the usual 

“fundamentals” RE solution will be of the form 

(2) yt = φ0 + φ1yt-1 + φ2ut, 

but suppose that agents do not “initially” know the exact values of the φj parameters.  If at 

any date t the agents’ prevailing belief is that their values are φ0(n), φ1(n), and φ2(n)—where 

n indexes iterations—so that the perceived law of motion (PLM) is  

                                                 
6 The emphasis is usually on cases with multiple solutions that are dynamically stable (i.e., non-explosive)  
since explicit or implicit transversality conditions will often rule out explosive paths as solutions.   
7 Evans and Honkapohja (1999, 2001) use the symbols β and δ instead of a and c. 
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(3) yt = φ0(n) + φ1(n)yt-1 + φ2(n)ut, 

then the implied unbiased expectation of yt+1  will be 

(4) φ0(n) + φ1(n)yt + φ2(n)ρut. 

Using this last expression in place of Etyt+1 in (1)—which implies that we have temporarily 

abandoned RE—gives  

(5) yt = α + a[φ0(n) + φ1(n)yt + φ2(n)ρut] + cyt-1 + ut 

or, rearranging, 

(6) yt = [1−aφ1(n)]-1 [α + aφ0(n) + aφ2(n)ρut + cyt-1] + ut  

as the system’s actual law of motion  (ALM).  Now imagine a sequence of iterations from the 

PLM to the ALM.  Writing the left-hand side of (6) in the form (3) for iteration n+1 then 

implies that  

(7a) φ0(n+1) = [1 − aφ1(n)]-1[α + aφ0(n)] 

(7b) φ1(n+1) = [1 − aφ1(n)]-1c 

(7c) φ2(n+1) = [1 − aφ1(n)]-1[aφ2(n)ρ + 1]. 

The issue, then, is whether iterations defined by (7) are such that the φj(n) converge to the φj 

values in an expression of form (2) as n .  If they do, then that solution (2) is said to be 

iteratively E-stable.  Evans (1986) found that in several prominent and controversial 

examples the MSV solution—to be discussed shortly—is iteratively E-stable. 

→ ∞

 On the basis of results by Marcet and Sargent (1989), Evans (1989) and Evans and 

Honkapohja (1992) switched attention to E-stability without the “iterative” qualification, 

defined as follows.  Conversion of equations (7) to a continuous form, appropriate as the  
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iteration interval approaches zero,8 results in 

(8a) dφ0(n)/dn = [1 − aφ1(n)]-1[α + a φ0(n)] − φ0(n) 

(8b) dφ1(n)/dn = [1 − aφ1(n)]-1c − φ1(n) 

(8c) dφ2(n)/dn = [1 − aφ1(n)]-1[a φ2(n)ρ + 1] − φ2(n). 

If the differential equation system (8) is such that φj(n) → φj for all j, the solution (2) is E-

stable.9  An important feature of this continuous version of the iterative process is that it is 

intimately related to an adaptive learning process that is modeled as taking place in real 

time.10 11 For most models of interest, that is, values of parameters analogous to the φj in (2) 

that are estimated by LS regressions on the basis of data from periods t−1, t−2, …, 1 and 

used to form expectations in period t, will converge to the actual values in (2) as time passes 

if equations (8) converge to those values and (2) is dynamically stable (non-explosive).  Also, 

such convergence will not occur if equations (8) do not converge.  Thus E-stability and LS 

learnability typically go hand in hand.  This result, which is discussed extensively by Evans 

and Honkapohja (1999, 2001), is useful because it is technically much easier, in many cases, 

to establish E-stability than to establish LS learnability.  The latter concept is arguably the 

more important, in a fundamental sense, as learnability of some type might be regarded as a 

necessary condition for the relevance of a RE equilibrium.12     

To this point the discussion of equation (1) has presumed that expectations are not 

                                                 
8 There is also a positive speed-of-adjustment coefficient in each of equations (8), but its magnitude is irrelevant 
for the convergence issue so is usually (as here) set equal to 1.  See, e.g., Evans (1989, p. 299).  
9 Throughout the paper we shall be discussing weak E-stability, rather than the more demanding concept of 
strong E-stability.  For the distinction, see footnote 27 below and E&H (2001,  pp. 41-42). 
10 The E-stability process is itself conceived of as taking place in notional time (meta time). 
11 An influential early analysis regarding learning of RE solutions was provided by Bray (1982). 
12 In this regard, note that the LS learning process assumes that (i) agents are collecting an ever-increasing 
number of observations on all relevant variables while (ii) the structure is remaining unchanged.  Furthermore, 
(iii) the agents are estimating the relevant unknown parameters with an appropriate estimator in (iv) a properly 
specified model.  Thus if a proposed RE solution is not learnable by the process in question, it would seem 
implausible that it could prevail in practice.     
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formed rationally, i.e., that Etyt+1 in (1) has been replaced with some approximation such as 

(4).  Now we return to the RE assumption and consider the nature of the MSV solution to 

model (1).  One requirement of the MSV solution is that it be real and linear.  Another is that 

it not include any extraneous state variables, so for model (1) it will be of form (2).  That 

form implies that Etyt+1 = φ0 + φ1(φ0 + φ1yt-1 + φ2ut) + φ2 ρut so substitution of the latter and 

(2) into (1) implies that the undetermined coefficients, the φjs, must be real and satisfy the 

following equations: 

(9a) φ0 = α + aφ0 + aφ1φ0 

(9b) φ1 = a φ1
2 + c 

(9c) φ2 = aφ1φ2 + aρφ2 + 1. 

Clearly, the second of these yields two potential values for φ1, namely, [1 ± 1 4ac− ]/2a.            

These expressions should be considered as two different functions of a and c, which therefore 

define two different RE solutions.  But the MSV solution is unambiguously provided by use 

of the φ1 function with the minus sign, for that is the one that implies φ1 = 0 in the special 

case in which c = 0.  (In this case yt-1 does not appear in the model so φ1 must equal zero to 

avoid inclusion of an extraneous state variable in the solution.)  Then with φ1 uniquely 

determined, the other two φj values are given unambiguously by the remaining two equations 

in (9).13  For more general models, the MSV solution is found in an analogous manner: 

different solutions correspond to different groupings of eigenvalues and eigenvectors relating 

to matrix counterparts of the quadratic equation (9b).14  The grouping is chosen that excludes 

extraneous state variables from the solution in a special case, namely, one that includes no 

                                                 
13 This discussion presumes that the roots to the quadratic are real.  If they are complex, then by definition the 
MSV solution does not exist.  For some parameter values this will be the case. 
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predetermined variables in the model’s structure. 

 For the system of our example (1), then, the issue of principal interest is whether the 

MSV solution possesses E-stability, i.e., whether the differential equations (8) are locally 

stable at the MSV values for the φj.  Necessary and sufficient conditions for E-stability of this 

system are given by Evans and Honkapohja (2001, p. 202) as follows:  a(1−aφ1)-1 < 1, 

ca(1− aφ1)-2 < 1, ρa(1− aφ1)-1 < 1.  These will be utilized below. 

3. Questionable Example15 

 In various places, Evans and Honkapohja (henceforth, E&H) have indicated that 

MSV solutions may or may not have the property of E-stability (and LS learnability).  Here 

the agenda is to describe and reconsider the main example put forth by E&H (1992, pp. 9-10; 

1999, pp. 496-7; 2001, p. 197) as representing a case in which the MSV solution is not E-

stable.  The relevant model’s reduced form can be written as 

(10) yt = α + γEt-1yt + ζEt-1yt+1 + δyt-1 + εt, 

with δ ≠ 0, ζ ≠ 0, and εt white noise.  The MSV solution will be of the form 

(11)  yt = φ0 + φ1yt-1 + φ2 εt, 

and φ1 will be determined by a quadratic equation with the MSV solution given by the φ1 root 

that equals zero when δ = 0.  The other root gives a non-MSV “bubble” solution and there 

are also bubble solutions of a form that includes additional terms involving yt-2 and εt-1 on the 

right-hand side of (11). 

Necessary conditions for E-stability of a solution of form (11) are (E&H, 1992, p. 6) 

(12)  γ + ζ − 1 + ζφ1 < 0   and    γ − 1 + 2ζφ1 < 0. 

                                                                                                                                                       
14 See McCallum (1983,  pp. 165-6; 1999, eqns. (21)-(26)). 
15 Sections 3 and 4 are based on McCallum (2002). 
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On the basis of these, E&H (1992, pp. 9-10) show that the non-MSV solution of form (11) is 

E-stable, and the MSV solution is E-unstable, when γ = −ζ > 1 and δ > 0.  Also, on p. 5 they 

show that the bubble solutions with additional terms are E-stable if γ > 1, δζ > 0, and ζ < 0.  

If such parameter values were economically sensible, these results would constitute explicit 

counter-examples to my suggestion that MSV solutions are invariably E-stable.   

 Let us, however, reconsider the economic model that E&H (1992) use to motivate the 

reduced form equation (10).  It is a log-linear “model of aggregate demand and supply with 

wealth effects in aggregate demand, money demand, and aggregate supply” (1992, p. 9).  

Letting yt, mt, and pt be the logs of output, money, and the price level with it a nominal 

interest rate, E&H write:16 

(13a) yt = −g1(it − Et-1(pt+1 − pt)) + g2(mt − pt) + v1t 

(13b) yt = f(mt − pt) + v2t 

(13c) mt − pt = yt − a1it + a2(mt − pt) + v3t 

(13d) mt = d pt-1 + v4t. 

The fourth equation “is a monetary policy reaction function….” (1992, p. 9).  Solving these 

four equations for the reduced form expression for pt gives 

(14) pt = d pt-1 + h Et-1(pt − pt+1) + ut 

with h = g1[f−g2 + g1(a2+f − 1)a1
-1]-1 and ut a linear combination of the (white noise) vit terms.  

Consequently, the model is of form (10) with yt in the latter representing pt in the model and 

with γ = h, ζ = −h, and δ = d. 

It follows, then, that the condition γ = −ζ > 1 requires h > 1.  In that regard, note first 

that if real-balance terms are excluded, i.e., if g2 = f = a2 = 0, then h = − a1 is negative.  Thus 
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sizeable real-balance effects are needed.  Second, note that a2 should arguably be specified as 

negative, not positive, since the latter would imply a money demand function with income 

elasticity greater than 1.0, in contrast with most empirical estimates.  But with a2 < 0, f would 

have to be quite large to generate h > 1, if g2 > 0.  Thus h > 1 seems highly implausible in the 

context of an IS-LM model of the type utilized. 

In addition, the condition δ > 0 implies d > 0 in (14d), implying that the money 

supply is increased by the monetary authority when the price level is higher than average in 

the previous period.  That represents, at least arguably, a somewhat perverse form of policy 

behavior. 

An alternative way of interpreting the reduced-form equation (10), not mentioned by 

E&H, is as a microeconomic supply-demand model.  Suppose we have demand and supply 

functions 

(15a) qt = β0 + β1pt + β2Et-1(pt+1 − pt) + v1t 

(15b)  qt =  α0 + α1pt + α2Et-1pt + v2t 

where the disturbance terms include effects of exogenous variables such as demanders’ 

income and the price of inputs to production.  Here we presume that β1 < 0 and β2 > 0, to 

reflect downward sloping demand with respect to the current price and a speculative demand 

motive.  Also, let α1 ≥ 0 and α2 ≥ 0 to reflect upward sloping supply with respective to 

relevant prices.  Then the reduced form is 

(16) pt = (α1 − β1)-1 [(β0 − α0) + β2 Et-1pt+1 − (α2 + β2) Et-1pt + v1t − v2t]. 

In terms of equation (10), this specification suggests ζ > 0, γ < 0, and δ = 0.  But the first two 

of these are just opposite in sign to the requirements for the E&H example.  Furthermore, it is 

                                                                                                                                                       
16 It is my impression that E&H intend for all parameters in (13) to be interpreted as non-negative. 
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conceivable that pt-1 would appear instead of Et-1pt in the supply equation.  But then its 

coefficient in the reduced form would be negative, and therefore inconsistent with the δ > 0 

assumption in the E&H case under discussion. 

 In sum, I would argue that the specification used most prominently by E&H, as an 

example featuring the absence of E-stability for the MSV solution, is unappealing in terms of 

basic economic theory.  It will be recognized, however, that this argument of mine is quite 

specific and rather ad hoc in nature.  Some more general position is needed, so one will be 

developed in the next section. 

4. Requirements for Well Formulated Models 

 In this section I propose conditions necessary for important classes of linear models 

to be well formulated.  Consider first the single-variable specification (1), which is 

reproduced here for convenience: 

(17) yt = α + aEtyt+1 + cyt-1 + ut, 

where ut = ρut-1 + εt with εt white noise.  Thus ut is an exogenous forcing variable with an 

unconditional mean of zero.  Applying the unconditional expectation operator to (17) yields 

(18) E yt = α + aEyt+1 + cEyt-1 + 0. 

If yt is covariance stationary, we then have17 

(19) E yt = α / [1− (a + c)]. 

But from the latter, it is clear that as a + c approaches 1.0 from above, the unconditional 

mean of yt approaches −∞ (assuming without loss of generality that α > 0), whereas if a + c 

approaches 1.0 from below, the unconditional mean approaches +∞.  Thus there is an infinite 

discontinuity at a + c = 1.0.  This implies that a tiny change in a + c could alter the average 
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(i.e., steady state) value Eyt from an arbitrarily large positive number to an arbitrarily large 

negative number.  Such a property seems highly implausible and therefore unacceptable for a 

well-formulated model.18 

In light of the preceding observations, my contention is that, to be considered well 

formulated, the model at hand needs to include a restriction on its admissible parameter 

values that rules out a + c = 1, and yet admits a large open set of values that includes (a, c) = 

(0, 0).  In the case at hand, the appropriate restriction is a + c < 1.  Of course, a + c > 1 would 

serve just as well mathematically to avoid the infinite discontinuity, but it is clear that a + c < 

1 is vastly more appropriate from an economic perspective since it includes the region around 

(0, 0).  It should be clear, in addition, that the foregoing argument could be easily modified to 

apply to yt processes that are trend stationary, rather than strictly (covariance) stationary. 

Generalizing, suppose that yt in (17) is a m×1 vector of endogenous variables, so that 

α is m×1 while a and c become m×m matrices A and C.  Then the counterpart of 1 − (a + c) 

> 0 is that the eigenvalues of [I − (A + C)] are all real and positive, which implies that the 

eigenvalues of [A + C] all have real parts less than 1.0.  That requirement is necessary for the 

multivariate version of (17) to be well formulated.19  Note that, with A and C being real, it 

implies that det[I − (A + C)] > 0.20 

There is, however, a second type of infinite discontinuity that also needs to be ruled 

                                                                                                                                                       
17 Note that it is not being assumed that yt is necessarily covariance stationary.  Instead an implication that 
would hold, if it were, is being used to motivate the assumption that will be made subsequently. 
18 If the model has been formulated in terms of percent or fractional deviations from some reference level (e.g., 
a deterministic steady state) so that there is no explicit constant term, the argument will still apply to the implicit 
constant term, which will almost always be non-zero. 
19 If some variables enter the model in a fashion that their solutions have unit roots, then the foregoing argument 
based on unconditional expectations is not directly applicable.  In such cases, however, the model can be written 
entirely in terms of the differences of such variables and the argument applied to the revised system. 
20 That the condition det[I − (A + C)] > 0  is not sufficient to make the model well formulated can be seen by 
considering a case with diagonal (A + C) in which I − (A+C) has two negative diagonal entries. 
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out for model (17) to be well formulated.  This type pertains to dynamic responses of yt to the 

exogenous forcing variable ut.  From (9c) we see that the response coefficient is φ2 = (1 − aφ1 

− aρ)-1 so to rule out an infinite discontinuity the relevant condition is 1 − aφ1 − aρ > 0. Our 

particular concern is with the MSV solution, regarding which we note that 1 − aφ1 = (1 + d)/2 

is unambiguously positive.  Consequently, adoption of the second WF condition 1 − aφ1 > aρ 

implies that 1 >  (1 − aφ1)-1aρ.   

To state this second condition directly in terms of a, c, and ρ, we could write it as 

(1+d)/2 > aρ.  For that to fail, it would be required that d < 2aρ − 1.  That would imply 

1 − 4ac < 4a2ρ2 − 4aρ + 1, which could prevail only if a and ρ were both negative.21  In that 

case the last inequality would imply −c > aρ2 − ρ or ρ > aρ2 + c.  This could be ruled out for 

all −1 < ρ < 0 if one were to require –1 < a + c, but that condition is more demanding than 

the second WF condition specified above, which is what we have adopted. 

It might be added parenthetically that an alternative way of describing this more 

demanding version of the second condition is discussed in McCallum (1983, pp. 159-160) 

under the title of “process consistency.”  That term was introduced by Flood and Garber 

(1980), who used the concept in their analysis of monetary reform after the German 

hyperinflation of 1923, and was developed more fully by E&H (1992, pp. 10-11).  A model 

fails to be process consistent when the procedure of solving out expectational variables, by 

iteration into the infinite future, is of dubious validity because the implied infinite series does 

not converge.  For model (17) to be process consistent for any ρ < 1, it must be the case  

                                                 
21 Clearly (1+d)/2 > aρ cannot fail unless a and ρ are of the same sign.  Further, it is shown below  that 
(1 − aφ1)-1a < 1 when a > 0. 
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that at least one of the roots to (9b) exceeds 1.0 in absolute value.22  Clearly, the larger root in 

absolute value is ( )
1
+φ  = (1+d)/2a, so with a < 0, process inconsistency can occur only if 

(1+d)/2a > −1. 23   The latter implies (1+d) < −2a or d < −(2a+1), or 1 − 4ac < 1 + 4a + 4a2.  

Subtracting −1 from each side and dividing by 4a < 0 yields −c > 1 + a or −1 > a + c.  Thus to 

rule out process inconsistency, we would require a + c > −1 when a < 0.  This, of course, is 

the same condition as the one derived in the previous paragraph; it is a second requirement 

for model (17) to be well formulated for all ρ    < 1 when a < 0, and is one of the sufficient 

conditions but is not necessary. For multivariate applications, when R is specified to be a 

stable matrix, the analogous requirement is that at least m of the roots of the system’s 

characteristic equation—e.g., the eigenvalues of matrix M in Section 6 below—exceed 1.0 in 

absolute value (i.e., in modulus).  Adoption of this stronger requirement would rule out cases 

known in the literature as “irregular” (Binder and Pesaran, 1995, p. 161). 

 Now let us consider a second model specification that, like (17), is emphasized by 

E&H.  It can be written as 

(20) yt = α + β0 Et-1yt + β1 Et-1yt+1 + δyt-1 + ut, 

where, for simplicity, we take ut to be white noise.24  For this case, consider the conditional 

expectation, Et-1yt:  

(21) Et-1yt = (1 − β0)-1 [α  + β1 Et-1yt+1 + δyt-1]. 

Here it is clear that, for given (predetermined) values of Et-1yt+1, yt-1, and ut-1, the expectation 

Et-1yt will pass through an infinite discontinuity at β0 = 1.  Consequently, for basically the 

                                                 
22 For an extensive discussion of related issues, see Sargent (1987, pp. 176-207 and 305-308). 
23 For reference below, note that ( )

1
+φ  = f –1, where f = (1−aφ1)-1a, so | ( )

1
+φ | < 1 is the same condition as |f | > 1. 

24 There is no particular need to go into the more general case in which ut is autoregressive, because generality 
will be provided in Section 6 by a multivariate extension of model (17). 
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same reason as outlined above, β0 < 1 is necessary for the model to be well formulated.  In 

addition, β0 + β1 + δ < 1 also applies.  The multivariate extension for the case in which yt is a 

vector yields the requirements that the eigenvalues of [I −β0] and [ I − (β0 + β1 + δ)], where 

β0, β1, and δ are m×m matrices, all have positive real parts.25 

 An application of these criteria to the questionable example of E&H (1992), featured 

above in Section 3, is immediate.  That example’s result, of a MSV solution that is not E-

stable, requires γ = h > 1.  But, in the notation of (20), that condition implies β0 > 1, which is 

incompatible with our requirement for models of form (20) to be well formulated.  Thus the 

questionable example is discredited on general grounds, in addition to the specific reasons 

developed in Section 3. 26   

5. Results for Two Leading Univariate Cases 

 The first result in support of the contention that the MSV solution is E-stable in all 

well formulated (henceforth, WF) models will be briefly developed for the univariate version 

of specification (20) with δ = 0.  For this model, conditions for E-stability can be found by 

reference to Figure 1, which is adapted from E&H (1999, p. 492; 2001, p. 191).  In these two 

references, it is derived and reported that the MSV solution is E-stable in regions I, V, and VI 

but E-unstable in regions II, III, and IV.  In regions I and VI, moreover, the MSV solution is 

reported to be strongly E-stable whereas in V it is weakly E-stable.27  Reference to our 

conditions for model (20) to be well formulated (with δ = 0) shows immediately that these 

conditions obtain only for regions I and VI.  Thus in this particular but prominent case, the 

                                                 
25 In fact, this type of condition is also applicable to model (17) when ρ ≠ 0.  In that case, transforming the 
disturbance into white noise by multiplying through by (1−ρL), where L is the lag operator, brings in a term 
involving Et-1yt and leads to the condition 1+aρ > 0.  That, however, is apparently not a useful restriction. 
26 A second example of a MSV solution that is E-unstable is presented in E&H (1994, pp. 1089-1091).   In this 
case the model is not well formulated as it violates the requirement [ I − (β0 + β1 + δ)] > 0.    
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MSV solution is strongly E-stable if the parameter values are such that the model is well 

formulated. 

 Now let us focus on the more important model of equation (17).  E-stability regions, 

as reported by E&H (2001, p. 203) under the assumption 0 ≤ ρ < 1, are shown in Figure 2.  In 

this case, the results reported by E&H indicate that the MSV solution is E-stable in regions I 

and VII but E-unstable in region IV, while “both solutions [i.e., from both roots of (9b)] are 

explosive or nonreal” elsewhere (E&H, 2001, p. 203).28  Specifically, solutions for φ1 are 

complex-valued in regions III and VI, and both solutions imply explosive behavior in regions 

II and V.  As indicated above, the MSV solution is (with 0 ≤ ρ <1) well formulated in regions 

I, V, and VII (being complex in VI).  Thus for regions I and VII, the E&H version of Figure 

2 supports the hypothesis that the MSV solution is E-stable in any well formulated model.  

 But what about region V?  There the E-stability conditions are in fact met—see 

below—although in the E&H graphical summary this region is not distinguished from VI 

because in V the solutions are both dynamically unstable (explosive).  But there seems to be 

no compelling reason to ignore the MSV solution simply because it is explosive; it could be 

accurately indicating what would happen if (e.g.) extremely unwise policy behavior were 

imposed on the system at some point in time.29  For a discussion and rationalization of this 

position, with a closely related example, see McCallum (1999).  In any case we see that this 

                                                                                                                                                       
27 Strong E-stability occurs in cases in which local convergence to the MSV parameter values occurs even when 
the function considered includes additional variables (excluded from the MSV specification).  
28 Note that the MSV solution is the AR(1) solution that E&H  (2001) refer to as   “ the −b solution.”    Related 
univariate results, more general in some respects but without the stochastic forcing variable and developed in 
terms of adaptive learnability rather than E-stability, have been developed by Gauthier (2003) and Desgranges 
and Gauthier (2003).  Also see Wenzelburger (2002), who suggests that some extension to nonlinear models 
may be possible.  
29 The same statement does not apply to region II, where the MSV solution is E-stable but explosive, because 
there the model is not well formulated.  This region illustrates that, though sufficient, the WF condition is not 
necessary for E-stability. 

 15



specification, too, conforms to the proposition that MSV solutions are E-stable in all well 

formulated models.  It must be recognized that the usual presumption that E-stability implies 

LS learnability does not carry over automatically in cases of dynamic instability (which E&H 

refer to as nonstationarity).  E&H (2001, pp. 219-220) indicate, nevertheless, that learnability 

will prevail in the present case, provided an adjustment is made to permit the shock variance 

to grow along with the yt values, when ut is white noise. 

 We wish to develop results for the more general case with ρ  < 1, permitting 

negative values, but let us proceed by first demonstrating algebraically that the E-stability 

conditions are satisfied by the MSV solution to model (17) when 0 ≤ ρ < 1 and the WF 

restriction a + c < 1 is imposed.   Then we can go on to the case with −1 < ρ < 0 included.  

The first task, then, is to show that if 1− (a + c) > 0, then f = (1−a 1φ )-1a < 1 where 1φ  = 

(1−d)/2a with d = ac41− .  Note first that 1−a 1φ  = (1 + d)/2 so (1−a 1φ )-1a = 2a/(1+d).  For 

a proof by contradiction, suppose that 2a/(1+d)  1.  Then a > 0 and 2a−1  d.  Since both 

of its sides are positive, the latter implies 4a

≥ ≥

2 − 4a + 1  d≥ 2 = 1 − 4ac.  But with a > 0 the last 

inequality reduces to a − 1  −c or 0  1− (a + c), which is the contradiction that proves f = 

(1−a

≥ ≥

1φ )-1a < 1.  The latter is the first of the three E-stability conditions listed at the end of 

Section 2 above.  The second results from writing (1−a 1φ )-2a c = (1−aφ1)-1a 1φ , which 

follows because (1−a 1φ )-1c = 1φ .30  Since (1−a φ1)-1aφ1 = (1−d)/(1+d), which is smaller than 

1 for all d > 0, we have the desired inequality.  Finally, with (1−a 1φ )-1a < 1 and ρ non-

negative, the third condition also holds.   

But if ρ can be negative, which is entirely plausible, it is possible that a fairly large  
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negative ρ together with (1−aφ)-1a < −1 could lead to failure of the third condition.  This 

possibility can be eliminated, however, by adding the second WF requirement that 1 − aφ1 − 

aρ > 0.  As is shown in Section 4, 1 − aφ1 = (1 + d)/2 for the MSV solution so 1 − aφ1 > 0 and 

the second WF requirement becomes identical to the third condition for E-stability.  

Adoption of both WF requirements therefore assures satisfaction of all three of the E&H 

conditions. 

Parenthetically we note that if one were to require process consistency, then he would 

be requiring that |f| < 1 so | ( )
1
+φ | > 1.  Since E&H (2001, p. 203) report that both characteristic 

roots have absolute values less than 1.0 in region VII, that entire region would be eliminated. 

In sum, we have shown that in model (17) with ρ < 1, the MSV solution is E-stable 

for all parameter values satisfying our WF conditions.  It is this univariate model that will 

provide a background for an extension of the results to more general multivariate cases. 

6. Extension to Multivariate Models 

 To begin the extension to multivariate models, it will be convenient to consider the 

specification treated by E&H (2001, p. 236-238) and McCallum (1983, pp. 164-166).  With 

yt denoting a m×1 vector of endogenous variables, the system is 

(22) yt = A Etyt+1 + C yt-1 + ut, 

where ut = R ut-1 + εt, with R a stable m×m matrix and εt a white noise vector.31  Also, we 

assume initially that A is nonsingular.  That is a strong assumption, which renders the 

formulation (22) highly inconvenient from a practical perspective, but the implied case 

provides a useful precursor for the more general analysis that will follow.  

                                                                                                                                                       
30 The last expression is just a rearrangement of (9b). 
31 A stable matrix has all its eigenvalues less than 1 in modulus.  In (22), constant terms have been suppressed 
for notational simplicity and A and C are of dimension m×m. 
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 In this setting, with or without nonsingular A, the MSV solution will be of the form 

(23) yt = Ω yt-1 + Γ ut, 

and the conditions for E-stability (see E&H 2001, p. 238) are that the eigenvalues of the 

following three matrices all have real parts less than 1.0: 

(24a) (I − AΩ)-1A 

(24b) [(I − AΩ)-1C]′ [(I − AΩ)⊗ -1A] 

(24c) R′ [(I − AΩ)⊗ -1A]. 

Our first objective is to show that these conditions are satisfied when Ω is obtained by the 

MSV procedure, if the eigenvalues of A + C all have real parts less than 1.0 and our second 

WF requirement holds.  Because the eigenvalues of the Kronecker product of two matrices 

are the products of the eigenvalues of these matrices (E&H, 2001, p. 116), we shall 

concentrate first on the m×m matrix [(I − AΩ)-1A], which we now denote as F.32   

From McCallum (1983, pp. 164-166) we have that the MSV expression for Ω is 

(25)  Ω = − P22
-1 P21, 

where the Pij are submatrices of P, with P-1 defined as the matrix of (right) eigenvectors of 

the 2m×2m matrix M (assumed diagonalizable) in expression (26) below, which is a first-

order way of writing the matrix quadratic equation AΩ2 − Ω + C = 0:33  

(26)  =     . 








Ω

Ω
2 





− − CA
0

1 



−1A

I








Ω
I

Since M = P-1ΛP, with Λ a diagonal matrix with the eigenvalues of M on its diagonal, we can 

premultiply (26) by P to obtain 

                                                 
32 The invertibility of (I − AΩ) will be discussed below. 
33 This quadratic equation is implied by undetermined-coefficient implications of the model, analogous to (9b).  
There are, of course, many other solutions besides (25) to the quadratic for Ω. 
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(27)        =            . 

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
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Ω
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0
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

21
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
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



Ω
I

Here and  include the eigenvalues of M, with the MSV solution being selected by 

ordering the eigenvalues so that  includes those that approach 0 as C approaches 0.  (This 

ordering implies that the eigenvalues in  approach the eigenvalues of A

1Λ 2Λ

1Λ

2Λ -1 as C goes to 0; 

see McCallum (1983, pp. 165-166).)  Since PM = ΛP, we have that −P22A-1C = Λ2P21 or P21 

= − Λ2
-1P22A-1C, so from (25) we obtain the explicit expression 

(28) Ω = P22
-1Λ2

-1
 P22 A-1C, 

which illustrates that Ω approaches 0 as C approaches 0.34 (Note that Λ2 approaches A-1 so 

the product P22
-1Λ2

-1
 P22 A-1 approaches a finite nonzero matrix.) 

 To show that the eigenvalues of F = [(I – AΩ)-1A] and Ω meet conditions (24), I will 

draw on some results of Binder and Pesaran (B&P, 1995).  For the moment, assume that A 

and C commute, i.e., AC = CA.  Then A and C are diagonalized by the same matrix, and so 

too are both Ω and F as a consequence of their definitions.  Thus the eigenvalues of F, now 

denoted λF, each satisfy λF = (1 − λAλΩ)-1λA, as shown by B&P (1995, pp. 157-8).  But then 

the crucial condition (1 − λAλΩ)-1λA < 1 is entirely analogous to the scalar inequality 

 (1 − a 1φ )-1a < 1 used in Section 5.  Furthermore, condition (24b) is equivalent to having each 

λF times each λΩ be less than 1, and this becomes analogous to the one given in the paragraph 

on pages 15-16.  Consequently, the same argument as developed above applies for conditions 

(24a) and (24b) if the eigenvalues of A + C all have real parts smaller than 1.0, provided that 

Ω is determined by the MSV formula (25).  What about condition (24c)? Clearly, process 
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consistency implies that all λF > −1, so this condition too would be satisfied if we adopted 

that requirement—but we shall not do so.  The argument based on our weaker version of the 

second WF requirement will be developed shortly in a more general context.  

When A and C do not commute, which will usually be the case, the foregoing 

reasoning does not hold and a different analytical proof becomes necessary.  In this case the 

first part of the argument can be built around the equality 

(29) (I − AΩ)(I − F)(I − Ω) = I − (A + C), 

which is mentioned by B&P (1995, fn. 34).35  We are assuming that all eigenvalues of A + C 

satisfy Re(λA+C) < 1, which implies that det[I − (A + C)] > 0.36  This suggests that  

det[I − AΩ] > 0, det[I −  F] > 0, and det[I − Ω] > 0 but we have to rule out the possibility that 

two of these three determinants are negative and we have to consider individual eigenvalues.  

Accordingly, consider a modification of the model in which A and C are each multiplied by a 

small positive constant ε, with 0 < ε ≤ 1.  Let the resulting MSV values for Ω and F be 

denoted Ω(ε) and F(ε).  Then in place of (29) we would have 

(29’) [I − εAΩ(ε)][I − F(ε)][I − Ω(ε)] = I − ε(A + C). 

Clearly, for values of ε close to zero all the eigenvalues of Ω(ε) and F(ε) = 

[I − εAΩ(ε)]-1Aε will be smaller in modulus than 1 and will have real parts less than 1.37  

Also, the determinants of the three left-hand side matrices will all be positive.  Then let ε 

increase continuously to 1 and notice that, with the WF requirement, the value of 

det[I − ε(A + C)] will remain positive throughout this process.  Therefore, the value of each 

                                                                                                                                                       
34 If instead one uses the ordering that makes Λ1 the m smallest (in modulus) eigenvalues, the solution would in 
most cases coincide with the MSV solution.  In numerical application, one typically uses the ordering just 
mentioned, but can modify it, if necessary, as suggested briefly in McCallum (1999, p. 633).  
35 It can be derived by writing out F in (29), rearranging, and inserting C for Ω − AΩ2. 
36 In what follows, I will repeatedly use the fact that the eigenvalues of a matrix (I − B) satisfy λI−B = 1 − λB.     
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left-hand-side determinant must remain positive since these determinants are continuous 

functions of ε. 38  (Even if two of the determinants were to turn positive at the same point, it 

would be implied that det[I − (A + C)] = 0, which has been ruled out.)  Therefore, at our 

solution we have det[I − AΩ] > 0, det[I − F] > 0, and det[I − Ω] > 0.  But how do we know 

that all eigenvalues of AΩ, F, and Ω will have real parts less than 1?  We begin the process 

with each having real part less than 1.  But, clearly, if any real eigenvalue passed through the 

value 1, it would turn the relevant determinant negative, which has been ruled out.  How 

about complex eigenvalues?  They appear, since A and C are real, as conjugate pairs.  The 

product of any conjugate pair is real and strictly larger than the real part.  Thus any such 

product would pass through 1 and turn the relevant determinant negative before the real part 

were to equal 1, as ε increases.  But having a negative value for any of the three determinants 

has been ruled out, so the real part of no eigenvalue can exceed 1 during the process or at its 

conclusion.  This shows that the MSV solution satisfies condition (24a). 

 Since it is nevertheless possible that there is some eigenvalue of F with real part less 

than −1, we need to consider whether our WF requirements guarantee that (24b) and (24c) 

are satisfied.  For this purpose it is useful to consider the identity 

(30) (I − AΩ)(I + F)(I + Ω) = I + (A + C), 

which is derived in a manner similar to (29).  If we consider the argument of the previous 

paragraph, it will be seen that having some Re(λF)  < −1 is possible, since we have not ruled 

out the possibility that some Re(λA+C) < −1.  Or, an explosive solution with some Re(λΩ) < 

−1 is possible.  But the latter case is one in which fewer than m of the eigenvalues of M have 

                                                                                                                                                       
37 This statement would not be valid for non-MSV values of Ω. 
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modulus less than 1 whereas the former case has more than m of the eigenvalues of M with 

modulus less than 1.  (This statement regarding F follows from the discussion on pp. 150-151 

of B&P (1995), which indicates that for F to have an eigenvalue with modulus greater than 1, 

there must be more than m of the eigenvalues of M with modulus less than 1.  For the case 

with invertible A matrix, an explicit proof is given in Appendix A.)  Thus it is not possible 

for (24b) to be violated by having eigenvalues with real parts less than −1 for both F and Ω.   

 Finally, we need to consider condition (24c).  But as in the univariate case, the second 

WF condition—which rules out infinite discontinuities in the response coefficients attached 

to the exogenous variables in the vector ut—coincides with this third condition, so the latter 

does not pose a problem for E-stability.39  Alternatively, if we were to rule out process 

inconsistency the current multivariate model would require that all the eigenvalues of F have 

modulus smaller than 1.  Therefore condition (24c) would be satisfied.  We do not adopt this 

stronger assumption but note that, even if we did, we would not be excluding the possibility 

that Ω could possess an eigenvalue smaller than −1.  Thus again dynamic instability is not 

precluded by our assumption on A and C, although it would be if we assumed that all of the 

eigenvalues of (A + C) have modulus smaller than 1.  

It remains to extend the analysis to a more general class of models.  First note that the 

foregoing argument does not rely upon the nonsingularity of the matrix A.  That property is 

used above only in the paragraph containing equations (25)-(28), whose sole function is to 

illustrate an explicit formula for calculation of Ω for the MSV solution.40  But with singular 

A, the relevant calculation can still be accomplished by various procedures.  Among these are 

                                                                                                                                                       
38 Note that the present argument implies the existence of (I − AΩ)-1, which E&H (2001, p. 238) and other 
writers take for granted.  B&P (1997,  fn.4) observe that it does not require the invertibility of A and state that 
they have found no cases of a singular I − AΩ matrix in any well specified model. 
39 This proposition is established in Appendix B. 
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those of Anderson and Moore (1985), B&P (1995, 1997), Uhlig (1999), King and Watson 

(1998), and Klein (2001).  Thus the foregoing argument does not require that A be 

nonsingular; it applies to all models of form (22), that is, 

(31) yt = A Etyt+1 + C yt-1 + ut  

where ut = R ut-1 + εt, with R a stable m×m matrix and εt a white noise vector. 

Furthermore, it is the case that virtually any linear RE model can be written in form 

(31).  To see this, consider the formulation of King and Watson (1998) or Klein (2001), as 

exposited by McCallum (1999), as follows: 

(32)  = 11A
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Here vt is an AR(1) vector of exogenous variables (including shocks) with stable AR matrix 

R while xt and kt are m1×1 and m2×1 vectors of non-predetermined and predetermined 

endogenous variables, respectively.  We assume without loss of generality that B11 is 

invertible and that G2 = 0.41  Then we can define yt = [xt’ kt’ xt-1’ kt-1’]’ and write the system 

in form (31) with the matrices given as follows: 
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. 

This representation is important because it is well known that the system (32) permits 

any finite number of lags, expectational leads, and lags of expectational leads.  Also, any 

higher-order AR process for the exogenous variables can be written in AR(1) form.  Thus the 

only lack of complete generality, for a linear system with stable exogenous forcing variables, 

                                                                                                                                                       
40 Also M is defined in (26), but an analogous definition and argument is straightforward. 
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is that a pure moving-average process for the exogenous variables cannot be included—but 

of course one can be approximated closely by a sufficiently high order AR process.  Thus we 

have shown that our results of this section are applicable to (32), in which form virtually any 

linear system can be written.  In other words, the basic result described above, that E-stability 

is assured for the MSV solution if the eigenvalues of (A + C) have real parts less than 1 and 

the second WF condition obtains, is applicable to virtually any linear RE model. 

7. Conclusions 

 A brief statement of the paper’s argument can be developed by adding a few words to 

its title, as follows.  The minimum state variable solution, which is unique by construction, is 

E-stable—and therefore least squares learnable42 in real time—in all linear RE models that 

satisfy conditions for being “well formulated.”  The latter concept, introduced above and in 

McCallum (2002), consists of two requirements.  The first requirement is that a model’s 

structural parameters are restricted so as to prevent any infinite discontinuity, of the implied 

(non-stochastic) steady state vector of endogenous variables, in response to small changes in 

these parameters.  (This condition is expressed in terms of the eigenvalues of a matrix, which 

must be inverted to obtain the steady state solution vector, all of which are required to have 

positive real parts.)   The second requirement is that the parameters are also restricted to 

prevent an infinite discontinuity in the MSV dynamic response coefficient of any endogenous 

variable to any of the model’s exogenous forcing variables.  The first requirement can be 

expressed quite cleanly in terms of the eigenvalues of a matrix that is the sum of matrices 

attached to expected future values (one period ahead) and lagged (by one period) values of 

the endogenous variables.  The second requirement involves the relationship between these 

                                                                                                                                                       
41 If it is desired to include a direct effect of vt on kt+1, this can be accomplished by definition of another variable 
in xt. 

 24



matrices and the matrix of coefficients in a first-order autoregressive representation of the 

exogenous forcing variables.  The second requirement is relevant only when one or more of 

the eigenvalues of the latter matrix is negative.  In the univariate case of equation (17), for 

example, this requirement is relevant only in highly unusual cases involving f < −1 and ρ < 0. 

The second WF requirement could be replaced with the assumption that the model 

possesses the property of process consistency, which implies that certain infinite series 

relating to expected future values of exogenous variables must be convergent.  This condition 

is cleaner, but is more restrictive and is not adopted for this paper’s argument. 

 It should be added that the paper does not present any results pertaining to the 

presence or absence of E-stability for non-MSV solutions, a subject that is being explored by 

Evans, Honkapohja, Mitra, and others.  Finally, it must be recognized that the term “well 

formulated” is one that some readers might find misleading or even objectionable.  I have 

used it rather than “plausible” because the latter is not sufficiently specific.  Perhaps “not 

implausibly hypersensitive to parameter specification” could be used instead of well 

formulated.  In any case, it is the concept—not its name—that is important.  

                                                                                                                                                       
42 For explosive MSV solutions, the qualification mentioned on p. 15 is applicable. 
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Appendix A 

 

The agenda here is to show that the eigenvalues of F are the same as for Λ2
-1 in 

expression (27), i.e., that the eigenvalues of F are the inverses of the m eigenvalues of M that 

are not included in Λ1. (The eigenvalues of Λ1 equal those of Ω = − P22
-1 P21).  This assures us 

that we cannot have any eigenvalue with real part smaller than −1 for both F and Ω, for the 

former requires that more than m of the eigenvalues of M are smaller in modulus than 1, 

while the latter requires that fewer than m of the eigenvalues of M are smaller in modulus 

than 1. 

From PM = ΛP we have the submatrix P21 = Λ2P22 − P22A-1 so an alternative 

expression for Ω, equivalent to (28), is −P22
-1(Λ2P22 − P22A-1) and thus we can write 

       F = (I − AΩ)-1A = (I  +  AP22
-1Λ2P22 − AP22

-1P22A-1)-1A 

          = (AP22
-1Λ2P22 )-1A = P22

-1Λ2
-1P22A-1A = P22

-1Λ2
-1

 P22 . 

But the latter has the same eigenvalues as Λ2
-1, which is what we set out to establish.  Note 

that this result is the multivariate counterpart, for the case with an invertible A matrix, of the 

univariate result given in footnote 23. 
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Appendix B 

 

 The purpose here is to show that for model (22) adoption of the second WF 

requirement, that there be no infinite discontinuity in the response of an element of yt to an 

element of ut, implies satisfaction of the E-stability condition (24c).  In this model, the 

undetermined coefficient equations are (26) and the following: 

(A-1) Γ = AΩΓ + AΓR + I. 

Using F = (I − AΩ)-1A, the latter can be written as 

(A-2) Γ = FΓR + (I −AΩ)-1. 

Using the well-known identity vec ABC = (C vec B (e.g., E&H 2001, p. 117), we have ' A)⊗

(A-3) vec Γ = vec Γ + vec [(I − AΩ)(R ' F)⊗ -1] 

implying 

(A-4)  vec Γ = [I − ( ]R ' F)⊗ -1 vec [(I − AΩ)-1]. 

Then our WF requirement is that all eigenvalues of [I − ] be positive, i.e., that all 

eigenvalues of  be smaller than 1.  But this is the same condition as (24c). 

(R ' F)⊗

(R ' F)⊗
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Figure 1 
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Figure 2 
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