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ABSTRACT

This paper studies the identification problem in infinite horizon Markovian games and proposes a

generally applicable estimation method. Every period firms simultaneously select an action from a

finite set. We characterize the set of Markov equilibria. Period profits are a linear function of

equilibrium choice probabilities. The question of identification of these values is then reduced to the

existence of a solution to this linear equation system. We characterize the identification conditions.

We propose a simple estimation procedure which follows the steps in the identification argument.

The estimator is consistent, asymptotic normally distributed, and efficient.

We have collected quarterly time series data on pubs, restaurants, coffeehouses, bakeries and

carpenters for two Austrian towns between 1982 and 2002. A dynamic entry game is estimated in

which firms simultaneously decide whether to enter, remain active, or exit the industry. The period

profit estimates are used to simulate the equilibrium behavior under a policy experiment in which

a unit tax is imposed on firms deciding to enter the industry.
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1 Introduction

After the seminal papers by Bresnahan and Reiss (1987, 1990, 1991), equilibrium conditions of static

games with binary actions have become a basic estimation tool in empirical industrial organization.

The technique makes possible the inference of profit values and entry costs based on the number of

active firms in the industry. Static entry models have been analyzed in a number of recent papers

including Berry (1992), Davis (1999), Mazzeo (2002), Seim (2001) and Tamer (2003). See Reiss

(1996) and Berry and Reiss (2002) for surveys of the literature. A shortcoming of this literature is

that dynamic considerations are left aside and a static view of the world is adopted.

This paper studies the identification problem of infinite horizon Markovian games and proposes

a generally applicable estimation method for dynamic games. Every period each firm privately

observes a profitability shock drawn from a known distribution function. Firms simultaneously

choose an action from a finite set. In our application, the firms decide whether to enter, to remain

active, or to exit the industry. The dynamic game permits decisions to be a function of observable

state variables. Firms make forward looking decisions taking into account the effect of future entry

and demand on future profits. The dynamic formulation has at least three advantages over the static

model commonly used in the literature: (i) it allows distinct period payoffs as a function of state

variables; (ii) contemporaneous demand and state variables determine whether entry takes place;

and (iii) explicit information in the timing of actions is exploited. The increased richness of our

model permits us to infer a larger set of parameters.

The main contribution of the paper is twofold: First, we show new identification results for

dynamic games. We characterize conditions under which the period payoffs can be identified. The

identification arguments are based on a sufficiently rich time-series data on observed choices.

Second, we propose a computationally simple estimation method generally applicable for dynamic

games. The estimation method is similar to Jofre-Bonet and Pesendorfer (2002) but considers finite

action games instead of continuous choice games. The choice probabilities are estimated using

maximum likelihood. The period payoffs are inferred by using the equilibrium conditions of the

dynamic game. The estimator is consistent, asymptotic normally distributed, and efficient.

The main idea behind this paper stems from the following observation: In finite action games

with private information, there exists a type that is exactly indifferent between two alternative

actions. For this type, the continuation value of one action must equal the continuation value of

the alternative action. The indifferent type condition is satisfied at every state vector yielding

an equation system with as many equations as there are states. The equation system stemming

from the indifference conditions permits us to adopt a similar estimation technique as to that in
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continuous choice dynamic games. The indifferent type is not observed but can be inferred from the

observed choices. Further, for each state variable, the indifference condition is a linear equation in

period profits. This follows from the fact that the value function is linear in period payoffs. The

linearity substantially simplifies the identification and estimation problem. Based on the linearity,

we can express the parameters of the model as an explicit function of the choice probabilities. The

identification question is then reduced to the existence of a unique solution to the linear equation

system. In addition, the set of indifference conditions enables us to numerically calculate Markov

equilibria of finite action games in a simple way.

We apply the proposed method to data consisting of quarterly time series observations regarding

the identity of active firms in a number of industries for two Austrian cities between 1982 and 2002.

In addition, we use gross domestic product time series data. The estimation proceeds as follows:

First, a probit model is estimated. The dependent variable is an indicator variable whether the

firm is active in a period. The explanatory variables are the state variables including an indicator

of whether the firm was active in the preceding period, the number of other active firms in the

preceding period, the level of gross domestic product, and interaction terms between these variables.

We assume that gross domestic product evolves deterministically. We then construct the transition

probability matrix of state variables using the probit estimates.

We infer the period profit values based on the equilibrium condition for the indifferent type. We

illustrate the simplicity of the estimation approach, discuss the goodness of fit of our estimates, and

assess properties of the equilibrium. Finally, we conduct a policy experiment in which a unit tax is

imposed on firms deciding to enter the industry.

There is a small empirical literature on dynamic games including Aguirregabiria and Mira (2002),

Jofre-Bonet and Pesendorfer (2000, 2002) and Pakes and Berry (2002). Aguirregabiria and Mira

(2002) consider a two-stage estimation approach for dynamic games with finite actions. They show

that, after substituting the first stage choice probabilities and obtaining an expression for the value

function, the optimality conditions of the discrete game can be written as inequalities in the pa-

rameters of the model. In the second stage, Aguirregabiria and Mira propose a pseudo maximum

likelihood estimator in which the likelihood defined by those inequalities is maximized. Simulation is

used in the second stage to reduce the computational complexity of the estimator. Pakes and Berry

(2002) propose two estimators for dynamic entry games: A nested fixed point estimator similar to

Rust (1994), and a two stage estimator in which a pseudo likelihood is estimated in the second

stage, similarly to Aguirregabiria and Mira (2002). In contrast to these approaches, the estimator

proposed in this paper dispenses entirely with the second stage maximum likelihood estimation, or

nested fixed point estimation. Instead, an efficient and computationally simple estimator is proposed
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by expressing the parameters of the model as an explicit function of the choice probabilities.

Our model formulation and estimation approach is most closely related to Jofre-Bonet and Pe-

sendorfer (2000, 2002). Jofre-Bonet and Pesendorfer consider an infinite horizon Markovian bidding

game with idiosyncratic cost shocks under the presence of capacity constraints. Estimation proceeds

in two stages: In the first stage, the choice probabilities are estimated using the observed bid data.

In the second stage, the costs are inferred based on the first order condition of optimally chosen

bids. Jofre-Bonet and Pesendorfer (2000, 2002) show that the first order condition of the dynamic

game is a linear equation in unknown costs.

The paper is organized as follows: Section 2 describes the dynamic game with a finite action

space. Section 3 characterizes properties of the equilibrium. Section 4 presents the identification

results. Section 5 proposes the estimator. Section 6 describes the data and gives some descriptive

statistics. Section 7 reports the estimation results. Section 8 ilustrates the long run payoffs and

assesses a policy experiment in which a unit tax is imposed on firms deciding to enter. Section 9

concludes.

2 Model

This section describes the elements of the model. We describe the sequencing of events, the period

game, the transition function, the payoffs, the strategies and the equilibrium concept.

We consider a dynamic game with discrete time, t = 1, 2 . . . ,∞. The set of firms is denoted by
N = {1, . . . , N} and a typical firm is denoted by i ∈ N. The number of firms is fixed and does not
change over time. Every period the following events take place:

A state vector is publicly observed. Each firm is endowed with a state variable sti ∈ Si =

{1, . . . , L}. The vector of all firms’ state variables is denoted by st = (st1, . . . , stN ) ∈ S = ×Nj=1Sj .
Sometimes we use the notation st−i =

¡
st1, . . . , s

t
i−1, s

t
i+1, . . . , s

t
N

¢ ∈ S−i to denote the vector of
states by firms other than firm i. The cardinality of the state space S equals ms = L

N .

Each firm i privately observes a K dimensional real valued profitability shock εti =
¡
εt1i , . . . , ε

tK
i

¢ ∈
<K . The shock is not observed by other firms. The shock εtki is drawn independently from the strict

monotone and continuous distribution function F . Independence of εti from the state variables is

an important assumption, since it allows us to adopt the Markov dynamic decision framework. For

a discussion of the independence assumption in Markovian decision problems see Rust (1994). We

assume that E
£
εtki |εtki ≥ ε

¤
exists for all ε, to ensure that the expected period return exists.

Actions: Each firm decides which action to take, ati ∈ Ai = {0, 1, . . . ,K}. All N firms, including

firms not active in the last period, make their decisions simultaneously. The actions are taken after
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firms observe the state and their idiosyncratic productivity shock. An action profile at denotes the

vector of joint actions in period t, at = (at1, . . . , a
t
N ) ∈ A = ×Nj=1Aj . The cardinality of the action

space A equals ma = (K + 1)
N .

The transition of the state variables is described by a probability density function g : A×S×S −→
[0, 1] where a typical element g

¡
at, st, st+1

¢
equals the probability that state st+1 is reached when

the current action profile and state are given by (at, st). We require
P

s0∈S g (a, s, s
0) = 1 for all

(a, s) ∈ A×S. We frequently use the symbol G to denote the (ma ·ms)×ms dimensional transition

matrix in which column s
0 ∈ S consists of the vector of probabilities

h
g(a, s, s

0
)a∈A,s∈S

i
.

The period payoff of firm i is collected at the end of the period after all actions are observed.

The period payoff of firm i consists of the profit realization and the profitability shock realization.

We can write period payoffs as a real valued function defined on A× S ×<K and given by:

πi
¡
at, st

¢
+

KX
k=1

εtki · 1{ati=k}

where 1a equals one if event a occurs and zero otherwise; the profit π depends on the action profile

of firms and the state vector. We assume that profits are bounded, |πi (.) | < ∞ for all i. We

sometimes use the symbol Πi to denote the (ma ·ms) × 1 dimensional period profit vector defined
by Πi =

h
πi (a, s)a∈A,s∈S

i
. The profitability shock affects actions k > 0 only. The assumption

that action 0 is not affected by the profitability shock is not restrictive as only the payoff difference

between alternative actions matters.

Firms discount future payoffs with the common discount factor β < 1. The game payoff of firm

i equals the sum of discounted period payoffs.

Following Maskin and Tirole (1994, 2001), we consider sequential equilibria in Markovian strate-

gies ai(εti; s
t). A strategy for firm i is a function of the firm specific profitability shock and the

state variables. The assumption that the profitability shock is independently distributed allows us

to write the probability of observing action profile at as Pr(at|st) = Pr(at1|st) · · ·Pr(atN |st). The
Markovian assumption allows us to abstract from calendar time and subsequently we omit the time

superscript.

Symmetry: We are sometimes interested in symmetric payoffs and strategies. Symmetry requires

identical payoff vectors, Πi = Π for all i, and identical strategies for all i. Asymmetries between firms

are then captured in the state variables only. The symmetry assumption reduces the dimensionality

of the problem, which can simplify calculations.

The discounted sum of future payoffs for firm i consists of two elements: The period profit and
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the profitability shock. In value function notation, the discounted sum is given by:

Wi (s, εi) = max
ai∈Ai

X
a−i∈A−i

Pr(a−i|s)[πi (a−i, ai, s) +
KX
k=1

εki · 1{ai=k}

+βEε
X
s0∈S

g (a, s, s0)Wi(s
0
, .)] (1)

where Pr(a−i|s) denotes the conditional probability that firms −i choose an action profile a−i con-
ditional on state s, and Eε denotes the expectation operator with respect to the firm specific pro-

ductivity shock. The finiteness of the action and the state spaces guarantees the existence of the

value function Wi, see Rust (1994).

Ex ante value function: We use the ex-ante value function, which is defined as the value function

in expression (1) before firm-specific shocks are observed and actions are taken, Vi (s) = EεWi (s, ε).

Taking the expectation with respect to ε inside the sum yields:

Vi (s) =
X
a∈A

Pr(a|s)[πi (a, s) + β
X
s0∈S

g(a, s, s
0
)Vi(s

0
)] +

KX
k=1

Eε
£
εki |ai = k

¤ · Pr (ai = k|s) (2)

Equation (2) is satisfied at every state vector s ∈ S. Since the state space is finite, we can express
it as a matrix equation:

Vi = PΠi +Di + βPGVi,

where P is the ms × (ma ·ms) dimensional matrix consisting of choice probability Pr(a|s) in row
s column (a, s), and zeros in row s column (a, s

0
) with s

0 6= s; Di = [Di (s)]s∈S is the ms × 1
dimensional vector of expected profitability shocks with element Di (s) =

PK
k=1Eε

£
εki |ai = k

¤ ·
Pr (ai = k|s); Vi = [Vi (s)]s∈S is the ms× 1 dimensional vector of expected discounted sum of future

payoffs; and G denotes the (ma ·ms) × ms dimensional transition matrix defined above. Notice

that this matrix equation is a recursive equation in Vi. Let Is denote the ms dimensional identity

matrix. By the dominant diagonal property, the matrix [Is − βPG] is invertible. We can rewrite

the recursive equation to obtain an explicit expression for Vi:

Vi = [Is − βPG]
−1
[PΠi +Di] . (3)

Equation (3) provides an expression for the equilibrium ex ante value function. The terms on the

right hand side are the discount factor, the equilibrium choice probability matrix, the state transition

matrix, the period return function, and the equilibrium expected profitability shocks.

Notice, that the value function is a linear function in the period payoffs. The linearity property

will help us examine the properties of the equilibrium choices in the next section.
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3 Equilibrium Characterization

This section characterizes properties of the dynamic equilibrium. It studies properties of the equi-

librium decision rule, the equilibrium discounted sum of payoffs and the equilibrium choice proba-

bilities. We show that the equilibrium decision rule is characterized by an ms ·K equation system.

We conclude the section with remarks on the existence and multiplicity of equilibria.

We begin the analysis with a characterization of the equilibrium decision rule. The following

Proposition states a property of equilibrium strategies:

Proposition 1 In any Markov equilibrium for any s ∈ S and for all i ∈ N there exists an εi (s) =¡
ε1i (s) , . . . , ε

K
i (s)

¢0
such that

ai(εi, s) =

 k if εki > εki (s) and for all k
0 6= k: εki − εk

0

i > εki (s)− εk
0

i (s) ;

0 if εki < εki (s) for all k.
(4)

All proofs are given in the appendix. Proposition 1 establishes that the equilibrium decision on

whether to adopt action k or not is monotone in the profitability shock εki .

The statement in the Proposition is readily illustrated for an action pair (k, 0) for a typical firm

i. It says that, for any state vector, there exists a type εk that is indifferent between actions k and

0. The monotonicity property follows from the assumption that the payoff function is additive in

the private profitability shock εk. If there exists a point εk such that a firm of type εk is indifferent

between actions k and 0, then any type with a smaller profitability shock, εk < εk, will prefer action

0. On the other hand, any type with a higher profitability shock, εk > εk, will prefer action k. The

reason is that the current period payoff for an active firm is additive in εk, while the future payoffs

and the current period payoff for a firm choosing action 0 are unaffected by εk. The point εk exists,

since the support of εk is unbounded, while the period return Π, and the value function are bounded.

Indifference equation: The indifferent type εki receives the same expected discounted sum of

payoffs under action k as under action 0. This leads to the indifference equation:

X
a−i∈A−i

Pr(a−i|s) ·
πi (a−i, k, s) + β

X
s0∈S

g(a−i, k, s, s
0
)Vi(s

0
)

+ εki (s)

=
X

a−i∈A−i
Pr(a−i|s) ·

πi (a−i, 0, s) + β
X
s0∈S

g(a−i, k, s, s
0
)Vi(s

0
)

 (5)

Equation (5) is a necessary equilibrium condition that must be satisfied at every state s ∈ S and

for every action k = 1, . . . ,K yielding a total of ms · K equations with ms · K indifferent types,

one for each possible state and action. We may compactly write equation (5) in matrix form. Let
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εi =
£
εki (s)

¤
s∈S,k=1,...K be the (ms ·K) × 1 dimensional vector of indifferent types; let P−i be

the ms × ((K + 1)N−1 ·ms) dimensional matrix consisting of choice probability Pr(a−i|s) in row s
column (a−i, s), and zeros in row s column (a−i, s

0
) with s

0 6= s; and define the (ms ·K)× (ma ·ms)

dimensional matrix Pi (ε) as:

ai =

0 1 2 . . . K

Pi (ε) =

z }| {
−P−i P−i 0 . . . 0

−P−i 0 P−i . . . 0
... 0 0

. . . 0

−P−i 0 0 . . . P−i


We can re-state equation (5) as:

Pi (ε)Πi + βPi (ε)GVi + εi = 0 (6)

Substituting equation (3) into equation (6), leads us to the following result:

Proposition 2 In any Markov equilibrium for all i ∈ N there exists εi such that:h
Pi (ε) + βPi (ε)G [Is − βP (ε)G]

−1
P (ε)

i
Πi + βPi (ε)G [Is − βP (ε)G]

−1
Di (ε) + εi = 0. (7)

Conversely, any ε = (ε1, . . . , εN) that satisfies equation (7) can be extended to a Markov equilibrium.

The above Proposition characterizes the set of equilibria. It provides a necessary and suffi-

cient condition for any Markov equilibrium. It gives a system of ms ·K · N indifference equations

characterizing the ms ·K ·N equilibrium indifference points ε. The necessity part stems from the

indifference condition which says that, for the indifferent type, the continuation value when taking

action k is exactly equal to the continuation value when taking action 0. The sufficiency part in

the Proposition is established by showing that any ε that satisfies equation (7) can be extended to

construct a decision rule that constitutes a Markov equilibrium.

Equation (7) in Proposition 2 is a linear equation in the parameter Πi. The linearity property

will play a central role in the identification and estimation section.

Next, we provide a few remarks on the existence, computation and multiplicity of equilibria. The

following theorem establishes that an equilibrium exists.

Theorem 1 A Markov equilibrium exists.
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The theorem follows from Brouwer’s fixed point theorem. Equation (7) gives us a continuous

function from a bounded subset of <ms·K·N onto itself. By Brouwer’s theorem it has a fixed point

ε.

Proposition 2 and Theorem 1 enable us to calculate equilibria numerically. They show that the

equilibrium calculation is reduced to a fixed point problem in <ms·K·N , which is solvable even for

non-trivial ms, K and N . Backwards solving algorithms, which calculate a new optimal policy and

value function at each step of the iteration, are computationally complex, as is shown in Pakes

and McGuire (2001). Proposition 2 shows that the space of indifferent types gives an equivalent

representation of equilibria which facilitates the computation considerably. Hence, it is not needed

to determine the optimal decision rule and value function at every step of the iteration.

A remaining issue is whether the equilibrium is unique or not. The following example illustrates

that more than one equilibrium can exist.

Multiplicity of Equilibria: Suppose the industry consists of two firms. States and actions are

binary. Period profits do not depend on state variables. Monopoly profits equal 32 and duopoly profits

equal −32 . The profitability shock is drawn from a standard normal distribution function. Firms

decide whether to be active or inactive. Then, there exist multiple equilibria. We describe three

symmetric equilibria. Two equilibria have the following feature along the equilibrium path: Only

one firm is active in any period with high probability. This arises due to the positive monopoly and

negative duopoly payoffs. In the first equilibrium the identity of the active firm changes every period.

The active firm becomes inactive and the inactive firm becomes active. In the second equilibrium, the

active firm remains active and the inactive firm remains inactive. The third equilibrium differs. On

its path, each firm has a fifty percent chance of being active.1 The equilibria are robust to parameter

perturbations. Profit values with distinct values for different states - but small differences in the

state dimension - and a positive but small discount factor yield equilibria with the same qualitative

equilibrium behavior.

Symmetry: We conclude the section with a discussion of the symmetry assumption which is

assumed in the empirical section. Symmetry requires identical payoff vectors Πi = Π and identi-

cal decision rules. It can be verified that the above arguments remain valid under the symmetry

restriction which leads us to the following Corollary:

1The equilibrium strategies are the following: (i) a (1, 1, ε) = a (0, 0, ε) = 1 if and only if ε > 0, a (1, 0, ε) = 1 if

and only if ε > 1.08, and a (0, 1, ε) = 1 if and only if ε > −1.08
(ii) a (1, 1, ε) = a (0, 0, ε) = 1 if and only if ε > 0, a (1, 0, ε) = 1 if and only if ε > −1.08, and a (0, 1, ε) = 1 if and

only if ε > 1.08

(iii) a (1, 1, ε) = a (0, 0, ε) = 1 if and only if ε > 0, a (1, 0, ε) = 1 if and only if ε > 0, and a (0, 1, ε) = 1 if and only

if ε > 0.
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Corollary 1 Suppose Πi = Π.

(i) A symmetric Markov equilibrium exists.

(ii) For any symmetric Markov equilibrium there exists an ε1 such that ε = (ε1, . . . , ε1) satisfiesh
P1 (ε) + βP1 (ε)G [Is − βP (ε)G]

−1
P (ε)

i
Π+ βP1 (ε)G [Is − βP (ε)G]

−1
D (ε1) + ε1 = 0. (8)

Conversely, any ε = (ε1, . . . , ε1) that satisfies equation (8) can be extended to a symmetric Markov

equilibrium.

The symmetry assumption reduces the number of equations in (7). The reduction in dimension

reduces the complexity of the problem which may facilitate the numerical calculation of equilibria.

Additionally, symmetry places a number of restrictions on the payoff vector Π which can be useful

in the empirical analysis.

So far we have characterized several qualitative features of the equilibrium. In addition, we

provided a simple characterization of the equilibrium choice probabilities in form of an equation

system that can be solved numerically. Finally, we illustrated that the analysis remains valid under

the symmetry restriction. Next, we use the necessary and sufficient equilibrium condition (7) which

is a linear equation in period payoffs to address the question of identification.

4 Identification

This section studies identification conditions of the underlying model parameters which are the

distribution of profitability shocks F , the discount factor β, and the period profit vector Π. We

provide conditions that allow us to find a unique set of parameters that rationalizes the observed

choices. We conclude the section with a discussion of the identifying conditions in symmetric entry

models. These conditions are imposed in our empirical application.

We assume that a time-series sample of choices and states is available. The sample is sufficiently

large to characterize the equilibrium choice probabilities.

Assumption 1: We observe data (at, st)Tt=1 which permit us to characterize the choice proba-

bilities Pr (a|s) and the transition probabilities g(a, s, s0) for any s, s0 ∈ S, a ∈ A.
Notice that we consider a time-series data set from one industry at a time. Hence, the choice

probabilities characterize a single equilibrium.2

The potential number of firms may not be known in some applications. This may arise if firms

are not observed when inactive. Yet, if there is at least one action in which the firm is observed,

2 Identification of static entry models based on a cross-section data set is considered in Tamer (2003).
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then the potential number of firms is identified. To see this, notice that every period every firm has

a positive probability of selecting any action. This probability is bounded away from zero. Thus,

eventually, all potential firms are observed. The potential number of firms equals the maximum

number of observed firms.

The vector of indifferent types ε is not known. Proposition 1 gives a relationship between the

vector of indifferent types and the equilibrium actions. If the distribution F is known, then the

relationship in Proposition 1 gives an equation characterizing choice probabilities in terms of the

vector of indifferent types. The following Lemma states that the equation has a unique solution.

The Lemma is due to Hotz and Miller (1993).

Lemma 1 Suppose F is known. Suppose there exists a δ > 0 such that Pr(ai = k|s) > δ for all

i ∈ N, k ∈ Ai, s ∈ S. Then for all i ∈ N , s ∈ S there exists a unique vector εi (s) that solves the
following K equations, one for every action k = 1, . . . ,K, given by:

Pr(ai = k|s) = Pr
³
εki > εki (s) and for all k

0 6= k: εki − εk
0

i > εki (s)− εk
0

i (s)
´

(9)

The Lemma states that the indifferent types can be uniquely recovered from the choice proba-

bilities provided F is known. The Lemma is easily illustrated for binary action spaces. With binary

actions equation (9)can be re-written to obtain a unique and explicit expression for the indifferent

type given by:

ε1i (s) = F
−1(Pr(ai = 0|s)).

With the indifferent types recovered, we can infer the vector of ex ante expected profitability shocks

by using Proposition 1, as:

Di (s) =
KX
k=1

Z ∞
εki (s)

εk
Y

k0≥1,k0 6=k
F (εk + εk

0
− εk)f(εk)dεk.

With the choice probabilities, the transition probabilities and indifferent types at hand, all the coef-

ficients entering equation (7) are known. Since equation (7) is a necessary and sufficient equilibrium

condition, it can be used to infer period payoffs. Next, we discuss in some detail what conditions

are required to make this inference possible.

The following Proposition provides a negative identification result.

Proposition 3 (i) The parameters (F,β,Π1, . . . ,ΠN ) are not identified.

(ii) For given F , the parameters (β,Π1, . . . ,ΠN ) are not identified.

(iii) For given (F,β), the parameters (Π1, . . . ,ΠN ) are not identified.
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The Proposition says that the model is not identified. The non-identification result is similar in

spirit to results obtained in the single agent dynamics literature, see Rust (1994) and Magnac and

Thesmar (2002). Part (i) says that in the absence of the knowledge of the distribution function F ,

the vector ε is not determined. Hence, none of the elements in equation (7) are known and the model

is clearly not identified. The non-identification of the distribution function F is closely related to

the assumption of a finite action space. When the action space is an interval and the profit function

is known, then F can be identified, as is shown in Jofre-Bonet and Pesendorfer (2002). A parametric

assumption on the distribution function F is not enough, as can be seen from equation (7). Assuming

that profitability shocks are normally distributed with mean zero and standard deviation σ amounts

to re-scaling the matrix Π by the standard deviation σ. Hence, the standard deviation σ is not

identified.

Parts (ii) and (iii) take the distribution function F as given. They show that the model’s

remaining parameters are not identified. The reason is that equation (7) has K · LN ·N equations

while the parameter vector has (K + 1)
N ·LN ·N + 1 elements. Hence, even if in addition to F the

parameter β is fixed, the remaining parameters are not identified.

Proposition 3 establishes the need to impose identifying restrictions. We proceed by fixing the

distribution function F and the discount parameter β and discussing the identifying restrictions on

the profit vector. In our application, we assume F is the standard normal distribution function.

Recall that equation (7) is linear in the profit parameter vector Πi. With a known distribution

function F and a given discount parameter β, the question of identification of Πi is then reduced

to the question of the existence of a unique solution to the linear equation system. In economic

applications it can be verified whether the restrictions of the model yield a unique solution. We next

discuss some restrictions for the single agent and multi agent case that guarantee identification.

In the single agent case, for a fixed discount parameter β, the rank of the matrix premultiplying

the profit parameter vector in equation (7) is at most K · L as there are K · L equations. At least
L restrictions on profits are required as the profit parameter vector has (K + 1) · L parameters. In
economic applications it is assumed that the profit value for one action, say action zero, is fixed

exogenously for every state, see Magnac and Thesmar (2002).

In the multi agent case, for a fixed discount parameter β and for every firm i, the rank of the

matrix premultiplying the profit parameter vector Πi in equation (7) is at most K · LN as there

are K · LN equations. The profit parameter vector Πi has (K + 1)
N · LN parameters. Hence, at

least
³
(K + 1)N −K

´
· LN restrictions on profits are required for every firm. We next state two

restrictions for the multi agent case. We impose these restrictions in the estimation.
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Restriction (R1 ) says that period profits do not depend on the state variables of other firms:

πi (ai, a−i, si, s−i) = πi(ai, a−i, si) for all a ∈ A, s ∈ S (R1)

for some ((K + 1)N ·L)×1 dimensional vector Πi = [πi (ai, a−i, si)](ai,a−i,si)∈Ai×A−i×Si . Restriction
(R1) fixes (K + 1)

N · (LN − L) profit parameters. Restriction (R1) is satisfied in games with

adjustment costs such as entry or investment games.

Restriction (R2 ) says that period profits under action ai = 0 are fixed exogenously for every

state si and action profile a−i:

πi(0, a−i, si) = bi(a−i, si) for all a−i ∈ A−i, si ∈ Si (R2)

for some ((K + 1)N−1 ·L)×1 dimensional exogenous vector bi. Restriction (R2) fixes (K + 1)N−1 ·L
profit parameters. Restriction (R2) is satisfied in games in which one action, say action inactivity,

implies zero profits.

Restrictions (R1) and (R2) can be imposed in equation (7). Let Xi denote the restricted matrix

of dimension (K ·LN )×(K ·(K + 1)
N−1·L) which is obtained by summing columns in the unrestricted

matrix Xi = Pi + βPiG [Is − βPG]
−1
P in equation (7) which are associated with identical profit

values πi(ai, a−i, si) for ai > 0. Using this notation, the restricted equation (7) can be stated as:

Xi ·Πi + Zi = 0. (10)

where , Zi = βPiG [Is − βPG]−1Di+Xb
i · bi+ εi and Xb

i denotes a matrix of dimension (K ·LN )×
((K + 1)N−1 · L) which is obtained by summing columns in the unrestricted matrix Xi which are
associated with profit values bi(a−i, si) for ai = 0. The following Proposition states the identification

result.

Proposition 4 Suppose F and β are given, and restrictions (R1) and (R2) are satisfied.

(i) If L < K + 1, then the parameters
¡
Π1, . . . ,ΠN

¢
are not identified.

(ii) If L ≥ K + 1, and if the restricted matrix Xi has full column rank, then the parameter vector

Πi is identified.

The Proposition states that the identification of the profit parameters depends on the dimen-

sionality of the state and action spaces. Part (i) says that if there are fewer states than actions,

then the model is not identified. Part (ii) says that provided the number of states equals at least the

number of actions, and the restricted matrix Xi has full column rank, then the profit parameters

are identified.

13



Observe that restriction (R2) in Proposition 4 is required. The intuitive reasons is that the

indifference analysis determines payoffs relative to the payoff under action ai = 0 at every state

only. The formal reasons is that the matrix Xi consists of a product of matrices, Xi = Pi · [Ims·ma +

βG [Is − βPG]
−1
P ] in which the first element in the product is the

¡
K · LN¢ × ³(K + 1)

N · L
´

dimensional matrix Pi given by:

ai =

0 1 2 . . . K

Pi =

z }| {
−P−i P−i 0 . . . 0

−P−i 0 P−i . . . 0
... 0 0

. . . 0

−P−i 0 0 . . . P−i


The first column in the matrix Pi, which is associated with action ai = 0, is collinear with the

remaining columns in the matrix Pi requiring that payoffs associated with one action for every state

are exogenously fixed.

Part (ii) in Proposition 4 requires that the matrix Xi has full column rank K · (K + 1)
N−1 · L.

This condition is required as the rank condition may fail. Recall our earlier example illustrating the

multiplicity of equilibria. In the first two equilibria the rank of the matrix Xi equals 4 while in the

third equilibrium the rank equals 2 only.

Next, we briefly discuss symmetric games with binary actions (and states). We describe the

assumptions and the set of identifying restrictions in this case in more detail, as we will take this

specification to our data.

Identification in Symmetric Entry Games

This section describes a set of identifying assumptions for symmetric entry models. We impose

these assumptions in the empirical analysis.

The action space of firm i is binary, K = 1. Action 1 denotes a firm that remains active, or

enters the market. Action 0 represents an exiting firm, or a firm that remains inactive.

The state space of firm i consists of two elements: A binary variable si that indicates whether

firm i was active in the preceding period, si = 2, or inactive, si = 1, and a demand variable s0

∈ {1, . . . Ld}.
Symmetry implies that the number of other active firms is a sufficient statistic for the vector

of other firms’ actions a−i. We denote the number of other active firms by δ. It ranges from 0 to

N − 1. Similarly, the number of other firms with an active state is a sufficient statistic for s−i. We
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denote the number of other firms with an active state by θ. The dimensionality of the binary state

space under symmetry equals ms = 2 · N · Ld. Similarly, the dimensionality of the binary action
space reduces to ma = 2 ·N . Period profits can be written as π (ai, δ, si, θ, s0).
Restriction (R1) can be imposed in the symmetric entry model by omitting the dependence on

θ in the profit vector. To satisfy restriction (R2), we fix the exit value of an active firm at 10,

b(a−i, 1) = 10, and assume zero profits for inactive firms that are inactive in the preceding period,

b(a−i, 0) = 0. We assume an annual discount factor β = 0.9 and assume F is the standard normal

distribution function. By Proposition 4, if the associated restricted matrix X has rank (2 ·N · Ld),
then the restricted profit vector Π is identified. In our application the rank condition is satisfied and

the restricted profit parameters are indeed identified.

So far, we have described properties of the dynamic equilibrium and established conditions that

permit identification of the parameters of the model. We illustrated the identification conditions for

symmetric entry games in more detail. The next section addresses how to estimate the parameters.

5 Estimation Approach

This section proposes our estimator. Our estimation strategy follows the steps in the identification

argument. First, we estimate the choice probabilities. Second, we infer the period profit parameters

by using the linear equation (10). We characterize the properties of the estimator. We conclude the

section with a discussion of the estimator for symmetric entry games and the restrictions imposed

on the estimator by our data.

The potential number of firms may not be observed. By assumption, the probability that all

potential firms are observed (are active) in a given period is positive and bounded away from zero.

An estimator bN for the potential number of firms is then the maximum number of firms observed in

any period, bN = maxtNt. It can be verified that the estimator bN is consistent and superefficient, as

it converges a rate faster than
√
T . The fast rate of convergence of bN implies that the asymptotic

properties of the choice probabilities estimator and profit parameters estimator will not be affected

by bN . We can proceed as if N is known.

The choices and states are multinomially distributed. This follows from the assumption that

the set of feasible actions and states is finite. Let p(k, i, s) denote the probability that firm i

selects action k in state s. Define the observed choice frequency by nkis =
P
t 1{ati=k,st=s} for all

i ∈ N,k ∈ Ai, s ∈ S and observed state frequency by nass0 =
P

t 1{at=a,st=s,st+1=s0}. We may write
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the log likelihood of the multinomial model as:

` =
X
i∈N

X
k∈Ai

X
s∈S

nkis log p(k, i, s) +
X
a∈A

X
s∈S

X
s0∈S

nass0 log g(a, s, s
0
)

where
P
k∈Ai p(k, i, s) = 1 for all i ∈ N,s ∈ S and Ps0∈S g(a, s, s

0
) = 1 for all a ∈ A,s ∈ S. We

assume that the vector of state variables at time t = 0, s0, is exogenous. An examination of the first

order conditions yields that the maximum likelihood estimator equals the sample frequency:

bp(k, i, s) = nkisP
l∈Ai nlis

, bg(a, s, s0) = nass0P
s00∈S nass00

.

Moreover, the solution to the first order condition is unique.

Let θ = (p(k, i, s), g(a, s, s
0
), i ∈ N,k ∈ {1, . . . ,K} , s ∈ S, a ∈ A, s0 ∈ S\sms) denote the param-

eter vector which already incorporates the restriction that probabilities sum to one. Let Dθ` denote

the gradient of the log likelihood function. Let Iθ = E (Dθ`) · (Dθ`)
0
denote the Fischer information

matrix. Billingsley (1961) establishes the asymptotic properties of maximum likelihood estimators

for Markov processes, as the number of periods T goes to infinity. The Markovian structure of the

observed controlled process (st) follows directly from the assumption that the profitability shock

realizations are conditionally independently distributed, the decision rules are Markovian, and the

distribution of profitability shocks is exogenous. The maximum likelihood estimator bθT is consistent
and asymptotically efficient with a normal limiting distribution given by:

√
T
³bθT − θ

´
Ã N(0, I−1θ ).

Let Π = ψ(θ) denote the identified profit vector. We propose to estimate the profit vector

by evaluating the function ψ at the value of the maximum likelihood estimator of the choice and

transition probabilities, bΠ = ψ(bθ). The properties of the estimator can be deduced by using the
delta method. An examination of equation (10) reveals that ψ is continuously differentiable. Let

Dθψ denote the gradient of the function ψ. By application of the delta method, see Theorem 3.1 in

Van Der Vaart (1998), the limiting distribution of ψ(bθ) is normal and given by:
√
T
³
ψ(bθT )− ψ(θ)

´
Ã N

³
0, (Dθψ)I

−1
θ (Dθψ)

0´
.

Moroever, Lemma 8.14 in Van Der Vaart (1998) implies that the estimator ψ(bθT ) is asymptotically
efficient.

The estimator is computationally very simple. Before proceeding with the application, we discuss

the restrictions that our data impose on the estimator in more detail.

Estimation of Symmetric Entry Games
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We assume a deterministic state transition rule and do not estimate g. The assumption is satisfied

if agents have perfect foresight concerning the evolution of the exogenous demand process measured

by the gross domestic product. Actions are binary, K = 1, yielding a binomial choice model.

We do not observe actions for a number of states because these states did not occur in our sample

period. These data limitations lead us to adopt a parametric framework for the choice probabilities.

We parameterize the choice probability in the following way:

p(1, i, s) = Φ(α · s)

where Φ denotes the standard normal distribution and α · s denotes a linear function of the state
variables. The linear function is given by:

α · s = α0 + α11{sti=2} + α2δ
t + α31{sti=2} · δ

t + α4s
t
0 (11)

where 1{sti=2} denotes an indicator function that equals one if firm i is active in the preceding period

and zero otherwise, δt =
P
j 6=i 1{stj=2} denotes the Number of Other Active Firms, and s

t
0 denotes

the log gross domestic product.

Profit Value Estimates: With the estimator bα in hand, we infer ε, calculate the probability ma-
trices Pi, P,G and the vector Di. We assume an annual discount factor β = 0.9. All the coefficients

in the linear equation (10) are available and we infer the restricted period profit parameters. As

explained above, the standard errors for the period profit parameters are calculated using the delta

method.

The next section introduces our data for pubs, restaurants, coffeehouses, carpenters, and bakeries

for two Lower Austrian cities.

6 Data

This section introduces our data set and gives descriptive statistics.

We have collected quarterly time series information on the identity of active pubs, restaurants,

coffeehouses, carpenters and bakeries in two Austrian cities between 1982 and 2002. The data were

obtained from Lower Austrian Chamber of Business. The data list all active pubs, restaurants,

coffeehouses, carpenters, and bakeries in two small sized Austrian cities, Amstetten and Baden.

Baden has about 24, 000 inhabitants. Amstetten is of similar size with a population of about 23, 000.

We supplemented the information with quarterly gross domestic product information for Austria.

(Table I about here)
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Table I provides summary statistics. The first five columns consider Baden and the next five

columns consider Amstetten. The first column in the table shows that on average there are 17.01

pubs active in Baden. The number of active pubs ranges between 12 and 22 with a standard deviation

of 2.07. There is a substantial pub turnover in Baden. A total of 49 pubs were opened, while a total

of 53 pubs were closed. Not adjusting for truncation at the beginning and the end of the sample

period, the average active spell of a pub equals about 21.3 quarters.

Column two considers restaurants in Baden. On average a total of 13.26 restaurants are active

in Baden. The number of active restaurants ranges between 6 and 25 with a standard deviation of

4.69. There is some turnover. A total of 38 restaurants were opened, while a total of 20 restaurants

were closed. The average active spell of a restaurants equals about 25.32 quarters.

Column three considers coffeehouses in Baden. On average a total of 13.81 coffeehouses are active

in Baden with the number of active coffeehouses ranging between 9 and 18. There is turnover. A

total of 44 coffeehouses were opened, while a total of 40 coffeehouses were closed. The average active

spell of a coffeehouse equals about 21.89 quarters.

Column four considers carpenters in Baden. On average a total of 11.29 carpenters are active

in Baden. The number of active carpenters ranges between 9 and 15 with a standard deviation of

1.63. There is less turnover than for pubs, restaurants, or coffeehouses. A total of 16 carpenters

were opened, while a total of 12 carpenters were closed. The average active spell of a carpenters

equals about 37.92 quarters.

Column five considers bakeries in Baden. On average a total of 9 bakers are active in Baden

ranging between 7 and 11 at any point in time. Turnover is not very pronounced with 8 bakery

openings and 9 bakery closings during the sample period. The average active spell of bakery is about

44.47 quarters.

Columns six to ten report summary statistics for pubs, restaurants, coffeehouses, carpenters and

bakeries in Amstetten, respectively. The average number of businesses is similar to the numbers in

Baden. On average there are about 21.52 pubs, 8.33 restaurants, 14.37 coffeehouses, 13.6 carpenters

and 8.88 bakeries in Amstetten. The number of newly opened businesses equals 14 and 15 for bakeries

and carpenters, and 48 and 50 for pubs and coffeehouses, respectively. There are 14 closings for

bakeries and carpenters and 45 and 30 closings for pubs and coffeehouses, respectively. The average

active spell of a business in Amstetten ranges between 21.95 for coffeehouses and 42.30 for carpenters.

In summary, the data provide us with time series information on the identity of active pubs,

restaurants, coffeehouses, carpenters and bakeries in two selected Austrian towns, Baden and Am-

stetten, over a time period of more than 20 years. There is persistence in the active spell of businesses.

Bakeries and carpenters remain open for about ten years while pubs, coffeehouses and restaurants
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remain open for about 5 to 6 years. There is considerable turnover in these professions. In Baden

a new pub is opened on average every half year, and a pub is closed at the same rate. Similarly a

restaurant and coffeehouse opens every half year. For bakeries there is less turnover. In Baden a

new bakery opens every 2 to 3 years and a bakery closes with the same frequency.

7 Estimation Results

This section reports our estimates. We begin with a description of the choice probability estimates.

Then, we assess the goodness of fit of the empirical model by sampling from the distribution of choice

probability estimates and comparing the resulting distribution of pseudo samples to the observed

data. Finally, we describe the period profit parameter estimates.

Table II reports the maximum likelihood estimates of the probability of being active. We assume

symmetric behavior and pool the decisions of all firms within a profession and city. The total number

of firms ranges between 11 and 29 across professions and cities. The number is tabulated in Table

I. Explanatory variables include Lagged Active which is a dummy variable that equals one if the

firm was active in the preceding period, the Number of Other Active Firms equals the number of

other firms that were active in the preceding period, an interaction term between Lagged Active and

the Number of Other Active Firms, and Log GDP which measures the logarithm of the Austrian

gross domestic product. In all specifications, we can reject the null that the coefficients are jointly

insignificant.

(Table II about here)

We interpret the estimates in Table II by evaluating the probability of being active at the sample

mean of Log GDP and the sample median of the Number of Other Active Firms: For all professions

in both cities, Lagged Active has a significant positive effect on the decision to be active. For pubs

in Baden, Lagged Active increases the probability of being active in the next period by 84%. In

other professions the number ranges between 83% and 94%. The evidence in Amstetten is somewhat

stronger. Lagged Active increases the probability of being active in the next period by 90% for pubs.

In other professions the number ranges between 89% and 96%.

Number of Other Active Firms has a significant effect in three professions in Baden and in all

professions in Amstetten. In both cities and all professions, increasing the Number of Other Active

Firms by one has a negative effect on being active. The magnitude of the effect of increasing the

Number of Other Active Firms by one is small, ranging between −0.2% and −1.3% in Baden. In

Amstetten the effect ranges between −0.4% and −1.1%.
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Log GDP has a positive effect in two of five professions in Baden. Increasing Log GDP by 1%

increases the probability of being active by 5.8% for restaurants, by 8.2% for carpenters. For pubs,

coffeehouses and bakeries the effect differs. There a 1% increase in Log GDP lowers the probability

of being active by 6.9%, 3.1% and 1.9%, respectively. In Amstetten, Log GDP has a positive effect

on being active in all professions. The Log GDP effect ranges between 0.1% and 7.6%.

Higher order terms for the Number of Other Active Firms can be included in the specification of

the choice probabilities. It turns out that higher order terms are not significant for most professions.

We conducted likelihood ratio tests of the null hypothesis that the coefficients of second order terms

for Number of Other Active Firms are equal to zero. In Baden, the null cannot be rejected at the

ten percent level in four of five professions. In Amstetten, the null cannot be rejected at the ten

percent level in three of five professions. The exceptions are restaurants in Baden, and pubs and

coffeehouses in Amstetten.

Symmetry is imposed in the specification of Table II. With a sufficiently rich data set, asymmetry

could be accounted for in the estimation. Asymmetry, which is sometimes referred to as unobserved

heterogeneity in the empirical literature, can be accounted for in the estimation. For example,

choice probabilities can be estimated for each firm individually by using a full set of state variables

as explanatory variables. The coefficients would then account for possible asymmetric effects of

opponents’ state variables. Unfortunately, the number of parameters for a full asymmetric model

exceeds what is feasible for the limited information available in our data. None the less, we consider

a simplified specification that permits some asymmetries between firms.

The presence of unobserved heterogeneity is tested in the following way: We re-estimate the

probit model by including a set of firm specific dummy variables, in addition to the variables listed

in Table II. We conduct two tests: First, we test the null hypothesis of jointly not significant effects

of the dummy variables. The test statistic is distributed as a chi-squared random variable. We

find that at the one percent level the null of no significant effects cannot be rejected in four of five

professions in Baden and in all professions in Amstetten. At the five and ten percent level, the null

cannot be rejected in three of five professions in Baden and in two of five professions in Amstetten.

Our second test considers the null hypothesis that the coefficients for the four explanatory variables

in Table II are equal between two specifications: with and without firm dummies. The Wald test

statistic is distributed as a chi-squared random variable with four degrees of freedom. We find that

the null cannot be rejected for all professions in Baden and Amstetten at the ten percent level. We

can conclude that asymmetries do not appear an important concern in our data.

As a measure of goodness of fit of the choice probability estimates in Table II we conduct the

following experiment. We draw a random sample from the distribution of choice parameter estimates.
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We then simulate one path of the firms’ choices by randomly drawing from the distribution associated

with the choice parameter estimates. We repeat the exercise 100 times and compare the simulated

paths to the observed path. Summary statistics for the observed path are given in Table I. Both, in

Baden and Amstetten, the simulated average number of firms is somewhat lower than the observed

number for all professions but the difference is small in magnitude. We cannot reject the null of

no differences for all five professions in both cities. Comparing the number of entrants, exits and

activity spells between the simulated and observed data reveals the following: In both, Baden and

Amstetten, there are no significant differences between the observed and the simulated number of

entrants, exits and activity spells in all five professions. The choice probability estimates explain

turnovers accurately.

Estimates of period profit parameters in Baden and Amstetten are reported in Tables III and IV,

respectively. As described above, we fix the annual discount parameter β at 0.9, assume that F is

the standard normal distribution function, assume zero profit for inactive firms that remain inactive,

and fix the exit value at 10. We assume a deterministic transition rule for GDP. For out of sample

future time periods, we assume that the GDP level is constant and equal to the GDP value achieved

in 2002. Under these assumptions, for all five professions in both cities, the restricted matrix X

appearing in equation (10) has rank (2 ·N · Ld). By Proposition 4, the restricted profit vector is
identified. Tables III and IV report period profit estimates of an active firm for the Number of Other

Active Firms ranging from zero to N − 1, and for two selected GDP levels. The high GDP level
amounts to 12.80 in logs, achieved in the second quarter in 1992, and the low GDP level amounts to

12.53 in logs, achieved in the first quarter in 1982. Both values are at least 10 years prior to the time

period where the GDP level becomes constant. Additionally, we report entry cost estimates which

are defined as the profit difference between active and inactive states, π (1, δ, 2, s0) − π (1, δ, 1, s0).

We report entry cost estimates at the low GDP level only, as there is a negligibly small effect of

GDP on entry costs.

(Table III about here)

The interpretation of the coefficient estimates in Table III is the following: Baden’s entry cost

estimates are significantly negative in all professions for all state variables. The entry cost estimates

range between 11.35 and 16.06. For four of five professions the entry cost decreases monotonically

with an increase in the Number of Other Active Firms suggesting that entry becomes less costly

when more firms are active. The exception is bakeries. For bakeries, the entry cost increases with

an increase in the Number of Other Active Firms.

Period profit estimates of a pub that was active in the preceding period in Baden are given in
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columns 2 and 4. They range between 0.16 and 0.42. The profit estimates are highest with few

active firms and fall as the Number of Other Active Firms increases. For other professions a number

of profit estimates are positive and significantly different from zero. Period profit estimates typically

fall as the Number of Other Active Firms increases. An exception are coffeehouse profit estimates

which increase initially and, then, decrease, as the Number of Other Active Firms increases. Bakery

profit estimates are imprecisely estimated when the Number of Other Active Firms is small leading

to large point estimates. The effect of GDP on period profits varies across professions. Carpenter

and restaurant profit estimates increase with an increase in GDP. The profit estimates for other

professions fall with an increase in GDP.

(Table IV about here)

The estimates in Amstetten are qualitatively similar to Baden. An examination of Table IV

reveals that the entry cost estimates are significant negative in all professions for all state variables

in Amstettten. The entry cost estimates range between 12.08 and 21.66. For all professions the entry

cost decreases monotonically with an increase in the Number of Other Active Firms suggesting that

entry becomes less costly when more firms are active.

Period profit estimates of a firm that was active in the preceding period in Amstetten are mostly

positive. A number of profit estimates are significantly different from zero. An increase in the Num-

ber of Other Active Firms decreases period profits on most occasions in accordance with economic

intuition. For restaurants, coffeehouses and carpenters the effect of an increase in the Number of

Other Active Firms is positive on occasions. For instance, as the Number of Other Active Firms

increases coffeehouse profit estimates evaluated at the high GDP level fall, then increase, and then

fall again, while coffeehouse profit estimates evaluated at the low GDP level fall for all of the range.

The effect of GDP on period profits is positive but small in magnitude on most occasions.

The profit parameter estimates in Tables III and IV illustrate substantial payoff differences

between newly entered and already active firms consistent with dynamic entry models. The entry

cost estimates are of much larger magnitude than the profit estimates implying that it takes a number

of periods to recover the entry cost. We constructed a Chi-Squared test of the null hypothesis that

the Number of Other Active Firms has no effect on profit estimates. We can reject the null of no

effect in all professions and both cities. An increase in the Number of Other Active Firms decreases

the profit estimates in most professions and GDP levels.

The estimates in Tables III and IV rely on two identifying assumptions. These assumptions are

an annual discount factor β fixed at 0.9, and the exit value fixed at 10. The effect of the identifying

assumptions on the parameter estimates is readily illustrated. An increase in the discount factor β,
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decreases the profit estimates at all state variables. The entry cost estimates remain unaffected by a

change in the discount factor as they are defined as the profit difference between active and inactive

states, π (1, δ, 2, s0) − π (1, δ, 1, s0). An increase in the exit value lowers the entry cost by exactly

the same amount. In the extreme scenario in which the exit value is zero, most entry cost estimates

in Tables III and IV remain negative and significantly different from zero. An increase in the exit

value magnifies the profit estimates for active firms.

With the profit estimates at hand, we can numerically calculate equilibria by using equation

(8). From section 3 we know that the numerical calculation need not yield the equilibrium outcome

that is observed because the model can exhibit multiple equilibria. However, in our case, repeated

numerical calculations yield choice probabilities almost identical to the choice probability estimates

in Table II. A possible reason is that the zeros of equation (8) are locally unique. With starting values

that are not too far away from the choice probability estimates in Table II, numerical algorithms

tend to converge to the same solution.

In sum, the estimates of choice probabilities fit the time series data for pubs, restaurants, cof-

feehouses, carpenters and bakeries in Baden and Amstetten well. Our goodness of fit test indicates

that the model explains the data accurately. The profit parameter estimates confirm substantial

payoff differences between newly entered and already active firms consistent with dynamic entry

models. Additionally, we can reject the null that the Number of Other Active Firms has no effect

in all professions confirming the importance of strategic effects. The effect of the Number of Other

Active Firms on period profit estimates has the expected sign in most professions. With all the

profit estimates at hand, we can illustrate firms’ decisions and assess policy questions. This is done

in the next section.

8 Value Function Estimates and Entry Tax

This section considers two applications of our estimates. Subsection 8.1. depicts the long run

expected discounted sum of payoffs to active and inactive firms. Subsection 8.2. conducts the policy

experiments in which the regulator imposes a unit tax on firms wishing to enter.

8.1 Value Function Estimates

This section illustrates our estimates for the discounted sum of firms’ payoffs for carpenters in Baden.

We select carpenters in Baden to illustrate interesting payoff differences between active and inactive

firms. Additionally, we illustrate differences between short and long run payoffs. Estimates for other
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professions yield qualitatively similar results. The discounted sum of payoffs is calculated from the

period profit estimates by using the formula given in equation (3) in section 2.

(Figures 1 - 4 about here)

Figures 1 to 4 depict the ex ante value function estimates as a function of the Number of Other

Active Firms. The ex ante value function is defined as the expected discounted sum of payoffs

before the profitability shock is observed and before the action is taken. The ex ante value function

is plotted as a solid line. The remaining state variables, active or inactive and the GDP level, are

fixed at four distinct values. These values include inactive firms at a high GDP level, active firms

at a high GDP level, inactive firms at a low GDP level, and active firms at a low GDP level. The

dotted lines in Figures 1 to 4 depict 90% confidence intervals.

Figure 1 shows that the ex ante value function of an inactive firm at the high GDP level ranges

between 1.74 and 1.95, and does not change significantly as the Number of Other Active Firms

increases. Figure 2 shows that the ex ante value of an active firm at the high GDP level is substan-

tially higher than that of an inactive firm. It ranges between 13.19 and 16.79. The level difference

is attributable to the entry cost. The ex ante value function of an active firm declines significantly

as the Number of Other Active Firms increases. The reason is that an additional firm lowers the

expected period payoff to an active firm. In total, the ex ante value function declines by about 27%

as the Number of Other Active Firms increases from 0 to 14.

The value function estimates at the low GDP level, which are depicted in Figures 3 and 4, are

qualitatively similar to those in Figures 1 and 2. The effect of a reduction in the GDP level is to

decrease the value function estimates. The value function of an inactive firm is again almost constant

in the Number of Other Active Firms at about 1.0, while the value function of an active firm falls

with an increase in the Number of Other Active Firms. It falls from 15.40 to 11.93. The ex ante

value function estimate declines by about 29% as the Number of Other Active Firms increases from

0 to 14.

Comparing the long run value function estimates with the short run profit estimates in Table

III reveals that GDP and the Number of Other Active Firms have a stronger effect in the short run

than in the long run.

8.2 Entry Tax

This section reports a policy experiment of a tax on entry. We select carpenters in Baden and assess

the effect of the tax on the equilibrium outcome.
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The experiment is as follows: We draw a random sample from the distribution of profit estimates

for carpenters described in Table III. We increase the entry cost estimate by one unit at all state

variables. We then numerically calculate the new equilibrium based on the modified period payoffs

by using equation (8). The equilibrium choice probabilities are then used to simulate one path of

firms’ choices by randomly drawing from the distribution associated with the equilibrium choice

parameters. We repeat the exercise 60 times and compare the simulated after tax equilibrium paths

to the observed path. Summary statistics for the observed path are given in Table I.

Somewhat surprisingly, the tax does not affect the distribution of the number of active firms

significantly. The after tax simulated average number of active firms equals 11.14 with a standard

deviation of 0.64. The number is not significantly different from the mean number of active firms in

Table I which equals 11.29. The minimum and maximum number of active firms on average across

simulations equal 13.7 and 8.83, respectively, which are again not significantly different from the

before tax counterpart in Table I.

The tax alters the number of turnovers. Turnovers become less frequent. The number of entrants

falls by more than 50%, from 16 to 6.93 on average across simulations. The number of exiting firms

falls by about 80%, from 12 to 2.6 on average. The reduction in the number of turnovers is significant

with standard deviations across simulations of 2.02 and 1.83 for the number of entrants and exiting

firms, respectively. The duration of the mean active spell increases by about 60% to 59.44. The

increase in the mean active spell is significant.

The reduction in turnovers as a result of the tax can be explained by using the indifferent type

analysis described in section 3. The range of profitability shocks in which an inactive firm decides

to enter is reduced as a larger profitability shock is required to offset the increased entry cost. On

the other hand, the range of profitability shocks in which an active firm decides to remain active

is increased as the continuation value when exiting is reduced due to the tax. Hence, the ex ante

expected profitability shock when active is reduced.

An examination of the average value functions across simulations reveals the following: The

expected discounted sum of payoffs for an inactive firm is substantially reduced due to the tax. The

reduction is significant. The value function of an inactive firm, evaluated at the high or low GDP

level which is depicted in Figures 1 and 3, falls by 56% to 63% across the range of the Number of

Other Active Firms. The decrease in value ranges between 1.05 and 1.10 in absolute value at the

high GDP level and between 0.57 and 0.59 in absolute value at the low GDP level.

For most of the range of state variables, active firms take a small percentage fall in expected

discounted sum of payoffs. The change ranges between −7% and +2% across the range of all state

variables, but is not significant at any point. The change in absolute value at the high GDP level
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ranges between −0.21 and −0.97. The change in absolute value at the low GDP level ranges between
−0.48 and +0.25.
We calculate the tax effect on all firms as the difference in the sum of pre and post value functions

of all firms combined. The net tax effect on firms is negative. The total loss ranges between -2.92

and -8.77 across the range of the number of active firms. Some of the firms’ losses will be offset

by the revenues generated by the tax. We find that the expected sum of discounted tax revenues

ranges between +2.37 and +7.55 over the range of the number of active firms. Adding the net tax

effect on firms and the tax revenues implies a total tax effect ranging between -4.78 and +0.45 over

the range of the number of firms. As the number of active firms increases, the total effect increases

initially, peaking between 6 and 7 firms, and then decreases. The total tax effect is not significantly

different from zero for any number of firms.

Increasing the tax to three units yields results qualitatively similar to the unit tax case: The

distribution of the number of active firms remains not significantly different from the before tax

distribution. The number of turnovers and the expected discounted sum of payoffs for an inactive

firm are reduced due to the tax and more so than with a unit tax. The average value function

of an active firm becomes steeper with the three-unit tax. It is higher with a small Number of

Other Active Firms and lower with a large Number of Other Active Firms relative to the before

tax value function. The difference is marginally significant at some values of the Number of Other

Active Firms. The total tax effect, calculated as the sum of the net tax effect on firms plus the tax

revenues, is not significantly different from zero for most of the range of the number of firms. It is

marginally significant positive with seven to nine firms and marginally significant negative with 15

firms.

In sum, the tax does not affect the long-run number of active firms. Instead, it reduces the

frequency of turnovers as it makes entry more costly. The tax adversely affects inactive firms as the

cost of entry is increased. Already active firms are not significantly affected by the tax for most of

the range of the number of firms. Taking the tax revenues into account, the total effect on the sum

of future discounted payoffs is on occasions positive but not significant for most of the range of the

number of firms.

9 Conclusion

This paper proposes a new estimation method for Markovian games with finite actions. The basis of

our analysis is a necessary and sufficient equilibrium condition for dynamic games. The equilibrium

condition permits us to characterize the identification conditions of the underlying model parameters.
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We propose an estimation method following the steps in the identification argument. The estimator

is efficient and computationally easy to implement. We apply the proposed estimator to time series

data on entry and exit decisions for a number of professions in two Austrian cities. The model fits

the data well. Dynamic effects are important as active firms are very likely to remain active in

the next period. We calculate the effect of an entry tax on the equilibrium outcome. Somewhat

surprisingly, the distribution of active firms does not change significantly as a result of the tax but

the number of turnovers is reduced significantly. While the characterization of the identification

conditions is reasonably complete, the estimator is computationally simple, and policy experiments

can be conducted, there are at least two shortcomings in our analysis:

First, not all the primitives of the model are identifiable as the discount factor and the dis-

tribution of unobserved profitability shocks are not identified. It may be possible to alleviate the

non-identification concern by adopting a formulation that omits the profitability shock. In the

absence of a profitability shock, firms will not necessarily adopt pure strategies. Instead, firms

may randomize between alternative actions. The resulting mixed strategy equilibrium will generate

endogenously a distribution over different outcomes which may form the basis for an alternative

estimation approach.

Second, the assumption of Markovian strategies is restrictive as it does not permit full history

dependent behavior. An increase in the state space would permit strategies to be richer functions

of past actions. However, full history dependent behavior, which plays a prominent role in the

development of the theory of strategic dynamic games, cannot be captured.

10 Appendix

Proof of Proposition 1. Consider a typical firm i deciding between action k and action 0 at any

state s. By assumption, the payoff function is linear in the private profitability shock εk. If there

exists a point εk such that a firm of type εk is indifferent between actions k and 0, then any type

with a smaller profitability shock, εk < εk, will prefer action 0 to action k. On the other hand, any

type with a higher profitability shock, εk > εk, will prefer action k to action 0. The reason is that

the profitability shock εk affects the current period payoff under action k only. Future payoffs and

current period payoffs under action k
0 6= k are unaffected by εk.

Next, consider a type (εk, εk
0
) for any k, k

0 6= 0. By transitivity, if the type is indifferent between
actions k and 0, and indifferent between actions 0 and k

0
, then the type is also indifferent between

action k and k
0
. Furthermore, transitivity implies that if εk − εk > εk

0 − εk
0
, then type (εk, εk

0
)

prefers action k to actions k
0
and 0, while if εk − εk < εk

0 − εk
0
, then type (εk, εk

0
) prefers action k

0
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to actions k and 0.

Finally, we need to show that the indifferent points ε = (ε1, . . . , εK) exist. The indifferent εk

type receives the same expected discounted sum of payoffs under action k as under action 0, which

leads to the indifference equation:

X
a−i∈A−i

Pr(a−i|s) ·
πi (a−i, k, s) + β

X
s0∈S

g(a−i, k, s, s
0
)Vi(s

0
)

+ εk

=
X

a−i∈A−i
Pr(a−i|s) ·

πi (a−i, 0, s) + β
X
s0∈S

g(a−i, k, s, s
0
)Vi(s

0
)

 (12)

By assumption, the period return Πi and the ex ante expected profitability shock are bounded. The

discount factor β is less than 1 and, hence, the value function is bounded. In turn this implies

that the first expression on the left hand side and the expression on the right hand side in equation

(12) are bounded. Hence, the indifferent point εk, which equals the difference between those two

expressions, is contained in a bounded interval, and there exists a finite positive number E such that

εk ∈ [−E,E]. Hence, the indifferent points ε = (ε1, . . . , εK) must exist, since, by assumption, the
support of εk is unbounded. This establishes the result.

Proof of Proposition 2. First, we show that equation (7) must be satisfied in any equilibrium.

It is an immediate consequence from Proposition 1, that for every i the indifferent εki type receives

the same expected discounted sum of payoffs under action k as under action 0, which leads to the

indifference equation:

X
a−i∈A−i

Pr(a−i|s) ·
πi (a−i, k, s) + β

X
s0∈S

g(a−i, k, s, s
0
)Vi(s

0
)

+ εki (s)

=
X

a−i∈A−i
Pr(a−i|s) ·

πi (a−i, 0, s) + β
X
s0∈S

g(a−i, k, s, s
0
)Vi(s

0
)

 (13)

Equation (13) is a necessary equilibrium condition that must be satisfied at every state s ∈ S and
for every action k = 1, . . . ,K yielding a total of ms · K equations with ms · k indifferent types,
one for each possible state and action. We may compactly write equation (13) in matrix form.

Let εi = [εi (s)]s∈S be the (ms ·K) × 1 dimensional vector of indifferent types; let P−i be the
ms×ms · (K + 1)

N−1 dimensional matrix consisting of choice probability Pr(a−i|s) in row s column
(a−i, s), and zero entries in row s column (a−i, s

0
) with s

0 6= s; and define the (ms ·K)× (ma ·ms)
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dimensional matrix Pi (ε) as:

ai =

0 1 2 . . . K

Pi (ε) =

z }| {
−P−i P−i 0 . . . 0

−P−i 0 P−i . . . 0
... 0 0

. . . 0

−P−i 0 0 . . . P−i


We can re-state equation (13) as:

Pi (ε)Πi + βPi (ε)GVi + εi = 0 (14)

Next, we substitute equation (3) into equation (14) to obtain an equation that characterizes the

equilibrium indifference points εi. To do so, notice that the vector of ex ante expected profitability

shocks can be restated using the indifference points:

Di (s) =

 KX
k=1

Z ∞
εki (s)

εk
Y

k0≥1,k0 6=k
F (εk + εk

0
− εk)f(εk)dεk


s∈S

which leads us to the characterization stated in the Proposition. This establishes the first part.

Next, we take for every firm i a vector εi that satisfies equation (7). We need to construct a

Markovian strategy, beliefs and a continuation value and show that they constitute an equilibrium.

For a given εi, we define the Markovian strategy as in Proposition 1, as:

ai(εi, s) =

 k if εki > εki (s) and for all k
0 6= k: εki − εk

0
> εki (s)− εk

0

i (s) ;

0 if εki < εki (s) for all k.

The above decision rule yields beliefs which we denote with the choice probability matrix P (ε). The

decision rule also implies expected profitability shocks which we denote as Di (ε). As in equation

(3), the value function is then given by:

Vi = [Is − βP (ε)G]−1 [P (ε)Πi +Di (ε)] .

By construction, the decision rule is optimal for the above continuation value and beliefs. Further,

the beliefs are consistent. This establishes the desired result.

Proof of Theorem 1. We need to show that equation (7) has a solution. We can re-write the

equation to define the function h = (h1, . . . , hN ) with component hi given by:

εi = hi(ε)

= −Pi (ε)Πi − βPi (ε)G [Is − βP (ε)G]−1 [P (ε)Πi +Di (ε)]
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A fixed point of the function h will be a zero of equation (7). By assumption, the expected period

payoff is bounded and, hence, the ex ante value function is bounded. As is shown in the proof of

Proposition 1, we can deduce that the set of indifference points εi is contained in some bounded

interval [−E,E]ms·K for some E. In turn, this implies that h has domain and range [−E,E]ms·K·N .

The elements entering the function h are continuous, as the decision rule, characterized in Propo-

sition 1, and the resulting choice probability matrix are continuous in ε. Brouwer’s fixed point

theorem implies that there exists a fixed point ε of the function h. By Proposition 2, the fixed point

corresponds to an equilibrium.

Proof of Corollary 1. The arguments in the proofs of Proposition 1, Proposition 2 and Theo-

rem 1 do not rely on asymmetry. The same arguments remain valid with the symmetry assumption

in place.

Proof of Lemma 1. Pick any state s ∈ S and firm i ∈ N . Denote with φk (ε) the probability

that action k is chosen. Elementary calculus shows that the probability equals:

φk (ε) = Pr(εki > εk and for all k
0 6= k: εki − εk

0

i > εk − εk
0
)

=

Z ∞
εk

Y
k0≥1,k0 6=k

F (εk + εk
0
− εk)f(εk)dεk

Let φ0 (ε) = 1 −PK
l=1 φ

l(ε) denote the probability of action 0. It equals
Q
k0≥1 F (ε

k). Let P k

denote the observed probability that firm i selects action k, and define the function ψ : <K → <K
where ψ (ε) =

³
φ1 (ε)− P 1, . . . ,φK (ε)− PK

´
. A zero of the function ψ corresponds to a solution

in equation (9). By assumption, the function F is differentiable and, hence, φ is differentiable.

Taking the derivative shows that φ satisfies the gross substitute property: ∂φk

∂εk
< 0 and ∂φk

∂εk
0 > 0

for k
0 6= k. Let Dψ denote the gradient of ψ. Since, by construction, PK

l=0 φ
l(ε) = 1, and ∂φ0

∂εk
> 0,

it follows that Dψ has a negative and dominant diagonal, −∂φk

∂εk
>
PK
k0=1,k0 6=k

∂φk

∂εk
0 . Hence, Dψ is

non-singular.

We show that there exists a ε such that ψl(ε) < 0 for all l ≥ 1. By assumption the probability
P k is bounded away from zero, P k ≥ δ > 0 for all k. Pick ε1 = F−1 (1− δ) + 1. Consider the

following inequalities:

φl
¡
ε1, . . . , ε1

¢
=

Z ∞
ε1
F (εk)K−1f(εk)dεk

≤
Z ∞
ε1
f(εk)dεk

< δ.

The first inequality uses that F (εk)K−1 ≤ 1. The second inequality uses that by construction,

F (ε1 − 1) = 1− δ and, thus,
R∞
ε1
f(ε)dε < δ. Since P l ≥ δ, it follows that ψl(ε1, . . . , ε1) < 0 for all
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l ≥ 1.
Next, we show that there exists a ε such that ψl(ε) > 0 for all l ≥ 1. Clearly, there exists a ε

such that
PK
l=1 ψ

l(ε) > 0. To see this, fix εk = ε1 for all k
0 ≥ 1 and observe that by construction:

KX
l=1

ψl(ε1, . . . , ε1) = 1− φ0
¡
ε1, . . . , ε1

¢− KX
l=1

P l

= 1− F (ε1)K −
KX
l=1

P l.

Since
PK

l=1 P
l = 1−P 0 with P 0 bounded away from zero, we can pick ε1 sufficiently low, and havePK

l=1 ψ
l(ε) > 0. Now, by the implicit function theorem and the gross substitute property, we can

increase εk
0
for k

0
with ψk

0
(ε) > 0 while holding

PK
l=1 ψ

l(ε) constant. Since, eventually, ψk
0
(ε)

approaches zero, there must exist a ε such that ψl(ε) > 0 for all l ≥ 1.
Since there exist ε, ε such that ψl(ε) > 0, ψl(ε) < 0 for all l ≥ 1, by continuity of ψ there exists

a ε such that ψl (ε) = 0 for all l ≥ 1.
It remains to show that the zero is unique. Suppose there are two zeros. That is there are ε, ε

0

with the property ψl (ε) = 0,ψl
³
ε
0´
= 0 for all l ≥ 1. By the mean value theorem there exists a

point ε
00
such that ∂ψl(ε)

∂εk
|ε=ε00 = 0 for all l ≥ 1. The gradient Dψ evaluated at ε

00
must be singular,

contradicting the non-singularity of Dψ. Hence, the zero is unique.

Proof of Proposition 3. Part (iii): Pick any strict monotone and continuous distribution

function F defined on < and pick any β. By Lemma 1, there is a unique ε(F ) and D(F ). For any

firm i, condition (7) consists of K · LN equations of the form AjΠi +Bj = 0 in which the numbers

in Aj and Bj are given. The unknown parameter vector Πi has a total of (K+1)N ·LN parameters.
Clearly, the number of parameters exceeds the number of equations, and elementary properties of

linear equations establish that the parameter vector Πi is not identified.

Parts (i) and (ii) follow immediately from part (iii).

Proof of Proposition 4. By definition, the matrix Xi is of dimension (K ·LN )× ((K + 1)N ·
LN ), and the profit vector Πi of dimension ((K + 1)N · LN )× 1. Restriction (R1) fixes (K + 1)N ·
(LN −L) profit parameters, leaving a total of (K + 1)

N ·L profit parameters unknown. Restriction
(R2) fixes additionally (K + 1)

N−1 · L profit parameters. Imposing restrictions (R1) and (R2)

together yields the restricted matrixXi of dimension
¡
K · LN¢×³K · (K + 1)

N−1 · L
´
. It is obtained

by summing columns in the unrestricted matrix Xi which are associated with identical profit values.

The restricted profit parameter vector Πi has dimension
³
K · (K + 1)N−1 · L

´
× 1.

By elementary properties of linear equations, the parameter vector Πi is identified provided the

matrix Xi has full column rank. Full column rank is achieved if the rank equals K · (K + 1)N−1 ·
L. Now, the number of rows in Xi equals K · LN , while the number of columns in Xi equals
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K · (K + 1)N−1 · L. Clearly, if L ≥ K + 1, then the matrix Xi can have full column rank. This

establishes part (ii) in the Proposition. On the other hand, if L < K+1, then the rank of the matrix

Xi is strictly less than K · (K + 1)
N−1 · L. Hence, the matrix Xi does not have full column rank.

This establishes part (i) in the Proposition.
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Pub Restaurant Coffeehouse Carpenter Bakery

No of Firms
Mean 17.01 13.26 13.81 11.29 9

(2.07) (4.69) (1.65) (1.63) (0.93)
Minimum 12 6 9 9 7
Maximum 22 25 18 15 11

No of Entrants 49 38 44 16 8
No of Exiting Firms 53 20 40 12 9
Mean Active Spell 21.33 25.32 21.89 37.92 44.47

(21.23) (24.52) (20.59) (30.38) (28.92)

Pub Restaurant Coffeehouse Carpenter Bakery
No of Firms

Mean 21.52 8.33 14.37 13.60 8.88
(2.56) (2.12) (6.84) (1.21) (1.52)

Minimum 17 4 5 12 7
Maximum 29 12 28 17 14

No of Entrants 48 23 50 15 14
No of Exiting Firms 45 16 30 14 14
Mean Active Spell 26.99 25.93 21.95 42.30 32.43

(24.24) (26.14) (22.27) (27.74) (27.31)
* Standard deviations are displayed in parenthesis.

Baden

Amstetten

Table I: Descriptive Statistics*



Pub Restaurant Coffeehouse Carpenter Bakery

Log Likelihood -372.73 -250.81 -302.70 -123.02 -79.11
No of Observations 1826 2075 1494 1245 913

Constant 9.61 -18.05 3.54 -26.85 9.40
(5.68) (14.03) (4.81) (12.73) (11.23)

Lagged Active 4.40 4.79 4.78 6.08 2.18
(0.88) (0.39) (0.96) (1.21) (2.33)

Number of Other Active Firms 0.03 0.04 0.05 -0.03 -0.31
(0.05) (0.04) (0.06) (0.12) (0.23)

(Lagged Active)*(No of Other Active Firms) -0.09 -0.08 -0.14 -0.22 0.20
(0.05) (0.03) (0.07) (0.11) (0.28)

Log GDP -0.87 1.23 -0.42 1.99 -0.66
(0.42) (1.13) (0.38) (1.06) (0.80)

Pub Restaurant Coffeehouse Carpenter Bakery

Log Likelihood -361.23 -150.76 -296.41 -125.36 -126.42
No of Observations 2407 996 2324 1411 1162

Constant -19.91 -15.41 -16.41 -6.64 -7.74
(8.33) (11.33) (19.30) (8.96) (7.19)

Lagged Active 7.98 5.51 5.94 11.66 6.74
(0.89) (0.72) (0.36) (2.07) (1.04)

Number of Other Active Firms 0.09 0.10 0.08 0.35 0.20
(0.05) (0.08) (0.03) (0.14) (0.10)

(Lagged Active)*(No of Other Active Firms) -0.22 -0.27 -0.15 -0.59 -0.33
(0.04) (0.09) (0.02) (0.15) (0.12)

Log GDP 1.30 1.03 1.05 0.03 0.33
(0.71) (0.92) (1.53) (0.75) (0.56)

* The dependent variable equals 1 if the firm is active and zero otherwise. Standard errors are displayed in parenthesis.

Baden

Amstetten

Table II: Probit Estimates of the Decision to be Active



Number of Other Entry High GDP Low GDP Entry High GDP Low GDP Entry High GDP Low GDP Entry High GDP Low GDP Entry High GDP Low GDP
Active Firms Cost Profit Profit Cost Profit Profit Cost Profit Profit Cost Profit Profit Cost Profit Profit

0 14.41 0.42 0.48 14.79 0.33 0.30 14.78 0.39 0.41 16.06 0.92 0.51 11.35 323520.90 3852868.80
(0.88) (0.18) (0.29) (0.39) (0.05) (0.02) (0.96) (0.12) (0.15) (1.32) (1.76) (0.46) (2.64) (7474945) (101652130)

1 14.32 0.42 0.49 14.71 0.33 0.30 14.65 0.39 0.41 15.85 0.84 0.48 11.75 1906.56 13183.76
(0.83) (0.17) (0.28) (0.37) (0.05) (0.01) (0.89) (0.12) (0.15) (1.19) (1.38) (0.36) (2.53) (27348.29) (221337.01)

2 14.23 0.42 0.49 14.64 0.33 0.30 14.51 0.39 0.42 15.63 0.77 0.46 12.16 46.37 194.96
(0.78) (0.17) (0.27) (0.34) (0.05) (0.01) (0.82) (0.12) (0.14) (1.07) (1.07) (0.27) (2.24) (434.04) (2230.42)

3 14.14 0.41 0.49 14.56 0.33 0.30 14.37 0.40 0.42 15.42 0.71 0.43 12.53 3.88 9.48
(0.72) (0.16) (0.26) (0.31) (0.05) (0.01) (0.75) (0.11) (0.14) (0.95) (0.81) (0.20) (1.81) (18.56) (62.49)

4 14.05 0.41 0.49 14.48 0.33 0.30 14.24 0.40 0.42 15.21 0.65 0.41 12.85 1.08 1.66
(0.67) (0.15) (0.25) (0.29) (0.05) (0.01) (0.68) (0.11) (0.13) (0.83) (0.61) (0.15) (1.39) (1.99) (4.52)

5 13.96 0.41 0.49 14.40 0.33 0.29 14.10 0.40 0.43 14.99 0.60 0.39 13.12 0.60 0.75
(0.62) (0.14) (0.23) (0.26) (0.05) (0.01) (0.61) (0.10) (0.12) (0.72) (0.45) (0.10) (1.02) (0.43) (0.76)

6 13.87 0.41 0.49 14.33 0.33 0.29 13.96 0.40 0.43 14.78 0.55 0.37 13.36 0.43 0.50
(0.57) (0.13) (0.22) (0.24) (0.04) (0.01) (0.54) (0.10) (0.12) (0.60) (0.32) (0.07) (0.71) (0.13) (0.21)

7 13.78 0.41 0.48 14.25 0.33 0.29 13.82 0.40 0.43 14.57 0.51 0.35 13.59 0.36 0.40
(0.51) (0.12) (0.21) (0.22) (0.04) (0.02) (0.47) (0.09) (0.11) (0.49) (0.22) (0.05) (0.43) (0.04) (0.07)

8 13.69 0.41 0.48 14.17 0.33 0.29 13.69 0.40 0.43 14.35 0.47 0.32 13.80 0.32 0.35
(0.46) (0.11) (0.19) (0.19) (0.04) (0.02) (0.40) (0.08) (0.10) (0.39) (0.15) (0.04) (0.23) (0.01) (0.03)

9 13.60 0.40 0.48 14.09 0.33 0.28 13.55 0.39 0.43 14.14 0.43 0.28 14.01 0.30 0.32
(0.41) (0.10) (0.18) (0.17) (0.04) (0.03) (0.33) (0.07) (0.09) (0.29) (0.09) (0.05) (0.29) (0.03) (0.03)

10 13.51 0.40 0.48 14.02 0.33 0.28 13.41 0.39 0.43 13.92 0.39 0.22 14.22 0.28 0.30
(0.36) (0.09) (0.16) (0.15) (0.03) (0.03) (0.27) (0.06) (0.08) (0.21) (0.05) (0.11) (0.52) (0.05) (0.05)

11 13.42 0.39 0.47 13.94 0.33 0.28 13.27 0.38 0.42 13.69 0.33 0.09
(0.31) (0.08) (0.15) (0.14) (0.03) (0.04) (0.20) (0.05) (0.06) (0.18) (0.03) (0.28)

12 13.33 0.39 0.47 13.86 0.33 0.27 13.13 0.37 0.41 13.45 0.25 -0.18
(0.26) (0.07) (0.13) (0.13) (0.02) (0.05) (0.15) (0.04) (0.06) (0.23) (0.09) (0.80)

13 13.24 0.38 0.46 13.78 0.33 0.27 12.99 0.36 0.40 13.19 0.10 -0.98
(0.21) (0.06) (0.12) (0.12) (0.02) (0.06) (0.12) (0.03) (0.05) (0.36) (0.27) (3.11)

14 13.15 0.37 0.45 13.71 0.32 0.27 12.85 0.33 0.38 12.88 -0.27 -4.88
(0.17) (0.04) (0.10) (0.12) (0.01) (0.07) (0.12) (0.03) (0.05) (0.60) (0.95) (20.97)

15 13.06 0.35 0.44 13.63 0.32 0.26 12.71 0.30 0.35
(0.13) (0.03) (0.09) (0.13) (0.01) (0.09) (0.17) (0.06) (0.07)

16 12.96 0.34 0.43 13.55 0.32 0.25 12.57 0.25 0.31
(0.11) (0.02) (0.07) (0.14) (0.02) (0.11) (0.24) (0.11) (0.10)

17 12.87 0.32 0.41 13.47 0.32 0.25 12.42 0.16 0.24
(0.11) (0.03) (0.06) (0.15) (0.03) (0.13) (0.31) (0.23) (0.19)

18 12.78 0.29 0.39 13.40 0.31 0.24
(0.14) (0.05) (0.05) (0.17) (0.04) (0.15)

19 12.69 0.26 0.37 13.32 0.31 0.23
(0.18) (0.09) (0.05) (0.19) (0.05) (0.18)

20 12.60 0.22 0.34 13.24 0.31 0.22
(0.23) (0.14) (0.07) (0.22) (0.07) (0.21)

21 12.50 0.16 0.30 13.16 0.30 0.21
(0.28) (0.23) (0.11) (0.24) (0.09) (0.25)

22 13.08 0.29 0.19
(0.27) (0.11) (0.30)

23 13.01 0.28 0.17
(0.29) (0.14) (0.35)

24 12.93 0.27 0.15
(0.32) (0.17) (0.42)

* Standard deviations are displayed in parenthesis.

Coffeehouse Carpenter Bakery

Table III: Profit and Entry Cost Estimates in Baden*

Pub Restaurant



Number of Other Entry High GDP Low GDP Entry High GDP Low GDP Entry High GDP Low GDP Entry High GDP Low GDP Entry High GDP Low GDP
Active Firms Cost Profit Profit Cost Profit Profit Cost Profit Profit Cost Profit Profit Cost Profit Profit

0 17.98 0.37 0.36 15.52 0.37 0.34 15.94 0.33 0.32 21.66 0.38 0.38 16.74 0.33 0.33
(0.89) (0.03) (0.02) (0.72) (0.09) (0.04) (0.36) (0.02) (0.01) (2.27) (0.03) (0.03) (1.04) (0.01) (0.01)

1 17.77 0.37 0.35 15.25 0.37 0.34 15.79 0.33 0.31 21.07 0.38 0.38 16.41 0.33 0.32
(0.84) (0.03) (0.02) (0.64) (0.09) (0.04) (0.34) (0.02) (0.01) (1.91) (0.03) (0.02) (0.93) (0.01) (0.01)

2 17.55 0.37 0.35 14.98 0.38 0.34 15.64 0.33 0.31 20.49 0.37 0.37 16.08 0.32 0.32
(0.80) (0.03) (0.02) (0.56) (0.09) (0.04) (0.33) (0.03) (0.01) (1.77) (0.02) (0.02) (0.81) (0.01) (0.01)

3 17.33 0.36 0.35 14.71 0.38 0.34 15.49 0.33 0.31 19.90 0.37 0.37 15.75 0.32 0.32
(0.76) (0.03) (0.02) (0.48) (0.09) (0.03) (0.31) (0.03) (0.01) (1.62) (0.02) (0.02) (0.70) (0.01) (0.01)

4 17.11 0.36 0.34 14.43 0.38 0.34 15.33 0.32 0.31 19.32 0.36 0.36 15.43 0.32 0.31
(0.72) (0.04) (0.02) (0.40) (0.08) (0.03) (0.29) (0.03) (0.01) (1.47) (0.02) (0.02) (0.58) (0.01) (0.01)

5 16.89 0.36 0.34 14.16 0.39 0.33 15.18 0.33 0.31 18.73 0.35 0.35 15.10 0.32 0.31
(0.68) (0.04) (0.02) (0.32) (0.08) (0.03) (0.27) (0.04) (0.01) (1.32) (0.02) (0.02) (0.47) (0.02) (0.02)

6 16.67 0.36 0.34 13.89 0.38 0.32 15.03 0.33 0.31 18.14 0.35 0.35 14.77 0.31 0.31
(0.64) (0.04) (0.02) (0.25) (0.06) (0.04) (0.26) (0.04) (0.02) (1.17) (0.02) (0.01) (0.37) (0.02) (0.02)

7 16.45 0.36 0.34 13.62 0.38 0.30 14.88 0.33 0.31 17.56 0.34 0.34 14.44 0.31 0.30
(0.60) (0.05) (0.02) (0.19) (0.05) (0.06) (0.24) (0.04) (0.02) (1.02) (0.01) (0.01) (0.27) (0.02) (0.02)

8 16.23 0.36 0.33 13.34 0.37 0.27 14.73 0.33 0.30 16.97 0.34 0.34 14.12 0.31 0.30
(0.56) (0.05) (0.02) (0.16) (0.03) (0.10) (0.22) (0.04) (0.02) (0.86) (0.01) (0.01) (0.19) (0.02) (0.02)

9 16.02 0.36 0.33 13.06 0.33 0.21 14.58 0.33 0.30 16.39 0.33 0.33 13.79 0.31 0.29
(0.52) (0.06) (0.02) (0.18) (0.04) (0.19) (0.21) (0.04) (0.03) (0.72) (0.01) (0.01) (0.16) (0.02) (0.04)

10 15.80 0.36 0.33 12.77 0.27 0.10 14.42 0.33 0.30 15.81 0.33 0.33 13.46 0.31 0.28
(0.48) (0.06) (0.02) (0.24) (0.11) (0.37) (0.19) (0.05) (0.03) (0.57) (0.01) (0.01) (0.21) (0.03) (0.06)

11 15.58 0.36 0.33 12.47 0.12 -0.18 14.27 0.34 0.30 15.22 0.32 0.32 13.12 0.30 0.26
(0.44) (0.07) (0.02) (0.34) (0.30) (0.93) (0.18) (0.05) (0.04) (0.43) (0.02) (0.02) (0.30) (0.06) (0.10)

12 15.36 0.37 0.33 14.12 0.34 0.30 14.64 0.32 0.32 12.78 0.27 0.22
(0.40) (0.07) (0.02) (0.16) (0.04) (0.06) (0.30) (0.04) (0.03) (0.41) (0.12) (0.19)

13 15.14 0.37 0.32 13.97 0.34 0.29 14.06 0.34 0.34 12.43 0.16 0.08
(0.36) (0.07) (0.02) (0.15) (0.04) (0.07) (0.20) (0.04) (0.04) (0.56) (0.28) (0.42)

14 14.92 0.37 0.32 13.82 0.35 0.29 13.46 0.33 0.33
(0.32) (0.07) (0.02) (0.14) (0.04) (0.09) (0.19) (0.03) (0.08)

15 14.70 0.38 0.32 13.66 0.35 0.29 12.86 0.41 0.40
(0.29) (0.07) (0.02) (0.13) (0.03) (0.11) (0.25) (0.22) (0.28)

16 14.48 0.38 0.31 13.51 0.36 0.28 12.08 -0.14 -0.16
(0.25) (0.07) (0.02) (0.12) (0.03) (0.14) (0.61) (0.84) (1.16)

17 14.26 0.38 0.30 13.36 0.36 0.27
(0.21) (0.07) (0.03) (0.12) (0.02) (0.18)

18 14.04 0.38 0.28 13.20 0.36 0.26
(0.18) (0.06) (0.04) (0.12) (0.02) (0.22)

19 13.82 0.38 0.26 13.05 0.36 0.24
(0.15) (0.05) (0.06) (0.12) (0.04) (0.28)

20 13.60 0.38 0.22 12.90 0.36 0.22
(0.12) (0.04) (0.11) (0.12) (0.06) (0.36)

21 13.38 0.37 0.16 12.74 0.36 0.20
(0.11) (0.03) (0.19) (0.13) (0.09) (0.46)

22 13.15 0.34 0.05 12.59 0.35 0.16
(0.11) (0.03) (0.35) (0.14) (0.13) (0.61)

23 12.91 0.31 12.85 12.43 0.33 0.09
(0.13) (0.09) (0.20) (0.16) (0.19) (0.85)

24 12.67 0.16 12.58 12.27 0.30 0.00
(0.17) (0.35) (0.31) (0.17) (0.27) (1.22)

25 12.42 0.31 12.26 12.11 0.21 -0.26
(0.23) (1.01) (0.52) (0.19) (0.47) (2.45)

26 12.13 -1.45 11.84 11.95 0.16 -0.44
(0.35) (5.65) (1.02) (0.22) (0.57) (3.07)

27 11.77 4.05 11.23 11.77 -0.69 -5.22
(0.57) (20.92) (2.02) (0.26) (3.13) (39.26)

28 11.11 -39.00 9.56
(1.55) (147.37) (6.41)

Table IV: Profit and Entry Cost Estimates in Amstetten*

Pub Restaurant

* Standard deviations are displayed in parenthesis.

Carpenter BakeryCoffeehouse






