
THE EFFECT OF PRIVATE INSURANCE ON
MEASURES OF HEALTH:

EVIDENCE FROM THE HEALTH AND RETIREMENT STUDY

Avi Dor
Joseph J. Sudano
David W. Baker

Working Paper 9774



NBER WORKING PAPER SERIES

THE EFFECT OF PRIVATE INSURANCE ON
MEASURES OF HEALTH:

EVIDENCE FROM THE HEALTH AND RETIREMENT STUDY

Avi Dor
Joseph J. Sudano
David W. Baker

Working Paper 9774
http://www.nber.org/papers/w9774

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2003

The views expressed herein are those of the authors and not necessarily those of the National Bureau of
Economic Research.

©2003 by Avi Dor, Joseph J. Sudano, and David W.Baker.  All rights reserved. Short sections of text not to
exceed two paragraphs, may be quoted without explicit permission provided that full credit including ©
notice, is given to the source.



The Effect of Private Insurance on Measures of Health: 
Evidence From the Health and Retirement Study
Avi Dor, Joseph J. Sudano, and David W. Baker
NBER Working Paper No. 9774
June 2003
JEL No. I11, I18

ABSTRACT

In this paper we investigate whether the presence of private insurance leads to improved health
status. Using the Health and Retirement study we focus on adults in late middle age who are nearing
entry into Medicare. Estimation addresses endogeneity of the insurance participation decision in
health outcome regressions. Two models are tested, an instrumental variables models, and a model
with endogenous treatment effects due to Heckman (1978). Insurance participation and health
behaviors enter with a lag to allow their effects to dissipate over time. Separate regressions were run
for groupings of chronic conditions. We find that the overall impact of insurance on health tends to
be significantly downwards biased if no adjustment for endogeneity is made. With corrections there
is a four-fold increase in the insurance effect; yielding a 7 percent increase in the overall health
measure for the uninsured. Results are consistent across IV and treatment effects models, and for
all major groupings of medical conditions. Thus, the effect of private insurance on health may be
larger than previously estimated. As for policy, expanding coverage to the uninsured should result
in substantial health improvement. By conjecture, this is likely to reduce the need for health care
when individuals retire and enter Medicare, potentially leading to savings.
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1.  Background  

According to the 2000 U.S. Census, approximately 40 million Americans are 

uninsured and this number is expected to grow in coming years.  Although the Clinton 

administration was forced to retreat from some ambitious goals for expanding coverage, 

providing access to the insured is emerging again as major public policy issue. (Winslow 

and McGinley, 2000).  Health benefits in the U.S. remain heavily employer-based with 

about 60 percent of all insured individuals being enrolled through employer-sponsored 

plans. (Acs et al., 1996). While the indigent can often qualify for public assistance 

programs such as Medicaid, many participants in the labor force may not have adequate 

access to coverage through their employer. Although it is possible to purchase individual 

plans privately, these may only be available at prohibitively high rates compared with the 

group rates available through large employers. As a consequence, 16% of full time 

workers are uninsured (Custer and Ketche 2000).   

Not surprisingly, much of the policy discussion focuses on ways of expanding 

coverage to all workers. Two competing approaches have been offered. One approach 

favors expanding employer-based coverage and making it easier for firms to purchase 

insurance for their employees (Gruber, 2001). Another approach favors providing 

stronger incentives for purchasing insurance directly to employees. A prime example of 

the former was the Clinton health care reform plan, which would have allowed small 

firms to purchase health care insurance at competitive group rates through large 

purchasing cooperatives (Cutler, 1994). Recently, the Bush administration proposed a tax 

credit of up to $1,000 to help low income workers purchase insurance for their families 

(Gleckman, 2002). Several other proposals would go further in severing the link between 
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employment and health insurance but move towards mandated universal coverage 

(Blendon, Young, DeRoches, 1999).   

 Both sides of the debate seem to implicitly be making the assumption that 

expanding coverage will lead to gains in social welfare. This can occur in two ways: first, 

by reducing uncertainty for workers and their families, and second, by improving access 

to medical services and thereby improving health outcomes. Our primary interest is in the 

latter question, i.e. in determining the impact of insurance on overall health. 

 Recent studies have tended to focus on mortality, rather than health per se, finding 

that adults without health insurance have higher mortality than individuals with private 

insurance (Franks, Clancy, and Gold, 1993; Sorlie et al. 1994).  Looking at similar 

populations, other studies focused on the effect of lack of private insurance on health 

measures such as physical limitations (Baker et al., 2001, Ross and Mirowsky, 2000).  In 

all of these studies the insurance effects were either small or insignificant. However, none 

of these studies addressed one important estimation issue, namely endogeneity of the 

insurance choice variable in the health equation.  This potential bias arises if healthier 

people exhibit behaviors that will make them more (or less) likely to purchase insurance 

(Gruber et al., 2000).  The only study to address this issue explicitly addressed is limited 

to a specific population, that of HIV-positive individuals (Goldman et al., 2001).  That 

study demonstrated that accounting for the endogeneity in insurance results in a dramatic 

and statistically significant increase in the effect of insurance on declines in mortality 

probabilities.   

In this study we study we reexamine the endogeneity in a different context. We 

employ the same sample of middle-aged labor force participants in the Health and 

Retirement Survey used recently by Baker et al. (2001), but we use a broader measure of 
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individual health status. We address the endogeneity issue in the context of a treatment 

effects model.  Our results confirm the direction of the effects found in Baker et al., 

namely that having insurance leads to better health status. However, we also found that 

failure to account for endogeneity bias results in underestimating the full effect of 

insurance. In this respect our results are also in agreement with Goldman et al. (2001.)  

 The fundamental question we aim to address is as follows: will improved access 

to private health insurance in and of itself lead to better health outcomes?  Evidence to 

this effect may provide further support in favor of policies designed to expand health 

insurance coverage, irrespective of the policy mechanism ultimately chosen. The plan of 

the paper is as follows: Section 2 summarizes the relevant literature on the measurement 

and determination of health, as well as insurance choice. Section 3 presents the 

methodological approach and estimation framework. Section 4 presents data and variable 

definitions. Section 5 presents results from the insurance participation equation and the 

health status equation for the full sample. In addition it summarizes results from a 

number of tests for endogeneity bias, along with the magnitude of the bias. Section 6 

replicates this analysis for subsets of survey respondents based on groupings of chronic 

conditions. This was done in order to test whether insurance effects are repeated across 

various settings in which symptoms of the underlying medical condition may not be 

equally observable to the individual. Finally, implications of the results are discussed in 

Section 7.  

 

2.  Previous Literature 

A number of separate themes in the literature are relevant to this study. Among 

these are the use of physical health measures derived from household surveys; effect of 
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insurance on health, including the endogeneity bias that arises in estimation; the relative 

importance of the effects of health behaviors and insurance on health; and the probability 

of having insurance. We briefly review each one of them, and explain how they are 

connected in relation to the research question in this paper. 

Health measures: 

There is a substantial body of literature on using survey-based measures of health 

status. These measures appear with similar wording in major household surveys such as 

the Medical Expenditures Panel Survey (MEPS), the Health and Retirement Survey, and 

the National Health Interview Survey.  Indicators are generally classified into three types: 

Subjective measure, i.e. self rated overall health (poor, fair, good, very, excellent), 

objective measures based on a general criterion, especially physical limitation, defined as 

inability to perform certain tasks defined in the survey, and objective measures that 

pertain to self–reporting of specific diagnoses or medical conditions. In general, these 

measures have been shown to perform well. Perry and Rosen (2001) find that “objective 

measures give exactly the same answer as subjective measures” (p.19) when testing for 

differences in health status between wage earners and the self employed. Specifically in 

the Health and Retirement Study, Hurd and McGarry (1995) find that subjective 

probabilities of survival vary with health predictors in the same way as actual outcomes. 

By combining the variety of self-reported conditions into a single index the 

Medical Outcomes Study produced a health status measure that minimizes individual 

error (Ware and Sherborn, 1992, Ware et al., 1995). The index, known as the Short-Form 

36 (SF-36), utilizes the same indicators of physical health as those found in large 

household surveys.  The index avoids the use of self-reports on specific diagnoses, which 

have been shown to be sensitive to false negative errors in Canadian data (Baker, Stabile, 
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and Deri, 2001). Variables in the Health and Retirement Study render themselves to a 

very close approximation of the SF-36 (Baker et al., 2001, 2000), since it includes the 

same basic groupings of health indicators. Differences are found in the wording used to 

describe certain physical limitations or conditions. In section 4 we provide further detail 

regarding construction of this variable in the HRS  

Effect of insurance on health:  

A number of recent studies have attempted to estimate the effect of insurance on 

health, but the results appear to be inconclusive. For working age adults, people without 

health insurance tend to have higher mortality probabilities than individuals with private 

insurance (Franks, Clancy, and Gold, 1993; Sorlie et al., 1994). Smaller effects were 

found for populations with particular diagnoses such as breast cancer in women (Ayanian 

et al., 1993). In at least one population, that of HIV-positive individuals, the effect of 

insurance on mortality probabilities turns out to be substantially larger after accounting 

for endogeneity of insurance in the mortality equation. However, in the case of public 

insurance programs such as Medicare or Medicaid, only weak effects of insurance on 

adult mortality or infant mortality were found (Sorlie et al., 1994; Kaestner, Joyce, and 

Racine, 1999). 

Other related studies focused on health status, rather than mortality, as measured 

by self reported health, physical limitations, and presence of selected medical conditions.  

Ross and Mirowski (2000) find no significant effects of private or public health insurance 

on health outcomes. Perry and Rosen attempt to measure insurance effects by comparing 

two populations with different levels of coverage, namely wage earners and the self-

employed. They conclude that the relative lack of insurance among the self-employed has 

little to no impact on their health as measured by the presence of medical conditions. On 
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the other hand, Baker et al. (2001) finds small but positive and significant effects of 

private insurance on self-reported health and physical functioning for working age adults, 

after allowing for appropriate lags. Again, the endogeneity issue was not explicitly 

addressed in any of these studies. 

  Relative effects of health behaviors and insurance on health: 

A more ‘established’ strain in the literature focuses on the role of human capital.  

The Grossman model (1972a, 1972b) defined a health production function, in which 

investments in health care including medical care and home activities exhibit diminishing 

marginal productivity in maintaining health.  The Grossman model also predicts that 

education increases the efficiency of investment (MEI) across the board, i.e. it shifts the 

MEI schedule to right.  In a study based on the National Health Interview Survey, Kenkel 

(1991) finds evidence to support this, showing a positive correlation between schooling 

and health augmenting behaviors.  It has been suggested that health behaviors may 

ultimately be more important than the purchase of medical services (Fuchs, 1998).   

‘Offer’ versus ‘take up’ decisions: 

More recent research has focus on the likelihood of the firm offering insurance to 

its employees, namely the offer probability of insurance. An extensive summary of 

results can be found in Gruber 2001, who emphasizes the importance of tax rates on the 

offer probability, with elasticities ranging from –0.1 to –0.6. Bundorff (2002) examined 

the effect of employee preference and worker characteristics on the offer probability, and 

found only small effects. Using data centered on firms that provide insurance coverage 

Chernew, Frick and McLaughlin (1997) show that employees take up probabilities are 

sensitive to premium levels. Generally, take up probabilities are conditional on the 

employer actually offering insurance. However, surveys of households and workers tend 
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to provide limited information on employers, leading to studies that incorporate 

individual characteristics, while necessarily omitting firm-level variables (e.g., Simon, 

2001). 

 

3. Methodological Approach 

Addressing the endogeneity issue requires creating an instrument for insurance 

participation in the health status equation. To meet identification requirements Goldman 

et al. used state-level policy variables as predictors of insurance, noting that these 

variables would be correlated with insurance availability via Medicaid for AIDS patients 

while being uncorrelated with health. Unfortunately, the Health and Retirement Study 

does not provide any geographic information, including state of residence in the U.S due 

to strict confidentiality requirements. However, given our focus on private insurance 

markets, we are aided by the notion the worker’s decision to take up insurance is 

conditional on the employer’s offer. Thus the identification problem becomes one of 

finding instrumental variables that predict the likelihood that an employer offers 

insurance without being correlated with health status. As we explain later we use a series 

of Wald-tests to make sure that our instruments are valid. We are also aided by the fact 

that following Baker et al. (2001) insurance participation enters the health equation with a 

lag, although this provides a weaker source of identification.   

We estimate the following system of equations:  

Ht   = H (Xt-k, Bt-k, It-k, Ht-k)       [1] 

 It-k  = I (Xt-k, Ft-k).        [2] 

Where H = health index in period t, X = socioeconomic characteristics, B = health 

indicators and behavioral variables.  I = binary indicator of insurance, and F = firm or job 
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characteristics that predict the likelihood of insurance being offered. Finally k denotes the 

length of the lag.  Equation [1] defines the health “production function” (Grossman, 

1972, 1976), while Equation [2] is used to predict the likelihood of having insurance.  

Equation [2] is the indicator function for purchasing insurance, which can be estimated as 

a probabilistic model. The decision to purchase insurance is an individual decision, but is 

conditioned on the employer offering insurance. Most household surveys, including the 

HRS, do not contain variables that provide this information directly. However, other 

characteristics of the firm and certain job characteristics serve as indicators of the 

propensity of the firm to offer insurance benefits. These characteristics are contained in 

the vector Ft-k. While interesting issues arise in conjunction with the insurance decision, 

our main interest in creating a well-identified instrument. Thus the specification of the 

probability equation is incidental to our main research question.   

The lag structure is used in equation [1] to allow for the fact that adjustment to 

behavioral covariates does not occur instantaneously. For instance, smoking and alcohol 

abuse require some passage of time before causing adverse health effects1.  The same can 

be assumed for health insurance. Including the lagged dependent variable, Ht-k, is 

consistent with the Grossman investment model, which states that current health depends 

on the initial level of health. For convenience, the lag is also applied to time invariant 

demographic characteristics such as gender, race, and marital status. 

                                                 
1  Lags considered in related seminal medical studies on the effects of smoking, physical activity 
and alcohol consumption drinking range from one year to a decade, e.g. Frank et al., 1966; 
LaCroix et al., 1991; Thun et al., 1997.  
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 Although this model can be rewritten in the form of a change equation,2 in our 

particular case we will stop short of interpreting it as such due to a definitional change 

between in health variables that occurred between the 1992 and 1996 waves of the HRS. 

In 1996 HRS introduced a change in the phrasing of responses to a small subset of 

questions that make up the indicators of the health index. This caused a slight upward 

‘’creep’’ in the index. As a result, for some observations health status would appear to 

artificially increase over time. However, this does not affect the distribution of health 

status within each wave. Thus the 1992 index provides a reasonable baseline measure of 

health status, with slightly altered scaling. Note that we are not interested in the 

magnitude of change in health status per se, but rather in the effect of insurance 

participation, holding everything else constant. More detail on the construction of the 

health index is provided in Section 4.  

 Lagging the effects of health inputs and insurance gives the empirical model its 

recursive structure. Nevertheless, the two equations may not be independent and the error 

terms associated with equation [1] and [2] may be correlated if there is some unobserved 

trait that makes people who purchase insurance more or less likely to be healthy in a 

future period. For instance, if insurance is positively correlated with an unobserved trait, 

say ‘awareness’ and this trait also leads a person to take better care of his health, then the 

error terms would be positively correlated. In this case the coefficient of insurance in the 

                                                 
2  To this, we first write the health equation in the following form:  

Ht = b0  + b1Yt-k + (1-δ)Ht-k, 
Where Y is a vector of insurance and other variables related to health behaviors, and δ is the rate 
of depreciation of health stock. Rewriting we get:  

Ht - Ht-k, = b0  + b1Yt-k -δHt-k , where δ ≥ 0.  
The coefficients can be alternatively interpreted as being generated by distributed lag, adaptive 
expectations, or partial adjustment processes (Maddala, 1980), but these are difficult to 
distinguish and not relevant to our discussion.  
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health equation would be upward biased. If, on the other hand, insurance is positively 

correlated with an unobserved trait that also causes a person to neglect her health, e.g., 

reduce preventive effort, than error terms would be negatively correlated and the 

coefficient of insurance in the health equation would be downward biased. The final 

direction of the simultaneity bias cannot be ascertained a priori.  

To address this issue, we use a two-step procedure, whereby we initially estimate 

equation 2 to obtain the predicted value of It-k, or some related transformation (see below) 

and then substitute this predicted value, or some related transformation (see discussion 

below) into Equation [1]. Note that the model is statistically identified since the vector of 

coefficients Ft-k is included in [2] but omitted from [1]. The estimation procedure we use 

is essentially an OLS regression for Equation [2] augmented by the hazard function from 

a probit regression for [1], i.e., the  ‘treatment effects’ model, due to Heckman (1978, 

1979) and Maddala 1983. This model, often referred to as the restricted control function 

(RCF) method, is appropriate when the censoring of the non-participating group does not 

take place as it would in the standard Heckman selection model. Moreover it is at least as 

efficient as its alternative, the instrumental variable estimator (Vella and Verbeek, 1999). 

The model can be summarized as follows:  

,iitiii vYbIH ++++= λσγα ε     [3] 

Where Hi is health status or some other outcome measure such as expenditures for 

individual i, Ii  is a binary indicator of being in the treatment group (in our case, =1 if 

insured, = 0 if uninsured), Y i is the vector of covariates, λi is the hazard rate obtained 

from the first stage probit on the treatment indicator (e.g., if individual is insured), and σte 

is the covariance of the disturbance terms in the treatment function and the non-
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augmented OLS equation. An algorithm by Maddala (1983, p. 122) provides adjusted 

standard errors. The estimate of σte provides a specification test for [3], with high 

statistical significance indicating that the null hypothesis (the non-augmented OLS 

equation is true), should be rejected. 3  

 RCF is appropriate when the distribution of the dependent variable is fully 

observed, but assignment to treatment groups is non-random. Unlike the standard 

Heckman selectivity bias model, where the hazard enters in lieu of the treatment 

indicator, the RCF method includes the binary indicator in addition to the hazard rate. 

Thus, RCF allows for direct comparisons of α with the coefficient of the treatment 

indicator in a simple OLS model. Note that model [3] is very similar to a class of 

instrumental variable (IV) estimators in which the residuals from a linear probability 

regression on the indicator function are included in second stage equation in lieu of the 

hazard rate.4  

 Choosing one model over the other entails a tradeoff between making 

distributional assumptions about the errors and attaining consistency of the structural 

parameters of interest. The RCF assumes a bivariate normal distribution of the errors in 

the first and second stage equation, but yields consistent and efficient structural 

                                                 
3  Stated differently a high correlation between regression errors indicates that endogeneity is 
present. The covariance term can be expressed in terms of the correlation: σte = ?σe . All relevant 
terms are reported in the regression tables.  
 
4  The use of residuals to account for endogeneity is commonly encountered in models with 
censored endogenous regressors.  For example, Heckman (1978, 1979) adopted this approach to 
account for sample-selection bias and endogeneity bias in models in which the treatment is 
captured through an indicator function. Vella (1993) employed the same approach for a range of 
models involving selection bias or censored endogenous regressors.  Smith and Blundell (1986) 
and Rivers and Vuong (1988) adopted the same idea in accounting for endogeneity in models 
where the dependent variable is censored and the endogenous regressor is continuous. However 
corrections for standard errors have not been fully resolved. 
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parameters. In comparison, the IV model is free of distributional assumptions, but the 

estimates may be inconsistent. Vella and Verbreek (1999) show that if the normality 

assumption is satisfied, IV and RCF are identical, and they recommend comparing 

estimates from both models. Our own comparison (e.g., Table 3) indicated that the two 

models yielded virtually identical estimates. We opted to present regression results from 

RCF since it allows for a more intuitive interpretation of the participation parameter as a 

‘treatment’ or intervention and because it provided corrected standard errors. Henceforth 

we refer to this model as the ‘treatment’ model. 

Identification Strategy 

When selecting instrumental variables, we are aided by the notion that the 

employee’s decision to purchase insurance, i.e., his take-up probability, is conditioned on 

the employer’s offer.  In many large household surveys a binary indicator of the firm’s 

offer is not typically available. However, many other employer characteristics may be 

reported, and can be taken as ‘indicators’ of the propensity of the employer to provide 

insurance. In turn, this is substituted into Equation [2] to yield a predictive equation.  

Similarly, certain job characteristics such as union membership, for instance, may predict 

access to insurance coverage. Regional indicators may proxy for policies that impact 

insurance availability (States are intentionally omitted from the Health and retirement 

Study). Modeling the decision-making process in this simple way provides the necessary 

motivation for picking appropriate instrumental variables. However, as in all 

simultaneous equation estimators two important statistical issues need to be addressed. 

First, a number of studies have cautioned against using poorly fitted predictive models in 

the first-stage, as they may introduce measurement error that outweighs the benefit from 

reducing the error due to simultaneous equation bias (e.g., Bound, Jaeger, Baker, 1995; 
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Staiger and Stock, 1999). Even when model specification is guided by economic theory, a 

good fit is not guaranteed. Second, instrumental variables might themselves be correlated 

with unobservable determinants of outcome in the second stage. 

Define Equation [2] as the “insurance participation” equation, with the indicator 

variable coded as =1 if the individual has insurance and =0 if the individual does not have 

insurance, to be estimated as a probit. To address the first concern, we report goodness of 

fit measures, which are relatively high. We further performed Wald tests for the joint 

significance of our instruments and find that it is also high. Note that our interest is only 

in obtaining an instrument for the insurance decision in the second stage health status 

with variables available in the Health and Retirement Study.5 

 Consider the instruments we picked for the insurance participation equation. We 

also included employer characteristics such as firm size and a dummy variable indicating 

if the firm offers a pension plan. The pension plan indicator is a potentially powerful 

instrumental variable, since it is known to correlate highly with other employee benefits, 

but there is no reason to assume that it is correlated with employee health. Still, we 

cannot be completely sure.  

Firm size is related to insurance coverage since large firms are better able to pool 

risks and negotiate lower premiums, but they may also attract healthier workers. We 

included job characteristics such as union membership and managerial and professional 

position that imply better access to insurance, but admittedly may also draw healthier 

                                                 
5 Unfortunately, the Health and Retirement Study does not include information on insurance 
premiums, Cutler (2002) and Dana et al. (2001) propose using state level variables such as 
marginal tax rates and policy dummies, respectively, which may be uncorrelated with health but 
correlated with insurance participation. These could not be linked to our file, since states are 
intentionally omitted in that survey.  
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workers. It is possible that for the relatively older age group in question, employer and 

job characteristics have been predetermined, given that job switching for this group is a 

relatively rare phenomenon.   

 The hypothesis that an instrumental variable is uncorrelated with unobservable 

characteristics, and hence with the outcome measure itself, cannot be tested directly. To 

determine this it is only possible to perform a ‘weak test’ – by regressing the full set of 

variables including the proposed instrumental variables on outcomes in second stage 

(Goldman et al., 2001). As we later explain [section 5] this approach provided us with 

greater confidence that our assumptions are appropriate, at least for our sample of 

relatively older adults. We further report Wald tests for joint significance of instrumental 

variables in the insurance participation probits. While interesting issues arise in 

conjunction with the insurance decision itself, the results are incidental to our main 

research question. Our interest here is limited to creating a well-identified instrument in 

the health status IV and treatment effects models.  These and other variables are 

discussed below.  

 

4.  Data and Variables. 

Our data came from the Health and Retirement Study, which is a household survey of 

mostly working age adults.  As part of this survey, follow-up interviews were conducted 

every two years.  For purposes of our research we focused on wave 1 and wave 3, 

corresponding to the years 1992 and 1996. In 1992, face-to-face interviews were 

conducted for 7702 households, yielding a total of 12,652 individuals for wave 1 (1992).    

We focused our sample on adults 45-64 years old; few people below age 45 participated, 

and almost all participants age 65 and older at baseline were insured through Medicare.  
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Because we were interested in the insurance choices available to participants in the labor 

force, we also excluded a small number of Medicaid and Medicare beneficiaries, and 

those enrolled through  other Federal health insurance programs(e.g., Veteran’s 

Administration, CHAMPUS).  Due to the lagged variable structure of our estimation 

procedure, we further considered only individuals who participated in both waves. This 

and a small number of omitted observations due to missing data resulted in a final sample 

size of 9,050 individuals.  

 Our main dependent variable is the health index wave 3, which is a summary 

measure of self-reported overall health, two measures of physical limitations (mobility 

and agility), and a measure of pain. All four components of this health index are coded so 

that higher values indicate better health.6  The same structure is used to generate an 

independent health index wave 1, which provides a measure of baseline health status. The 

health index used in our analysis closely mirrors the construction of a widely used 

summary measure of physical health known as the SF-36. Examples of recent studies in 

the health care literature that have used variants of this measure in empirical work include 

Baker et al. (2001), Ware (2000), Mirowsky and Ross (1998). Indeed, regression analysis 

                                                 
6   The component items of the index are as follows: Self-reported overall health , with the options 
excellent, very good, good, fair, or poor (coded 5 = excellent to 1 = poor).  The physical mobility 
component which measures ability to perform activities requiring large muscle strength using 4 
items: walking several blocks; walking one block; climbing several flights of stairs; climbing one 
flight of stairs without resting.  The agility component measures physical activities required to 
perform instrumental activities of daily living using 6 items: sitting for about 2 hours; getting up 
from a chair after sitting for long periods; lifting weights over 10 pounds; stooping, kneeling or 
crouching; pulling/pushing a large object; and reaching/extending arms above shoulder level.  
Items were coded 1 if the respondent reported no difficulty with the activity, 0 otherwise, then 
summed for each component. The pain level measure is taken from several items in the 
questionnaire that ask respondents to characterize their pain as none, very mild, mild, moderate, 
and severe (coded from 5 to 1, respectively).  Finally, all 4 measures were summed and scaled to 
form the 100-point health index.  A test of the correlation of rankings across the various items 
indicated a very high degree of internal consistency (Cronbach’s alpha = 0.82).   
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on this index yields results that are consistent with some well known biological and 

behavioral phenomena (see section 5).     

 All independent variables in the health equation were taken from wave 1, i.e. as 

lagged values. This included socioeconomic variables age, gender, race, marital status, 

years of school completed, and household income (measured as the ratio of total 

household income to the official U.S. poverty line in 1991, adjusted for family size). In 

addition, they include variables that reflect past health behaviors, such as smoking, 

number of alcoholic drinks of per day, and measures of initial health stock such as the 

body-mass index  (weight in kilograms divided by height in meters squared), the number 

of chronic conditions reported in HRS (including hypertension, diabetes, heart disease, 

chronic lung disease, cancer, arthritis, stroke, and visual difficulties), and finally the 

lagged health index.  Not shown in the Table 1 are the ranges of the body-mass index: 

quintile 1: 16.7 – 23.0; quintile 2 : 23.0 – 25.2;  quintile 3: 25.3 –27.4;  quintile 4: 27.4 – 

30.5; quintile 5: 30.6-50.5.  According to actuarial and epidemiological standards, 

persons are considered “overweight” if their BMI is between 25 and 30, and ‘obese’ if 

BMI > 30. Thus the third and fourth quintiles correspond to the overweight category, and 

the fifth quintile corresponds to the obesity category (see Averett and Korenman, 1996, 

for instance). 

 Between the 1992 and 1996 surveys, there was a change in wording of questions 

and response options for items in the physical difficulties subscale7. Health is expected to 

                                                 
7  In 1992 the options for the physical difficulties in the HRS were ‘not at all difficult’ ‘a little 
difficult’, ‘somewhat difficult’, and ‘very difficult/cannot do’. In 1996 the question was rephrased 
to ‘Do you have any difficulty?’ with the responses: no; yes; cannot do.  To have consistency 
between the questions and response options in 1992 and 1996, we used a similar approach to that 
used in previous studies. (Baker et al., 2001; Clark, et al. 1998, Burchett et al., 1993): all 
questions for 1992 and 1996 were dichotomized into no difficulty (= 0) versus some difficulty (= 
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decline with time; thus the small increase in mean health index from 75. 8 to 77 reported 

in Table 1 is probably an artifact of a slight change in scaling rather than a reflection of a 

true increase in health status.  However, the distributions are similar in both waves, 

suggesting that the 1992 index provides a reasonable measure of baseline health. As can 

be seen from Appendix A, the moments of the distribution for both the insured and 

uninsured are virtually equal for both periods.  

 The main variable of interest is insurance participation. Survey respondents were 

classified as insured regardless of whether they had employer-based or individual 

policies.  In the full sample there were 7,507 individuals with any insurance policy of 

which 1,543 were uninsured.8  The Health and Retirement Survey does not contain a 

variable indicating whether the employer actually offered health insurance to employees. 

However, several indicators for the firm’s propensity to offer such insurance are 

available. Among these are employer size, availability of other employer sponsored 

benefits such as a 401k plan (pension), and an indicator of the worker’s ability to get 

insurance through other sources, e.g. union membership.  In addition, we include a binary 

indicator of job characteristics (=1 if professional or managerial), to account for firms 

that limit health benefits to certain classes of employees. We also included a binary 

indicator of employment (6,601 individuals were on-the-job at the time of the survey). 

Thus, job and employer characteristics in the model are effectively interaction terms.  

                                                                                                                                                 
1). The absence of the option  ‘a little difficult’ in 1996 may have prompted certain respondents 
to report ‘no difficulty’, for instance. 
 
8 Individuals who said they had only minimal coverage, e.g. coverage for special conditions such 
as mental health, dental insurance, or long-term care insurance were classified as uninsured 
because these policies do not enable access to routine health care services. In the full sample, 
there were only 360 such cases.  
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Regional variables were also included in the regression, to account for differences in 

mandates and premium regulation, which vary from state to state, but are known to 

exhibit regional patterns. Detailed definitions and summary statistics are presented in 

Table 1. Summary statistics for binary indicator are the percent in the sample belonging 

to group. Means and standard deviations are reported for continuous variables. Results 

from the first stage regressions on insurance participation, and second stage regressions 

on health status are described below.   

Other regressions replicated the analysis by type of major chronic condition 

available in the Health and Retirement Survey. We designate these as follows: Population 

1, persons with no major chronic condition at all; Population 2, persons with any major 

medical conditions, i.e. heart disease, stroke, cancer, arthritis, asthma or other chronic 

lung disease, diabetes, and hypertension; Population 3, the subset of persons with 

asymptomatic conditions, i.e., conditions which may not have external symptoms in early 

stages of the disease, namely hypertension and diabetes; and finally, population 4, 

persons with hypertension, the single most common chronic condition in the population. 

Note that populations 2-4 are nested; population 4 is a subgroup of population 3, and 

population 3 is a subgroup of population 2.  In addition, this list of medical conditions is 

by no means exhaustive; other medical conditions that may be prevalent in the population 

are simply not reported for respondents in the survey.  Sample sizes for our grouping 

were 3210, 5,640, 3,598, and 3290 respectively. Further detail of definitions of medical 

conditions are reserved for Section 6.  
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5.   Results: The Full Sample 

First-stage estimates: probability of insurance participation 

Table 2 presents probit estimates on insurance participation. Two versions of the 

model are shown. The only explanatory variables included in Model 1 are predictors of 

the ‘offer’ probability for insurance.  Model 2 adds socioeconomic characteristics that are 

related the take-up decision.  Thus this model has the interpretation of a ‘take-up’ 

probability, conditional on being offered insurance by the employer. In either case are not 

interested in the insurance participation decision per se. Rather, we aim to create an 

instrument that can be incorporated into the second stage estimates of health status in 

either an IV or treatments effects setting. The two models we employ corresponds to two 

levels of identification: First, an instrument that meets identification criteria, but is more 

parsimonious; second a model that adds regressors from the second stage that have a 

theoretical meaning in the insurance decision, but are not strictly required for 

identification purposes.  The choice of the two models entails a tradeoff in terms of our 

identification strategy. The first model might allow a higher correlation of the 

instruments with treatment variable. The second model should allow for a better overall 

fit of the predictive model and is akin to a 2SLS procedure.  To help choose the better 

model we report the usual goodness of fit statistics for each model.  In addition, we report 

the Wald statistic for the joint significance of the instruments in the insurance 

participation equations.  The results suggest a slight preference in favor of the second 

specification. Model 2 produces much bigger goodness of fit statistics. The Wald statistic 

is somewhat lower in this model but still highly significant. 

 Firm and job characteristics, which are assumed to be predictors of the likelihood 

of being offered insurance the yield similar effects in both models; and are highly 
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significant.  The coefficients exhibit a pattern to be expected with their interpretation as 

indicators of insurance offer. Thus union workers and employees in management or 

professional positions are more likely to have insurance compared with other employees. 

The negative coefficient of ‘employed’ indicates that employees in small firms (i.e. not of 

size category two or three) are less likely to have insurance than the unemployed. On the 

other hand employees in mid-sized and large firms are more likely to have insurance, 

with an effect that increases with the size category. These effects are to be expected given 

what is widely known about insurance offering by employers in general. In particular 

while most small firms do not offer insurance to their employees (Ginsburg and Gable, 

1996) certain employed workers continue to access to insurance, either because they are 

on public assistance programs such as SSDI, or in cases of short run employment they 

may continue to carry their old insurance policy under ERISA.  Firms that offer 401k 

plans are more likely to offer health benefits, leading to the positive coefficient of 401k in 

the regressions.  

Regional variables were included to account for mandates of minimum benefits 

and premium regulation, which vary from state to state, but are known to exhibit regional 

patterns.  The coefficients indicate that people who reside in the south and west region of 

the U.S, are less likely to have insurance than people in the northeast, while those who 

reside in the Midwest are less likely to be insured, all else being equal. 

Since results on socioeconomic and demographic characteristics and health 

behaviors are incidental to our main research question, we present them only briefly. The 

coefficients indicate the likelihood of purchasing insurance increases significantly with 

age, adjusted household income level (i.e., income-to-needs quintiles) or education level. 

Black and Hispanics were less likely to have insurance, whereas married persons are 



 21

more likely to have insurance.  Hazard rates (λ) generated from the probit model are 

included as independent variables in the health status regressions summarized in Table 4. 

The estimated coefficients of the hazard are denoted as ?te. 

Second Stage Estimates: Health Status Equations 

Model 1 and Model 2 in Table 3 represent second stage estimates of ‘treatment 

effect’ models, corresponding to first stage estimates of Model 1 and 2 from the previous 

table. With some minor rounding off, the two regressions on health status yield virtually 

identical results. Thus, the discussion below applies equally to both specifications.  

 Although generally health declines with age, the lack of significance of the age 

variable here is not surprising given the narrow range of ages in our sample. While there 

is considerable discussion of health care disparities in health, racial/ethnic origin does not 

have a significant effect in our setting, probably as a result of holding socioeconomic 

status and health behaviors constant elsewhere. On the other hand, females have 

significantly lower health compared with males. As expected, there is a positive 

association between education and health, with diminishing incremental gains from one 

level of education to another. This result is consistent with the Grossman investment 

model, which predicts that an individual’s marginal efficiency in deploying medical care 

and other health inputs increases with the level of education. Increases in relative income 

operate in a similar way as increases in educational attainment. There is a positive 

association between income (relative to need) and health. Again the incremental gain of 

this effect diminishes as income level rises, and becomes negligible at the highest 

quintile.   

 Three groups of variables deal with risky health behaviors, namely smoking, 

drinking, and obesity.  Past smokers and current smokers experienced significantly lower 
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health compared with non-smokers. Moderate alcohol consumption had no significant 

adverse health effects, whereas heavy drinking did. On the other hand, obesity is a highly 

significant factor, with progressively decreasing health as body-mass quintiles move 

higher. The lagged health index, which indexes initial health stock has a significantly 

positive effect. The simple interpretation of this variable is that better health in the past 

leads to better health in the future. A further interpretation of this variable, based on 

rearranging the model to form a change equation, also suggests that it reflects the rate of 

depreciation of health stock.9  

 Since our main research question has to do with the consequences of the lack of 

insurance, all of the preceding effects, while interesting, are essentially viewed here 

merely as controls. Nevertheless, it is noteworthy that these effects conform with the 

broad literature and what is generally well known about determinants of health, further 

indicating the validity of the health index as a measure of overall healthiness. This 

increases our confidence in the main finding, namely that lack of insurance has a 

significant negative impact on health. Because a number of measurement issues arose, we 

defer to the summary of related results as presented in Table 4 and Table 5.  

Endogeneity of the insurance indicator: 

Table 4 provides a comparison of the three general types of econometric models: 

ordinary least squares, the IV estimator, and the treatment model.  The treatment model 

was previously described, but the main coefficients are included here for expositional 

                                                 
9 More explicitly, the complement of the lagged health coefficient, 1- 0.54 = 0.46 is the rate of 
depreciation, yielding a cumulative average annual rate of 0.8 percent over the observed four-year 
interval. Converted to elasticity terms, a 10 percent increase in past health contributes to 
approximately 5.percent increase in health in the later period, all things being equal. 
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convenience. The specification of the IV model is analogous to the treatment model.  

Thus the same set of exogenous variable is included in both types of model, and 

insurance non-participation is instrumented two ways, i.e., using the strict identification 

criterion (Model 1), with insurance offer variables only, and then using a fuller 

specification with the full vector of health status covariates (Model 2). 

  Only coefficients of the test variables and test scores, along with their levels of 

significance are included in Table 4. The most important set of results pertains to the 

insurance participation variable. The OLS model serves as a baseline case.  As was 

suspected, OLS underestimates the true effect of having insurance on health. The IV and 

treatment models yield much larger estimates, but are similar to each other (Respectively, 

4.06 and 5.05 in Model 1; 4.07 and 4.70 in Model 2). 

The coefficients of the first-stage residuals in the IV model and the coefficients of 

λ in the treatment models are negative, implying that OLS underestimates the effect of 

insurance. Since these coefficients are statistically significant in the first IV model and in 

both treatment models we reject the null hypotheses that the error terms in the two stages 

of the estimation are uncorrelated. However, estimates from IV estimators are always less 

efficient (Vella and Verbeek, 1999). Therefore we refer to the treatment model 

henceforth. Note that we made no a priori conjectures about the direction of the bias. The 

results suggest that the former is the dominant explanation. An alternative explanation is 

related to an unobservable trait, say a propensity to exhibit behaviors consistent with 

moral hazard. This would lead people to choose insurance while reducing preventive 

effort, and hence health status.  

 Although we obtain strong results about the need to correct for endogeneity bias, 

a question may arise regarding the quality of our instruments. The Wald-tests for 
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parameter restrictions that we report in Table 2 indicate that our instruments are jointly 

significant. While it is impossible to test for the correlation between the instruments and 

potentially unobservable characteristics in the health equation, results from the indirect 

test are encouraging. We regressed the health index on the full set of variables, including 

all nine instruments from the first stage. We ran these regressions separately for the 

subsample of the uninsured, the subsample of the insured, as well as for the pooled 

sample. In all of these runs, none of the instrumental variables were significant at the 5% 

significance level, save only the variable, ‘employed’, which designates workers who are 

self-employed or in small firm10.  One of regional variables, West, was moderately 

significant (10% level) only in the uninsured regression.  The low regional variation in 

health in our sample may not apply to the population overall. While we cannot assert with 

certainty that these variables are uncorrelated with unobservable health status, the results 

from these additional regressions11 are strongly suggestive of this, at least for the 

particular population in our data.   

 To put the magnitude of the insurance participation effect in perspective we 

calculated the average treatment effects and population effects on health due to providing 

insurance to the previously uninsured, and expressed them in percentage terms.  Using 

OLS and ignoring endogeneity, these are 2.0% and 0.3%. Accounting for endogeneity, 

the effects on health are 7.2% and 1.3% respectively. Thus correcting for the bias 

provides more favorable support in favor of extending insurance coverage to all.   

                                                 
10  In trial regressions we took ‘employed’ out of the first stage, but found virtually no effect on 
the lambdas. Thus we report the original specification. 
 
11  Side regressions are available from the authors upon request.  
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 6.  Results: Chronic Conditions.  

One question that arises is whether health insurance matters more when some medical 

conditions are present, but not others. When recognizable symptoms appear, i.e., a 

medical condition is symptomatic, an individual may seek treatment regardless of 

insurance coverage to relieve pain and suffering. Certain chronic conditions, such as 

diabetes and hypertension are often asymptomatic; the demand for health care services by 

an individual with an asymptomatic condition may be more sensitive to out of pocket 

payments. Thus, we hypothesized that lack of health insurance has a greater adverse 

effect on health (through greater negative effects on health care use) for individuals with 

asymptomatic conditions compared to individuals with symptomatic conditions.    

 To allow for differential effects we replicated the previous analysis for major 

groupings of chronic conditions available in the Health and Retirement Study.  Table 4 

presents regression results for no chronic condition, all major chronic conditions (mainly 

cancer, stroke, heart disease asthma, other upper respiratory illnesses12 the subset of 

‘asymptomatic’ conditions, i.e. diabetes and hypertension, and for hypertension only.13  

We do not report results for the subgroup of symptomatic conditions, since the small 

sample size (n= 2,042) resulted in a poor statistical fit. We did not perform separate 

regressions on other individual diagnoses such as cancer or stroke due to small sample 

sizes.  

                                                 
12  Respiratory illnesses include chronic obstructive pulmonary disease (COPD) or emphysema. 
Cancer may be diagnosed prior to appearance of symptoms, but is classified is a symptomatic 
disease because symptoms would typically appear a short time later.  
 
13 Another common asymptomatic condition, high cholesterol count, was not available from the 
survey. 
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To conserve space and avoid redundancy, first stage insurance participation 

regressions are not presented, as all versions were similar to those for the pooled model 

previously discussed (Table 2). Thus we present only the second-stage health status 

models. Coefficients of risk behavior variables display the familiar pattern whereby 

excessive drinking, smoking, and obesity impact negatively on health. It is striking how 

these effects persist with similar magnitudes for all subgroups. Having a chronic 

condition does not make these effects “worse”, and not having a chronic condition does 

not make these effects less pronounced.  Effects are somewhat less significant in the 

asymptomatic and hypertension groups, probably due to the smaller sample size. Other 

persistent effects that are noteworthy are as follows: education is associated with better 

health outcomes; females exhibit slightly lowered health values.  

 Coefficient of variables of main interest are summarized in Table 6, including a 

comparison of OLS and the treatment effects model for each population. The coefficient 

of insurance participation, which is of greatest interest, is always higher in the treatment 

model. In this sense results for the subgroups are consistent with the results for the pooled 

sample.  Moreover, these coefficients change from being non-significant in the OLS 

models (populations 2-4), to being significant at the 10 percent level in the treatment 

models. The magnitude of the adjusted effect is about the same in all populations. 

However, because the coefficient of lambda (s ts) is non-significant in these models, we 

cannot reject the null hypotheses that the error terms in the two stages of the estimation 

are uncorrelated. By extension we cannot reject OLS unambiguously, although the low 

standard error on the coefficient of the hazard may be due to smaller sample size.  
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Another reason for treating the results with caution is the possibility of errors in self 

reported diagnoses.14. From inspection of the regression results it is evident the insurance 

effects are of similar magnitudes in all of the sub-samples.  While we cannot be sure that 

we captured relative effects precisely, the results are at least suggestive of there being no 

significant differences by type of chronic condition.   

 

7.  Conclusions  

Previous studies that examined the effect of insurance participation on measures of 

health have found only small effects.  For the most part, these studies did not explicitly 

address the issue of endogeneity bias that arises if the decision to purchase insurance is 

correlated with unobservable traits that may also impact future health. This study 

indicates that adjusting for endogeneity of insurance in health equations in a treatment 

effects or instrumental variable model leads to substantially larger insurance effects 

compared with a more naïve model. It is encouraging that this finding is consistent with 

that of Goldman et al., (2001), even though they examine the endogeneity issue in the 

context of a more specific population, that of AIDS patients, and for a different outcome, 

namely mortality.  

                                                 
14 Underreporting of true medical conditions (i.e., false negative, or Type II errors) may also 
occur in symptomatic conditions, although to a lesser extent than in symptomatic conditions. In 
an interesting and comprehensive study, Baker, Stabile, and Deri (2001) suggest that false 
positive errors may also be high. Using Canadian data they rely on a comparison of self reported 
diagnoses with entries made by physicians in administrative medical records in a prior two-year 
window.  However, the health services research and epidemiological literature caution against 
using administrative medical data as a benchmark, which may be even more prone to error since 
diagnoses are often coded only if relevant to billing. This literature suggests a higher degree of 
specificity in self-reported measures even compared with administrative data complied over long 
period  (e.g., Vargas et al., 1993, Bowlin et al. 1997).  It is not our intension here to side with 
either of these approaches, but rather to suggest that results should be treated with caution. 
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The possibility that insurance effects may have been underestimated in the past              

suggests certain important policy implications. The rising number of the uninsured has 

lead to many proposals to expand options for private insurance coverage. While our 

results do not bear on the efficacy of one policy proposal versus another, they contribute 

to the general debate by showing that insurance participation indeed can result in better 

health, or conversely, that lack of access to health insurance may lead to adverse health 

outcomes. We found that on average, providing insurance to the previously uninsured 

results in a 7 to 8 percent improvement in overall health. The fact that our sample 

consists of working age adults, who are in the pre-Medicare stage of their lives, i.e. ages 

45-64 suggests that one should also weigh the externalities in terms of potential savings 

to the Medicare program from earlier and more effective treatment that would be come 

available for the uninsured. Ultimately policy choices for expanding coverage would 

depend on programmatic costs of expanding coverage, in addition to benefits, but our 

results still make the case for expanded coverage more attractive. It should be noted that 

the Health and Retirement Study does not contain information on the type of plan or the 

generosity of benefits available respondents. This issue should be examined in future 

research.  
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Table 1.  Variable definitions and descriptive statistics (N=9,050).  
 

 
Variable  

 

 
Description 

 
Range and/or 

values  

 
Mean 

(S.D.) or % 
Dependent variable  
     
   Health index 1996 
      

 
 
0-100 index of self-reported health status, in 
1996. Based on rankings of overall health, 
number of physical limitations, and pain.    
 

 
 
0-100 

 
 

76.98  
(22.39) 

     Insurance status 
     

Insurance status as of 1992, dichotomized as 
privately insured or uninsured 

0= uninsured  
1= private 

82.95 
17.05  

Health Status Equation 
Independent variables (1992) 
      
      Age 
    

 
 
 
Age in years  

 
 
 

   45-64 

 
 
 

55.34 
(4.17) 

 
     Race/ethnicity 
           

Binary indicators  1 = white/other 
2 = black 
3 = hispanic 

77.77 
14.34 
  7.89 

 
     Female 
      

Binary indicator  0 = male 
1 = female  

44.53 
55.47 

 
     Marital status 
      

Binary indicator of marital status in 1992 0= not married  
1= married 

17.52 
82.48   

 
     Education  
     

Education in years categorized as follows: less 
than 9, 9-11, high school graduate or equivalent 
(GED), some college (more than 12 years) 
Binary indicators  

1= 0-8 
2= 9-11 
3= 12 or GED 
4= >12 

10.57 
14.95 
36.31 
38.17 

 
     Income to needs ratio 
           

Ratio of 1992 total household income to 1991 
DHHS poverty guidelines, adjusted for family 
size.   
 
Binary indicators  

1 =  <1.00 
2 = 1.00-1.49 
3 = 1.50-1.99 
4 = 2.00-2.99 
5 = 3.00-4.99 
6 = >or=5.00 

  5.26 
  4.54 
  5.72 
13.71 
27.44 
43.33 

 
     Smoking status 
     

Self-reported smoking behavior as of 1992 
categorized as never smoked, past smoker and 
current smoker. 
 

1= never  
2= past smoker 
3= current 

37.94 
36.07 
25.99 

     Alcohol consumption 
      

Self-reported drinking behavior categorized by 
the number of drinks per day. “Moderate” 
drinking is defined as = 2 drinks; “Heavy” 
drinking is defined as = 3 drinks. 
 

1= abstainer 
2= moderate 
3=  heavy 

37.58 
57.56 
  4.86 
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     Body-mass index quintile  
     

Body mass index (BMI) as of 1992 categorized 
by quintile.  This the classic calculation of body 
weight for height, where BMI= kg/m2. 
 
Binary indicators, quintile means reported.   

Quintile 1 
 
Quintile 2 
 
Quintile 3  
 
Quintile 4 
 
Quintile 5 
 

21.15 
       (1.45)   

 24.18 
        (0.67) 

26.37 
  (0.62) 

       28.90 
 (0.91) 
34.69 

      (4.41) 
 

     Health index 1992 
      

Control variable for baseline health status in 
1992 

0-100 75.84      
(21.58) 

 
Participation equation: 
Additional independent     
variables (1992) 
 

 
 
 

 
 
 

 
 

     Employed Binary indicator 0=unemployed  
1= employed  

26.66 
73.34 

     Employer size 1 
     

Dummy variable for employer size, base on 
number of employees. 

0= all others 
1= < 25 

74.63 
25.37 

 
     Employer size 2 
   

Dummy variable for employer size, base on 
number of employees. 

0= all others 
1= 25-499 

78.84 
21.16 

 
     Employer size 3 
      
 

 Dummy variable for employer size, base on       
number of employees. 

0=all others 
1=500+ 

73.10 
26.90 

      Occupation type.  Binary indicator of professional/management 
Status. 

0=all others 
1= prof /manage 

77.23 
22.77 

 
     Union  Binary indicator of union membership 0= non union 

1= union  
82.07 
15.93 

 
     Pension Plan      Dummy variable for whether or not the 

respondent has an offer for an employer 
sponsored pension. 

0= not offered 
1= offered 

39.43 
60.57 

 
     Region  
      

Geographic region of the United States 1 = northeast 
2 = midwest 
3 = south 
4 = west 

17.57 
25.66 
40.87 
15.90 
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Table 2: Probit Model for Insurance Choice (First Stage Estimates) 
 

Variable  Model 1 Model 2 
“Offer” Indicators  
 
 
Employed 
 
Employer size 2 
 
Employer size 3 
 
Pension plan 
 
Union  
 
Occupation (prof/manag.) 
 
Region- Midwest 
 
Region- South 
 
Region- West 
 
Take-Up” Indicators  
 
Age 
 
Black 
 
Hispanic 
 
Female 
 
Married 
 
Income-needs ratio- 1.00-1.49 
 
Income-needs ratio- 1.50-1.99 
 
Income-needs ratio- 2.00-2.99 
 
Income-needs ratio- 3.00-4.99 
 
Income-needs ratio- > =5.00 
 
Education - 9-11 years 
 
 

 
 
 

-.229*** 
(.057) 

   .472*** 
(.059) 

   .858*** 
(.064) 

  .267*** 
(.082) 

 .603*** 
(.099) 

  .585*** 
(.054) 

 .108** 
(.058) 

   -.407*** 
(.051) 

   -.254*** 
(.060) 

 
 
 
    
 

 
  
 

   -.455*** 
(.065) 

    .419*** 
(.064) 

   .860*** 
(.071) 

    .466*** 
(.062) 

.545*** 
(.090) 

  .214*** 
(.062) 
.055 

(.063) 
   -.209*** 

(.056) 
  -.153** 

(.067) 
 
  

.029*** 
(.005) 

   -.141*** 
(.055) 

   -.536*** 
(.067) 
.002 

(.046) 
   .284*** 

(.050) 
   .223*** 

(.092) 
   .580*** 

(.088) 
   .901*** 

(.078) 
   1.205*** 

(.076) 
   1.359*** 

(.078) 
   .403*** 

(.066) 
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Table 2: Probit Model for Insurance Choice (First Stage Estimates) Cont’d 

 
Variable  Model 1 Model 2 

Note :  * ≥ 90% , < 95% significance  ** ≥ 95%, < 99% significance  ***    ≥ 99% significance 

Education – high school/GED 
 
Education - college 
 
Constant 
 
 
Pseudo R2 
Likelihood Ratio χ2  
 
 
Wald-test on joint significance 
of instruments (d.f. =9) 
 
d.f.  
χ2   
p-value 
 
 
N 

 
 

 
 
 
 
 

.1450 
1198.46 

 
 
 
 
 

9 
991.46 
<0.001 

 
 

9,050 

.555*** 
(.062) 

   .577*** 
(.067) 

-2.356*** 
(.312) 

 
.2971 

2456.04 
 
 
 
 
 

9 
888.92 
<0.001 

 
 

9,050 
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Table 3: Health Status Equations  

 
Variable  Model 1 Model 2 

 
Age 
 
Black 
 
Hispanic 
 
Female 
 
Married 
 
Education - 9-11 years 
 
Education – high school / GED 
 
Education - college 
 
Income-needs ratio- 1.00-1.49 
 
Income-needs ratio- 1.50-1.99 
 
Income-needs ratio- 2.00-2.99 
 
Income-needs ratio- 3.00-4.99 
 
Income-needs ratio- > or =5.00 
 
Past Smoker 
 
Current Smoker 
 
Alcohol Abstainer 
 
Alcohol - Heavy Drinker 
 
Body mass index - 2 
 
Body mass index - 3 
 

 
-.032 
(.042) 
-.454 
(.504) 
.494 

(.686) 
   -1.441*** 

(.377) 
  1.080** 

(.471) 
1.348* 
(.709) 

    3.412*** 
(.658) 

    4.576*** 
(.682) 
.833 

(1.076) 
.841 

(1.026) 
.763 

(.893) 
  1.873** 

(.862) 
  2.112** 

(.878) 
  -.940** 

(.403) 
   -3.269*** 

(.446) 
-.441 
(.371) 

  -1.601** 
(.806) 

  -1.242** 
(.537) 

   -2.286*** 
(.550) 

 
-.057 
(.042) 
-.356 
(.505) 
   .955 
(.719) 

   -1.502*** 
(.378) 

   .801* 
(.470) 
   .928 
(.737) 

     2.897*** 
(.705) 

   4.111*** 
(.727) 
   .576 
(1.095) 
   .701 
(1.010) 
    .840 
(1.054) 
   1.571 
(1.092) 
   1.801 
(1.121) 

   -.975** 
(.404) 

    -3.168*** 
(.450) 
-.477 
(.371) 

 -1.565* 
(.809) 

  -1.254** 
(.539) 

   -2.252*** 
(.551) 
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Table 3 (continued) 
 

Variable  Model 1 Model 2 
Body mass index - 4 
 
Body mass index - 5 
 
Health index 1992 
 
Insurance status 
 
Constant 
 

   -2.367*** 
(.549) 

   -5.191*** 
(.566) 

     0.654*** 
(.009) 

   5.054*** 
(1.356) 

  23.662*** 
(3.004) 

 
 
 
 
 
 

   -2.330*** 
(.550) 

   -5.140*** 
(.567) 

     .655*** 
(.008) 

    4.702***  
(1.550) 

   27.128*** 
(2.805) 

    

? 
s e

 

s te 
Wald (χ2) 
N 

-0.144 
15.988 
-2.303 

8631.88 
9,050 

-0.128 
15.969 
-2.043 

9943.46 
9,050 

 
_______________________________ 
Note :     *        ≥ 90% , < 95% significance 
               **      ≥ 95%, < 99% significance 

***    ≥ 99% significance 
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Table 4.   Instrumental Variable (IV) versus Treatment Model: 

Summary of Main Coefficients 
 

IV Estimator Treatment Model  
 
Variable 
 

OLS  

Model 1 Model 2 Model 1 Model 2 

Lagged 
Health 
  

0.656 
(77.18) 

0.654 
(76.88) 

0.655 
(76.32) 

0.654 
(76.88) 

0.655 
(77.06) 

Insurance 
Participation 
 

1.373 
(2.27) 

4.068 
(2.08) 

4.067 
(2.08) 

5.054 
(3.73) 

4.702 
(3.03) 

Residual ----- 
 

 -4.492 
(- 3.07) 

 -3.111 
( -1.65) 

----- 
 

----- 
 

 
λ  

 

----- ----- ----- -2.303 
(-2.93) 

-2.043 
(-2.27) 

Adjusted R2 0.492 0.492 0.492 ----- ----- 

Wald χ2   ----- ----- -----     8631.9 
 (d.f. = 25) 

    9943.5 
 (d.f. = 39) 

Notes: t values in parentheses.   
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Table 5: Treatment Effects Model by Type of Chronic Condition 
 

Variable  No Chronic 
Conditions  

All Chronic 
Conditions  

Asymptomatic 
Disease 

Hypertension 

 
Age 
 
Black 
 
Hispanic 
 
Female 
 
Married 
 
Education - 9-11 years 
 
Education – high school / GED 
 
Education - college 
 
Income-needs ratio- 1.00-1.49 
 
Income-needs ratio- 1.50-1.99 
 
Income-needs ratio- 2.00-2.99 
 
Income-needs ratio- 3.00-4.99 
 
Income-needs ratio- > or =5.00 
 
Past Smoker 
 
Current Smoker 
 
Alcohol Abstainer 
 
Alcohol - Heavy Drinker 
 
Body mass index - 2 
 

 
-.055 

 (.059) 
-.694 

 (.766) 
-.878 

 (.919) 
  -1.057** 

 (.516) 
.791 

 (.677) 
  2.036* 
 (1.100) 

     2.697*** 
 (1.028) 

    4.060*** 
(1.055) 
1.580 

(1.737) 
-1.564 
(1.687) 
-.455 

(1.538) 
.231 

 (1.597) 
-.335 

 (1.639) 
.188 

 (.563) 
    -1.672*** 

 (.612) 
.475 

 (.522) 
-1.899 
(1.174) 
-.756 
(.668) 

 
.010 

(.057) 
.119 

(.647) 
  1.535 
(1.022) 

     -1.742*** 
(.509) 
.599 

(.620) 
.627 

(.949) 
    3.203*** 

(.916) 
     4.500*** 

(.946) 
      .042*** 

(1.377) 
.538 

(1.406) 
-.860 

(1.392) 
.414 

(1.433) 
1.132 

(1.465) 
   -1.400*** 

(.541) 
     -4.111*** 

(.608) 
   -.912* 
(.492) 

  -1.232 
(1.056) 

  -1.339* 
(.779) 

 
-.053 
(.074) 
.678 

(.759) 
 1.810 
(1.274) 

     -1.818*** 
(.645) 
.340 

(.779) 
1.293 

(1.177) 
    4.306*** 

(1.138) 
     5.593*** 

(1.176) 
   -1.275 
(1.724) 

.138 
(1.807) 
-1.317 
(1.784) 
-.699 

(1.832) 
.270 

(1.890) 
    -1.755*** 

(.680) 
    -4.806*** 

(.790) 
    -1.472** 

(.625) 
   -2.139 
(1.308) 
  -1.510 
(1.130) 

 
-.033 
(.078) 
.853 

(.794) 
   2.610* 
(1.367) 

     -1.866*** 
(.677) 
.740 

(.814) 
 1.245 
(1.238) 

    4.287*** 
(1.202) 

      5.501*** 
(1.238) 
   -2.190 
(1.808) 
-.865 

(1.893) 
-2.163 
(1.856) 
-1.862 
(1.916) 
-.758 

(1.983) 
  -1.714** 

(.710) 
     -4.595*** 

(.834) 
   -1.331** 

(.659) 
   -2.481* 
(1.347) 
  -1.677 
(1.205) 
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Table 5 (continued) 
 

Variable  No Chronic 
Conditions  

All Chronic 
Conditions  

Asymptomatic 
Disease 

Hypertension 

Body mass index - 3 
 
Body mass index - 4 
 
Body mass index - 5 
 
Health index 1992 
 
Insurance status 
 
Constant 
 

   -1.924*** 
(.704) 

-1.524** 
(.746) 

   -3.328*** 
(.846) 

    .523*** 
(.017) 

   4.537** 
(1.908) 

   39.496*** 
(4.097) 

    -2.195*** 
(.782) 

     -2.315*** 
(.766) 

    -5.197*** 
(.764) 

     .641*** 
(.011) 

     5.056** 
(2.119) 

     23.450*** 
(3.726) 

-.984 
(1.105) 

  -2.031* 
(1.073) 

     -5.093*** 
(1.053) 

     .652*** 
(.014) 

   4.368* 
(2.529) 

     26.892*** 
(4.781) 

-.782 
(1.170) 

  -1.999* 
(1.137) 

      -4.854*** 
(1.118) 

     .656*** 
(.015) 

   4.629* 
(2.611) 

     25.831*** 
(5.038) 

? 
s e 

s te 

 
N 

-.1050 
13.1355 
-1.3787 
(1.1299) 

3,210 

-0.1420 
17.1269 
-2.4322 
(1.2227) 

5,640 

-.1122 
17.0810 
-1.9163 
(1.4723) 

3,598 

-0.1435 
17.1432 
-2.4598 
(1.5252) 

3,290 
  

_________________________________ 
Note :   *          ≥ 90% , < 95% significance 
            **        ≥ 95%, < 99% significance 
            ***      ≥ 99% significance 
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Table 6. OLS versus Treatment Models for Specific Chronic Disease Sub-populations. 

 

 OLS  Treatment Model 
 

 

 

 

 

Variable  

Population  

1 

No Chronic 

 

Population  

2 

All Chronic 

Population  

3 

Asymp. 

 

Population  

4 

Hypertension 

 

Population  

1 

No Chronic 

 

Population 

2 

All Chronic  

Population 

3 

Asymp. 

Population 
4 

Hypertension 

Lagged 
Health  

0.523 

(29.97) 

0.645 
(60.08) 

0.655 

(47.77) 

0.659 
(76.45) 

0.523 
(30.01) 

0.641 
(59.00) 

0.652 

(47.24) 

0.656 
(44.89) 

Insurance 
Participation 

2.371 
(3.39) 

1.068 
(1.57) 

1.279 
(1.46) 

0.690 
(0.75) 

4.537 
(2.38) 

5.056 
(2.39) 

4.368 
(1.73) 

4.629 
(1.77) 

λ ----- ----- ----- ----- -1.379 

(-1.22) 

-2.432 
(-1.99) 

-1.916 

(-1.30) 

-2.460 
(-1.61) 

Adjusted R2 0.287 0.484 0.500 0.498 ----- ----- ------ ----- 

Wald ?2 ------ ----- ------- ----- 1611.9 

(d.f. = 39) 

    6258.7 
 (d.f. = 39) 

4140.9 

(d.f. = 39) 

    3766.6 
 (d.f. = 39) 

N  3,290 5,640 3,598 3,290 3,210 5,640 3,598 3,290 

Notes: Population 1= persons with any of the following chronic diseases: hypertension, diabetes, chronic obstructive pulmonary disease 
(COPD) or asthma, heart disease, stroke, cancer, arthritis, visual difficulty.  Population 2=persons with asymptomatic diseases: hypertension 
and diabetes.  Population 3= persons with hypertension. 
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Appendix A: Moments of Health Index Distribution 
 
 Health Status by Insurance Status and Survey Wave 
 Uninsured Insured 
 Wave 1 Wave 3 Wave 1 Wave 3 
Mean 68.7 69.05 77.3 78.6 
St. dev 25.46 25.7 20.39 21.28 
Skewness -.882 -.827 -1.33 -1.39 
Kurtosis  2.85 2.61 4.53 4.41 
 
 

 




