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1 Introduction

Money managers often claim that they can make better investment decisions than investors

themselves. However, how to evaluate a money manager’s ability to do so remains a chal-

lenging question. The traditional approach to evaluate a manager’s ability is to measure the

excess return of his portfolio, adjusted for risk according to a model (Sharpe (1966), Jensen

(1969), Treynor and Black (1973)). This approach crucially relies on the specific risk model

it uses (such as the CAPM or a linear multi-factor model). If the risk model is mis-specified,

the ability measure becomes questionable.

In this paper, we pursue a different approach to evaluate money managers that does not

rely on a specific risk model. We start by assuming that a money manager is valuable only

if he brings additional information into the investment process.1 Thus, a basic question in

evaluating a manager is whether or not he has private information about future asset returns.2

If the answer is affirmative, the returns he generates must reflect his private information.

In particular, investment strategies without the benefit of this information cannot generate

the same returns. Thus, by examining the managers’ returns, we should be able to identify

those that reflect private information from those that do not. We explore methods to do so

based on the managers’ trading records.

Conceptually, we can decompose the evaluation of money managers into two steps. The

first step is to identify managers who bring new information into the investment process

and the second step is to determine the “value” of their information. The first step need

not rely on any specific risk model, but the second step does. The traditional approach

combines the two steps by directly analyzing the value-added of a manager. Such a direct

approach is desirable, and is possible if an appropriate risk model is available. However, if

the appropriate risk model is absent or mis-specified in the analysis, this approach becomes

ineffective and potentially misleading.

The contribution of a money manager is to generate returns that investors cannot achieve

1A money manager can be valuable in other ways such as having the ability to implement simple invest-
ment strategies at lower costs. In this paper, we ignore these possibilities.

2It is conceivable that a money manager might possess valuable information about things other than future
asset returns that are also valuable, such as investors’ future consumption needs and financial constraints.
Although we do not consider these possibilities in this paper, our methodology can be extended to include
them.
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on their own. These returns fall into two categories. The first category contains returns that

represent arbitrage profits and the second category contains the rest. Arbitrage profits

are considered by Merton (1981) and Henriksson and Merton (1981), and they only arise

under restrictive conditions.3 For example, in the case considered by Merton, the manager

has perfect information about the direction of future price movements.4 When the market is

complete with respect to the arbitrage profits considered, their evaluation is straightforward,

at least conceptually. When the market is incomplete, the value of arbitrage profits is harder

to determine, but is always positive.5

Short of being arbitrage profits, money manager’s returns are difficult to value. The

main difficulty comes from the risky nature of these returns. The traditional approach relies

on a specific risk model to overcome this difficulty. But it has long been recognized that

the possibility of using a wrong model can be devastating.6 Actually, the difficulty goes

beyond the search of the “correct” risk model. The very existence of such a risk valuation

model is much in question. It is important to realize that based on his private information,

an informed manager sees a different return distribution than that seen by an investor.

Thus, he uses a different risk model (see, e.g., Grossman and Stiglitz (1980), Admati and

Ross (1985) and Wang (1993)). Using the investor’s own model to evaluate the manager

is conceptually problematic, since it is based on inferior information. Yet, most traditional

evaluation methods, such as those of Sharpe (1966), Jensen (1969) and Treynor and Black

(1973), take this approach. In fact, the investor can reach wrong conclusions using his own

model to judge the manager (see, e.g., Dybvig and Ross (1985)). Using the manager’s model

is usually infeasible since it is based on his private information. Moreover, even knowing the

3See Jagannathan and Korajczyk (1986), Cumby and Modest (1987), Glosten and Jagannathan (1994),
Ferson and Schadt (1996) and Goetzmann, Ingersoll and Ivkovic̀ (2000) for applications and extensions
of the Henriksson-Merton methodology. The stochastic discount factor (SDF) framework for performance
evaluation, which is similar in spirit to Merton’s original idea, is reviewed in Ferson (2002). See also Chen
and Knez (1996) and Farnsworth, Ferson, Jackson and Todd (2002) for applications of the SDF methodology.

4Merton (1981) and Glosten and Jagannathan (1994) also considered extensions of their analysis when
profits have the nature of “risky arbitrages”. Using APT type of arguments (Ross, (1976)), they treat these
as equivalent to arbitrage profits (“approximate arbitrages”). But, “risky arbitrages” belong to the second
category, which we discuss below.

5The case of arbitrage profits raises the issue of how they can be consistent with an equilibrium. In the
model Merton (1981) considered, the manager knows for sure when the stock will out- or under-perform the
bond. Thus, he disagrees with investors on the support for future stock prices. Further constraints (e.g.,
Dybvig and Willard (1999)) or behavior assumptions (e.g. Kyle (1985)) on the manager are needed to obtain
a sustainable equilibrium in this situation.

6See, for example, Jensen (1972), Roll (1978), Dybvig and Ross (1985), and Grinblatt and Titman (1989).
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money manager’s model, an investor may not agree with it since with incomplete markets, his

objective and valuation of returns would generally not coincide with those of the manager.7

This difficulty in establishing the appropriate risk valuation model justifies our approach,

which focuses on the first question in evaluating a manager: Does he know something that

investors do not? This question is less ambitious, but more direct and basic. Our approach

has the advantage of being independent of the valuation model and the objectives of the

manager and the investors. Its limitations are also obvious compared with the traditional

approach. For example, if our methodology identifies a manager with useful information,

it does not necessarily tell us how valuable that information is to a particular investor, nor

does it allow us to rank the information across different managers.

Our approach is related to the method considered by Cornell (1979), Copeland and May-

ers (1982) and Grinblatt and Titman (1993) for performance evaluation of money managers.

These authors use the predictive power of a manager’s asset holdings for average future re-

turns as a measure of their ability.8 This measure is intuitive and does not rely on a risk

model and can detect performance if the manager can forecast average future returns. But

it has several drawbacks. First, it can detect the ability in forecasting mean returns, but not

the ability in forecasting other aspects of future returns, such as volatility. Second, it applies

mainly when the returns are IID from investors’ point of view. If the returns are non-IID, the

measure is not directly usable.9 Third, it is sensitive to the managers’ trading strategies. If

there are two managers with the same information on expected future returns, the measure

gives a higher score to the manager who trades more aggressively on the information. Our

approach is in the same spirit in the sense that it also develops an evaluation method that

does not rely on a risk model. But it is more general and does not have these drawbacks.

Moreover, it can be applied even when we do not observe managers’ asset holdings. Our

methodology is very similar to that used by Lo, Mamaysky and Wang (2000) to evaluate the

merit of technical analysis.

7It should be pointed out that the assumption of complete markets, in addition to being unrealistic,
is inappropriate in dealing with situations when market participants have different information. See, for
example, Grossman and Stiglitz (1980), and Milgrom and Stokey (1982).

8See also Cumby and Modest (1987), Graham and Harvey (1996), and Chance and Hemler (2001) for
applications involving evaluation of direct forecasts.

9Ferson and Khang (2002) have considered the situation of non-IID returns by making additional as-
sumptions about the return dynamics. We return to this issue in more detail in Section 4.
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We proceed as follows. In Section 2, we use a simple example to illustrate the basic

idea of our approach. In Section 3, we develop a general method to distinguish informed

managers from uninformed managers based on their trading records. In Section 4, we apply

the general methodology to several settings when the managers’ positions are observable.

Section 5 shows how our procedure can be used when the information about managers’

positions is unavailable. In Section 6, we apply our methodology to the comparison of two

managers, and to the situation where managers can trade in-between observations. Section

7 contains several robustness checks of our methodology. Section 8 concludes.

2 An Example

We start our discussion with the example considered by Dybvig and Ross (1985) to demon-

strate the drawback of the traditional approach. We use this example to illustrate how to

identify a manager with superior private information without relying on any risk model. We

further use this example to raise and to clarify several issues related to our approach.

Setup

Suppose that a money manager can invest in cash and a risky asset. Cash earns zero interest

rate, and change in the price of the risky asset in period t + 1 is given by Qt+1, where

Qt+1 = µ + Zt + ut+1 (1)

µ is a positive constant, Zt and ut+1 are independent normal random variables, IID over time,

with zero mean and variance σ2
Z and σ2

u, respectively. Throughout this paper, we model and,

later, simulate price changes of the risky asset, which we also refer to as “dollar return”

or simply “return”. For convenience, we refer to the risky asset as a stock and express a

manager’s holdings in it as number of shares. We compute Sharpe ratio of a manager by

dividing the mean of her P&L by its standard deviation. These departures from a more

traditional setup are merely for convenience.

We consider two money managers, an uninformed manager, denoted by 0, and an in-

formed manager, denoted by 1. The uninformed manager has no private information about

future returns. To him, stock return is IID over time with a mean of µ and a variance of

σ2
Q ≡ σ2

Z + σ2
u. The informed manager has private information about future stock returns.
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In particular, she observes Zt at t (t = 0, 1, · · · ). To her, returns are no longer IID, but

predictable given her information.

Both managers form their investment strategies based on their information about future

returns. Let N i
t denote manager i’s stock position (expressed in number of shares) at t,

where i = 0, 1. We assume that the two managers follow simple investment strategies of the

following form:

N0
t = a0 (2a)

N1
t = a1 + b1 Zt

σZ

(2b)

where a0, a1 and b1 are all positive constants, presumably depending on the managers’

objective functions, especially their risk tolerances. It can be shown that these strategies are

optimal given certain form of the managers’ objective functions.10 From (2a), the portfolio

of the uninformed manager is constant over time, reflecting the fact that he possesses no

information about future stock returns. The portfolio of the informed manager, however,

does change over time as she receives new information about future returns. We define

λ ≡ b1/a1 as a measure of the informed manager’s intensity to trade on her information.

Sharpe Ratio as An Information Identifier

Can we distinguish the informed manager from the uninformed manager, given certain in-

formation on their trading records? The traditional approach to performance evaluation is

to look at the (excess) return of each strategy, adjusted for its risk according to a specific

risk model. A well-known risk model is the mean-variance model, in which the risk-adjusted

measure of excess return is the Sharpe ratio. Given the strategies of the two managers, we

can easily compute their Sharpe ratios, denoted by SR0 and SR1, respectively:

SR0 =
µ

σQ

≡ SR∗ (3a)

SR1 = SR∗ 1 + λR/SR∗√
1+2λR SR∗ + λ2(1+R2+SR∗2)

(3b)

10For example, under a similar return process and constant absolute risk aversion preferences, Wang (1994)
shows that the informed manager’s optimal stock holdings are linear in her signal. The linear form assumed
here, however, is for illustrative purposes only. The methodology we develop would work as long as manager’s
holdings are monotone in her signal.
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where R2 ≡ σ2
Z/σ2

Q measures the amount of private information the informed manager has

about future returns. It is worth pointing out that the Sharpe ratio of the uninformed

manager is independent of the number of shares he holds. This reflects a desirable property

of the Sharpe ratio in measuring performance: By simply taking on more or less risk, a

manager cannot improve his performance measure. This also implies that the Sharpe ratio

of any uninformed manager can not exceed SR∗.11

For the informed manager, her Sharpe ratio depends on the specific strategy she follows.

In particular, it may not always exceed that of the uninformed manager (SR∗). Figure 1

shows the ratio of SR1 to SR0 as a function of b1/a1. Here, we have set the annual mean of

the stock return to be µ = 0.12 and its volatility to be σQ = 0.15. Thus, the Sharpe ratio

of the stock is SR∗ = µ/σQ = 0.8 on an annual basis.12 We assume that the managers are

trading on a weekly basis. The R2 for weekly stock return takes values ranging from 0.5%

to 1%.
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S
R

1  / 
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Figure 1: Relative Sharpe ratio of the informed and the uninformed manager.

It is obvious that the informed manager can generate Sharpe ratios below SR∗, especially

when her private information is limited (low R2) and she trades aggressively on it. As

11In fact, SR∗ gives the upper bound for the Sharpe ratio the uninformed manager can achieve. To see
this, let us suppose that the uninformed manager introduces noise into his investment strategy. In particular,
assume his stock position is N0

t = a0 + ñt, where ñt is a random variable independent of Zt and ut+1, with
a zero mean. It then follows that his Sharpe ratio becomes SR = SR∗ a0√

(a0)2+(1+SR∗2)σ2
ñ

, which is less than

SR∗.
12A Sharpe ratio of 0.8 on annual basis is higher than the historic average for passive strategies. It is

less clear what the reasonable range for active strategies should be. We choose a higher number merely for
illustrative purposes.
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Dybvig and Ross (1985) have pointed out, the reason for the failure of Sharpe ratio in

detecting the informed manager’s superior ability is that volatility as a measure of risk

becomes inappropriate for her P&L profile, which is no longer normal. In particular, the

P&L profile of the informed manager has a χ2 component in it, due to the positive correlation

between her position in the stock and its return.

This points to a fundamental drawback of the traditional approach, its reliance on a spe-

cific risk model. Besides the possibility of being mis-specified, a particular risk model is usu-

ally based on the perspective of investors who have no private information. It does not neces-

sarily incorporate the potential private information that better informed investors/managers

might have, and thus may not be the right risk model from their perspective.

Information Identification without A Risk Model

However, in this example, we do not need a risk model to identify the informed manager.

In fact, simply by looking at the distribution of P&L, we should be able to tell who the

informed manager is. Figure 2 shows the unconditional distribution of the P&L for both the

informed and the uninformed manager. Here, for concreteness, we have chosen a0 to be 1.

Thus, the uninformed manager follows a passive strategy and holds one share of stock. The

informed manager has predictive power of R2 = 1% for future stock return and she actively

trades on her private information. We also set her average stock position to a1 = 1 and the

intensity at which she trades on her information is λ∗ = 0.901.13 However, for comparison,

we consider two values for λ: λ = λ∗ and λ = 5λ∗.

It is obvious that the P&L of the informed manager is positively skewed while the P&L

of the uninformed manager is always symmetric (around its mean). Table 1.A reports the

moments of the P&L for the two managers. Since the uninformed manager follows a passive

strategy, his P&L has the same moments as the stock dollar return, with a weekly average

gain of 0.231% and volatility of 2.080%. The corresponding Sharpe ratio is 0.111 (weekly).

The informed manager, trading on her private information about average future returns,

13In the portfolio choice problem with CARA preferences and returns given by (1), the optimal policies of
the uninformed and the informed managers take the form of (2). At the specified parameter values (µ = 0.12,
σQ = 0.15 and R2 = 1%), a0 = a1 = 1 implies a risk aversion of 51

3
for both managers. Moreover, for the

informed manager, λ∗ = 0.901 for the optimal policy. Although our analysis does require any optimality
on the manager’s part, we use values implied by optimality under CARA preferences in our numerical
illustrations.
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Figure 2: Distribution of the managers’ P&L.

generates large average gains, but with higher volatility. For λ = λ∗, the average weekly P&L

is 0.418% with a volatility of 2.830%, giving a Sharpe ratio of 0.148, which is significantly

higher than that of the uninformed manager. However, when she trades more aggressively

with λ = 5λ∗, her Sharpe ratio starts to fall to the same range as that of the uninformed

manager.

What is worth noting is the symmetric nature of the uninformed manager’s return profile.

Given that conditional on public information (which is summarized in the prior distribution

of Zt and ut+1), the stock dollar return is symmetrically distributed, any strategy that

the uninformed manager adopts based on the same public information can only generate

symmetric P&L. This implies that any strategy that can generate an asymmetric P&L

profile must be relying on additional information about stock returns.

Thus, in this example, information revealed by the unconditional distribution of the

managers’ P&L is sufficient to identify the informed manager. However, as we will see

later, relying only on the unconditional P&L distribution is restrictive in general. For ex-

ample, using option-like strategies, the uninformed investor can closely mimic the important

characteristics of the unconditional distribution of the informed investor’s P&L. Robust

identification of informed managers has to rely on additional information about their trad-

ing records. In particular, when the trading record also contains the history of manager’s

positions, we can determine if she has private information by looking at the distribution of

asset returns conditioned on her positions. In particular, future returns conditioned on her
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current stock position being above its average must have a different distribution than the

returns conditioned on her current position being lower than its average. In other words, her

current position can predict future returns, which is the point exploited by Cornell (1979)

and Grinblatt and Titman (1993), among others.

(a) (b)
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Figure 3: Comparison of conditional and unconditional distributions of stock dollar return: PDFs
(Panel A) and CDF differences (Panel B). Distributions conditioned on the manager’s stock position
being above and below average are denoted by the dashed and dotted lines, respectively. The solid
line in Figure 3(a) gives the unconditional distribution.

Table 1.B reports the moments of stock returns conditioned on the informed manager’s

stock position being above and below average. Clearly, conditioned on the informed man-

ager’s stock position being above average, the future stock returns have a positive mean

and skewness, and conditioned on her stock position being below average, the future stock

returns have a negative mean and skewness.

Figure 3(a) plots the stock return distribution conditional on the manager’s position

being above and below average. It is obvious that for the uninformed investor, the two

distributions should be identical and equal to the unconditional distribution. They are

shown in the figure by the solid line. For the informed manager, the dollar return distribution

conditional on her position being below average is shown by the dotted line, and the dollar

return distribution conditional on her position being above average is shown by the dashed

line. Clearly, the two distributions are different and the former lies to the left of the latter.

The difference between the two conditional distributions unambiguously demonstrates that
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manager’s position contains information about future returns.

Given that predictive power of the informed manager’s signal about future stock return

has an R2 of only 1%, the differences between the conditional distributions (when her position

is above and below average, respectively) and the unconditional distribution, as shown in

Figure 3(a), may seem small. But they may well be detectable statistically, depending on

the methods used. In particular, the difference between the cumulative density function of

the conditional distribution and the unconditional distribution is quite significant as Figure

3(b) shows. The test we consider later is related to this observation.

The above example illustrates our basic idea in this paper, which is to identify managers

who have private information about future returns. We explore methods to achieve this by

relying solely on the managers’ trading records, not on any particular notion of risk.

Obviously, this example is special in many ways, such as the return generating process, the

nature of the informed manager’s private information, the information we have on managers’

trading records, etc. This raises many questions about how far we can push our idea in more

general settings. For example, the asymmetry in the informed manager’s P&L profile is

related to the fact that her information is about the mean of future stock return. If her

information is about the volatility of future stock return, can we still identify any special

features of her P&L profile? What if her information is about some aspect of future stock

returns, which we do not even know? Also, we have assumed that we have information

about managers’ portfolio P&L at the same horizon as their trading period. What if we only

observe P&L at a horizon that is longer than their trading period? In this case, dynamic

trading strategies within the horizon over which we record P&L can generate a rich set of

P&L profiles even when they are only based on public information. Can we still tell if a

strategy contains new information? We will address these questions in the following sections.

3 Methodology

We now consider a methodology that allows us to separate an informed manager from an

uninformed manager. The effectiveness of any such methodology depends on two factors:

(1) the underlying model, including the return generating process, the nature of private

information, and the trading strategy, and (2) the amount of data, including the length of

10



managers’ trading records. Of course, less reliance on both of these factors is more desirable.

For most of our discussion, we assume that sufficient data is available, and focus primarily

on the first factor. We return to the data issue in Section 7.

Our methodology is based on the availability of managers’ trading records. Let N i
t and

Qt denote manager i stock position and the realized stock return over time. Define

Gi
t ≡ N i

t−1Qt (4)

as the P&L of manager i in period t where t = 1, . . . T . Let (·)[1, T ] denote the history of

a variable from time 1 to T . We assume that a manager’s trading record always includes

G[1, T ], his P&L. It also includes public information such as past returns on the stock and

realizations of certain events or state variables (e.g., realized earnings or success/failure of

mergers). In addition, it may contain more detailed information, such as the manager’s

positions. Formally, the trading record (history) of manager i is given by

H i
T ≡ (

Gi, Q, Si
)
[0, T ]

≡ {(
Gi

1, Q1, S
i
0

)
,
(
Gi

2, Q2, S
i
1

)
, . . . ,

(
Gi

T , QT , Si
T−1

)}
. (5)

Here, S represents the information on the manager’s trading history in addition to his P&L

and stock returns. We consider two possible forms of S in this paper. In the first instance,

Si
t = N i

t is the manager’s stock position. In the second instance, Si
t is the ex-post realization

of a state variable X that affects the distribution of future stock return and on which the

manager might have private information. For example, if the manager trades on information

about earnings, the actual earnings realizations are observable and constitute an important

part of his trading record. In the first case, we assume that the manager’s position is a

monotonic function of X. In the second case, Si is monotonic in X by construction.

3.1 Positions As Part of Trading Record

We first consider the situation where Si
t = N i

t , that is, the manager i’s trading positions

are available for his evaluation. In this case, H i
T = (Gi, Q,N i)[1, T ] (notice that since Gi

t =

N i
t−1Qt, we can drop Gi from H i

T in this setting). If manager i trades on private information

about future returns, his stock position at any point in time must reflect this information.

In particular, conditional on his position in the stock, the distribution of future returns must

11



be different from the unconditional distribution of returns.

Let

FA(x) ≡ F
(
Qt+1≤x

∣∣N i
t ∈ A

)
(6)

denote the cumulative density function of the stock dollar return next period conditioned on

manager i’s current stock position N i
t being in set A, where A is a Lebesgue-measurable set

on �. If N i
t contains no information about Qt+1, we have

FA(·) = FA′(·) ∀ A, A′. (7)

If, however, N i
t contains information about Qt+1, then we have

FA(·) �= FA′(·) ∀ A �= A′. (8)

Thus, the problem of identifying the informed manager reduces to the task of distinguish-

ing the two conditional return distributions. The null hypothesis to be tested is simply

(7). Instead of making assumptions about the return generating process, we rely on the

Kolmogorov-Smirnov test, which is distribution-free.

For manager i, FA(x) and FA′(x) denote the cumulative return distribution functions

conditioned on his stock position being in A and A′, respectively. The null hypothesis is

that FA = FA′ . The estimated cumulative distribution function F̂S (S = A,A′) based on the

trading record of manager i with sample size ns is given by

F̂S(x) ≡ 1

nS

nS∑
t=1

1{Qt≤x, N i
t−1∈S} (9)

where 1{·} is the indicator function. The Kolmogorov-Smirnov statistic based on the esti-

mated distributions is

δ(nA, nA′) ≡
(

nAnA′

nA + nA′

)1/2

sup
−∞<x<∞

∣∣ F̂A(x) − F̂A′(x)
∣∣. (10)

The distribution of δ(nA, nA′) under the null can be readily computed (see, for example,

Hollander and Wolfe (1999), Table A.10). We can perform an approximate α-level test of

the null hypothesis by computing the statistic and rejecting the null if it exceeds the 100α-th

percentile of its distribution under the null.

When nA and nA′ are large, the statistic should be small under the null. In particular,
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when min(nA, nA′) → ∞, it has the following limiting distribution:

lim
min(nA,nA′ )→∞

Prob
(
δ(nA, nA′) < δ

)
=

∞∑
k=−∞

(−1)ke−2k2δ2

. (11)

Assuming, without loss of generality, that nA > nA′ , this approximation is valid for nA ≥ 100,

nA′ ≥ [0.10nA].14 An approximate α-level test of the null hypothesis can be performed based

on the limiting distribution of the test statistic under the null, given by (11).

To implement the test proposed above, we need to choose the sets A and A′. The choice

depends on several factors. In order to increase the power of the test, we want to choose A

and A′ such that the difference between the two conditional distributions, as measured by the

Kolmogorov-Smirnov statistic, is maximized. Also, we want to use the data most efficiently.

Any particular choice of A and A′ involves a trade off between these two considerations.

Suppose that on average, the managers’ stock position is zero. Then, one choice is to let

A = (−∞, ∞) and A′ = (−∞, 0] or A′ = (0, ∞). Another choice is to let A = (−∞, 0]

and A′ = (0, ∞).15 Both choices use all observations. But the second choice gives a larger

difference between FA and FA′ . Therefore, setting A = (−∞, 0] and A′ = (0, ∞), our test

becomes the test of the hypothesis that F+ = F−, where

F+(x) ≡ F
(
Qt+1≤x|Nt ≤ 0

)
and F−(x) ≡ F

(
Qt+1≤x|Nt > 0

)
. (12)

Since the Kolmogorov-Smirnov test makes no assumptions about the actual return distri-

bution, it can detect any difference in the distributions conditioned on a manager’s position.

In particular, the private information that gives rise to this difference does not have to be

limited to expected returns; it can involve better forecasts about other moments of returns

as well. We consider this case in Section 4.2.

In the above discussion, we assume that the uninformed manager as well as the evaluator

have no information about future returns. In other words, conditioned on their information,

stock returns are IID over time. This is a restrictive assumption. Conditioned on public

information, returns can be non-IID.16 Our method can be easily extended to the case of

14See Kim and Jennrich (1973). The numerical results presented later in the paper also use the conti-
nuity correction suggested by these authors, which amounts to adding 1/(2

√
nA) to the computed value of

δ(nA, nA′).
15If the manager’s average stock position is not zero, but is N̄ , then we can simply choose A = (∞, N̄ ]

and A′ = (N̄ , ∞).
16There are many papers documenting the serial dependence in stock returns. For example, Fama and
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non-IID returns. Suppose that the distribution of future stock return Qt+1 depends on public

information Yt. Then, for an uninformed manager who nonetheless observes Yt at time t, we

have

FA

( · |Y )
= FA′

( · |Y ) ∀ A, A′ and Y (13)

where FS

(
x|Y ) ≡ F

(
Qt+1 ≤ x|Nt ∈ S, Yt = Y

)
is the cumulative distribution of future

stock return conditioned on the current public information being Yt = Y and the stock

position being in the set S = A,A′. In this case, the identification of an informed manager

is equivalent to rejecting the null hypothesis (13).

3.2 State Variable(s) As Part of Trading Record

We have developed the methodology to identify informed managers under the assumption

that their positions are available to us for evaluation. Now we consider the case when such

data is not observable. Suppose, instead, that we have ex-post realizations of a state variable

X about which managers may have private information. Our procedure can be modified to

detect those informed managers. In this case, HT = (Gi, Q,X)[1, T ].

The intuition behind our methodology in this case is as follows. Controlling for stock

return, the only source of variation in manager’s P&L is his position in the stock. If he

has information about the state variable X, the variation in his position is related to the

variation in X. Therefore, conditioned on the stock return, the distribution of his P&L

when X is “low” should be different from the conditional distribution of his P&L when X is

“high”. Thus, identifying an informed manager again reduces to comparing two conditional

distributions, except that in this setting the test is applied to the distribution of manager’s

P&L rather than to the distribution of asset returns.

Let

F G

S

(
x|Q) ≡ F

(
Gt ≤ x|Xt−1 ∈ S, Qt = Q

)
(14)

denote the cumulative distribution of a manager’s P&L conditioned on the concurrent stock

French (1988b), Lo and MacKinlay (1988), and Poterba and Summers (1988) have shown serial correlation
in stock index returns at different horizons. Campbell and Shiller (1988), Fama and French (1988a), and
Kothari and Shanken (1997) show that dividend yield can predict future returns. Bollerslev, Chou and
Kroner (1992), among others, survey evidence on predictability in stock return volatility.
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return being Qt = Q and the state variable X being in the set S = A, A′. Then, under the

null hypothesis that a manager has no information about X, we must have

F G

A

( · |Q)
= F G

A′
( · |Q) ∀ A, A′ and Q. (15)

Rejection of this null hypothesis implies that a manager has private information about X.

The test of the null on the distribution of P&L conditioned on the realization of state

variables can be constructed in the same way as the test on the distribution of stock returns

conditioned on the manager’s positions and public information. Here, the return on the

stock plays the same role as the public signal does when returns are non-IID.

4 Analysis When Positions Are Observable

In this section, we apply the methodology proposed in the previous section to simulated

trading records of managers under the assumption that their stock position is observable to

us. We first consider the setting that corresponds to the example described in Section 2,

where returns are IID over time and the informed manager has private information about the

mean of future returns. We then extend our analysis to the situation where the manager’s

private signal is about the volatility of future returns. Next, we show how to apply our

methodology when returns are non-IID. Finally, we consider a setting where managers can

invest in multiple risky assets.

Relying on managers’ positions to identify an informed manager was suggested by Cornell

(1979), Copeland and Mayers (1982), Grinblatt and Titman (1993) and Ferson and Khang

(2002). In particular, they use the covariance between a manager’s asset positions and subse-

quent returns as a performance measure. This measure is intuitive and has simple economic

interpretations. But it is applicable only to the case when the manager’s information is on

the mean of asset returns. It is also sensitive to how aggressively a manager trades on his

information. Finally, it requires asset returns to be IID based on public informaiton. Ferson

and Khang extend the methodology to non-IID returns. But they impose additional struc-

ture on the asset return process. The analysis in this section shows that our approach avoids

these limitations. Its application based on managers’ positions is a natural generalization of

the existing methodology.
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4.1 IID Returns: Mean

Consider the simple case in which stock dollar return is given by (1) and the informed

manager observes Zt at time t. We use the following annual parameter values: µ = 0.12

and σQ = 0.15. R2, which measures the predictive power of the informed manager’s private

information, is set at 5%. The portfolio strategies of the uninformed and informed managers

are given by (2). In particular, the stock position of the informed manager is linear in Zt.

The intensity of her trading on the private information is measured by λ.

Weekly stock returns are generated by simulating (1) for 400 weeks. The stock price is

initialized to $1, which allows us to interpret stock returns as (simple) returns per dollar

invested at time 0. Each simulation gives us a time series of Qt, Zt−1 and the managers’ stock

positions N i
t−1 with i = 0, 1. The simulated trading record of manager i is (Q,N i)[0, 400]. The

simulation is repeated 500 times to obtain various statistics and their standard errors.

The uninformed manager (manager 0) follows a passive strategy with N0
t = a0. For

concreteness, we set a0 = 1. In other words, he holds one share of stock. We also consider

an uninformed manager, denoted as manager 0′, who adds noise to his stock holdings. This

manager has no private information about future stock returns, but thinks that he does.

He treats noise as signals about future returns, and trades on it. His stock position is

N0′
t = a0 + ñt where a0 = 1 and ñt is normal, independent of Qt, with a mean of zero and a

volatility of 0.5. The informed manager follows an active strategy N1
t = a1(1+λZt/σZ). Her

average position in the stock is a1, which is also set to 1. The benchmark value of λ for this

case is λ∗ = 2.016.17 To assess how manager’s trading intensity affects our methodology, we

consider two values of λ: λ = λ∗ and λ = 5λ∗.

Panel A of Table 2 reports the summary statistics of the P&L of the uninformed managers

with and without noise, and of the informed manager with different intensities of her informed

trading. The strategy of the uninformed manager without noise is passive, buy-and-hold.

The moments of his P&L are equal to those of stock dollar return, which has weekly average

gain of 0.231%, volatility of 2.084%, and a Sharpe ratio of 0.111. The skewness is zero and

kurtosis is 3. The strategy of the uninformed manager with noise is active but not rewarding.

His average weekly P&L of 0.234% is comparable to the passive strategy, but the volatility

17The benchmark value of 2.016 for λ is optimal if the manager has a CARA preferences with a risk
aversion of 51

3
, which gives a1 = 1. See footnote 13.
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of 2.331% is higher than that for the passive strategy. The skewness of his P&L distribution

is still approximately zero, but the kurtosis becomes 5.038 (with a standard deviation of

1.138). The noise in the uninformed manager’s strategy reduces his Sharpe ratio to 0.101

(with a standard deviation of 0.049). The P&L of the informed manager gives a different

pattern. It tends to have higher average gain and volatility than the P&L of the buy-and-hold

uninformed manager. But in general, the informed manager achieves larger Sharpe ratios.

For λ = λ∗, her Sharpe ratio is 0.242, which is considerably higher than the Sharpe ratio of

the uninformed manager. However, as λ increases, i.e. when the informed manager trades

more aggressively on her information, the Sharpe ratio may decline, as shown in Figure 1.

More importantly, the distribution of the informed manager’s P&L is very different from

those of the uninformed managers. In particular, it shows significant positive skewness, as

discussed earlier. For λ = λ∗, the skewness is 1.28 (with a standard deviation of 0.55).

In the particular case we consider here, the unconditional distribution of the P&L of

the informed manager provides strong evidence of her having private information about

stock returns. However, this situation is special. As we show later, the evidence from the

unconditional distribution of P&L is insufficient and can be misleading. For this reason, we

utilize the methodology discussed in Section 3 and construct tests based on the stock return

distribution conditioned on the managers’ positions.

Let N̄ denote the average of a manager’s stock position over the simulated sample. We

partition the sample into two sets, those with Nt ≤ N̄ and those with Nt > N̄ . We have

n− and n+ sample points in the two sets. For each set, we use (9) to estimate conditional

cumulative distribution of stock dollar return, F̂− and F̂+, respectively. We also use the

whole sample to compute the unconditional cumulative stock return distribution F̂ . Table

2.B reports the summary statistics for the unconditional distribution and for the two condi-

tional distributions. The unconditional distribution of stock return is normal with mean of

0.231% and standard deviation of 2.084%. Its skewness is zero and kurtosis is 3, as expected.

The average return conditioned on the informed manager’s position being above average is

0.604%, significantly higher than the unconditional mean. Conditioned on the manager’s

stock position being below average, the mean return is negative, -0.141%, which is lower

than the unconditional mean and a lot smaller than the mean conditioned on her position

being above average. The difference between the means of the conditional distributions re-
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flects the private information the manager has about average future returns, as we assumed.

The other moments of the conditional distributions are very similar to those of the uncondi-

tional distribution. The standard deviation of the conditional distributions is slightly lower

than that of the unconditional distribution on average, but the difference is not statistically

significant because the R2 of the manager’s signal is only 5%. The third and fourth mo-

ments of the conditional distributions are practically the same as those of the unconditional

distribution. It is also worth noting that the moments of the conditional distribution do

not depend on the intensity at which the manager trades on her private information (as

long as it is not zero). The moments are essentially the same for different values of λ. This

is not surprising. When the manager’s stock position is linear in her signal about future

stock return (Qt), as we assume here, conditioning on her position being above average is

equivalent to conditioning on the signal being positive, i.e., Zt−1 > 0. The magnitude of λ

has no impact on the information revealed by the relative size of her position.

We apply the Kolmogorov-Smirnov test to each pair of the estimated distributions: F̂+

versus F̂ , F̂− versus F̂ , and F̂+ versus F̂−, which allows us to accept or reject the null

hypothesis (7) at a given confidence level. For each simulation, we compute the Kolmogorov-

Smirnov test statistic and the corresponding p-value. The rejection rate at the 1% (5%) level

is a fraction of simulations for which the p-value does not exceed .01 (.05). The standard

deviation of the test statistic is shown for information purposes only.

Table 3 reports the results of the test. In the first panel, we have the Kolmogorov-Smirnov

test statistic δ for the uninformed manager who trades on noise. It is clear that δ is close to

zero. The rejection rate of the null hypothesis that the two conditional P&L distributions

and the unconditional P&L distribution are the same is close to zero at both the 1% level

and the 5% level. For the informed manager, the test statistic becomes larger and more

significant. However, the rejection rate of the null that F̂+ = F̂ or F̂− = F̂ is still low, about

2% at the 1% level and 13-16% at the 5% level. But for the null that F̂+ = F̂−, the rejection

rate becomes very high, 69% at the 1% level and 88% at the 5% level. This is not surprising,

since the difference between F̂+ and F̂− is larger than the difference between either F̂ and

F̂+ or F̂ and F̂−. It should also be pointed out that the results of the test are independent

of the intensity at which the informed manager trades on her private information. This is

clearly a desirable property of our evaluation method.
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The above analysis of a simple case demonstrates the applicability of our methodology

in identifying managers with private information. In the remainder of this section, we apply

the same methodology to more general cases.

4.2 IID Returns: Volatility

In the preceding analysis, we have assumed that the informed manager has private informa-

tion about the mean of future returns. We have shown that our methodology can be used

to detect the informed manager in this case. As we discussed earlier, unlike other methods

that can reveal the presence of such information, our procedure does not put any restrictions

on the nature of manager’s private information. In order to demonstrate this, we consider a

situation where the informed manager has private information about the volatility of future

returns rather than the mean. Suppose that stock price increments are generated by the

following process:

Qt+1 = µ + σtut+1 (16)

where σt follows an IID two-point process and ut+1 is IID standard normal. We assume that

σt takes two values, σh and σl, with equal probability. The informed manager observes σt at

time t and the uninformed manager does not.

For our test, we again let µ = 0.12 and σQ = 0.15. We set σh = 0.20. The unconditional

volatility of stock return then implies that σl = 0.07. In addition to the passive strategy

defined in Section 4.1, we consider three active strategies given by Nt = µ/(γv2
t ), where

γ = 51
3

as before, and vt = σt + ẽt is a manager’s signal about volatility. We use three

different distributions of ẽt to simulate an uninformed manager with noise, and partially-

and fully-informed managers.18

Based on simulated trading records of the four strategies over a sample of 400 weeks, we

report the summary statistics of their P&L in Panel A of Table 4. With private information

only on volatility, the informed manager can still generate a Sharpe ratio of 0.171, which is

18 When σt = σh, ẽt takes on two values, 0 and σl−σh, with probability p and 1−p, respectively. Similarly,
when σt = σl, ẽt is either 0 or σh − σl, with respective probabilities of p and 1 − p. Thus, the signal vt has
the same unconditional distribution as σt. Straightforward calculations show that the informativeness of the
signal depends on the value of p. For instance, if p = 0.5, the signal is worthless because F (σt|vt) = F (σt).
We set p = 0.5, p = 0.75, and p = 1.0 to simulate an active uninformed manager, and partially- and
fully-informed managers, respectively.
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noticeably higher than that of a passive strategy (0.107). Panel B of Table 4 reports the

stock return moments conditional on the managers’ position being above (N > N̄) and below

(N ≤ N̄) its average. Apparently, conditioned on the fully-informed manager’s stock position

being below average, volatility of stock return is significantly higher than when her position

is above average. The stock position of the partially-informed manager is also informative.

Panel C gives the results of the Kolmogorov-Smirnov test applied to the conditional return

distributions. For the fully-informed manager, the test strongly rejects the null that the

two distributions are the same. Rejection rates for the partially-informed manager are high

as well, even though her Sharpe Ratio of 0.109 is almost the same as that of the passive

strategy.

These results show that our methodology does not rely on the specific nature of the

manager’s private information. As long as sufficient data are available, we can identify the

manager with private information.

4.3 Non-IID Returns

In the previous two sections, we have assumed that stock returns are IID based on public

information. This is a restrictive assumption. There is accumulating evidence that asset

return distributions are time-varying. In such a situation, our task becomes to identify

managers whose information about future returns is not in the public information set. For

example, if it is known that the dividend yield predicts future returns, the question is whether

a manager has predictors in addition to the dividend yield.

In the context of the setting considered in Section 4.1, we assume that stock price incre-

ments are generated by the following process:

Qt+1 = µ + Yt + Zt + ut+1 (17)

where µ is a positive constant, Yt, Zt and ut+1 are independent normal, IID over time, with

zero mean and volatility σY , σZ, and σu, respectively. Moreover, we assume that Yt is public

information at time t and Zt is private information, known only to the informed manager.

The price process (17) is a straightforward extension of the simple case (1). However, since

Yt is public information at t, stock returns conditioned on this information are no longer IID

over time.
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As discussed in Section 3, our methodology can be extended naturally to analyze this

case. We only need to condition on the public information first and compare the distribution

of returns conditioned on the managers’ stock positions. The implementation of this idea is

straightforward if we have unlimited amount of data on the managers’ trading records. In

practice, data is always limited. Thus, we again face the challenge of finding a powerful test

with limited amount of data.

We consider the following algorithm. Given a manager’s trading record (Q,N, Y )[0, T ],

we divide the sample into m equal-sized bins according to the value of Y . Each bin now

provides a controlled sample in which the values of Y are clustered within a close range. Let

n ≡ T/m be the number of observations in each bin. One can then construct a test based

on the sample {(Ntk1−1, Qtk1
), . . . , (Ntkn−1, Qtkn

)}, where k = 1, . . . ,m denotes the k-th bin.

We compute the average position N̄k for the sub-sample k and then divide the sub-sample

into two groups: J+(k) ≡ {j : Ntkj
> N̄k} and J−(k) ≡ {j : Ntkj

≤ N̄k}. Conditional

distributions of stock return, F̂+(k) and F̂−(k), can be estimated based on the two groups

in the sub-sample k as for the IID case. Kolmogorov-Smirnov test can be conducted on the

F̂+(k) and F̂−(k). The disadvantage of this approach is that the size of the sub-sample is

small, giving a test of low power. In addition, it is hard to aggregate the test results over

different bins.

We adopt a different procedure. Instead of considering tests based on each sub-sample,

we pool together the two groups from different sub-samples. Specifically, we aggregate the

sample points in J+(k) from all the sub-samples into one sample J+ = ∪m
k=1J+(k). Similarly,

we set J− = ∪m
k=1J−(k). From these two samples, we estimate the distribution functions

F̂+ and F̂−. The Kolmogorov-Smirnov test is then conducted on these two conditional

distributions. This approach has the advantage of utilizing all available data in a single test.

Table 5 reports the results of our test. Stock returns are generated using the following

parameters: µ = 0.12, σQ = 0.15, as before, and σ2
Y /σ2

Q = σ2
Z/σ2

Q = 0.04. For the uninformed

manager, we consider two strategies, a passive strategy with N0′
t = a0 = 1, and an active

strategy that utilizes public information and sets N0
t = a0(1 + λ∗Yt/σY ), where a0 = 1 and

λ∗ = 1.803. For the informed manager, we consider her optimal strategy N1
t = a1

[
1+λ∗(Yt+

Zt)/
√

σ2
Y + σ2

Z

]
with a1 = 1. Since we have seen earlier that the intensity of the informed

manager’s trading on private information does not affect the results of our test (as long as
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λ �= 0), we only consider her optimal strategy. We set m, the number of bins used to control

for public information, to 10. Sensitivity analysis presented in section 7.2 indicates that, in

this setup, using at least five bins does an adequate job of controlling for the common signal.

The trading records of the two managers are simulated for 800 weeks. We again run 500

simulations to obtain standard deviations of our estimates.

Summary statistics of the managers’ P&L are given in Panel A of Table 5. Clearly,

the active strategy of the uninformed manager that uses public information can generate

a Sharpe ratio much higher than that of the passive strategy. It also generates positive

skewness and higher kurtosis. The informed manager also generates higher Sharpe ratio

than the passive strategy, and positive skewness. For the value of λ that we choose for the

informed manager, she outperforms the uninformed manager’s active strategy as measured

by the Sharpe ratio. But this is not a general result. If she trades less aggressively on private

information (or on public information for that matter), her Sharpe ratio can end up being

lower than that of an active but uninformed manager.

In order to separate the managers according to their private information, we can compare

the estimated distributions F̂+ and F̂−. Panel B of Table 5 reports the moments of these

distributions conditioned on the managers’ stock position being above and below average,

controlling for the corresponding level of Y . It becomes obvious that the uninformed man-

ager’s position, after controlling for Y , contains little information about future returns. The

moments of the two conditional distributions are almost identical. The situation is very

different for the informed manager. Controlling for Y , the stock return conditioned on her

position being above average has significantly higher mean than the stock return conditioned

on her position being below-average.

Panel C of Table 5 reports the results of Kolmogorov-Smirnov test on F̂+ and F̂− for

both managers. Confirming the results in panel B for the uninformed manager, we cannot

reject the null that the two conditional return distributions are the same. For the informed

manager, however, we can reject the null at the rate of 92.2% at the 1% level. Such a high

rejection rate supports the validity of our algorithm in implementing our methodology.

Of course, the particular implementation considered here needs further examination,

especially when applied in alternative information settings. We return to some of these

issues in Section 6.1.
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4.4 Multiple Assets

So far, we have only considered cases where managers can invest in a single risky asset. In

this section, we show that our methodology can be easily applied to the case of multiple

assets.

We assume that managers can invest in 50 stocks. The price process for half of the stocks

is given by

Qs,t+1 = µs + Zs,t + us,t+1 , s = 1, . . . , 25 (18)

while the price process for the other half is given by

Qs,t+1 = µs + σs,t us,t+1 , s = 26, . . . , 50. (19)

Thus, returns for individual stocks are generated by the same processes as those considered

in Sections 4.1 and 4.2. Expected annual stock returns (µs) range from 6% to 20%, while

unconditional volatility of annual returns ranges from 10% to 19%. Here, σs,t takes two

values, σh and σl, with equal probability. We set σl = 0.07 for all stocks. The value of σh

for each stock is then determined by its unconditional volatility. For simplicity, we assume

that individual price processes are mutually independent. Imposing a factor structure - for

example, adding a market factor - does not change the nature of the results.

We simulate trading records of two managers. The first manager, manager 0, is active,

but uninformed. His position in stock s is given by N0
s,t = a0 + ñs,t, where a0 = 1 and

ñs,t is normal with a mean of zero and a volatility of 0.5. The second manager, manager

1, has information of varying precision about the mean and volatility of future returns of

individual stocks. For the stocks with price process given by (18), her position is given by

N1
s,t = a1(1 + λZs,t/σ(Zs)). We set a1 = 1 and λ = 2. R2, the ratio of variance of the

manager’s signal Zs to total variance, ranges from 0 to 5%. Thus, the manager does not

have superior information for some of the stocks, and she holds a constant number of shares

in that case. For the stocks with price process (19), her position is given by N1
s,t = µs/(γ vs,t).

As in Section 4.2, vs,t = σs,t + ẽs,t. The distribution of ẽs,t is described in footnote (18). The

probability that the manager’s signal about the volatility state is correct, p, ranges from 50%

to 75%. As pointed out in the footnote, when the probability of correct forecast is 50%, the

manager essentially trades on noise. This represents the non-informational component of
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the informed manager’s trading. The varying accuracy of informed manager’s signals about

future stock price movements also makes the setting more realistic.

Simulations in this section use (18) and (19) to generate monthly stock returns for 36

months. Thus, the data requirements in the multi-asset setting are similar to those used in

actual studies of mutual fund investment performance (e.g., Grinblatt and Titman (1993)) .

The reason we can significantly reduce the required number of time-series observations

is because managers’ trading records for individual securities are aggregated for use in a

single test. Specifically, for each stock s, we follow the procedure described in Section 4.1 to

partition the sample of its monthly returns into the two subsamples, Q+
s and Q−

s , based on

the manager’s position in s being above and below average. We then pool observations from

the two subsamples across individual stocks to form Q+ =
⋃50

s=1 Q+
s and Q− =

⋃50
s=1 Q−

s .

The Kolmogorov-Smirnov test is applied to the distribution functions F̂+ and F̂− estimated

from these two samples.

The test results, based on 500 simulations, are in Table 6. Panel A reports the moments

of managers’ P&L distributions. In addition to the two active strategies, we also show

the results for the passive strategy that holds one share of each stock. Compared to the

uninformed manager, the P&L distribution of the informed manager has higher mean and

variance, as well as larger skewness and kurtosis. Notably, the three strategies produce

almost identical Sharpe ratios. This result once again demonstrates that this performance

measure is inadequate in detecting an informed manager.

Panel B shows the results of the Kolmogorov-Smirnov test that compares conditional

distributions estimated from the Q+ and Q− samples. It is clear that our procedure can

identify both an informed and an uninformed managers. The rejection rate for the unin-

formed manager is very close to the theoretical size of the test. For the informed manager,

the null hypothesis of no information is strongly rejected. Similar results are obtained when

stock price process (18, 19) is modified to include a market factor. Thus, the analysis in this

section shows that our methodology is applicable when managers invest in multiple risky

assets.
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5 Analysis When Positions are Unobservable

The analysis in Section 4 demonstrates how to identify managers with information about

asset returns under the assumption that we observe managers’ asset positions. In this section,

we show how our methodology can be used when this data is not available, but instead

observations of the state variable are available ex post. Such a situation arises if we know

the state variable(s) managers claim to have information on, such as earnings or corporate

actions, and its realizations. Recall from the discussion in Section 3 that the trading record

of manager i in this case is given by

H i
T ≡ (G,Q,X)[0, T ] ≡

{
(Gi

1, Q1, X0), . . . , (G
i
T , QT , XT−1)

}
(20)

where Gi
t is the P&L of manager i in period t, and Xt is a state variable correlated with

next-period stock return Qt+1. Rejection of the null hypothesis (15) about the conditional

distribution of P&L for manager i would imply that this manager has information about X.

The implementation of the test follows the algorithm described in Section 4.3. To control

for the variation in stock return, we partition the sample into m equal-sized bins according

to the value of Q. Within each bin, manager’s P&L is scaled by the average stock return for

that bin. This makes P&L observations from different bins comparable to one another. We

then estimate the conditional distributions F̂ G
+ and F̂ G

− and apply the Kolmogorov-Smirnov

test.

We apply this testing procedure in the context of the two settings considered in Sections

4.1 and 4.2, when a manager may have private information on the mean and volatility of

asset returns, respectively. We generate returns for 400 weeks by using equations (1) and

(16), respectively. The simulation is repeated 500 times. We set m, the number of bins used

to control for stock return, to 10.

Panel A of Table 7 shows the results for the IID/Mean case. The four strategies considered

here have been described in Section 4.1. As a reminder, stock returns in this setup are

generated by Qt+1 = µ + Zt + ut+1, and the informed manager observes Zt before deciding

how much of her portfolio to invest in the stock. Because we do not have access to managers’

positions, it is no longer possible to identify the manager who follows a passive buy-and-hold

strategy without doing the actual test. However, the test clearly reveals that the uninformed
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manager has no information about Z, whether he follows a passive or an active strategy. The

test also correctly identifies the informed manager; the rejection rate of the null hypothesis

that this manager is uninformed is 100% both at the 1% and the 5% confidence level.

Moreover, test results do not depend on manager’s trading intensity: test statistics when

λ = λ∗ are almost identical to those when λ = 5λ∗.

Panel B of Table 7 shows the results for the IID/Volatility case. Again, the trading

strategies of the informed and uninformed managers considered here are the same as the

ones analyzed in Section 4.2. In this setting, stock returns are given by Qt+1 = µ + σt ut+1,

and the informed manager gets a signal about σt. The test results show that the uninformed

manager has no information about the volatility of the stock return, regardless of the strategy

he follows. For the informed manager, the null hypothesis is strongly rejected even when

her signal about volatility contains noise. The rejection rate for both partially- and fully-

informed strategies is 100%. Not surprisingly, the average value of the Kolmogorov-Smirnov

statistic is higher when the manager’s signal is more precise.

6 Additional Applications

In this section, we show how our approach works in the context of two additional settings.

In Section 6.1, we apply our methodology to a situation where both managers might have

private information about future stock return. After that, we examine the case where a

manager can trade in-between the times at which we observe his positions.

6.1 Differential Information

Suppose that both managers might have private information about future returns. A natural

question we face is whether one of the managers has information in addition to that of the

other manager. For example, knowing that manager 0 has information about future returns,

can we tell if another manager, manager 1, has information that is different from or superior

to that of manager 0? In this subsection, we consider an example that illustrates how our

methodology can be used to answer this question.

As in Section 4.3, we assume that stock returns follow the process:

Qt+1 = µ + Yt + Zt + ut+1 (21)
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where µ is a positive constant, Yt, Zt and ut+1 are independent normal, IID over time, with

zero mean and volatility σY , σZ, and σu, respectively. Before deciding how much to invest in

the risky asset at time t, both managers receive signals, S1
t and S0

t , respectively, that contain

information about Zt and/or Yt. The three cases we consider differ in the types of signals

the two managers receive:

Scenario 1: S1
t = Zt, S0

t = Yt

Scenario 2: S1
t = Yt, S0

t = Yt + e0
t

Scenario 3: S1
t = Yt + e1

t , S0
t = Yt + e0

t

where e1
t and e0

t are two independent white noise sequences with σ2
e1 = σ2

e0 = 2σ2
Y . Thus, the

first scenario describes a situation when the private information sets of the two managers

are disjoint. The second scenario corresponds to a setting in which both managers receive a

signal about the same “event”, but the signal of one of the managers is more precise than

the signal of the other manager. The last scenario is similar to the second one, except that

now the two managers receive equally precise signals.

The implementation of our approach in this context is similar to that described in Section

4.3. Instead of controlling for public information Y , we need to control for the position of

one of the managers, say manager 0, N0. Under the null hypothesis that the second manager

(manager 1 in this case) does not have any additional information, we must have

FA

( · |N0
)

= FA′
( · |N0

) ∀ A, A′ and N0 (22)

where FS

(
x|N0

) ≡ F
(
Qt ≤ x|N1

t−1 ∈ S, N0
t−1 = N0

)
is the cumulative distribution of stock

dollar return conditioned on the stock position of manager 0 being N0
t−1 = N0 and the stock

position of manager 1 being in the set S = A,A′. Given the trading records of the two

managers (Q,N1, N0)[0, T ], we partition the sample into m equal-sized bins according to the

value of N0. We then proceed to estimate the conditional distributions F̂+ and F̂− as in

the non-IID case, and apply the Kolmogorov-Smirnov test to these estimated distributions.

By interchanging the positions of the two managers in (22) and repeating this procedure,

we can test whether manager 0 has information beyond that of manager 1. Notice that if a

manager’s position is linear in her signal, controlling for her position gives exactly the same

results as controlling for the value of the signal itself. If her position is non-linear in the

signal, our (unreported) results indicate that this method of controlling for her information
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is still valid, provided that we use enough bins. The only requirement is that the manager’s

stock position is monotone in her signal.

For the tests discussed in this section, we assume that the managers’ stock position is

linear in their signal: N i
t = ai

(
1 + λSi

t/σ(Si
t)

)
, i = 0, 1. We set a0 = a1 = 1, λ = 1.803, and

m, the number of bins, to 10. We use (21) to simulate managers’ trading records for 800

weeks, and repeat the simulation 500 times.

Test results for the three scenarios are presented in panels A, B, and C, respectively,

of Table 8. In the first case, the results in panel A indicate that observing positions of

both managers is informative. That is, no matter which manager’s position we observe first,

knowing the position of the other manager provides additional information about future

stock returns. This is not surprising, given that the two managers receive independent,

equally precise signals about the expected stock return. Since the signals are uncorrelated,

both signals are valuable, and the order of conditioning does not matter.

In the second scenario, manager 1 receives a more precise signal. Therefore, observing

his position is informative even if we already know the position of manager 0. The reverse,

however, is not true. Results in panel B show that the test correctly distinguishes between

the two managers. Controlling for manager 1’s position, we cannot reject the null that

manager 0 has no additional information. In contrast, the test strongly rejects the null that

manager 1’s position is uninformative once we know the position of manager 0. The rejection

rate is 78% at the 1% level and 92.4% at the 5% level.

In the last scenario we consider, the signals of both managers contain noise. Because the

noise components are uncorrelated, observing positions of both managers is more informative

than only knowing the position of one of them. The incremental benefit, however, is smaller

than in the first scenario. The results in panel C confirm this intuition. The rejection rates

are similar for the two managers and are much lower than for the first scenario.

6.2 Dynamic Strategies

In the discussion of Section 4, we have assumed that we observe the managers’ complete

trading records, including the times of their trades and their positions at those times. Often,

however, we only have a manager’s trading record at a given time interval, which is longer

than the interval at which he can trade. Revealing records only infrequently gives the unin-
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formed manager more room to find strategies that look profitable. In particular, following

option-like strategies, he can generate very high Sharpe ratios in the absence of any private

information on future returns. Of course, as discussed earlier, the Sharpe ratio is not an

appropriate measure of performance for option-type strategies since they can produce return

distributions that are far from normal.

Thus, we examine how our methodology works when applied to option-type strategies.

Specifically, we consider the following two strategies. The first strategy consists of holding

a portfolio of three put options in the proportion of -1000:1000:-8. This position resembles

long put spread; the ratio is chosen so that higher moments of the strategy’s P&L are

similar to those of other strategies. When the position is initiated, all three puts have three

weeks to maturity and strikes that are $0.30, $0.28, and $0.26 below the current stock price,

respectively. The position is rolled over one week before the options mature. The second

strategy involves rolling over a short position in a deep out-of-the-money call option on the

stock. When the position is initiated, the call has 12 weeks to maturity and a strike price

$1.24 above the current stock price. Again, the position is rolled over one week before the

option expires. We use results in Brennan (1979) to price options under normality. For

both option strategies, the positions are scaled so that mean and standard deviation of P&L

are comparable to those produced by cash-and-stock strategies. The option strategies can

be interpreted as a proxy for an uninformed manager who dynamically adjusts his position

between observation times.

Weekly stock price increments are generated by simulating (1) for 400 weeks, using the

same parameter values as in Section 4.1. Simulation is repeated 500 times to obtain standard

deviations of our estimates. Stock price is initialized to $1 at the beginning of each simulation.

Panel A of Table 9 reports the summary statistics for the two option strategies. For

comparison, we have also included the summary of the P&L of an uninformed manager who

follows a passive strategy, and of an informed manager who trades actively on her private

information. Clearly, the option-type strategies can generate very large Sharpe ratios. The

put strategy gives a Sharpe ratio of 0.844, significantly higher than that of the informed

manager. The Sharpe ratio of the call strategy (0.284) also exceeds that of the informed

manager. In addition, the call strategy P&L has large positive skewness, a characteristic

shared by the informed manager’s P&L. In this situation, comparing the unconditional
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distributions of managers’ P&L fails to distinguish an informed manager from an uninformed

one. As we pointed out before, this is one of the main reasons our methodology relies on

conditional distributions of stock returns.

Suppose that we do not have the complete information on the trading record of the

uninformed manager who follows an option-type strategy. For example, if the manager is

dynamically implementing the strategy of rolling over a short position in calls, we may not

be able to identify his strategy based only on his weekly trading record. However, if he has

to report the delta of his position on a weekly basis, then our approach can be applied to

evaluate him.

Panel B of Table 9 reports the moments of stock dollar return conditioned on the man-

ager’s delta being above (N > N̄) and below (N ≤ N̄) its average. The results indicate

that there is practically no difference between the two sets of conditional moments. This is

not surprising given that the manager has no information about future returns. His current

position is only related to past stock price movements, but not to future ones.

Panel C of Table 9 gives the results of the Kolmogorov-Smirnov test. Clearly, we cannot

reject the null that conditioned on different delta’s of the uninformed manager, the return

distributions are the same. Thus, the results in Table 9 confirm that while option-type

strategies can generate high Sharpe ratios, our methodology correctly detects that these

strategies contain no information about future stock returns.

7 Robustness

In this section, we discuss several additional issues regarding our methodology. In Section

7.1, we show how the precision of manager’s private signal and the length of her trading

record affect the power of our approach to identify the informed manager when she invests

in a single risky asset. Section 7.2 presents results on choosing the number of bins used to

control for common information.

7.1 Sample Size and Power of the Test

Up to this point, we have focused on developing a methodology to detect an informed

manager assuming that we have enough observations to do so. In particular, for the cases
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where returns are IID to the uninformed investors, we have used a 400-week sample, which

roughly corresponds to eight years of data. We have used a sample twice as long when

less informed investors have information that makes returns non-IID from their perspective.

Whether or not this is a reasonable assumption depends on the application at hand. For

example, mutual fund holdings data is only available quarterly, meaning that a portfolio

manager would have to have an unusually long career before we can collect a sample of 400

observations. On the other hand, a supervisor at an investment bank trying to assess the

performance of a trading desk has access to traders’ positions at least at a daily frequency,

making our data availability assumptions more realistic. Another factor that affects the

power of our tests is the amount of information reflected in a manager’s trading strategy.

Obviously, the better informed a manager is, the easier it is to identify his strategy as being

informative.

In the IID setting of Section 4.1, Table 10 provides sensitivity results for our testing

methodology with respect to the precision of manager’s information and the available sample

size. For three values of R2, 5%, 2%, and 1%, we report the results of the Kolmogorov-

Smirnov test applied to the conditional distributions F̂+ and F̂− estimated when the number

of observations per simulation, T , ranges from 50 to 400. When R2 = 5%, the rejection

rate remains quite high, 35% at the 5% level, even when the sample size is reduced to 100

observations. As R2 decreases, we need more data points to reliably identify the informed

manager. For example, when R2 = 1%, the rejection rate at the 5% level is 31.8% for 400

observations, but drops to 17.4% when we use 200 observations. Overall, the results indicate

that the test remains useful even when the sample size is reduced and when the manager’s

information is less precise.

7.2 Choosing Number of Bins to Control for Common Information

In Section 4.3, we develop a procedure to detect incremental information provided by a man-

ager relative to some common information set. The procedure involves allocating available

observations to bins (sub-samples) formed according to the value of the common signal (call

it Y ). Ideally, we would like Y to be constant within each sub-sample, but this is not possible

when Y is a continuous random variable and we have a limited amount of data. The idea

behind our approach is to limit variation of Y within each sub-sample. Then, in each sub-
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sample, most of the variation in manager’s position must be caused by other signal, whether

it is informative or not. This suggests using as many bins as possible, up to a maximum of

T/2.19 However, it might be interesting to see how many bins are sufficient to control for

the common signal.

In the non-IID setting of Section 4.3, we show what happens to our test results as the

number of bins used to control for the public signal Yt increases from two to 100. Since

we might not know a priori who the more informed manager is, we do two sets of tests:

controlling for manager 0’s position, and controlling for manager 1’s position, similar to

the differential information tests discussed in Section 6.1. Table 11 contains the results of

the Kolmogorov-Smirnov test applied to F̂+ and F̂−. For comparison, we show the results

for T = 800 (panel A), and for T = 400 (panel B). Apparently, using five or more bins to

condition on manager 1’s position is sufficient to conclude that manager 0 has no information

beyond that of manager 1. If we use two bins, the variation of Y in each sub-sample is large

enough to cause significant differences between the two estimated conditional distributions at

least some of the time. Controlling for manager 0’s position (which in this case is equivalent to

controlling for Y directly), the test correctly detects that manager 1’s position is informative.

The rejection rate declines somewhat as we increase the number of bins, especially when we

only have 400 observations. There is a simple explanation for this effect. When we use few

bins, both the variation in X and the residual variation in Y contribute to the difference

between F̂+ and F̂−. As we use more bins, the residual variation in Y diminishes, leaving

X as the only source of difference between F̂+ and F̂− and reducing the observed rejection

rates. Not surprisingly, this effect is more pronounced for smaller samples.

8 Conclusion

It has been recognized for a long time that traditional performance evaluation methods for

money managers have numerous drawbacks. Risk-based framework relies on a specific risk

model. Because the risk of an asset typically depends on an investor’s information set, any

risk model an evaluator uses based on an information set different from that of the manager’s

will be mis-specified in general. To the extent that the value of a manager comes from the

19Since we compute F̂+(k) and F̂−(k) for each sub-sample k, we need to have at least two observations in
each bin.
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additional information she may bring into the investment process, the first step in evaluating

a manager is to determine if she possesses private information. In this paper, we develop a

general methodology to identify managers with information on future asset returns based on

their trading records. Our methodology does not rely on a specific risk model, such as the

Sharpe ratio, CAPM, or APT. It is robust with regard to the nature of private information

the managers may have and the trading strategies they follow.

As mentioned in the introduction, our methodology also has limitations. First, it can

identify informed managers, but does not assess the value of a manager to a particular

investor. Second, the non-parametric nature of the methodology allows it to detect any

information a manager may have about future asset returns. The drawback is that it does

not tell us what this information is about. Further analysis is needed to answer this question.

Third, the implementation of the methodology requires data on the managers’ trading records

in addition to their P&L. In the two cases we considered, one requires information on the

managers’ positions and the other requires information regarding the events on which they

are betting. Moreover, the amount of data needed can be quite substantial in order for the

test to have power. For some applications, such as internal evaluation of a trading desk

or the evaluation of a hedge fund by its investors, the data required is available. But for

other applications, such as the evaluation of mutual funds, the data can be hard to come by.

For these reasons, our methodology should be viewed as a complement to the conventional

methods.
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Table 1: Moments of managers’ P&L and stock dollar return. Panel A shows weekly P&L moments for
the uninformed an informed managers’ strategies. The uninformed manager’s stock position is Nt = a0 (i.e.
he follows a passive strategy). The informed manager’s stock position is Nt = a1(1 + λZt/σZ), where λ,
her trading intensity, takes on one of two values: λ = λ∗ or λ = 5λ∗. Panel B shows unconditional and
conditional moments of weekly stock dollar return, demeaned by the unconditional mean. We condition on
the informed manager’s stock position being above (N > N̄) and below (N ≤ N̄) its average. Stock dollar
return is given by Qt+1 = µ + Zt + ut+1. Parameter values are: µ = 0.12 (annual), σQ = 0.15 (annual),
σ2

Z/σ2
Q = 0.01, a0 = a1 = 1, λ∗ = 0.901.

A. Moments of Managers’ P&L

Uninformed Manager Informed Manager

λ = λ∗ λ = 5λ∗

Mean (%) 0.231 0.418 1.168

S.D. (%) 2.080 2.830 9.727

Skewness 0.000 0.609 0.706

Kurtosis 3.000 7.496 9.421

Sharpe ratio 0.111 0.148 0.120

B. Moments of Stock Dollar Return

Unconditional Conditional

λ = λ∗ λ = 5λ∗

N > N̄ N ≤ N̄ N > N̄ N ≤ N̄

Mean (%) 0.000 0.166 -0.166 0.166 -0.166

S.D. (%) 2.080 2.073 2.073 2.073 2.073

Skewness (x100) 0.000 0.022 -0.022 0.022 -0.022

Kurtosis 3.000 3.000 3.000 3.000 3.000
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Table 3: Kolmogorov-Smirnov test results for the conditional distribution of stock dollar return (IID/Mean
case). We estimate cumulative distribution of weekly stock return conditioned on manager’s stock position
being above average (F̂+) and below average (F̂−). We also estimate the unconditional cumulative distribu-
tion of weekly stock return (F̂ ). We then apply the Kolmogorov-Smirnov test to three pairs of distributions:
F̂+ versus F̂ , F̂− versus F̂ , and F̂+ versus F̂−. The average Kolmogorov-Smirnov test statistic, δ, its stan-
dard deviation (shown in parentheses), and the rejection rates at the 1% and 5% level are based on 500
simulations. The uninformed manager’s stock position is Nt = a0 + ñt. The informed manager’s stock
position is Nt = a1(1 + λZt/σZ), where λ, her trading intensity, takes on one of two values: λ = λ∗, or
λ = 5λ∗. Stock dollar return is given by Qt+1 = µ + Zt + ut+1. Parameter values are: µ = 0.12 (annual),
σQ = 0.15 (annual), σ2

Z/σ2
Q = 0.05, a0 = a1 = 1, λ∗ = 2.016, σñ = 0.5.

F̂+ vs. F̂ F̂− vs. F̂ F̂+ vs. F̂−

Uninformed

Kolmogorov-Smirnov δ 0.51 0.51 0.87
(0.15) (0.15) (0.25)

Rejection Rate at 1% (%) 0.00 0.00 0.80

Rejection Rate at 5% (%) 0.00 0.00 4.00

Informed

λ = λ∗

Kolmogorov-Smirnov δ 1.08 1.08 1.87
(0.25) (0.26) (0.44)

Rejection Rate at 1% (%) 2.00 2.20 70.20

Rejection Rate at 5% (%) 15.60 15.80 87.40

λ = 5λ∗

Kolmogorov-Smirnov δ 1.08 1.08 1.86
(0.25) (0.25) (0.43)

Rejection Rate at 1% (%) 2.60 1.60 68.60

Rejection Rate at 5% (%) 13.40 14.40 88.00
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Table 4: Summary statistics and Kolmogorov-Smirnov test results for the IID/Volatility case. Panel A
shows summary statistics for weekly P&L of the uninformed and informed managers. The two strategies of
the uninformed manager are passive (Nt = a0), and active with noise (Nt = µ/[γ(σt + ẽ0t)2]). The informed
manager is either fully informed, with Nt = µ/(γσ2

t ), or partially informed, with Nt = µ/[γ(σt + ẽ1t)2].
Panel B shows moments of weekly stock dollar return conditioned on active managers’ stock position being
above (N > N̄) and below (N ≤ N̄) its average. Panel C shows results of the Kolmogorov-Smirnov test on
the distributions of weekly stock dollar return conditioned on active managers’ stock position being above
average (F̂+) and below average (F̂−). Stock dollar return is given by Qt+1 = µ + σtut+1. Here, σt is either
0.20 or 0.07, with equal probability, and ẽt can be σl − σh, 0, or σh − σl with probabilities 0.5(1 − p), p,
and 0.5(1 − p), respectively, where p0 = 0.5, p1 = 0.75. Other parameter values are: µ = 0.12 (annual),
σQ = 0.15 (annual), γ = 51

3
, a0 = 1. Average statistics, standard deviations (shown in parentheses), and the

rejection rates at the 1% and 5% level are based on 500 simulations.

A. Summary Statistics of Managers’ P&L

Uninformed Informed
Passive with Noise with Noise without Noise

Mean (%) 0.222 0.562 0.570 0.574
(0.103) (0.323) (0.264) (0.172)

S.D. (%) 2.076 6.715 5.261 3.354
(0.098) (0.479) (0.442) (0.159)

Skewness -0.023 0.129 0.177 0.298
(0.223) (0.487) (0.767) (0.232)

Kurtosis 4.721 8.972 11.538 4.698
(0.526) (1.464) (2.826) (0.565)

Sharpe Ratio 0.107 0.084 0.109 0.171
(0.050) (0.048) (0.050) (0.051)

B. Moments of Conditional Stock Dollar Return

Unconditional Conditional

Uninformed w/Noise Informed w/Noise Informed w/o Noise

N > N̄ N ≤ N̄ N > N̄ N ≤ N̄ N > N̄ N ≤ N̄

Mean (%) 0.222 0.223 0.221 0.226 0.217 0.228 0.214
(0.103) (0.141) (0.148) (0.114) (0.168) (0.069) (0.189)

S.D. (%) 2.076 2.090 2.057 1.619 2.445 0.986 2.764
(0.098) (0.143) (0.137) (0.135) (0.137) (0.049) (0.133)

Skewness -0.023 -0.044 0.000 -0.042 -0.010 -0.008 -0.012
(0.223) (0.307) (0.320) (0.526) (0.216) (0.170) (0.161)

Kurtosis 4.721 4.653 4.666 6.244 3.624 2.961 2.959
(0.526) (0.732) (0.779) (1.512) (0.456) (0.342) (0.320)

C. Kolmogorov-Smirnov Test On Conditional Stock Dollar Return Distributions

Uninformed Informed
with Noise with Noise without Noise

F̂+ vs. F̂− F̂+ vs. F̂− F̂+ vs. F̂−

K.-S. δ 0.89 1.64 2.73
(0.25) (0.28) (0.26)

Rej. rate at 1% (%) 1.60 49.40 100.00

Rej. rate at 5% (%) 5.00 84.00 100.00
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Table 5: Summary statistics and Kolmogorov-Smirnov test results for the non-IID case. Panel A shows
weekly P&L moments for the uninformed and informed managers’ strategies. We consider two strategies for
the uninformed manager: passive (Nt = a0), and active (Nt = a0(1 + λ∗Yt/σY )). The informed manager’s
stock position is Nt = a1

[
1 + λ∗(Yt + Zt)/

√
σ2

Y + σ2
Z

]
. Panel B shows moments of weekly stock dollar

return conditioned on active managers’ stock position being above (N > N̄) and below (N ≤ N̄) its
average. For comparison, we also provide moments of the unconditional weekly stock returns. Panel C
shows results of the Kolmogorov-Smirnov test on the distributions of weekly stock dollar return conditioned
on active managers’ stock position being above average (F̂+) and below average (F̂−). Stock dollar return
is given by Qt+1 = µ + Yt + Zt + ut+1. Parameter values are: µ = 0.12 (annual), σQ = 0.15 (annual),
σ2

Y /σ2
Q = σ2

Z/σ2
Q = 0.04, a0 = a1 = 1, λ∗ = 1.803. Average statistics, standard deviations (shown in

parentheses), and the rejection rates at the 1% and 5% level are based on 500 simulations.

A. Summary Statistics of Managers’ P&L

Uninformed Informed

Passive Active (λ = λ∗)

Mean (%) 0.230 0.982 1.294
(0.074) (0.155) (0.164)

S.D. (%) 2.084 4.421 4.490
(0.052) (0.219) (0.243)

Skewness -0.003 1.187 1.499
(0.087) (0.385) (0.375)

Kurtosis 2.994 9.225 9.691
(0.166) (2.481) (2.937)

Sharpe Ratio 0.110 0.222 0.288
(0.036) (0.033) (0.031)

B. Moments of Conditional Stock Dollar Return

Unconditional Conditional

Uninformed Informed

N > N̄ N ≤ N̄ N > N̄ N ≤ N̄

Mean (%) 0.230 0.247 0.213 0.564 -0.104
(0.074) (0.100) (0.109) (0.103) (0.106)

S.D. (%) 2.084 2.081 2.086 2.052 2.062
(0.052) (0.073) (0.073) (0.075) (0.070)

Skewness -0.003 0.001 -0.007 0.004 -0.005
(0.087) (0.123) (0.115) (0.115) (0.125)

Kurtosis 2.994 2.988 2.984 2.982 2.983
(0.166) (0.240) (0.240) (0.250) (0.231)

C. Kolmogorov-Smirnov Test on Conditional Stock Dollar Return Distributions

Uninformed Informed

F̂+ vs. F̂− F̂+ vs. F̂−

Kolmogorov-Smirnov δ 0.88 2.21
(0.26) (0.41)

Rejection Rate at 1% (%) 0.60 92.20

Rejection Rate at 5% (%) 5.80 98.80
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Table 6: Summary statistics and Kolmogorov-Smirnov test results for the Multiple Assets case. Panel A
shows summary statistics for monthly P&L of the uninformed and informed managers. Managers invest in 50
stocks. Monthly returns for the first 25 stocks are generated by Qs,t+1 = µs +Zs,t +us,t+1. Monthly returns
for the remaining 25 stocks are generated by Qs,t+1 = µs + σs,t us,t+1. Expected annual stock returns (µs)
range from 6 to 20 percent. Unconditional volatility of annual returns ranges from 10 to 19 percent. Passive
uninformed manager holds one share of each stock. The position of active uninformed manager in stock s is
given by N0

s,t = a0 + ñs,t, where a0 = 1 and ñs,t is normal with a mean of zero and a volatility of 50%. The
position of the informed manager in any of the first 25 stocks is given by N1

s,t = a1(1 + λZs,t/σ(Zs)). Here,
a1 = 1, λ = 2, and R2, the ratio of variance of the manager’s signal Zs to total variance, ranges between
0 and 5 percent. Her position in the remaining 25 stocks is given by N1

s,t = µs/(γ vs,t). Here, γ = 51
3

and vs,t = σs,t + ẽs,t. See footnote (18) and Table 4 for the description of vs,t. p, the probability that the
manager’s signal about the volatility state is correct, ranges from 50 to 75 percent. Panel B shows the results
of the Kolmogorov-Smirnov test. The average Kolmogorov-Smirnov test statistic for the comparison of F̂+

vs. F̂−, δ, its standard deviation (shown in parentheses), and the rejection rates at the 1% and 5% level
are based on 500 simulations.

A. Summary Statistics of Managers’ P&L

Uninformed Informed
Passive Active

Mean (%) 0.970 0.970 2.355
(0.102) (0.113) (0.267)

S.D. (%) 4.284 4.808 11.335
(0.092) (0.140) (0.425)

Skewness 0.105 0.382 0.818
(0.114) (0.279) (0.388)

Kurtosis 4.415 7.575 11.664
(0.336) (1.488) (2.179)

Sharpe Ratio 0.227 0.202 0.208
(0.024) (0.024) (0.023)

B. Kolmogorov-Smirnov Test on Conditional Stock Dollar Return Distributions

Uninformed Informed
F̂+ vs. F̂− F̂+ vs. F̂−

Kolmogorov-Smirnov δ 0.88 1.75
(0.26) (0.40)

Rejection rate at 1% (%) 1.20 60.80

Rejection rate at 5% (%) 6.40 84.60
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Table 7: Kolmogorov-Smirnov test results for the conditional distribution of manager’s P&L when man-
agers’ positions are unobservable. After controlling for the observed stock return, we estimate the cumulative
distribution of manager’s weekly P&L conditioned on the realized value of a state variable being above av-
erage (F̂ G

+) and below average (F̂ G
−). We use 10 bins to control for the variation in stock return. Panel A

shows the results for the IID/Mean case. Stock returns are generated by Qt+1 = µ + Zt + ut+1. The state
variable is Zt. See Tables 2 and 3 for the description of managers’ strategies and parameter values. Panel B
shows the results for the IID/Volatility case. Stock returns are generated by Qt+1 = µ + σtut+1. The state
variable is σt. See Table 4 for the description of managers’ strategies and parameter values. The average
Kolmogorov-Smirnov test statistic for the comparison of F̂ G

+ vs. F̂ G
− , δ, its standard deviation (shown in

parentheses), and the rejection rates at the 1% and 5% level are based on 500 simulations.

A. IID/Mean case

Uninformed Manager Informed Manager
Passive Active λ = λ∗ λ = 5λ∗

Kolmogorov-Smirnov δ 0.87 0.89 7.82 7.95
(0.27) (0.26) (0.41) (0.44)

Rejection rate at 1% (%) 0.80 0.80 100.00 100.00

Rejection rate at 5% (%) 6.00 5.80 100.00 100.00

B. IID/Volatility case

Uninformed Manager Informed Manager
Passive with Noise with Noise w/o Noise

Kolmogorov-Smirnov δ 0.97 0.95 4.72 9.39
(0.25) (0.27) (0.43) (0.24)

Rejection rate at 1% (%) 1.80 2.60 100.00 100.00

Rejection rate at 5% (%) 8.00 7.80 100.00 100.00
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Table 8: Kolmogorov-Smirnov test results for the conditional distribution of stock dollar return when
both managers have private information. After controlling for stock position of one of the two managers,
we estimate the cumulative distribution of weekly stock return conditioned on the second manager’s stock
position being above average (F̂+) and below average (F̂−). Panels A, B, and C show the results of applying
the Kolmogorov-Smirnov test to F̂+ and F̂− in three different information settings. In panel A, stock
positions of managers 0 and 1 are given by N0

t = a0(1 + λYt/σY ), N1
t = a1(1 + λZt/σZ). In panel B, stock

positions of managers 0 and 1 are given by N0
t = a0

[
1 + λ(Yt + e0

t )/
√

σ2
Y + σ2

e0

]
, N1

t = a1(1 + λYt/σY ).
In panel C, stock positions of managers 0 and 1 are given by N0

t = a0
[
1 + λ(Yt + e0t)/

√
σ2

Y + σ2
e0

]
, N1

t =
a1

[
1 + λ(Yt + e1

t )/
√

σ2
Y + σ2

e1

]
. Stock dollar return is given by Qt+1 = µ + Yt + Zt + ut+1. Parameter

values are: µ = 0.12 (annual), σQ = 0.15 (annual), σ2
Y /σ2

Q = σ2
Z/σ2

Q = 0.04, a0 = a1 = 1, λ = 1.803.
Here, e1

t and e0
t are two independent white noise sequences with σ2

e1 = σ2
e0 = 2σ2

Y . Average test statistics,
standard deviations (shown in parentheses), and the rejection rates at the 1% and 5% level are based on 500
simulations.

A. Manager 0 observes Y , Manager 1 observes Z

First Controlling for

Manager 1’s Position Manager 0’s position

Kolmogorov-Smirnov δ 2.22 2.22
(0.43) (0.43)

Rejection rate at 1% (%) 91.60 91.60

Rejection rate at 5% (%) 98.20 98.60

B. Manager 0 observes Y with noise, Manager 1 observes Y

First Controlling for

Manager 1’s Position Manager 0’s position

Kolmogorov-Smirnov δ 0.87 1.94
(0.26) (0.43)

Rejection rate at 1% (%) 1.20 78.00

Rejection rate at 5% (%) 4.40 92.40

C. Manager 0 observes Y with noise, Manager 1 observes Y with noise

First Controlling for

Manager 1’s Position Manager 0’s position

Kolmogorov-Smirnov δ 1.22 1.25
(0.37) (0.35)

Rejection rate at 1% (%) 14.00 15.20

Rejection rate at 5% (%) 32.60 36.40
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Table 9: Summary statistics and Kolmogorov-Smirnov test results for the Incomplete Trading Records
case. Panel A shows weekly P&L moments for the option and non-option strategies. The two non-option
strategies are the uninformed manager’s passive strategy (Nt = a0), and the informed manager’s active
strategy (Nt = a1(1 + λ∗Zt/σZ)). The first option strategy consists of holding a portfolio of three 3-week
puts in proportion of -1000:1000:-8. The respective strikes are set $0.30, $0.28, and $0.26 below the current
stock price. The position is rolled over one week before the options mature. The second option strategy
involves shorting a 12-week call with a strike $1.24 above the current stock price, and rolling over the short
position one week before the option expires. The implied stock position for both strategies is obtained by
computing the positions’ delta. Panel B shows moments of weekly stock dollar return conditioned on active
managers’ stock position being above (N > N̄) and below (N ≤ N̄) its average. Panel C shows results
of the Kolmogorov-Smirnov test on the distributions of weekly stock dollar return conditioned on active
managers’ stock position being above average (F̂+) and below average (F̂−). Stock dollar return is given
by Qt+1 = µ + Zt + ut+1. Parameter values are: µ = 0.12 (annual), σQ = 0.15 (annual), σ2

Z/σ2
Q = 0.05,

a0 = a1 = 1, λ∗ = 2.016. Average statistics, standard deviations (shown in parentheses), and the rejection
rates at the 1% and 5% level are based on 500 simulations.

A. Summary Statistics of Managers’ P&L

Uninformed Informed Put Strategy Call Strategy

Mean (%) 0.231 1.176 0.531 0.221
(0.105) (0.247) (0.005) (0.000)

S.D. (%) 2.084 4.842 1.734 4.763
(0.076) (0.354) (11.582) (32.021)

Skewness 0.003 1.280 -0.055 2.553
(0.123) (0.550) (0.838) (0.693)

Kurtosis 2.997 9.262 25.199 30.986
(0.247) (3.470) (45.271) (54.031)

Sharpe Ratio 0.111 0.242 0.844 0.284
(0.051) (0.046) (0.219) (0.085)

B. Moments of Conditional Stock Dollar Return

Unconditional Conditional

Informed Put Strategy Call Strategy

N > N̄ N ≤ N̄ N > N̄ N ≤ N̄ N > N̄ N ≤ N̄

Mean (%) 0.231 0.604 -0.141 0.228 0.233 0.229 0.251
(0.105) (0.151) (0.150) (0.151) (0.156) (0.113) (0.339)

S.D. (%) 2.084 2.049 2.050 2.082 2.085 2.085 2.072
(0.076) (0.105) (0.099) (0.103) (0.112) (0.082) (0.272)

Skewness 0.003 0.005 0.000 0.003 -0.004 0.001 0.026
(0.123) (0.172) (0.168) (0.182) (0.187) (0.126) (0.396)

Kurtosis 2.997 2.994 2.979 2.980 2.994 2.992 2.876
(0.247) (0.370) (0.335) (0.336) (0.375) (0.257) (0.715)

C. Kolmogorov-Smirnov Test on Conditional Stock Dollar Return Distributions

Informed Put Strategy Call Strategy

F̂+ vs. F̂− F̂+ vs. F̂− F̂+ vs. F̂−

K.-S. δ 1.87 0.89 0.88
(0.44) (0.27) (0.25)

Rej. Rate at 1% (%) 70.20 1.80 0.60

Rej. Rate at 5% (%) 87.40 7.60 5.00
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Table 10: Sensitivity of the Kolmogorov-Smirnov test results (IID/Mean case). We estimate the sensitivity
of rejection rates of the Kolmogorov-Smirnov test with respect to the precision of informed manager’s infor-
mation (as measured by R2) and to the length of her trading record (T ) available. The test is applied to the
distributions of weekly stock dollar return conditioned on the manager’s stock position being above average
(F̂+) and below average (F̂−). The average Kolmogorov-Smirnov test statistic, δ, its standard deviation
(shown in parentheses), and the rejection rates at the 1% and 5% level are based on 500 simulations. The in-
formed manager’s stock position is Nt = a1(1+λZt/σZ). Stock dollar return is given by Qt+1 = µ+Zt+ut+1.
Parameter values are: µ = 0.12 (annual), σQ = 0.15 (annual), a1 = 1, λ = 2.016. R2 ≡ σ2

Z/σ2
Q is 5% in panel

A, 2% in panel B, and 1% in panel C.

A. R2 = 5%

T = 400 T = 200 T = 100 T = 50

F̂+ vs. F̂− F̂+ vs. F̂− F̂+ vs. F̂− F̂+ vs. F̂−

Kolmogorov-Smirnov δ 1.87 1.48 1.23 1.08
(0.44) (0.39) (0.38) (0.33)

Rejection rate at 1% (%) 70.20 35.20 15.60 6.20

Rejection rate at 5% (%) 87.40 62.40 35.00 19.20

B. R2 = 2%

T = 400 T = 200 T = 100 T = 50

F̂+ vs. F̂− F̂+ vs. F̂− F̂+ vs. F̂− F̂+ vs. F̂−

Kolmogorov-Smirnov δ 1.39 1.17 1.04 0.98
(0.41) (0.36) (0.35) (0.28)

Rejection rate at 1% (%) 29.60 10.40 7.00 2.20

Rejection rate at 5% (%) 51.40 28.40 18.20 9.40

C. R2 = 1%

T = 400 T = 200 T = 100 T = 50

F̂+ vs. F̂− F̂+ vs. F̂− F̂+ vs. F̂− F̂+ vs. F̂−

Kolmogorov-Smirnov δ 1.17 1.04 0.96 0.94
(0.38) (0.33) (0.32) (0.27)

Rejection rate at 1% (%) 12.60 5.60 5.20 1.80

Rejection rate at 5% (%) 31.80 17.40 12.40 6.60
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Table 11: Sensitivity of the Kolmogorov-Smirnov test results (non-IID case). We estimate the sensitivity
of the Kolmogorov-Smirnov test with respect to the number of bins used to control for the information of one
of the two managers. The test is applied to the distributions of weekly stock dollar return conditioned on
the second manager’s stock position being above average (F̂+) and below average (F̂−), after controlling for
the position of the first manager. The average Kolmogorov-Smirnov test statistic, δ, its standard deviation
(shown in parentheses), and the rejection rates at the 1% and 5% level are based on 500 simulations. We
assume that the trading record available is either 800 observations (panel A), or 400 observations (panel B).
Stock positions of managers 0 and 1 are given by N0

t = a0(1+λ∗Yt/σY ), N1
t = a1

[
1+λ∗(Yt+Zt)/

√
σ2

Y + σ2
Z

]
.

Stock dollar return is given by Qt+1 = µ+Yt+Zt+ut+1. Parameter values are: µ = 0.12 (annual), σQ = 0.15
(annual), σ2

Y /σ2
Q = σ2

Z/σ2
Q = 0.04, a0 = a1 = 1, λ∗ = 1.803.

A. T = 800

# Bins = 100 # Bins = 50 # Bins = 10 # Bins = 5 # Bins = 2

First Conditioning on: Mgr 1 Mgr 0 Mgr 1 Mgr 0 Mgr 1 Mgr 0 Mgr 1 Mgr 0 Mgr 1 Mgr 0

Kolmogorov-Smirnov δ 0.87 2.13 0.88 2.17 0.86 2.25 0.90 2.28 1.24 2.48
(0.27) (0.43) (0.26) (0.43) (0.26) (0.44) (0.27) (0.44) (0.37) (0.44)

Rejection rate at 1% (%) 1.40 87.60 1.40 90.00 0.80 92.20 2.00 94.00 15.00 98.00

Rejection rate at 5% (%) 6.00 96.80 6.40 97.20 5.20 98.80 6.00 99.60 34.60 99.60

B. T = 400

# Bins = 100 # Bins = 50 # Bins = 10 # Bins = 5 # Bins = 2

First Conditioning on: Mgr 1 Mgr 0 Mgr 1 Mgr 0 Mgr 1 Mgr 0 Mgr 1 Mgr 0 Mgr 1 Mgr 0

Kolmogorov-Smirnov δ 0.87 1.55 0.87 1.64 0.89 1.70 0.89 1.74 1.07 1.88
(0.25) (0.38) (0.25) (0.40) (0.26) (0.41) (0.25) (0.41) (0.35) (0.41)

Rejection rate at 1% (%) 1.20 41.60 1.20 51.40 0.80 56.00 1.40 62.00 7.20 71.80

Rejection rate at 5% (%) 4.20 69.40 4.00 77.40 6.20 80.80 5.00 82.80 21.60 90.00
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