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benefits, appear to drive the welfare gains, as the effect of induced innovation on emissions and
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of induced innovation. Differences in these key assumptions explain much of the variation in the

findings of other similar models.
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When studying solutions to long-term environmental problems such as climate change, it 

is important to consider the role that technological change may play.  Nonetheless, most 

economic models of climate change treat technology as exogenous. Since policies adopted to 

combat climate change are likely to have a large impact on the pace and direction of 

technological change, these models miss the important link between policy and innovation. In 

this paper, I make use of empirical results on technological change in the energy industry (Popp 

2002, 2001, 1998, 1997) to incorporate endogenous technological change into the DICE model 

of climate change (Nordhaus 1994).  In the model, technological change that enhances energy 

efficiency is stimulated by changes in the price of energy, including carbon taxes.  I use the new 

model, named the ENTICE model (for ENdogenous Technological change), to compare the 

overall global welfare costs of carbon policy to the results of models in which technological 

change is exogenous.  I show that ignoring induced innovation overstates the welfare cost of 

reducing carbon emissions.  However, cost-savings appear to drive the welfare gains, as the 

effect of induced innovation on emissions and mean global temperature is small.  Sensitivity 

analysis reveals that market imperfections and potential crowding out effects limit the overall 

effect of endogenous technological change. 

To date, few models of climate change include endogenous technological change that 

affects carbon emissions. The most prominent examples of models with endogenous 

technological change are Goulder and Schneider (1999), Nordhaus (2002), and Buonanno et al. 

(2003).  However, none of the existing models make use of empirical estimates on the nature of 

technological change to calibrate the model.  I use the estimates obtained in previous work to 

guide the development and calibration of a model of endogenous technological change that is 

supported by empirical evidence.  
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Although the DICE model is a greatly simplified macroecomic representation of the 

global economy and the environment, its use offers two advantages for this work.  First, because 

of its relative transparency, sensitivity analysis of key assumptions is straightforward.  Existing 

models of technological change and the environment include differing assumptions about 

features such as imperfect research markets and the potential crowding out effects of energy 

R&D.  I use the ENTICE framework to provide a detailed sensitivity analysis of these 

assumptions.  Second, since the DICE model framework explicitly models both the costs and 

benefits of greenhouse gas reduction, I hope to provide a better understanding of how 

consideration of endogenous technological change affects the optimal policy decision. One can 

imagine two offsetting effects of endogenizing R&D.  Increased innovation allows a given 

abatement target to be achieved more easily, thus lowering the carbon tax needed to meet a given 

emission target.  At the same time, lower abatement costs make greater emissions reductions 

feasible, offsetting the desire to lower the carbon tax.1  Using the DICE model framework, I 

solve for the optimal path of carbon taxes with and without endogenous technological change. 

The paper begins with a review of the literature on induced innovation and the 

environment.  A discussion of existing climate models with induced technological change 

follows.  Section II presents the modifications to the DICE model necessary to endogenize 

technological change in the energy sector.  Two policy simulations are presented in section III: 

one representing an optimal policy, in which the marginal benefits and marginal costs of carbon 

emission abatement are equal, and one restricting global emissions to 1995 levels.  Section IV 

includes sensitivity analysis on key assumptions, and uses this analysis to contrast the results of 

                                                           
1 In a theoretical model, Goulder and Mathai (2000) find that the first effect dominates, justifying a lower carbon tax 
when innovation is considered.  Parry (1995) offers a similar conclusion. 
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ENTICE and other climate change models with endogenous technological change.  Section V 

concludes. 

 

I. Literature Review 

A. Induced Innovation and Environmental Policy 

In this paper, I endogenize technological change by including policy-induced innovation 

in the energy sector.  The notion of induced innovation was first introduced by Hicks (1932), 

who noted that changes in factor prices would lead to innovation to economize on usage of the 

more expensive factor.  In the environmental literature, the relationship between innovation and 

policy has been explored under two broad themes.2  Papers such as Magat (1978), Milliman and 

Prince (1989), and Fisher et al. (1998) use theoretical models to compare the effects of various 

environmental policy mechanisms (e.g. command and control regulation, emissions taxes, or 

tradable permits) on environmentally-friendly innovation.  In general, these papers predict that 

market-based policies, such as a tax or tradable permit, will induce more environmentally-

friendly innovation than a command and control policy.   

Recently, empirical economists have begun to estimate the effects that prices and 

environmental policies have on environmentally-friendly innovation.  Both Lanjouw and Mody 

(1996) and Jaffe and Palmer (1997) find correlations between pollution abatement expenditures 

and measures of environmental innovation.  Jaffe and Palmer (1997) estimate a positive elasticity 

of pollution control R&D with respect to pollution control expenditures of 0.15.   

Other papers use energy prices and related regulations as the mechanism that induces 

innovation.  Although the observed price changes might not be policy-related, the results can be 

                                                           
2 A comprehensive survey of the literature on technological change and the environment may be found in Jaffe, 
Newell, and Stavins (2003). 
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applied to situations where policy affects prices, such as a carbon tax.  Using hedonic techniques 

to study the effect of energy prices and energy efficiency regulations on air conditioners and 

natural gas water heaters, Newell et al. (1999) find energy prices to have the largest technology 

inducement effect.  However, they do not estimate a price elasticity.  Popp (2002) uses patent 

data from 1970-1994 to estimate a long run price elasticity between energy prices and energy 

patents of 0.35.  Important for long-term modeling, Popp also finds evidence of diminishing 

returns to this R&D, so that the effect of a carbon tax on R&D will be smaller in the long run.  

Finally, Popp (2001) uses the same patent data to estimate the industrial energy savings resulting 

from new energy patents.  The average patent generates approximately 7.9 million dollars over 

the life of a patent.  To put this figure in perspective, consider that an average of 2.25 million 

dollars of R&D is spent per patent in these energy fields. 

 

B. Induced Innovation in Climate Change Models 

Despite the growing evidence that environmental policy influences the direction of 

technological change, few climate change models directly incorporate links between policy and 

technology.3  Those that do typically model innovation in one of two ways.  Bottom-up models 

include a detailed specification of energy systems.  These models typically do not include 

detailed modeling of the overall macroeconomy, and typically model induced technological 

change in a learning-by-doing framework, in which the costs of various technologies decrease 

with experience.  Examples include Gerlagh and van der Zwaan (2003), Manne and Richels 

                                                           
3 The results of Chakravorty, Roumasset, and Tse (1997) show why considering the link between policy and 
technological change is important.  They present a simulation showing that the development of alternative fuels 
lowers the projected temperature increases caused by global warming from 3-6 degrees centigrade to just 1-2 
degrees centigrade.  Unfortunately, they do not model the development of such technologies, but rather assume that 
they continue to develop at historical rates.  Since much of the development of alternatives such as solar energy 
occurred during the period of high energy prices during the late 1970s, assuming that historical rate of technological 
progress will continue without policy stimulation is unrealistic, and may lead to overly optimistic results. 
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(2002), Grübler and Messner (1998), and Messner (1997).  Top-down  models focus on the links 

between environmental policy and macroeconomic performance.  Endogenous technological 

change in these models typically comes through accumulated investment in research and 

development (R&D).  Recent models of this nature include Goulder and Schneider (1999), 

Nordhaus (2002), and Buonanno et al. (2003).  The ENTICE model builds on the work of the 

top-down models.   

Goulder and Schneider’s model is a computable general equilibrium (CGE) model 

including both a carbon-based energy sector and an alternative energy sector. They find induced 

R&D lowers the cost of achieving a given abatement target, but also increases the gross costs 

(costs before accounting for environmental benefits) of the carbon tax, as the economy now 

responds more elastically to the tax. They do conclude that the net benefits of a carbon tax are 

larger when induced innovation is considered—the cost of achieving any given level of 

abatement is lower when induced innovation is included in the model.4 

Nordhaus (2002) introduces the R&DICE model, a variant of the global DICE model 

using a fixed proportions production function to model induced technological change.  R&D is 

modeled as shifting the minimum level of carbon/energy inputs required for production. Factor 

substitution is not allowed in the model.  As a result, Nordhaus is able to compare the role of 

induced innovation to the role of factor substitution in reducing greenhouse emissions.  

However, he is not able to combine the two effects to show how the optimal carbon tax is 

affected.  Nordhaus concludes that induced innovation is less important than factor substitution 

for reducing greenhouse gas emissions.  In comparison, Buonanno et al. (2003) introduce 

technological change to the RICE model, which is a regional version of the DICE model.  They 

                                                           
4 These cost savings can be significant.  For example, the cost of achieving a 30% reduction in cumulative emissions 
falls by nearly 25% using their central case parameter values. 
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find that technological change is able to significantly lower abatement costs in this model, 

although the exact magnitude varies by region and whether or not trading of emissions rights is 

allowed. 

One key difference in the approaches used by Nordhaus and Buonanno et al. is the 

assumption each makes about the potential opportunity costs of R&D.  Nordhaus assumes that 

there is a fixed amount of total R&D spending in the economy.  Thus, any increases in energy 

sector R&D must come at the expense of R&D aimed at increasing the overall level of 

productivity.  In contrast, Buonanno et al. model a single R&D stock, which accumulates 

endogenously. The accumulated stock of R&D has two effects: it increases total factor 

productivity and decreases the carbon intensity of the economy.  Thus, rather than policy-

induced R&D crowding out other research efforts, in their model policy-induced R&D actually 

enhances overall productivity as well!   

 A look at recent data suggests that neither assumption is correct.  Figure 1 presents data 

on energy R&D and non-energy R&D performed by U.S. industries from 1972-1998.  The data 

are normalized so that 1982 = 100.  Although increases in energy R&D do lead to decreases in 

non-energy R&D, there is no evidence of a dollar for dollar tradeoff.5  Rather, the data suggest 

only partial crowding out occurs. 

To improve upon the results of these papers, my model includes a specification of 

production that allows for both endogenous technological change and factor substitution.  As 

such, I am able to study how endogenous technological change affects the optimal policy 

                                                           
5  Further evidence can be found by regressing non-energy R&D on energy R&D.  Complete crowding out results in 
a coefficient of –1 on energy R&D.  Using data from 1972-1998, and correcting for autocorrelation, I obtain the 
following regression results (standard errors in parenthesis): 

non-energy R&D = -9320.351478 –0.41energy R&D + 19.82GDP + ε 
        (4762.59)     (1.09)                        (0.73) 
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decision.  In addition, the model will be calibrated based on empirical estimates of energy-saving 

R&D derived in previous work.  These studies show that the reaction of R&D to changes in 

energy prices is quick, but that it may not be long-lasting, as there are diminishing returns to 

R&D over time.  Finally, the model is set up to allow straightforward sensitivity analysis of the 

opportunity cost of energy R&D.  The results show that assumptions on this opportunity cost 

have a significant effect on the magnitude of the welfare gains possible from induced innovation. 

 

II. The Model 

I begin by modifying the latest version of Nordhaus’ DICE model (Nordhaus 2000) to 

accommodate induced technological change.  The DICE model (Nordhaus 1994, 2000) is a 

dynamic growth model of the global economy that includes links between economic activity, 

carbon emissions, and the climate. A related model, the RICE model, extends the DICE model to 

include 13 regions of the world.  Documentation of the most recent modifications of the model 

(RICE-99 and DICE-99) can be found in Nordhaus and Boyer (2000).6 

My model, the ENTICE model (for ENdogenous Technological change), combines 

features of both models.  In particular, following the RICE-99 framework, I model carbon-based 

energy sources as an input to production, rather than a by-product requiring control.  However, I 

use the global framework of the DICE model, rather than the regional framework of the RICE 

model.  This offers a couple of advantages.  Most importantly, a particular goal of this research is 

to calibrate technological change in a way that is consistent with existing empirical studies.  

Calibrating a regional model would not only require estimates of induced innovation that varied 

by region, but also information on flows of knowledge across regions. Given the limited

                                                           
6 This publication is available on the Internet at: http://www.econ.yale.edu/~nordhaus/homepage/dicemodels.htm. 
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empirical evidence available, calibrating a regional model is left for future research.  In addition, 

the DICE model is simpler in structure, and thus is more accurate for long-time frames 

(Nordhaus and Boyer 2000).  Because of the long-term nature of technological change, trading 

off regional detail for greater long-term accuracy seems worthwhile.  

In both the DICE and ENTICE models, the goal of the model is to maximize per capita 

utility, equation (1), subject to the economic constraints below [equations (2)-(10)].7 

(1)  t

T

t
ttt RLcUV ∑

=

=
0

],[max  

In this equation, Ut represents utility at time t, ct is per capita consumption, Lt represents 

population, and is also the measure of labor inputs.  Rt is a discount factor to represent the rate of 

time preference.8 

The objective function, (1), is maximized subject to the following constraints.  First, 

production is defined.  The ENTICE model follows the RICE model by including emissions as 

an input to the production process.  Below, Qt represents output produced at time t.  Overall 

technological progress comes through changes in total factor productivity, At. In addition to 

labor, other inputs are the physical capital stock, Kt, and Ft, which represents the level of fossil 

fuels used at time t.  The cost of these fuels is pF.  Et is a measure of effective energy units that 

                                                           
7 Environmental equations remain unchanged from the DICE model, and are not presented here.  They are included 
in an appendix available from the author. 
8 As many economists have recently noted, discount rates that seem appropriate for single-generation projects may 
be inappropriate for long term projects that span several generations.  Although there is no consensus on how to deal 
with this problem, a constantly declining discount factor is consistent with suggestions that a lower discount rate 
should be used for the distant future.  Thus, following Nordhaus, the pure rate of social time preference, R, declines 

over time to capture uncertainty over future conditions, and is given by [ ]
10

0
01)( ∏

=

−+=
t

v

tgreRtR , where gR is a 

parameter defining the growth of R over time.  Portney and Weyant (1999) provide a good review of the current 
debate on discounting for long-term environmental projects. 
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accounts for both fossil fuel inputs and technological change in the energy sector.  The cost of 

these fossil fuels are subtracted from total output in the ENTICE model:9 

(2)  tFttttt FpELKAQ −= −− ββγγ 1  

Labor is determined by exogenous population growth.  The capital stock, Kt, equals the 

sum of current investment, It, and the previous capital stock, adjusted for depreciation, δ: 

(3)  Kt = It – δKt-1. 

In equilibrium all output must go to either consumption or investment, so that: 

(4)  Qt = Ct + It. 

To begin, consider the case of exogenous technological change only.  Following the 

RICE model, exogenous technological improvement comes through changes in the ratio of 

carbon emissions per unit of carbon services, Φt.  Φt increases over time as defined below, where 

gt
z is the growth rate of Φt per decade, and δz is the rate of decline of this growth rate.  Given 

this, actual carbon emissions are represented in the model as: 

(5)  
t

t
t

F
E

Φ
= , where 

 ( )( )











−−








=Φ t

g z
z

z
t

t δ
δ

exp1exp  

The parameters defining Φt are calibrated to match the emissions path of the DICE model.   

Since the ENTICE model includes carbon-based energy as an input to production, it is 

necessary to include a cost for this input.  Following the RICE model, the price of carbon is the 

sum of the marginal cost of carbon extraction, qF, and a markup that captures the difference 

                                                           
9 Energy consumption, represented by fossil fuel usage, F, is measured in tons of carbon.  The price of fossil fuels is 
thus the price per ton of carbon. 
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between consumer prices and the marginal costs of extraction.  Nordhaus notes that this markup 

includes transportation costs, distribution costs, and current taxes. 

(6) PF = qF + markup 

In the RICE model, the markup varies by region.  To adopt this parameter for the global 

ENTICE model, I use a weighted average of regional markups from RICE, weighting by each 

region’s share of total carbon consumption in the base year.  This value equals 163.29. 

Following Nordhaus, the marginal cost function, qF, takes the following form: 

(7) 
4*]/[700113 CumCCumCq tF +=  

CumCt represents cumulative carbon extraction up to year t, and CumC* represents the 

maximum possible extraction.  In this equation, the marginal cost independent of exhaustion is 

$113 per ton.  Marginal costs increase as extractin increases. Note that the price equation is 

extremely convex – the carbon price equation is relatively elastic in the short run.10 

Having added carbon fuels as an input to production in the DICE model, the next step is 

to add induced technological change to the ENTICE model.  For this, I create a stock of 

knowledge that relates to energy efficiency.  Similar to a physical capital stock, this knowledge 

capital stock is created by the accumulation of previous research and development (R&D) in the 

manner described below. 

(8)  ( ) 1,,, 1)( −⋅−+= tEHtEtE HRhH δ ,    i = A,E 

Equation (8) states that the stock of knowledge, HE,t, increases due to increases in R&D 

net depreciation of old knowledge.  The function h(RE,t) is the innovation possibility frontier.  It 

models the process by which energy R&D, RE,t, creates new knowledge.  The parameter δH 

allows for the possibility of knowledge decay over time. 

                                                           
10 A more detailed discussion of the derivation of these parameters can be found in Nordhaus and Boyer (2000). 
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As noted earlier, empirical work suggests that there are diminishing returns to energy 

research over time.  The assumption here is that, since energy R&D is specialized within a given 

field, it becomes more and more difficult to find new inventions as the knowledge frontier moves 

out.  Thus, any functional form for the innovation possibility frontier must have the following 

properties.  First, the derivative of h with respect to R should be positive, but the second 

derivative should be negative, so that there are diminishing returns to research at any given time.  

In addition, the derivative ∂2H/∂R∂H should be negative, so that there are diminishing returns to 

research over time.  One functional form that satisfies these assumptions is a constant elasticity 

relationship between research and knowledge: 

(9)  h(RE,t) =  aRb
E,tHφ

E,t 

A similar innovation possibilities frontier is often used in the endogenous growth literature.11  

Equation (9) satisfies the two assumptions regarding diminishing returns to R&D as long as both 

b and φ are between 0 and 1.   

Having defined this stock of knowledge, total energy use is now modeled as a 

combination of carbon-based fossil fuels and energy-related human capital.  Energy-based 

human capital can be thought of as knowledge that allows output to be produced with less carbon 

emissions, either because of increased energy efficiency or more effective emissions control: 

(10)  
ρρ

ρ

α
α

1

,



















Φ

+=
Φ t

t
tEHt

F
HE ,  ρ ≤ 1 

                                                           
11 See, for example, Jones (1995) and Porter and Stern (2000).  Romer’s (1990) original specification of the 
endogenous growth model is a special case of this where φ = 1.  By setting φ = 1, Romer generates increasing 
returns to knowledge over time.  While this may be appropriate for macro-level R&D, for more specific R&D in a 
given field, it is reasonable to assume that the returns fall over time as the pool of potential ideas in the field dries up 
[see, for example, Griliches (1989 p. 317)].  Popp (2002) uses energy patent citations to provide evidence of 
diminishing returns to energy R&D. 
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Equation (10) states that the total energy requirements for production must be met either 

by the use of fossil fuel or by technological advances that substitute for fossil fuels.  The 

technological advances may be thought of as improvements in the energy efficiency of existing 

production processes, as fuels that are substitutes for fossil fuels, or as improvements in 

emissions control technology.  In this equation, ρ represents the ease of substitution between 

fossil fuels and knowledge.  The case of perfect substitution is ρ = 1. The elasticity of 

substitution between them is 1/(1–ρ).  αH is a scaling factor that determines the level of energy 

savings resulting from new energy knowledge.  αΦ is a scaling factor for any remaining 

exogenous reductions in carbon intensity.   

The scaling factor αΦ is included to allow for other potential exogenous changes that may 

lower carbon intensity (the carbon/output ratio).  The R&D modeled through the innovation 

possibilities frontier captures purposeful short-term efforts to improve energy efficiency or 

otherwise reduce carbon emissions.  However, such R&D is not the only way in which carbon 

intensity falls over time.  Examples of other potential influences on carbon intensity include 

changes in consumption patterns and switching to less carbon intensive fuels (e.g. from coal to 

oil to natural gas) over time.  Because the DICE model and its variants are a one-sector 

macroeconomic growth model, such changes are not explicitly modeled.  As Nordhaus calibrates 

exogenous technological change based on historical rates of decarbonization, it is impossible to 

separate out these effects from the effects of R&D in his rate of exogenous technological change.  

Removing these exogenous influences from the model completely would not only remove the 

results of any energy R&D included in Nordhaus’ calibration, but also would remove the effect 
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of these other long-term changes in carbon intensity.  As a result, long-run emissions simulated 

without any exogenous decline in carbon-intensity are unrealistically high.12 

Because of the public goods nature of knowledge, the role of market failures in R&D 

must be considerd.  Virtually all empirical studies of R&D find that the social returns to R&D 

are greater than the private returns to R&D.13  Since firms will invest until the private rates of 

return to R&D are equal to the rates of returns on other investments, underinvestment in R&D 

will occur.  To model the positive externalities that result from the creation of new knowledge, 

the private return on R&D investment is constrained to be four times that of investment in 

physical capital.14 

Finally, we need to account for the opportunity cost of R&D.  First, equation (4) is 

modified to include R&D: 

(4’)  Qt = Ct + It + RE,t 

Second, the potential effects of crowding out must be considered.  The opportunity cost of a 

dollar of energy R&D is that one less dollar is available for any of three possible activities: 

consumption, physical investment, or investment in other R&D.  The opportunity costs of the 

first two are simply valued at one dollar.  However, since the social rate of return on R&D is four 

times higher that of other investment, losing a dollar of other R&D has the same effect as losing 

four dollars of other investment.  Thus, the price of any research that crowds out other research is 

four dollars. 

                                                           
12 Fortunately, sensitivity analysis suggests that the percentage of exogenous technological change remaining does 
not affect the net economic impact of induced technological change.  The intuition is that it is the level of R&D 
induced between an exogenous and endogenous R&D simulation that affects this difference.  Changing the scaling 
factor only changes the level of emissions in each simulation, but not the difference between them.  This is discussed 
more thoroughly in the sensitivity analysis presented in section IV. 
13 There is a large body of empirical work that verifies the social returns to R&D are greater than the private returns.  
Examples include Mansfield (1977, 1996), Pakes (1985), Jaffe (1986), and Hall (1995). 
14 This is done by calculating the marginal products of physical capital investment and energy R&D, and 
constraining the latter to be four times higher than the former. 
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To implement this, four dollars of private investment are subtracted from the physical 

capital stock for each dollar of R&D crowded out by energy R&D, so that the net capital stock 

is: 

(3’)  Kt = (It – 4*crowdout*RE,t)– δKt-1, 

where crowdout represents the percentage of other R&D crowded out by energy R&D.  The base 

ENTICE model assumes 50% crowding out.   

To calibrate the R&D sector of the ENTICE model, several new parameter values are 

needed.   These include: 

• the initial value of energy research, RE0.  This value is 10 billion dollars.15   

• ρ, the substitution parameter in equation (10), 

• parameters in the invention possibilities frontier (9): a, b, and φ, and 

• the initial level of energy human capital, HE0,16
 

• αΗ , the scaling factor for the effect of this human capital, and 

• αΦ , the percentage of exogenous reductions in carbon intensity remaining. 

I calibrate these parameters to yield results consistent with empirical work on induced 

innovation in the energy sector.  I focus on several key results: 

• Estimates of the elasticity of energy R&D with respect to changes in energy prices 

suggest that the response is inelastic.  Using a distributed lag model, Popp (2002) finds 

a long run elasticity of 0.35. In a similar study, Jaffe and Palmer (1997) estimate an 

                                                           
15 To get this value, I begin with an estimated level of total global spending on R&D of $500 billion.  This figure is 
based largely on data from OECD countries.  Energy R&D data is not available on a global basis.  However, it is 
available for the United States.  In the U.S., two percent of R&D spending in 1995 went to energy-related R&D.  
The $10 billion figure used in this paper is simply two percent of the global level of R&D.  This figure is also close 
to the initial value of R&D used by Nordhaus (1999).  
16 Note that, since human capital enters the invention possibilities frontier multiplicatively, the initial value cannot 
be zero. 
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elasticity of pollution control R&D with respect to pollution control expenditures of 

0.15. 

• There are diminishing returns to energy R&D.  Although energy prices peaked in 

1982, patenting activity in these energy-related technologies began to drop during the 

late 1970s.  Popp (2002) provides evidence that this decline can be explained by 

diminishing returns to R&D over time. Thus, the inducement effect of energy prices 

will fall over time. 

• Energy R&D has a significant impact on energy consumption.  Using energy patent 

data from 13 energy-intensive industries, Popp (2001) finds that each new energy 

patent leads to 8 million dollars of energy savings.  To put this figure in perspective, 

consider that an average of 2 million dollars of R&D is spent per patent in these 

energy fields – suggesting a 4:1 ratio of energy savings to energy R&D.17  This ratio is 

consistent with other empirical studies, such as those cited in footnote 13. 

• Both the response of energy R&D to price changes and the energy savings resulting 

from these new technologies occur quickly.  Using the lag parameter from a 

distributed lag regression, Popp (2002) finds that mean lag for the effect of energy 

prices on energy patenting is 3.7 years, and the median lag is 4.9.  In addition, the 

energy savings resulting from new patents occur quickly.  Popp (2001) estimates rates 

of decay and diffusion for the knowledge embodied in new patents in 13 industries.  It 

takes just three years for an invention represented by a patent application to have its 

maximum effect on energy consumption.  Since the responses are fairly quick, and 

                                                           
17 Popp (2001) is a micro-level study focusing on specific industries and technologies.  Since the industries included 
are energy-intensive industries, the total impact of energy R&D on the global economy may be somewhat smaller.  
As a result, the sensitivity analysis includes results of simulations using a 2:1 ratio of energy savings to energy 
R&D.   
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since each time period in the ENTICE model represents one decade, I assume that the 

full effects of price changes on energy R&D occur within each decade. 

Table 1 lists the parameter values used for both the base case simulations, as well as for 

various alternate scenarios considered in section IV.  A complete discussion of the steps required 

for calibration is available in an appendix.   

 

III. Policy Simulations 

With the completed ENTICE model in hand, I proceed to simulate the results of imposing 

a carbon emissions policy on the global economy.  The goal in each simulation is to compare the 

results of imposing a policy under exogenous technological change to the results of imposing a 

policy under endogenous technological change in the energy sector.  I simulate exogenous 

technological change by restricting energy R&D to equal the levels found in a base-case no 

policy simulation.  In each, a carbon tax will be used as the policy instrument to achieve reduced 

emissions.18  I calculate the net economic impact of a policy as the present value of consumption 

under the policy minus the present value of consumption in the base case, in which carbon 

emissions are uncontrolled. Two policy options are considered: an optimal policy in which the 

marginal costs of carbon abatement equal the marginal environmental benefits of reduced carbon 

emissions, and restricting emissions to 1995 levels.  The more restrictive policy is included 

                                                           
18 Of course, other policy instruments, such as international permit trading, have received more attention in recent 
climate negotiations.  In a global model such as ENTICE, trading among countries is not possible.  Nonetheless, 
since a successful permit market would equate marginal abatement costs across countries, a carbon tax set at the 
marginal cost of abatement can also be thought to represent the price of a permit that would result.  One difference is 
that, under permit trading, new innovations would result in cost savings, but not in emissions reductions, since the 
number of permits is fixed.  A discussion of such a simulation follows. 
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because most climate policies proposed in the policy arena aim for far greater restrictions than 

called for in an optimizing economic model.19 

 

A. Optimal Policy 

Because the DICE model and its variants incorporate environmental damages into the 

model, it is possible to calculate an optimal carbon policy, in which the marginal costs of carbon 

abatement equal the marginal benefits of lower emissions.  Typically, simulations involving 

these models find that the optimal policy is to go slow.  Since carbon emissions remain in the 

atmosphere for several hundred years, the marginal damages resulting from any new emissions 

are modest.  Thus, gradually phasing in carbon reduction lowers the opportunity cost of reducing 

emissions without having much impact on the global climate.  As an example, Nordhaus and 

Boyer (2000) calculate an optimal carbon tax in 2005 of $9.13 per ton.  In comparison, 

restricting emissions to 1990 levels would require a carbon tax of $52.48. 

The first row of table 2 shows the welfare gains for the optimal policy scenario.  

Including endogenous technological change increases welfare by 8.3%.  An optimal carbon tax 

with exogenous technological change improves welfare by $1.74 trillion.  This welfare gain 

increases to $1.88 trillion when the effects of R&D induced by the policy change are considered. 

Although the effect of endogenous technological change on overall welfare is significant, 

its effect on key economic and environmental variables is small.  Table 3 provides more detail on 

the effect of endogenous technological change on key variables.  Note that the magnitude of the 

optimal policy does not change when technology is endogenous.  Both the optimal carbon tax 

                                                           
19 For example, the Kyoto Protocol requires industrialized country emissions to be reduced by 5 to 8 percent below 
1990 levels.  Since the DICE model is global, capturing regional differences, such as the lack of restrictions on 
developing countries, is not possible.  Thus, I use a slightly higher global emissions constraint to allow for higher 
emissions from developing countries. 
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and optimal control rate are virtually unchanged.  Moreover, although emissions fall somewhat 

when technological change is endogenous, the slight decrease in emissions has little effect on 

average global temperature.  Figure 2 plots the deviation from 1900 temperature levels with no 

policy, optimal policy with and without endogenous R&D, and the more restrictive policy 

limiting emissions to 1995 levels.  Even including induced technological change, an optimal 

carbon policy does not come close to reaching the temperature limits imposed by more restrictive 

policies.  There is almost no variation in global mean temperature between the endogenous and 

exogenous R&D case.  In fact, after 100 years the temperature is just 0.04% lower when the role 

of endogenous technological change is included. 

One reason for the small change in atmospheric temperature is that much of the welfare 

gains from induced technological change come from cost savings that make meeting 

environmental goals cheaper.  To explore this further, I re-ran the model allowing for 

endogenous energy R&D and a carbon tax, but fixing emissions in the policy run to equal those 

found with exogenous R&D and a carbon tax.  In this case, the only benefits coming from 

increased energy R&D are potential cost savings, as emissions, and thus climate, do not change 

from the exogenous R&D case.20  In this case, considering endogenous energy R&D increases 

welfare by 8.1%, rather than the 8.3% increase found when emissions were allowed to change.  

In the ENTICE model, the primary gains from energy R&D come not from climate 

improvements, but from reducing the opportunity cost of reducing fossil fuel emissions. 

To help interpret the magnitude of the energy R&D performed in the simulations, Table 3 

includes the level of energy R&D activity with both exogenous and endogenous R&D and the 

                                                           
20 This simulation could also be thought of as the effect of using tradable permits, rather than a carbon tax, to 
implement an “optimal” emissions path. 
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elasticity of energy R&D with respect to carbon price. 21  This figure is calculated for each year 

based on the difference in both energy R&D and carbon prices in simulations with and without 

policy.  Based on the results of Popp (2002), the model is calibrated so that this elasticity equals 

0.35 in 2005.  Because diminishing returns to energy research reduce the inducement effect over 

time, the elasticity of energy R&D falls over time, as shown in Figure 3.22  Thus, diminishing 

returns to research have the effect of lowering energy R&D somewhat in the long-run. 

These results present a puzzle.  The changes in individual variables are small, yet the 

welfare gains are more significant.  Examining the effect of the carbon tax on energy R&D helps 

explain this finding.  The additional induced R&D from the optimal carbon tax is small, as the 

tax is just a small percentage of the overall price of carbon.23 In addition, energy R&D is just a 

small part of the overall economy.  Because energy R&D is a small part of the overall economy, 

and the elasticity of energy R&D to energy prices is also small, adding induced innovation to the 

DICE model has little effect on the optimal policy.  Nonetheless, because knowledge is 

cumulative, small changes in R&D in any given year have important long-run effects.   

The finding that technological change has just a small effect on these annual measures 

emphasizes that it is important to look not at the change in individual variables, but at the overall 

welfare change.  Although the annual value of these benefits may be small, the accumulated 

value over a 300-year time span is important.  The creation of new knowledge not only offers 

benefits to current generations, but also provides the building blocks for future research.  As a 

result, long-run welfare gains are larger with endogenous technological change.  This is 

                                                           
21 Recall that the level of energy R&D with exogenous technological change is simply the level of energy R&D 
from the base case simulation without policy. 
22 To account for the effect of economic growth, all elasticities are calculated using the ratio of energy R&D to 
output. 
23 For example, the $10.16 in 2005 is just 3.5 percent of the total price of carbon. 
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illustrated by Figure 4.  Figure 4 compares the cumulative welfare gain in the endogenous and 

exogenous technology cases.24  In the years immediately after implementation of a carbon tax, 

benefits actually accumulate more quickly with exogenous technological change.  Early on, the 

opportunity cost of additional R&D reduces welfare gains.  However, by 2125, the welfare gains 

with endogenous technological change begin to outpace those with exogenous technological 

change, with the difference between them soon stabilizing.   

To further illustrate the effects of additional R&D spending, Figure 5 shows the 

accumulation of welfare gains over time resulting from an additional $1 billion energy R&D 

spent in the base year of 1995.  Note that welfare initially falls after the introduction of $1 billion 

of energy R&D, before reaching an eventual increase of $5.12 billion.  This 5:1 ratio is 

consistent with the notion that the social returns to R&D should be significant, due to the public 

goods nature of research. 

 

B. Restricting Emissions to 1995 Levels 

Adding induced innovation to the ENTICE model also increases welfare in the more 

restrictive carbon abatement policies, although the effect is smaller.  Indeed, the net economic 

impact of restricting emissions to 1995 levels is negative even with endogenous technological 

change.  Section B of Table 2 presents the net economic impact of these restrictions.  Induced 

innovation improves welfare by 5.6% under the more restrictive policy, compared to 8.3% under 

the optimal policy.  As shown in Figure 6, with either endogenous or exogenous energy R&D, 

the net economic impact is initially positive, but becomes negative beginning in 2035.  As the 

restriction becomes more binding, requiring more control, the economic costs become too great 

                                                           
24 That is, the figure shows the net economic impact of the optimal policy through the year given on the x-axis. 
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to justify the policy.  For example, in 2025, the restrictive policy calls for a 29.1% reduction in 

emissions, compared to 5.4% with the optimal policy.   

Innovation has a more limited effect under a restrictive policy because increased energy 

R&D crowds out other investment.  To see this, note that net welfare gain from induced 

innovation improves from 5.6% to 8.3% if no crowding out is assumed.  A similar experiment in 

the optimal policy scenario only increases the welfare gain from 8.3% to 9.5%.25  Stronger 

emissions restrictions induce more R&D, which amplifies the welfare effects of crowding out.   

Table 3 shows how other variables change when energy R&D is endogenized.  Including 

induced innovation lowers the carbon tax needed to restrict emissions to 1995 levels by about 

one percent.  Unlike the optimal policy, emissions do not change after induced innovation is 

included in the model, since this is a command and control policy.  Thus, the changes in the 

carbon tax provide a guideline as to how much tax rates could potentially fall in the optimal 

scenario if the level of emissions did not change.  As before, there is little change in the levels of 

consumption and output between the endogenous and exogenous cases.  

 

IV. Sensitivity Analysis 

In developing a model such as the ENTICE model, several key assumptions must be 

made.  To calibrate the model, future projections of energy R&D are based on historical energy 

R&D performance.  Although these are useful in providing a guide to future energy R&D 

performance, there is no guarantee that energy R&D trends will remain the same.  Thus, it is 

important to consider the potential effects of changes in the behavior of the energy R&D sector.  

Furthermore, critical assumptions about the behavior of the R&D sector, such as the potential 

role of crowding out, also affect the results.   
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In this section, I focus on the sensitivity of the model to key assumptions used to calibrate 

the model.26  I begin by examining three assumptions about the R&D sector: the opportunity cost 

of R&D, deviation between the private and social rates of return to R&D, and the decay rate of 

knowledge.  I then examine three key choices made in calibrating the model: the percentage of 

exogenous R&D remaining, the elasticity of energy R&D, and the energy savings resulting from 

such R&D.  For each simulation, changes in the parameters were needed.  Table 1 shows the 

parameter assumptions for each scenario.  Table 2 presents the net economic impact of each 

scenario. 

 

A. The Opportunity Cost of R&D 

The results of section III, along with previous research on induced innovation and climate 

policy, suggest that the potential for energy R&D to crowd out other forms of R&D may limit 

the gains from induced innovation.  Goulder and Schneider (1999) first noted that models 

ignoring such costs underestimate the costs of carbon policy.  I examine this claim more 

carefully here, and show that assumptions about the opportunity cost of R&D are crucial in 

explaining the limiting role of induced technological change found by many recent models. 

In the ENTICE model, increases in the opportunity cost of energy R&D come from 

potential crowding out of other, more general R&D.  The base model assumes 50% of energy 

R&D comes at the expense of other research opportunities.  To examine the importance of this 

                                                                                                                                                                                           
25 The sensitivity analysis in section IV provides more detail on the effect of crowding out. 
26 Although it is possible to check the sensitivity of the model to the individual R&D parameters, these results are 
less meaningful, as the resulting energy R&D would not be consistent with real-world data. Upon changing one 
parameter, it is possible to adjust more than one parameter at a time to get other patterns of energy R&D that closely 
match the data.  In these cases, the results are similar to those presented above.  In general, changing any of the 
R&D parameters has little effect.  The only variable experiencing significant effects is energy R&D, but since 
energy R&D is such a small portion of the total economy, other variables are not affected.  The one exception is that 
increasing the elasticity of substitution, ρ, increases the elasticity of energy R&D with respect to price, and thus the 
level of R&D induced in each simulation.  Sensitivity analysis based on this is presented below. Results of 
sensitivity analysis for other individual parameters are available from the author by request. 
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assumption, I consider a low opportunity cost case with no crowding out, and a high opportunity 

cost case with complete crowding out.  In doing so, it is important to note that changing the 

opportunity cost of R&D changes the level of energy R&D.  However, the model is designed to 

be calibrated to actual values of energy R&D.  Thus, I present lower bound and upper bound 

values for the sensitivity to potential crowding out effects.  The upper bound scenario allows 

R&D to adjust as a result of changes in the opportunity cost.  This, for example, could be thought 

of as the maximum gains possible from government policy that was able to alleviate potential 

crowding out effects.27  As a lower bound, I run the model changing the opportunity cost of 

R&D, but constrain energy R&D in each case to equal energy R&D in the corresponding base 

case scenario.  Here, for example, welfare gains in the low opportunity cost case should be 

interpreted as the gains from removing the assumption of partial crowding out.  They are not the 

gains that would result if the government intervened to remedy the problem of partial crowding 

out.  

Beginning with the optimal policy simulations, the upper bound scenarios suggest 

policies that could alleviate potential crowding out effects would have large impacts.  

Completely removing crowding out of R&D increases the welfare gain from induced innovation 

in the optimal simulation from 8.3 percent to 43.6 percent.  Similarly, simulations with complete 

crowding out lead to just a 1.8% gain from induced innovation.  The more conservative lower 

bound simulations, which change the opportunity cost of R&D but constrain energy R&D to 

historical levels, also suggest that assumptions about crowding out are important.  However, the 

magnitude of the effect is smaller.   Assuming no crowding out increases the welfare gain from 

induced R&D from 8.3% to 9.5% in the optimal simulation, whereas assuming full crowding out 

                                                           
27 In these simulations, energy R&D levels change in both the base case and in the policy scenarios.  The effect of 
policy that addressed opportunity costs only in conjunction with a climate policy will fall in between the upper and 
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lowers the gain from 8.3% to 7.6%.  In the more restrictive emissions policy case, the 

opportunity cost is more harmful, since more R&D is induced by the policy change.  Thus, as 

discussed before, changes in the opportunity cost have a greater impact on net economic welfare 

than with the optimal policy.   

These results suggest that assumptions about the opportunity cost of R&D are a key 

difference among models.  For example, Nordhaus (2002) assumes complete crowding out of 

R&D, which limits the potential welfare gains from his model.  In comparison, models such as 

Buonanno et al. (2003) that do not include crowding out are more optimistic about the possible 

effects of induced technological change.  More importantly, this suggests that models using 

learning-by-doing as the avenue for technological improvement will overstate the potential of 

technological change, as such crowding out does not occur in learning by doing models.  

Although such models have an opportunity cost to increasing investment in alternative energy 

technologies, this cost is simply the loss of one dollar of potential investment elsewhere, as 

opposed to the loss of more productive R&D funds from elsewhere in the economy. For 

example, both Gerlagh and van der Zwaan (2003) and Manne and Richels (2002) use learning by 

doing to model technological change, and both find welfare gains from technology to be 

significantly higher than in ENTICE.28 

 

B. Deviation Between the Private and Social Rate of Return 

The base model constrains the social rate of return on R&D to be four times greater than 

that of the return on other investment.  This assumption is consistent with the empirical finding 

that firms underinvest in research, as they are unable to capture the entire social returns.  

                                                                                                                                                                                           
lower bounds. 
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However, the problem of underinvestment could be addressed by subsidies to energy R&D, if 

government investments in R&D are set so that all social returns are captured.  Models that do 

not include market failures, such as Buonanno et al. (2003) implicitly assume that government 

R&D subsidies are sufficient to correct all market failures. 

Simulations removing the constraint on returns to R&D suggest that the returns on such 

subsidies could be quite significant.  The gain from ETC for the optimal policy improves to 

14.0% when energy subsidies are considered.  Only the upper bound of the low opportunity cost 

scenario has a higher welfare gain.  Similarly, adding R&D subsidies to the endogenous R&D 

case increases the net welfare gain to seven percent in the more restrictive policy case.    

 

C. Decay Rate 

Many models of R&D assume that the stock of accumulated knowledge decays over 

time, due to obsolescence.  The base model assumes no such decay, as such an assumption is 

necessary for the base (no policy) run to accurately simulate both energy R&D and emissions 

levels.  Here, I evaluate the effect of knowledge decay by assuming a ten-percent decay of 

knowledge.  I consider two possible scenarios.  In the first scenario, base emissions are calibrated 

correctly, but long-run energy R&D levels are higher than justified by historical standards.  This 

is because some energy R&D now serves the purpose of simply replacing decayed knowledge, 

rather than providing new energy savings.  I calibrate the second scenario so that energy R&D 

levels are consistent with historical levels.  Since there is not enough R&D to replace decayed 

knowledge in this instance, the resulting long-run emissions are higher than the base model.29  

Not surprisingly, adding decay decreases the welfare gains from induced innovation, although 

                                                                                                                                                                                           
28 Gerlagh and van der Zwaan (2003) report that welfare improves by a factor of three when learning-by-doing is 
included.  Manne and Richels find that cost fall from 42-72 percent when learning-by-doing is considered. 
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the effect is not large.  In the first scenario, the welfare gain from endogenous energy R&D falls 

from 8.3% to 7.1%.  The effect of knowledge decay is more noticeable in the second scenario, in 

which the welfare gain is only 4.4%.  Similar results are found with the more restrictive 

emissions policy. 

 

D. Return to energy R&D 

The previous three subsections include sensitivity about assumptions made for modeling 

the R&D sector.  The remaining three subsections address sensitivity to the values used to 

calibrate the model.  Although these values are based on historical energy R&D performance, 

there is no guarantee that energy R&D trends will remain the same.  Understanding the potential 

effects of changes in these values is crucial.  The simulations suggest that assumptions about the 

potential savings from energy R&D are most important. 

Following Popp (2001), in the base model I assume each dollar of energy R&D leads to 

$4 of energy savings.  Here, I re-calibrate the model assuming that each dollar of energy savings 

leads to only $2 of energy savings.  As would be expected, reducing potential energy savings in 

half reduces the potential welfare gains from induced innovation by approximately one-half.  

Welfare increases only 4.3% when energy R&D is endogenous, compared to 8.3% in the base 

case.  Similarly, the welfare increase falls from 5.6% to 3.7% under the more restrictive 

emissions policy. Thus, uncertainty about the potential savings resulting from future energy 

R&D is an important consideration.  Unfortunately, most simulations to not report the energy 

savings that occur per dollar of R&D spending, so evaluation of other models on this important 

assumption is not possible.30 

                                                                                                                                                                                           
29 Figures showing the resulting emissions and energy R&D levels are available from the author by request. 
30 The one exception is Nordhaus (2002). 
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E. Elasticity of R&D 

The base model is calibrated so that this elasticity equals 0.35 in 2005, and declines over 

time.  This is consistent with the results of Popp (2002).  In this section, I re-calibrate the model 

to yield elasticities approximately twice as high as those of the base case.  Figure 3 shows the 

elasticities in the base case and alternative scenario.  Interestingly, doubling the response of 

R&D does not have a large impact on welfare.  Under an optimal carbon policy, the welfare 

gains from induced innovation increase by just 6%, from 8.3% to 8.8%.  One reason for the 

small effect is that some of the gains are canceled by potential crowding out.  When the 

assumption of partial crowding out is removed, welfare gains rise by 33%, from 9.5% to 12.7%.   

Under a more restrictive carbon policy, changes in the elasticity appear more important.  

Here, adding induced energy R&D increases welfare by 14.4%, compared to 5.5% in the base 

case.  Because the costs of a restrictive policy are much greater, a higher elasticity of energy 

R&D with respect to energy prices leads to a significant increase in R&D under the restrictive 

policy.  Unfortunately, most other models do not report the elasticities resulting from parameter 

choices, making evaluation of other models on this feature difficult. 

 

F. Exogenous Reduction of Carbon Intensity 

One potential concern is that, in order to maintain realistic projections for baseline 

emissions, much of the exogenous reduction of carbon intensity described in section II remains 

in the model with endogenous R&D.  This assumption is necessary for the base (no policy) 

model to accurately simulate both the energy R&D sector and projected carbon emissions.  It 

does not, however, affect the potential welfare gains from induced innovation.  As Figure 7 

shows, lowering this percentage leads to significantly higher levels of long run emissions.  

However, what matters for the welfare gains is not the baseline level of emissions, but rather the 
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changes that occur when policy is enacted, both with and without endogenous technological 

change.  Since the level of induced R&D does not change much, the welfare gains from 

endogenous R&D are similar to the previous results, with a net economic impact of 7.1%.31   

 

V. Discussion 

These results suggest that omitting induced innovation from the DICE model overstates 

the costs of complying with carbon change policies.  Using the base parameters, welfare under 

an optimal carbon tax improves by 8.3% when induced innovation is considered.  Furthermore, 

the model allows for straightforward testing of key assumptions about knowledge markets.  Most 

important is the finding that removing crowding out may lead to large increases in welfare.  This 

calls into question the results of models such as Buonanno et al. (2003), that not only do not have 

crowding out of R&D, but allow for complementarities between energy R&D and other forms of 

R&D.  In addition, it suggests that modeling technological change solely by learning by doing 

overstates the potential of new technologies to lower cost.32 

In addition, assumptions about market failures in knowledge markets are important.  

When R&D is left to the private sector, the inability to completely appropriate returns will lead 

to underinvestment.  Removing the deviation between private and social rates of return in the 

model increases the net welfare gain to 14%.  Thus, models that neglect to include some notion 

of R&D market failure will provide more optimistic results.  While such results are attainable, it 

is important to note that R&D subsidies from government would typically be needed for that to 

occur. 

                                                           
31 Alternatively, one can calibrate the model so that emissions fit the desired pattern by having R&D rise 
substantially to adjust for the lack of exogenous technological change.  This leads to a more significant increase in 
welfare, but also very unrealistic R&D levels.  For example, energy R&D is 300% higher in 2005 in this simulation. 
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The results of this paper suggest several important lessons for policymakers tempted to 

rely on technology as a cure-all for climate change.  First, and most obvious, is that these 

technological gains will not occur without some policy signal to innovators that energy 

efficiency research will be profitable.  Second, although induced innovation can lower the cost of 

any climate change strategy, the effect on the environment was minimal.  Most of the welfare 

gains from induced innovation in the optimal policy scenario came from cost savings, not 

temperature reductions.  Achieving significant reductions in future warming will not be possible 

without restrictive climate change policies.  As the simulations restricting emissions to 1995 

levels show, these are likely to come at a cost to society, even when the potential of induced 

innovation is realized. 

Third, as other researchers have also noted (see, for example, Goulder and Schneider 

1999), new energy research comes at a cost, as other investments are reduced.  In particular, any 

reductions in other R&D will limit the welfare gains from new energy R&D.  As shown in the 

sensitivity analysis, going from complete crowding out of other R&D to no crowding out of 

other R&D increases the potential welfare gains from induced innovation by as much as a factor 

of five.  More research on both the magnitude of any crowding out that may occur, as well as 

policies that could help alleviate crowding out, would both be helpful. 

Fourth, the limiting effect of market failures in R&D markets suggest that R&D subsidies 

and government financed R&D could improve the potential gains from new technologies.  In 

deciding on government R&D projects, policymakers can focus on the social, rather than private 

rates of return. As shown in the sensitivity analysis, doing so could increase the potential gains 

from induced technology by nearly two-thirds. 

                                                                                                                                                                                           
32 This is not to say that learning-by-doing is not important.  Rather, it is that learning-by-doing should not be 
modeled as the only way in which technology evolves. 
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Finally, limitations of the ENTICE model must be discussed.  First, by modeling the 

world as a single region, the ENTICE model simplifies policy dramatically.  Expanding these 

results to a regional model, based on Nordhaus’ RICE model, would be beneficial.  However, to 

do so would require research on how innovative effects vary by region, and how technology 

diffuses across regions.  In general, new innovations are developed in the industrialized world 

and diffuse slowly to developing countries.  For example, of the $500 billion spent on R&D in 

the 28 OECD countries in 1997, 85% occurred in just 7 countries (National Science Board, 

2000).   

Second, the ENTICE model only includes innovation designed to improve energy 

efficiency.  Yet, one of the most important long-term research goals is providing alternative fuels 

that provide an emissions-free energy alternative.  Policies such as a carbon tax are likely to 

induce R&D aimed at substitutes for fossil fuels, such as solar energy.  In fact, the energy crisis 

of the 1970s led to a dramatic increase in R&D for alternative fuels.  By speeding the invention 

of a non-carbon based backstop technology, induced innovation may have a more significant 

effect than is found in the ENTICE model.33  Adding such backstop technologies to the model is 

another important step for future research. 

Third, the ENTICE model does not include uncertainty.  Not only are the future returns to 

R&D uncertain, but the potential impact of climate change itself is also uncertain.  Uncertainty 

may produce an option value for increased R&D, which could provide a cushion should the 

climate problem turn out to be more severe than anticipated.  Adding endogenous technological 

change to a model allowing for uncertain climate effects, such as Nordhaus and Popp (1997), 

would be a useful extension. 

                                                           
33 Gerlagh (2002) presents a theoretical demonstration of the potential of backstop technologies. 
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Figure 1—Spending on Energy and Non-energy R&D by U.S. Industries 
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Figure 2 – Mean Global Temperature  
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The figure shows the departure of mean global temperature from 1990 levels, reported in degrees Celsius.  Note that induced energy 
R&D has little effect on temperature. 
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Figure 3 – Elasticity of Energy R&D 
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The figure shows the elasticity of energy R&D to energy prices between the base case and optimal policy simulation.  The base case 
presents the elasticity assumed in the base run presented in section III.  A simulation using the elasticity from the high induced case is 
presented in section IV 
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Figure 4 – Welfare Gains Over Time—Optimal Policy 
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The figure shows the cumulative gains in welfare from an optimal carbon tax.  Note that welfare in the induced innovation is initially 
lower than exogenous R&D, but that induced innovation leads to larger long run improvements than in a simulation with exogenous 
technological change. 
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Figure 5 – Welfare Effects of Marginal Energy R&D  
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The figure shows the welfare effects of an additional $1 billion of energy R&D spent in 1995.  The initial effects are negative, as the 
immediate environmental benefits do not justify the opportunity cost of additional energy R&D.  However, by also enhancing the 
productivity of future R&D, the cumulative effect of marginal energy R&D is positive. 
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Figure 6 – Welfare Gains Over Time—Restrict Emissions to 1995 levels  
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The figure shows the cumulative gains in welfare from restricting emissions to 1995 levels.  Note that the net economic effects are 
initially positive, but as greater reductions are required in future years, the long-run net economic impact is negative. 
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Figure 7 – Emissions Over Time – Sensitivity to Exogenous Reductions in Carbon Intensity  
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The figure shows how base case emissions increase when the percentage of exogenous reductions in carbon intensity is reduced. 
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Table 1 – Summary of Parameter Values  
 
 

  

scaling 
factor 
(αH) 

initial 
energy 
human 
capital 
(HE0) IPF: a IPF: b IPF: φ 

substitution 
parameter 

(ρ) 

percentage 
exog. 

carbon 
intensity 
reduction 

(αΦ) 

decay of 
knowledge 

(δH) 

crowding 
out of 

general 
R&D 

Base parameters 0.944 0.0001 0.02202 0.18 0.53 0.41 0.8 0 0.5 
Low opportunity cost 0.944 0.0001 0.02202 0.18 0.53 0.41 0.8 0 0 
High opportunity cost 0.944 0.0001 0.02202 0.18 0.53 0.41 0.8 0 1 
Decay: High R&D, base emis. 1.7 0.0001 0.0315 0.19 0.53 0.41 0.8 0.1 0.5 
Decay: Base R&D, high emis. 1.8 0.0001 0.00785 0.3 0.4 0.363 0.8 0.1 0.5 
Low energy savings 0.876 0.0001 0.016 0.21 0.538 0.38 0.8 0 0.5 
High R&D elasticity 0.799 0.0001 0.0594 0.17 0.296 0.7 0.8 0 0.5 
Low exog. carbon intens.  0.93 0.0001 0.0218 0.18 0.53 0.41 0.5 0 0.5 

 
The table presents parameter values for both the base ENTICE model presented in section III and for various sensitivity analyses 
presented in section IV. 
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Table 2 – Summary of Net Economic Impacts 

 

A. Optimal Carbon Tax Policy    

 Endogenous Exogenous 
Gain from 

ETC 
Base model 1.88 1.74 8.3% 
Opportunity Cost of R&D    
     Low opportunity cost: upper bound 1.89 1.32 43.6% 
     Low opportunity cost: lower bound 1.91 1.75 9.5% 
     High opportunity cost: upper bound 1.88 1.84 2.1% 
     High opportunity cost: lower bound 1.85 1.72 7.6% 
R&D Subsidies 1.98 1.74 14.0% 
Sensitivity to Decay Rate    
     High R&D, base emissions 1.82 1.70 7.1% 
     Base R&D, high emissions 1.80 1.73 4.4% 
Low Energy Savings 1.87 1.78 4.8% 
Elasticity of R&D 1.92 1.76 8.8% 
Exogenous Reduction of Carbon Intensity 2.20 2.06 7.1% 
    
B. Restrict Emissions to 1995 Levels    

 Endogenous Exogenous 
Gain from 

ETC 
Base model -7.40 -7.84 5.6% 
Opportunity Cost of R&D    
     Low opportunity cost: upper bound -7.17 -8.24 13.0% 
     Low opportunity cost: lower bound -7.19 -7.83 8.2% 
     High opportunity cost: upper bound -7.68 -8.00 4.0% 
     High opportunity cost: lower bound -7.65 -7.86 2.7% 
R&D Subsidies -7.29 -7.62 4.4% 
Sensitivity to Decay Rate    
     High R&D, base emissions -9.08 -9.43 3.7% 
     Base R&D, high emissions -10.70 -10.93 2.1% 
Low Energy Savings -8.59 -8.92 3.7% 
Elasticity of R&D -4.06 -4.74 14.4% 
Exogenous Reduction of Carbon Intensity -11.16 -11.68 4.5% 

Note: all figures in trillions of 1990 US dollars. 

The table shows the net economic impact, measured by the difference in the present value of 
consumption between the policy and a no policy simulation, for various model scenarios.  The 
table shows the net economic impact with both endogenous and exogenous energy R&D, as well 
as the increase in welfare resulting from endogenizing energy R&D.  Base case results are 
presented in section III, and the remaining trials are presented in the sensitivity analysis of 
section IV.  The top half of the table shows the net economic impact for an optimal carbon 
policy, and the bottom half shows the impact for a policy restricting emissions to 1995 levels. 
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Table 3 – Key Variables – Optimal Policy 

 

  1995 2005 2015 2025 2055 2105 2205
Carbon Tax ($/ton)        
     Endogenous R&D N/A $10.16 $14.57 $19.48 $36.81 $70.17 $142.16
     Exogenous R&D N/A $10.17 $14.57 $19.49 $36.82 $70.16 $142.04
     % ∆ Endog. vs. Exog.   -0.10% 0.00% -0.05% -0.03% 0.01% 0.08%
Energy R&D -- billions 1990 US dollars       
     Endogenous R&D 10.00 13.34 17.16 20.21 27.66 40.41 75.44
     Exogenous R&D 10.00 13.14 16.90 19.86 26.91 38.93 76.05
     Elasticity N/A 0.35 0.27 0.24 0.25 0.26 0.11
Emissions -- billion tons        
     No Policy 6.187 7.157 7.982 8.722 10.791 13.943 16.589
     Endogenous R&D 6.187 6.931 7.643 8.254 9.812 11.802 13.472
     Exogenous R&D 6.187 6.932 7.646 8.259 9.823 11.819 13.488
     % ∆ Endog. vs. Exog.   -0.01% -0.04% -0.06% -0.11% -0.14% -0.12%
Control Rate        
     Endogenous R&D N/A 3.2% 4.2% 5.4% 9.1% 15.4% 18.8%
     Exogenous R&D N/A 3.1% 4.2% 5.3% 9.0% 15.2% 18.7%
     % ∆ Endog. vs. Exog.   0.44% 0.89% 1.08% 1.14% 0.80% 0.52%
Atmospheric Temperature -- degrees change C from 1990      
     No Policy 0.430 0.491 0.635 0.822 1.477 2.595 3.946
     Endogenous R&D 0.430 0.491 0.635 0.818 1.449 2.492 3.633
     Exogenous R&D 0.430 0.491 0.635 0.818 1.449 2.493 3.636
     % ∆ Endog. vs. Exog.   0.00% 0.00% 0.00% 0.00% -0.04% -0.08%
Output -- trillions $1990 US 
dollars       
     No Policy 22.61 30.00 36.95 43.73 63.60 95.32 159.06
     Endogenous R&D 22.61 30.01 36.93 43.69 63.47 95.09 159.87
     Exogenous R&D 22.61 30.01 36.92 43.67 63.41 94.94 159.64
     % ∆ Endog. vs. Exog.   0.00% 0.02% 0.05% 0.10% 0.16% 0.15%
Consumption -- trillions $1990 US dollars       
     No Policy 16.40 22.25 27.68 32.98 48.38 72.52 119.56
     Endogenous R&D 16.40 22.28 27.70 33.00 48.38 72.53 120.51
     Exogenous R&D 16.40 22.29 27.71 33.00 48.37 72.50 120.39
     % ∆ Endog. vs. Exog.   -0.04% -0.03% -0.02% 0.01% 0.05% 0.10%
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Table 4 – Key Variables – Emissions Restricted to 1995 Levels 

 

  1995 2005 2015 2025 2055 2105
Carbon Tax ($/ton)       
     Endogenous R&D N/A $366.07 $755.57 $1,135.20 $2,253.90 $3,978.32
     Exogenous R&D N/A $369.34 $760.33 $1,142.59 $2,272.24 $4,021.23
     % ∆ Endog. vs. Exog.   -0.89% -0.63% -0.65% -0.81% -1.07%
Energy R&D -- billions 1990 US dollars      
     Endogenous R&D 10.00 14.11 18.53 22.15 31.28 46.95
     Exogenous R&D 10.00 13.14 16.90 19.86 26.91 38.93
     Elasticity N/A 0.09 0.09 0.09 0.11 0.14
Emissions -- billion tons       
     No Policy 6.187 7.157 7.982 8.722 10.791 13.943
     Endogenous R&D 6.187 6.187 6.187 6.187 6.187 6.187
     Exogenous R&D 6.187 6.187 6.187 6.187 6.187 6.187
     % ∆ Endog. vs. Exog.   0.00% 0.00% 0.00% 0.00% 0.00%
Control Rate       
     Endogenous R&D N/A 13.6% 22.5% 29.1% 42.7% 55.6%
     Exogenous R&D N/A 13.6% 22.5% 29.1% 42.7% 55.6%
     % ∆ Endog. vs. Exog.   0.00% 0.00% 0.00% 0.00% 0.00%
Atmospheric Temperature -- degrees change C from 1990     
     No Policy 0.430 0.491 0.635 0.822 1.477 2.595
     Endogenous R&D 0.430 0.491 0.635 0.806 1.331 2.095
     Exogenous R&D 0.430 0.491 0.635 0.806 1.331 2.095
     % ∆ Endog. vs. Exog.   0.00% 0.00% 0.00% 0.00% 0.00%
Output -- trillions $1990 US 
dollars      
     No Policy 22.61 30.00 36.95 43.73 63.60 95.32
     Endogenous R&D 22.61 29.99 36.73 43.28 62.35 92.94
     Exogenous R&D 22.61 29.99 36.71 43.24 62.23 92.66
     % ∆ Endog. vs. Exog.   0.00% 0.06% 0.10% 0.19% 0.30%
Consumption -- trillions $1990 US dollars      
     No Policy 16.40 22.25 27.68 32.98 48.38 72.52
     Endogenous R&D 16.40 22.37 27.70 32.88 47.83 71.36
     Exogenous R&D 16.40 22.39 27.72 32.89 47.81 71.28
     % ∆ Endog. vs. Exog.   -0.09% -0.05% -0.02% 0.04% 0.11%
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Appendix A – Equations of the ENTICE Model 

This appendix presents the complete equations of the ENTICE model. 

Exogenous variables and parameters 
 
t = time 
Lt = population at time t, also equal to labor inputs 
L0 = initial population level 
gL,t = growth rate of population 
gL,0 = initial value of the growth rate of population 
dL = rate of decline of gL,t 
Rt = pure time preference discount factor 
r0 = initial value of the pure rate of social time preference 
gr = growth rate of the social time preference 
At = total factor productivity 
A0 = initial value of total factor productivity 
gL,t = growth rate of total factor productivity 
gL,0 = initial value of the growth rate of total factor productivity 
dL = rate of decline of gA,t 
γ = elasticity of output with respect to capital 
β = elasticity of output with respect to energy/carbon inputs 
Φt = ratio of carbon emissions per unit of carbon services 
gz

t = growth rate of Φt per decade 
δz

 = rate of decline of gz
t 

ζ1, ζ2, ζ3 = parameters of the long-run carbon supply curve 
markup= energy services price markup 
CumC* = Total carbon resources available 
δ = rate of depreciation of the physical capital stock 
δH = rate of depreciation of energy knowledge stock 
crowdout = percentage of overall R&D crowded out by energy R&D 
a, b, φ = parameters of the innovation possibilities curve 
αH = scaling factor for the stock of energy knowledge 
αΦ = percentage of exogenous carbon intensity reduction 
ρ = substitution parameter for energy and knowledge 
LUt = Land-use carbon emissions 
LU0 = Initial land-use carbon emissions 
δLU = Rate of decline of land-use carbon emissions 
φ11, φ12, φ21, φ22, φ23, φ32, φ33 = Parameters of the carbon transition matrix 
Ot = Increase in radioactive forcing over preindustrial levels due to exogenous anthropogenic 

causes 
σ1, σ2, σ3 = Temperature dynamics parameters 
4.1/λ = Climate sensitivity – equilibrium increase in temperature from a doubling of CO2 

concentrations) 
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Endogenous Variables 
 
Ut = utility in period t 
ct = per capita consumption 
Qt = output (trillions of 1990 US dollars) 
µt = emissions control rate in DICE model 
Kt = physical capital stock (trillions of 1990 US dollars) 
Et = energy inputs 
pF = price of fossil fuels 
Ft = fossil fuel/carbon inputs, also equal to CO2 emissions 
qF = marginal cost of fossil fuel extraction 
CumCt = cumulative carbon extractions by year t 
It = investment in physical capital 
Ct = total consumption 
HEt = stock of energy knowledge 
REt = energy R&D 
EMt = Carbon emissions 
MA,t = Atmospheric CO2 concentration 
MU,t = Upper oceans/biosphere CO2 concentration 
ML,t = Lower oceans CO2 concentration 
FORCEt = Radioactive forcing, increase over preindustrial level 
Tt = Atmospheric temperature, increase over 1900 level  
TLt = Lower ocean temperature, increase over 1900 level  

 

The ENTICE model maximizes per capita utility, defined in equation (A 1) below, 

subject to a set of environmental and economic constraints.  Economic constraints are 

represented by equations (A 2) – (A 17).  Equations (A 18) – (A 26) are the environmental 

constraints. 
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(A 3)  tFttttt FpELKAQ −= −− ββγγ 1  

(A 4)  Kt = (It – 4*crowdout*RE,t)– δKt-1. 

(A 5)  Qt = Ct + It. 

(A 6)  Lt = L0exp(gL,t) 
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(A 7)  gL,t = (gL,0/dL)*(1-exp(-dL*t)) 

(A 8)  At = A0exp(gA,t) 

(A 9)  gA,t = (gA,0/dA)*(1-exp(-dA*t)) 

(A 10)  
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(A 11)  PF = qF + markup 

(A 12)  
3*]/[21

ζζζ CumCCumCq tF +=  

(A 13)  CumCt = CumCt-1 + 10*Ft 

(A 14)  Ft < 0.1 * (CarbMax – CumCt)/10 

(A 15)  HE,t = h(RE,t) + (1–δH)HE,t-1,  i = A,E 

(A 16)  h(RE,t) =  aRb
E,tHφ

E,t 

(A 17)  Qt = Ct + It + REt 

 

Environmental Constraints 

(A 18)  LUt = LU0(1-δLU)t
 

(A 19)  EMt = Ft + LUt 

(A 20)  MA,t = 10*EMt + φ33ML,t-1 + φ23MU,t-1 

(A 21)  ML,t = φ11MA,t-1 + φ21MU,t-1 

(A 22)  MU,t = φ12MA,t-1 + φ22MU,t-1 + φ32ML,t-1 

(A 23)  FORCEt = 4.1*{log(MA,t/596.4)/log(2)} + Ot 

(A 24)  Ot = -0.1965 + 0.13465t,  t < 11 

  Ot = 1.15,    t ≥ 11 

(A 25)  Tt = Tt-1 + σ1{FORCEt - λTt-1 - σ2(Tt-1 – TLt-1)} 

(A 26)  TLt = TLt-1 + σ3(Tt-1 – TLt-1) 
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Appendix B – Calibration of the ENTICE Model 

 

This appendix describes the steps taken to calibrate the ENTICE model.  As a global 

macroeconomic model, ENTICE uses Nordhaus’ DICE model (2000) as its basic building block.  

Since the current version of Nordhaus’ DICE model does not include carbon emissions as an 

input, but rather simply models emissions as a byproduct of output requiring control, the first 

step to constructing the model is to add a fossil fuel sector that mimics the behavior of the 

original DICE model.  I do this using the same modeling structure as Nordhaus’ RICE model, 

except that I apply the equations at a global, rather than regional, level. Key equations of the 

economic sector of the DICE model, along with the modifications necessary to include carbon 

emissions as an input, are included in the modeling appendix.  I calibrate this basic model, with 

no energy R&D, so that the results are comparable to Nordhaus’ DICE model.  To begin, I take 

the initial value of F from the latest version of the DICE model.  I then solve for initial values of 

A and K that reproduce the initial output found in the DICE model.  Next, I calculate the 

elasticity of output to with respect to energy, β, as the percentage of output spent on fossil fuels 

in the initial period, using the 1995 price of carbon based on equations (6) and (7).34  Finally, the 

growth rate of Φ, gz (-15.49), and the rate of decline of this growth rate, γz (23.96), are chosen to 

produce an emissions path as close as possible to the DICE model.  These values represent the 

rate of exogenous decline in carbon intensity without any energy R&D in the model.  Figures B1 

and B2 compares the emissions and output that result from this calibration. 

Having added carbon fuels as an input to production in the DICE model, the next step is 

to add induced technological change to the ENTICE model.  The modeling for this stage is 

                                                           
34 References to equation numbers refer to equations in the text of the main paper.  
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described the main text of the paper.  Calibration requires choosing values for the following 

parameters: 

• the initial value of energy research, RE0.   

• ρ, the substitution parameter in equation (10), 

• parameters in the invention possibilities frontier (9): a, b, and φ, and 

• the initial level of energy human capital, HE0,35
 

• αΗ , the scaling factor for the effect of this human capital, and 

• αΦ , the percentage of exogenous technological change remaining. 

To calibrate the energy R&D sector, three goals must be met.  First, R&D levels should 

be consistent with historical levels.  A starting value of $10 billion is chosen for the base year of 

1995.  To get this value, I begin with an estimated level of total global spending on R&D of $500 

billion.  This figure is based largely on data from OECD countries.  Energy R&D data is not 

available on a global basis.  However, it is available for the United States.  In the U.S., two 

percent of R&D spending in 1995 went to energy-related R&D.  The $10 billion figure used in 

this paper is simply two percent of the global level of R&D.  This figure is also close to the 

initial value of R&D used by Nordhaus (2002).  

Second, the behavior of energy R&D should be consistent with empirical studies both 

across time and across policy dimensions.  Based on Popp (2002), I use an elasticity of energy 

R&D with respect to energy prices of 0.35 for the base model.  As the price of carbon rises over 

time, the time path of energy R&D should follow the path predicted by this value as closely as 

possible.36  In addition, elasticities of energy R&D calculated on differences in the carbon price 

                                                           
35 Note that, since human capital enters the invention possibilities frontier multiplicatively, the initial value cannot 
be zero. 
36 Note that, to account for growth in the level of economic activity, all elasticities are calculated based on a ratio of 
energy R&D to global output.   
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with and without a carbon tax in the optimal policy simulation should also equal 0.35.  Since the 

goal of this paper is to explore the consequences of omitting endogenous technological change 

from earlier climate change models, when these two goals are incompatible, the second takes 

precedence.  Furthermore, since Popp (2002) also notes that energy R&D experiences 

diminishing returns over time, the calibrated elasticity should fall over time.  Figure B3 shows 

the calibrated levels of energy R&D and what would be predicted by a constant elasticity over 

time of 0.35.  Figure 3 in the main text shows the elasticity across the policy outcomes. 

Finally, Popp (2001) estimates a 4:1 ratio on the returns to energy R&D.  Thus, each 

dollar of energy R&D should lead to a four dollar reduction in energy savings.  The model is 

calibrated so that a weighted average of energy savings each period (weighted by the discount 

factors used in the model) produce a 4:1 ratio of energy savings to energy R&D. 

Using these goals as guidelines for choosing the parameters, I first choose the value of 

HE0 to approximate baseline emissions in early years of the simulation.  Next, I choose ρ to 

approximate the elasticity of energy R&D between the no-policy and optimal policy simulations.  

Third, the value of the scaling factor αH is chosen to yield the appropriate rate of return on 

energy R&D.  To calibrate the inventions possibility frontier, the value a is chosen so that the 

change in energy R&D between 1995 and 2005 in the optimal policy simulation is consistent 

with the elasticity of 0.35. Values of b and φ are chosen so that future elasticities fit the desired 

time path – falling slowly in the near future due to diminishing returns to R&D.  Once the 

desired time path of R&D is calibrated, the scaling factor αΦ can be adjusted to change the level 

of baseline emissions as appropriate.  A value of 0.8 is used in the base model, meaning that 80 

percent of exogenous technological change remains in the ENTICE model.  As a result, 

purposeful R&D efforts to improve energy efficiency are only a small portion of the changes that 



ENTICE: Endogenous Technological Change in the DICE Model of Global Warming B4 

take place over time to reduce energy intensity.  Table 1 in the paper presents a complete list of 

the parameter values chosen for both the base model and various sensitivity analysis scenarios. 
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Figure B1 – Industrial Emissions in the ENTICE & RICE Models 

0

2

4

6

8

10

12

14

16

18

20

1995 2045 2095 2145 2195 2245 2295

Year

In
du

st
ria

l E
m

is
si

on
s 

(b
ill

io
n 

to
ns

 p
er

 y
ea

r)

DICE -- no policy ENTICE -- no R&D ENTICE -- R&D
DICE -- opt policy ENTICE opt policy -- no R&D ENTICE opt policy -- R&D



ENTICE: Endogenous Technological Change in the DICE Model of Global Warming B6 

Figure B2 – Output  in the ENTICE & RICE Models 
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Figure B3 – Predicted and Actual Energy R&D 
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