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1 Introduction

In a seminal paper, Taylor (1993) showed that since 1987 actual monetary policy in the United

States is well characterized by a simple rule whereby the central bank sets the short-term nominal

interest rate as an increasing linear function of a measure of inflation and the output gap, with

an inflation coefficient of 1.5. Taylor also provided theoretical arguments for why an inflation

coefficient greater than one is conducive to macroeconomic stability. Essentially, his argument is

that by raising the nominal interest rate by more than one–for–one in response to an increase in

inflation, the central bank in effect raises the real rate of interest. In turn, a higher real interest

rate contributes to slowing down domestic absorption, thereby alleviating inflationary pressures.

Taylor’s work was followed by a large literature devoted to investigating the desirability of an

active monetary policy stance—that is, of interest rate rules with an inflation coefficient greater

than one. And by now, a number of studies has cast doubt on the general validity of the finding that

active interest-rate feedback rules are stabilizing by pointing out that the stability result is highly

dependent on the specifics of the assumed economic environment. For example, Benhabib, Schmitt-

Grohé, and Uribe (2001b), Bernanke and Woodford (1997), and Carlstrom and Fuerst (2000a,b)

show that the stability properties of the Taylor criterion depend crucially on the exact definition of

the inflation measure to which the central bank responds. Specifically, when the inflation measure

consists of forecasts of future expected inflation, then Taylor rules can easily lead to equilibria in

which arbitrary changes in agents’ expectations about the future path of the economy have real

consequences. Of particular importance for the purposes of this paper is that these authors find

that by making the inflation measure in the interest rate rule sufficiently backward looking, the

central bank can insolate the economy from such self-fulfilling fluctuations.

In this paper we subject the conclusion that active backward-looking interest rate feedback rule

are stabilizing to a more rigorous test. Specifically, the literature extant has limited the analysis

to characterizing local equilibria in which all endogenous variables remain in a small neighborhood

around the intended steady state and are expected to converge to it. By contrast, we study

equilibria from a more global perspective. We consider a larger set of equilibria including equilibria

in which endogenous variables remain bounded but are never expected to return to the steady

state. Our central result is that the existence of such equilibria cannot be ruled out by introducing
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a backward-looking measure of inflation into the Taylor rule. For plausible parameterizations, we

show that under active backward-looking rules attracting equilibrium cycles exist. The existence

of attracting cycles represents a severe case of policy induced macroeconomic instability. This

is because any trajectory originating in a certain relatively large region around the limit cycle,

which includes any arbitrarily small neighborhood around the steady state, can be supported as an

equilibrium outcome. We demonstrate by means of simulations of calibrated economies that the

resulting oscillations are economically significant.

Besides feedback rules that respond to past measures of inflation, there is another large class

of interest rate rules that have been identified as both conducive to macroeconomic stability and

empirically relevant. The distinctive feature of rules belonging to this class is that the nominal

interest rate depends not only on a measure of inflation and the output gap, as in a standard

Taylor rule, but also on lagged values of the nominal interest rate itself. Sack (1998), for example,

estimates that in U.S. data the coefficient on the lagged interest rate, often referred to as the

smoothing coefficient, is about 0.65 and statistically significant. Levin, Wieland, and Williams

(1999), Rotemberg and Woodford (1999), and Giannoni and Woodford (2002) advocate interest

rate smoothing on theoretical grounds. In particular, Rotemberg and Woodford and Giannoni and

Woodford show that rules with a smoothing coefficient that is greater than one guarantee a locally

unique equilibrium and are, in addition, capable of implementing the optimal real allocation. The

policy recommendation of including lagged interest rates in the rule with a coefficient greater than

one has been derived in the context of linear of linearized models. As a result these studies limit

attention to equilibria in which all variables are expected to converge in the long-run to the steady

state. Uniqueness of equilibrium within this restricted class, however, does not necessarily imply

that no other bounded equilibrium exists. The second key contribution of our paper is to apply

tools capable of detecting equilibrium cycles to interest rate rules with a smoothing term. We

find that if the coefficient on the smoothing term is less than one, then equilibrium cycles exist

for plausible parameterizations. On the other hand, if the coefficient on the lagged interest rate is

greater than one, then the equilibrium is always locally unique and cyclical equilibria seem unlikely

to exist. Comparing these findings with those obtained for backward-looking feedback rules, it

follows that the central bank in designing monetary policy should set the current interest rate as a

function of past variables, but these past variables should be lagged interest rates (with a coefficient
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greater than one) rather than lagged values of the inflation rate.

The remainder of the paper is organized in 6 sections. Section 2 presents the baseline model.

Section 3 characterizes existence and uniqueness of equilibria converging to the steady state. Sec-

tion 4 shows that under backward-looking interest rate rules equilibrium cycles exist for plausible

calibrations. Section 5 shows that under backward-looking interest rate rules equilibrium cycles

emerge for a more general class of preference and technology specifications than that considered in

section 2. Section 6 studies interest rate smoothing. Finally, section 7 concludes.

2 The Model

In this section we describe a simple economy which we will use to evaluate the stabilizing properties

of backward-looking interest rate feedback rules. To remain close to the related literature that

advocates backward-looking active interest rate feedback rules, we assume that price adjustment is

sluggish and that fiscal variables play no role in the determination of prices and inflation.

Some recent theoretical evaluations of monetary policy rules that favor backward-looking be-

havior on the part of the central bank have restricted attention to models in which variations in the

nominal interest rate affect real variables solely through their effect on aggregate demand. Other

studies supporting the view that the central bank should set interest rates as a function of past

inflation rates have found it more appealing to incorporate the supply side as a prominent chan-

nel for the transmission of monetary disturbances. For example, Carlstrom and Fuerst (2000a,b)

motivate a demand for money by firms by assuming that wage payments are subject to a cash in

advance constraint, and Benhabib, Schmitt-Grohé, and Uribe (2001b) assume that real balances

enter directly into the production function. In these papers the introduction of a demand for money

by firms is motivated by the fact that in industrialized countries firms hold a substantial fraction

of the money supply. For example, in the United States, nonfinancial firms held at least 50 percent

more demand deposits than households over the period 1970-1990 (see Mulligan, 1997, and the

references cited therein).1 In light of this evidence, we follow the strand of the literature that

incorporates a supply side channel of monetary policy transmission. We assume, following Fischer

(1974), Taylor (1977), and Calvo (1979), that marginal costs of production are increasing in the
1For empirical evidence on the cost-push effects of interest rates and monetary policy at a disaggregated industry

level, see Barth and Ramey (2001).
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nominal interest rate because money facilitates firms’ production.

2.1 The household/firm unit

Assume an economy populated by a continuum of household–firm units indexed by j, each of

which produces a differentiated good Y j and faces a demand function Y dd
(

P j

P

)
, where Y d denotes

the level of aggregate demand, P j the price firm j charges for its output, and P the aggregate

price level. Such a demand function can be derived by assuming that households have preferences

over a composite good that is produced from differentiated intermediate goods via a Dixit-Stiglitz

production function. The function d(·) is assumed to decreasing and to satisfy d(1) = 1 and

d′(1) < −1. As will become clear shortly, the restriction imposed on d′(1) is necessary for the firm’s

problem to be well defined in a symmetric equilibrium. The production of good j is assumed to

take real money balances, mj, as the only input

Y j = y(mj),

where the function y(·) is assumed to be positive, strictly increasing, and strictly concave. The

assumption that real balances is the only factor of production is made for analytical convenience.

In section 5, we show that the results of this section also hold under a more general production

technology that takes labor as well as real balances as factor inputs.

The household’s lifetime utility function is assumed to be of the form

U j =
∫ ∞

0
e−rt


u(cj) − γ

2

(
Ṗ j

P j
− π∗

)2

dt, (1)

where cj denotes consumption of the composite good by household j and π∗ > −r denotes the

government’s inflation target, which is exogenously given. The utility function u(·) is assumed

to be increasing, twice continously differentiable, and strictly concave, and the parameter γ > 0

measures the degree to which household-firm units dislike to deviate in their price-setting behavior

from the long-run level of aggregate price inflation. The last term in the instant utility index

introduces price stickiness following Rotemberg (1982).

In addition to money, the household can hold nominal bonds, B, which pay the nominal interest
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rate R > 0. Letting a ≡ (M +B)/P denote the household’s real financial wealth, τ real lump-sum

taxes, and π ≡ Ṗ /P the inflation rate, the household’s instant budget constraint can be written as

ȧj = (R − π)aj − Rmj +
P j

P
y(mj) − cj − τ. (2)

Household are also assumed to be subject to a no-Ponzi-game constraint of the form

lim
t→∞

e−
∫ t
0 [R(s)−π(s)]dsaj(t) ≥ 0. (3)

In addition, firms are subject to the constraint that given the price they charge, their sales are

demand-determined

y(mj) = Y dd

(
P j

P

)
. (4)

The household chooses sequences for cj , mj , P j ≥ 0, and aj so as to maximize (1) subject to

(2)–(4) taking as given aj(0), P j(0), and the time paths of τ , R, Y d, and P . The Hamiltonian of

the household’s optimization problem takes the form

e−rt



u(cj) − γ

2

(
Ṗ j

P j
− π∗

)2

+ λj
[
(R − π)aj − Rmj

+
P j

P
y(mj) − cj − τ − ȧj

]
+ µj

[
Y dd

(
P j

P

)
− y(mj)

]}
.

The first-order conditions associated with cj , mj , aj, and P j and the transversality condition are,

respectively,

uc(cj) = λj, (5)

λj

[
P j

P
y′(mj) − R

]
= µjy′(mj), (6)

λ̇j = λj (r + π − R), (7)

λj P j

P
y(mj) + µj P j

P
Y dd′

(
P j

P

)
= γr(πj − π∗) − γπ̇j , (8)

and

lim
t→∞

e−
∫ t
0
[R(s)−π(s)]dsaj(t) = 0, (9)
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where πj ≡ Ṗ j/P j .

2.2 The government

At the center of our analysis is the role played by backward-looking behavior in the conduct of

monetary policy. We assume that the central bank follows an interest-rate feedback rule whereby

the nominal interest rate is set as an increasing function of an average of past inflation rates.

Specifically, we consider the following backward-looking feedback rule

R = ρ(πp); ρ′ > 0, (10)

where πp is a weighted average of past rates of inflation and is defined as

πp = b

∫ t

−∞
π(s)eb(s−t)ds; b > 0. (11)

The function ρ(·) is assumed to be continuous and non-decreasing. Furthermore, we assume that

ρ(π∗) = r + π∗. This assumption implies that the government’s inflation target can be supported

as a steady-state equilibrium. Following Leeper (1991), we refer to monetary policy as active at

the inflation target if ρ′(π∗) > 1 and as passive if ρ′(π∗) < 1. Differentiating (11) with respect to

time yields

π̇p = b(π − πp). (12)

Government purchases are assumed to be zero at all times. Then, the sequential budget con-

straint of the government is given by Ḃ = RB − Ṁ − Pτ , which can be written as

ȧ = (R − π)a − Rm − τ. (13)

Because both the nominal value of initial government liabilities, A(0), and the initial price level,

P (0), are predetermined, initial real liabilities of the government, a(0) = A(0)
P (0) , are also given.

Government policy is assumed to be of the Ricardian type. Ricardian policies are fiscal-monetary

regimes that ensure that the present discounted value of total government liabilities converges to

zero—that is, equation (9) is satisfied—under all possible, equilibrium or off-equilibrium, paths of
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endogenous variables such as the price level, the money supply, inflation, or the nominal interest

rate. Furthermore, we restrict attention to one particular Ricardian fiscal policy that takes the

form

τ + Rm = α a, (14)

where the sequence α is chosen arbitrarily by the government subject to the constraint that it

is positive. This policy states that consolidated government revenues, that is, tax revenues plus

interest savings from the issuance of money, are always equal to a certain positive fraction of total

government liabilities.2

2.3 Equilibrium

In a symmetric equilibrium all household–firm units choose identical sequences for consumption,

asset holdings, and prices. As a result, we can drop the superscript j. In equilibrium, the goods

market must clear. That is,

c = y(m). (15)

Using (15) to eliminate c in (5) yields

uc(y(m)) = λ. (16)

One can then use (16) to express m as a decreasing function of λ.3

m = m(λ); mλ < 0. (17)

Let η ≡ d′(1) < −1 denote the equilibrium price elasticity of the demand function faced by the

individual firm. Using (6), (15), and (17) to eliminate m, µ, and c from equations (7), (8), (9),
2A special case of this type of policy is a balanced-budget rule whereby tax revenues are equal to interest payments

on the debt, which results when α = R (provided R is bounded away from zero). To see that the fiscal policy given
by (14) is Ricardian, let d ≡ exp[−

∫ t

0
(R−π)ds] and x ≡ da. The definition of a Ricardian fiscal policy requires that

x → 0 as t → ∞. Note that ẋ = d [ȧ − (R − π)a]. Using equations (13) and (14), this expression can be written as
ẋ = −αx, which implies that x converges monotonically to zero.

3Note that by (16) one can find the value of λ for any positive value of m. However, the converse may not be true,
that is, there may exist values of λ such that no positive value of m satisfies equation (16). This problem arises when
uc or y(.) are either bounded above or bounded below away from zero. Observe also that differentiating equation
(16) implies that mλ = 1/[y′ucc] < 0.
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(13), and (14), yields

λ̇ = λ [r + π − R] (18)

γπ̇ = γr(π − π∗) − y(m(λ))λ
[
1 + η

(
1 − R

y′(m(λ))

)]
(19)

0 = lim
t→∞

e−
∫ t
0 [R−π]dsa(t) (20)

ȧ = (R − π)a − Rm(λ) − τ (21)

τ = −Rm(λ) + α a (22)

To characterize the equilibrium dynamics it is convenient to reduce the system of equilibrium

conditions further as follows. First note that given any set of functions {π, πp, R, λ}, equations (21)

and (22) can be used to construct time paths for a and τ . Because the fiscal policy is Ricardian,

the so constructed sequences {π, a} satisfy the transversality condition (20). Second, use (10) to

replace R in (18) and (19). We then have that any set of functions {π, πp, λ}, satisfying

λ̇ = λ [r + π − ρ(πp)] (23)

π̇ = r(π − π∗) − y(m(λ))λ
γ

[
1 + η

(
1 − ρ(πp)

y′(m(λ))

)]
(24)

π̇p = b(π − πp) (25)

given πp(0) constitutes a perfect-foresight equilibrium. We summarize this result in the following

definition.

Definition 1 (Perfect-foresight equilibrium) A perfect-foresight equilibrium is a set of func-

tions of time {λ, π, πp} satisfying (23)- (25), given πp(0).

3 Equilibria Converging to the Steady State

Consider first perfect-foresight equilibria in which {λ, π, πp} converge to a steady-state {λ∗, π∗, πp∗}.

The steady-state values λ∗ and π∗ are defined as constant values of λ, π and πp that solve (23), (24),

and (25). Thus, π∗ is a solution to r + π∗ = ρ(π∗), which by assumption exists though need not

be unique. Given a π∗, we also know πp∗, since πp∗ = π∗. The steady-state value of the marginal

utility of consumption, λ∗, is given by the solution to (1 + η)/η = ρ(π∗)/y′(m(λ∗)). Consider the
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following change of variables. Let p = lnλ − lnλ∗, w = π − π∗, and z = πp − π∗. One steady-state

values of {p,w, z} is then given by (p∗, w∗, z∗) = (0, 0, 0), and the equilibrium conditions can be

expressed as

ṗ = r + π∗ + w − ρ(z + π∗) (26)

ẇ = rw − y(m(λ∗ep))λ∗epη

γ

[
1 + η

η
− ρ(z + π∗)

y′(m(λ∗ep))

]
(27)

ż = b(w − z) (28)

In a neighborhood around (p∗, w∗, z∗), the equilibrium paths of p, w, and z converging asymptot-

ically to (p∗, w∗, z∗) can be approximated by the solutions to the following linearization of (26),

(27), and (28) around {p∗, w∗, z∗}.




ṗ

ẇ

ż




= A




p − p∗

w − w∗

z − z∗




(29)

where

A =




0 1 −ρ′

A21 r A23

0 b −b




(30)

A21 = −λ∗2y∗ηR∗y′′mλ

γy′2
> 0 (31)

A23 =
λ∗y∗η

γ

ρ′

y′
< 0.

Because πp is a non-jump variable and both λ and π are jump variables, it follows that if A

has exactly one root with a negative real part and two roots with positive real parts, then for any

πp(0) in a small enough neighborhood around π∗, there exists a unique perfect-foresight equilibrium

converging to {λ∗, π∗, π∗}.

Assume that monetary policy is active (ρ′ > 1). Then, depending on the value of the parameter

b, which measures the average lag-length in the inflation measure to which the monetary authority
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responds, the real allocation is either locally determinate or indeterminate. As long as the feedback

rule is sufficiently backward looking (b → 0), the equilibrium is always unique. To see this, note

that when ρ′ > 1, the determinant of A, which is given by

Det(A) = bA21

(
1 − ρ′

)
,

is negative. Thus, the number of roots of A with a positive real part is either zero or two. Therefore,

equilibrium is either locally unique or indeterminate. If at the same time the trace of A is positive,

then the number of roots of A with a positive real part is exactly equal to two. The trace of A is

given by

Trace(A) = r − b.

Clearly, as b approaches zero, the trace of A becomes positive. The following proposition summarizes

this results and gives further conditions under which equilibrium is locally unique.

Proposition 3.1 Suppose that at the steady state monetary policy is active, that is, ρ′(π∗) > 1.

If r + A23 > 0 or b < r, then there exists a unique competitive equilibrium in which λ, π, and πp

converge to the steady state (λ∗, π∗, πp∗). If r + A23 < 0 and b > r, then depending on the value of

b, there exist either a continuum or a unique perfect foresight equilibrium, in which λ, π, and πp

converge to the steady state (λ∗, π∗, πp∗).

Proof: Because the equilibrium system features one non-jump variable (πp) and two jump variables

(λ and π), local uniqueness requires that exactly two roots of the matrix A have positive real parts.

We have already established that A has either zero or two roots with positive real parts. We apply

Routh’s theorem (see Gantmacher, 1960) according to which the number of roots of A with positive

real parts is equal to the number of variations of sign in the scheme:

−1 Trace(A) − B +
Det(A)

Trace(A)
Det(A), (32)

where

B = Sum of the principal minors of A = −A21 − b(r + A23).

This condition implies that in order for no root of A to have a positive real part it is necessary that
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B be positive and that the trace of A be negative. A necessary condition for B > 0 is r + A23 < 0,

and a necessary condition for trace(A) < 0 is b > r. Thus, whenever r + A23 > 0 or b < r,

equilibrium is locally unique under active policy.

Assume now that monetary policy is passive (ρ′ < 1). Again, as shown in Benhabib, Schmitt-

Grohé, and Uribe (2000) passive backward-looking monetary policy cannot bring about local de-

terminacy. To see this, note that if ρ′ < 1, the determinant of A is positive, so the number of roots

of A with a negative real part can never be exactly equal to one. If all roots have positive real

parts, a perfect-foresight equilibrium in which the real allocation converges to its steady state does

not exist. This could be the case for rules that place a lot of weight on the distant past, that is,

rules with small b values. On the other hand, if the feedback rule is highly contemporaneous, that

is, as b becomes large, the equilibrium is always locally indeterminate. With b large, the trace of A

is negative while the determinant remains positive, therefore A must have two roots with negative

real parts, implying indeterminacy of equilibrium. These results are summarized in the following

proposition.

Proposition 3.2 If monetary policy is passive (ρ′(π∗) < 1), then there does not exist a unique

equilibrium converging to the steady state (λ∗, π∗, , πp∗). Either there exists a continuum of perfect-

foresight equilibria in which λ, π, and πp converge asymptotically to the steady state (λ∗, π∗, , πp∗)

or no local equilibrium exists.

Given the above discussion, one may be led to conclude that as long as one follows the Taylor

criterion, that is, the nominal interest rate responds by more than one for one to movements in

the inflation rate and the measure of inflation to which the central bank responds is sufficiently

backward looking, then an active interest rate feedback rule is stabilizing in the sense that it

guarantees local uniqueness of the perfect foresight equilibrium. The central contribution of this

paper is to show that even in the range of values of b for which the Taylor criterion ensures a

unique equilibrium converging to the steady state, other bounded equilibria do exist. In particular,

periodic equilibria (endogenous cycles) become possible.
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4 Equilibria Converging to a Cycle

Thus far we have restricted attention to perfect-foresight equilibria in which {λ, π, πp} converge

asymptotically to {λ∗, π∗, πp∗}. We now investigate the existence of perfect-foresight equilibria in

which λ, π, and πp converge asymptotically to a deterministic cycle. In this case the equilibrium

dynamics are still bounded and contained in a neighborhood around the steady state but they do

not converge to the steady state. The technical reason why cyclical equilibrium dynamics may

arise under active monetary policy is that the system of linear differential equations given in (29)

can in this case display a Hopf bifurcation for some critical value of the parameter b describing

the average lag-length in the inflation measure used in the interest rate feedback rule. We denote

this critical value by bh. In turn, the existence of a Hopf bifurcation implies that generically (i.e.,

if the system is non-linear), there will exist a family of cycles for values of b in a neighborhood

located either to the left or to the right of bh.4 Furthermore, if the cycle is to the left of bh

where the steady state is unstable the cycle will be attracting, and the bifurcation is said to be

supercritical. The implication is that if the bifurcation is supercritical, then there exist values of b

less than bh for which any trajectory {λ, π, πp} that starts out in a neighborhood of {λ∗, π∗, πp∗}

will converge to a cycle. Therefore, the perfect foresight equilibrium is indeterminate despite the

fact that it is locally unique in the sense described in section 3. The reasons why the indeterminacy

of equilibrium identified in this section has been overlooked in the related literature are twofold.

First, existing studies have focused on the limiting case in which the nominal interest rate does

not affect the cost of production. Second, the majority of previous studies has focused on the

dynamics arising from small fluctuations around the steady state that are expected to converge

asymptotically to that steady state. Thus, by their very nature, studies of this type are unable to

detect equilibria involving bounded fluctuations converging asymptotically to a limit cycle. Readers

not interested in the technical details involved in establishing the existence and supercriticality of

the Hopf bifurcation may wish to jump directly to the calibration of the model presented at the

end of section 4.1 and then jump again to section 4.3, which considers the quantitative aspects of

the equilibrium cycles.
4The Hopf Bifurcation Theorem postulates the existence of a family of cycles, which in the pure linear system pile

up at the bifurcation value bh and create a center: any nonlinearity will spread them out to either a left or a right
neighborhood of bh. Generically, the amplitude of the cycle varies continuously with b − bh and is zero at b = bh.
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4.1 Existence of a Hopf Bifurcation

Formally, a Hopf bifurcation occurs when the real part of two complex roots vanish while the

imaginary part does not. A necessary condition for the existence of a Hopf bifurcation in our

model is that preferences and technology are such that r+A23 < 0.5 Otherwise, as we show above,

the matrix A has always two roots with positive real parts. Formally, we have the following result.

Proposition 4.1 (Hopf Bifurcation) If monetary policy is active (ρ′(π∗) > 1), and r+A23 < 0,

then there exists a unique critical value bh > 0, such that the dynamical system given in equation

(29) displays a Hopf bifurcation. Furthermore, the Hopf bifurcation occurs for bh > r.

Proof: Let C ≡ −B + Det(A)
Trace(A)

. Consider the scheme given in equation (32). Note that as b → ∞

the trace of A becomes negative, det(A)/trace(A) converges to a positive constant and B converges

to ∞. Thus, C converges to −∞ implying a pattern of − − −− so that by Routh’s Theorem,

the matrix A has no root with a positive real part. The function C is monotonically decreasing in

b, approaches A21 > 0 as b converges to zero and tends to −∞ as b becomes arbitrarily large. At

b = r, the scalar C is not well defined. When b approaches r from the left, C tends to −∞ and

when b approaches r from the right C → ∞. It follows that there exists a b > r such that the

sign pattern in equation (32) shifts from − − −− to − − +− implying that the real parts of two

roots of A change sign from negative to positive as b falls below that critical value. We refer to this

critical value of b as bh. Note that at b = bh, like for any positive values of b, the determinant of A

is strictly negative. Thus, the two roots that change sign at bh and whose real part vanishes at bh

must be complex, else the determinant would also vanish at bh. We then have the standard case of

a Hopf bifurcation. To see that the system has only one bifurcation, note that for b close to r but

below r, the sign pattern changes again. This time it changes from − − +− to − + −− , However,

this change is not associated with a change in the number of roots with positive real parts. As b

approaches zero, the pattern changes a last time from − + −− to − + +− . Again, this change

of sign is not associated with a change in the number of roots with positive real parts.

It follows from the arguments presented in the proof that if monetary policy is active and a

Hopf bifurcation exits, then, for all values of b less than the one at which the Hopf bifurcation
5In the limit, when the inflation measure that enters in the feedback rule approaches current inflation, that is, as

b → ∞, there can exist a Hopf bifurcation exactly at the point where r + A23 = 0, and cycles emerge for r such that
r + A23 > 0. For a more detailed discussion see Proposition 7 in Benhabib, Schmitt-Grohé, and Uribe (2001b).
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occurs, there exists a unique equilibrium in which the economy converges to the steady state. At

the same time, for all values of b greater than the one at which the Hopf bifurcation takes place,

there exists a continuum of equilibria converging to the steady state. We summarize this result in

the following corollary:

Corollary 4.1 (Local Determinacy) Suppose monetary policy is active (ρ′(π∗) > 1) and r +

A23 < 0. If b < bh, then there exists a unique competitive equilibrium in which λ, π, and πp converge

to the steady state (λ∗, π∗, πp∗). Else, if b > bh, then there exists a continuum of competitive

equilibria in which λ, π, and πp converge to the steady state.

We resort to numerical methods to investigate whether for reasonable parameter values it is

indeed the case that r + A23 < 0, so that the dynamical system described by equations (26), (27),

and (28) displays a Hopf bifurcation when monetary policy is active. To this end we assume the

following functional forms for preference, technology, and the interest rate feedback rule

u(c) =
c1−σ − 1
1 − σ

; σ > 0 (33)

y(m) = [αmρ + (1 − α)ȳρ]
1
ρ ; ρ < 1 (34)

ρ(πp) = R∗ + D(πp − π∗). (35)

We calibrate the economy as follows. Let the time unit be a quarter. Let the intended nominal

interest rate be 6 percent per year (R∗ = ln(1.06)/4), which corresponds to the average yield on

3-month U.S. Treasury bills over the period 1960:Q1 to 1998:Q3. We set the target rate of inflation

at 4.2 percent per year (π∗ = ln(1.042)/4). This number matches the average growth rate of the

U.S. GDP deflator during the period 1960:Q1-1998:Q3. The assumed values for R∗ and π∗ imply a

subjective discount rate of 1.8 percent per year. Following Taylor (1993), we set the elasticity of the

interest-rate feedback rule evaluated at π∗ equal to 1.5 (i.e., ρ′(πp∗) = D = 1.5). There is a great

deal of uncertainty about the value of the intertemporal elasticity of substitution 1/σ. In the real-

business-cycle literature, authors have used values as low as 1/3 (e.g., Rotemberg and Woodford,

1992) and as high as 1 (e.g., King, Plosser, and Rebelo, 1988). In the baseline calibration, we assign

a value of 2 to σ. We will also report the sensitivity of the results to variations in the value assumed

for this parameter. The value of η was chosen so that the implied markup of prices over marginal
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cost at the steady state is 5 percent, which is consistent with the evidence presented by Basu and

Fernald (1997). Following Sbordone (2002), we set γ, the parameter governing the disutility of

deviating from the inflation target, at −17.5(1 + η).

In the steady state, we have by equation (24) that 1+η
η = R∗

y′(m∗) which for the particular

functional forms assumed above gives rise to the following steady-state ‘money demand’

m∗ = R∗ 1
ρ−1 y∗

(
η

(1 + η)α

) 1
ρ−1

For calibration purposes, we interpret this expression as the long-run money demand function,

with a long-run income elasticity of unity and a long-run interest elasticity of 1/(ρ − 1). Using

U.S. quarterly data from 1960:Q1 to 1999:Q3, we estimate the following money demand function

by OLS:6

lnmt = 0.0446 + 0.0275 ln yt − 0.0127 ln
(

Rt

1 + Rt

)
+ 1.5423 ln mt−1 − 0.5918 ln mt−2

t-stat = (1.8, 4.5,−4.7, 24.9,−10.0)

R2 = 0.998; DW = 2.18.

We obtain virtually the same results using instrumental variables.7 The short-run log-log elasticity

of real balances with respect to its opportunity cost Rt/(1 + Rt) is -0.0127, while the long-run

elasticity is -0.2566. 8 Because the steady-state relation we use to identify the parameter ρ has the

interpretation of a long-run money demand equation, we set ρ at -3, so as to be consistent with the

estimated long-run money demand elasticity. Given a value for ρ, we can calibrate the parameter
6We measure mt as the ratio of M1 to the implicit GDP deflator. The variable yt is real GDP in chained 1996

dollars. The nominal interest rate Rt is taken to be the quarterly yield on 3-month Treasury bills. Note that in
discrete time, the appropriate measure of the opportunity cost of holding money is given by Rt/(1 + Rt) rather than
simply Rt.

7As instruments we choose the first three lags of ln yt and ln Rt/(1 + Rt), and the third and fourth lags of ln mt.
8Ball (2002) estimates a long-run money demand equation of the form ln mt = α+θy ln yt+θR400Rt+εt using Stock

and Watson’s (1993) Dynamic OLS Estimator technique with four lags and leads. With a sample of quarterly data
from 1959:2 through 1993:4 and measuring the nominal interest rate as the Treasury bill rate, Ball estimates θR to be -
0.040. Ball’s specification implies a long-run log-log interest elasticity of 400θRR = 400×−0.040×(6.10/400) = −0.24,
where we used the fact that the average Treasury Bill rate over his sample period was 6.1 percent per year. Ball
estimates the long-run money demand equation also with a time series on the rate of return on near-monies that he
constructs. These regressions imply a value a log-log interest elasticity of -0.35.
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Table 1: Calibration

η γ r σ ρ α ȳ π∗ R∗ ρ′(πp∗)
-21 350 0.0043 2 -3 0.0035 1 0.0103 0.0147 1.5
Note: The time unit is one quarter.

α of the production function by solving the steady-state ’money demand’ equation for α to obtain

α = R∗ η

1 + η

(
y∗

m∗

)ρ−1

.

We set y∗/m∗ = 5.8/4 to match the average quarterly U.S. GDP velocity of M1 between 1960:Q1

and 1999:Q3. Given the baseline value of ρ, the implied value of α is 0.0035. Finally, we set the

fixed factor ȳ at 1. Table 1 summarizes the calibration of the model.

For this parameterization r + A23 < 0, thus we know that if monetary policy is active, a Hopf

bifurcation exists for some b > r. In fact, we can compute the exact value of b at which the system

bifurcates. For the baseline calibration, the Hopf bifurcation occurs at a value of b equal to 2.736.

This value of b implies that the expected lag in the inflation measure is about one month. It

follows that for interest rate feedback rules that are less backward looking, equilibrium is locally

indeterminate and that for interest rate feedback rules that are more backward looking there exists

a unique equilibrium converging to the steady state. However, in the latter case other bounded

equilibria may exist. In particular, equilibria in which the economy converges to an attracting

cycle. Such cycles are sure to exist when the Hopf bifurcation is supercritical. The next section

establishes that this is indeed the case for our baseline calibration.

4.2 Supercriticality of the Hopf Bifurcation

To determine whether the Hopf bifurcation is supercritical, we follow closely Yuri A. Kuznetsov’s

(1998) treatment of bifurcations of equilibria and periodic orbits in n-dimensional dynamical sys-

tems. Consider the three dimensional system given by (26), (27), and (28). Letting x = [pw z]′,

we can write that system as

ẋ = f(x; b); where x ∈ <3, b ∈ <1, and f(0) = 0.
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The Jacobian matrix A of this dynamical system is given in equation (29). We have established

above that at b = bh and x = 0, the matrix A has a simple pair of complex eigenvalues on the

imaginary axis, λ1,2 = ±iω, with ω > 0. Let q ∈ C3 be a complex eigenvector corresponding to λ1:

Aq = iωq, Aq̄ = −iωq̄,

where a bar over the eigenvector denotes its complex conjugate. Similarly, let p ∈ C3 be the adjoint

eigenvector such that

AT p = −iωp, AT p̄ = −iωp̄.

Normalize the eigenvector q so that

< p, q >= 1,

where < p, q >=
∑n

i=1 p̄iqi.

In order to determine whether the Hopf bifurcation is supercritical we have to compute the

first Lyapunov coefficient of the dynamic system (26), (27), and (28) on the center manifold at the

critical parameter value b = bh and x = 0. The first Lyapunov coefficient is given by9

l1(0) =
1
2ω

Re
[
〈p,C(q, q, q̄)〉 − 2

〈
p,B(q,A−1B(q, q̄))

〉
+
〈
p,B(q̄, (2iωI3 − A)−1B(q, q))

〉]
,

where B(·, ·) and C(·, ·, ·) are multilinear functions. In coordinates, the multilinear functions can

be written as

Bi(x, y) =
n∑

j,k=1

∂2fi(ξ)
∂ξj∂ξk

∣∣∣∣
ξ=0

xjyk

and

Ci(x, y, z) =
n∑

j,k,l=1

∂3fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

xjykzl,

where i = 1, 2, . . . , n. If l1(0) < 0, then the Hopf bifurcation is supercritical and a unique stable

limit cycle bifurcates from the origin for b < bh.10

We do not attempt to evaluate the sign of the first Lyapunov coefficient analytically. Instead

we determine its sign numerically for our baseline calibration. To compute the first Lyapunov
9See Kuznetsov (1998, p. 178).

10See Kuznetsov (1998, p. 179).
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coefficient we proceed as follows. Note that for the functional forms given in equations (33)-(35),

the function m(λ) can be written as

m(λ) =

(
λ−ρ/σ − (1 − α)ȳρ

α

)1/ρ

.

We then have an exact analytical expression for the function f(x). We use the Symbolic Math

Toolbox of Matlab to find analytical expression for the second- and third-order derivatives of f

needed to compute the multilinear functions B(·, ·) and C(·, ·, ·). We then evaluate these expressions

at x = 0 and b = bh. In this way, we can obtain a number for l1(0). For our baseline calibration

l1(0) = −11, 682. Thus the Hopf bifurcation is indeed supercritical and attracting cycles exist for

b < bh.

4.3 Implied Dynamics

Figure 1 depicts the phase diagram associated with the equilibrium conditions in the space (πp
t ,

ln(yt/y
∗), πt). To construct the figure, the policy parameter b was set at 2.5. This means that

the average lag length of inflation to which the central bank responds is about five weeks.11 All

other parameter values are as shown on table 1. Because the assumed value of b is below the

Hopf bifurcation point of 2.74, the equilibrium system possesses one eigenvalue with a negative

real part and two eigenvalues with positive real parts. It follows that for each initial value of the

state (no-jump) variable πp there is a unique value of (y, π) that guarantees that the equilibrium

trajectory converges to the steady state. The resulting map from πp to (y, π), known as the saddle

path, is depicted with a broken line in figure 1. The saddle path crosses the steady state, which in

the figure is marked with a bullet. But what if the economy were to start slightly off the saddle

path? The solid lines illustrates that such trajectories diverge from the saddle path and converge

to a limit cycle around the steady state. Along this cycle all variables perpetually fluctuate in an

endogenous, deterministic fashion. The limit cycle is attracting. Any initial value of (λ, π, πp) in a

three-dimensional neighborhood around the cycle gives rise to an equilibrium trajectory converging

to the cycle. Thus, the equilibrium displays a severe case of indeterminacy.

The amplitude of the endogenous fluctuations shown in figure 1 is significant. To illustrate this,

11The average lag length of inflation is given by b
∫ 0

−∞ sebsds = −1/b quarters.
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Figure 1: Endogenous Cycles Under Backward-Looking Taylor Rules: Phase Diagram
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Note: All variables are in percent. Inflation, πt, and average lagged inflation, πp
t , are

expressed in annual rates. The smoothing parameter b is set at 2.5. All other parameter
values are as shown in table 1.

figure 2 depicts with a solid line the first 20 quarters of the equilibrium dynamics shown in figure 1.

The inflation rate fluctuates between -1.7 and 7.7 percent in annual terms. At the same time, the

interest rate displays values as low as 0.4 percent and as high as 12 percent per year. Real output

also follows a noticeably fluctuating path—although not so pronounced as those of inflation or the

nominal interest rate—with peaks of 0.2 percent above trend and troughs of -0.4 percent below

trend. It takes a little over 2 quarters to complete one cycle.

The dotted line in each panel of figure 2 shows the dynamics that would arise in an equilibrium

in which the economy starts with the same value for the non-jump variable πp(0) as the economy

that converges to the cycle, but where the jump variables λ and π are set such that the economy

is initially placed exactly on the saddle path. By construction, the resulting equilibrium trajectory
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Figure 2: Endogenous Cycles Under Backward-Looking Taylor Rules: Time Paths
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Note: All variables are in percent. Inflation, πt, and average lagged inflation, πp
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in annual rates. The smoothing parameter b is set at 2.5. All other parameter values are as
shown in table 1. The solid line corresponds to equilibria converging to the limit cycle and the
dotted line corresponds the equilibrium converging to the steady state.

converges to the steady state. Although the initial value of πp is more than four percentage points

above its long-run level (πp(0) = 0.085) and the initial interest rate is more than six percentage

points above target, the economy converges to the steady state with remarkable speed. As can be

seen from the figure, after about one quarter the position of the economy is indistinguishable from

the steady state. In the standard analysis of the behavior of sticky-price models with interest rate

feedback rules, these dynamics would be the only ones investigated and reported.

4.4 Sensitivity Analysis

In this section, we explore the robustness of our findings to variations in parameter values. Table 2
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Table 2: Sensitivity Analysis

Parameter Parameter bh Hopf bifurcation
value is supercritical

1 5.47 yes
σ 2* 2.74 yes

3 1.82 yes
-1 1.99 yes

ρ -3* 2.74 yes
-5 3.62 yes
-3 2.1 yes

η -5 2.4 yes
-21* 2.74 yes
1 2.73 yes

γ 350* 2.74 yes
900 2.74 yes
1.1 2.74 yes

D 1.5* 2.74 yes
3 2.74 no

0.0018 3.23 yes
α 0.0035* 2.73 yes

0.007 2.29 yes

Note: * indicates the baseline parameter value. bh denotes the value of the parameter
b for which the equilibrium displays a Hopf bifurcation. If the Hopf bifurcation is
supercritical, then endogenous cycles exist for values of b lower than bh (i.e., for more
backward-looking policies than the one associated with bh).
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displays the value of the parameter b at which the equilibrium presents a Hopf bifurcation. This

critical value is denoted by bh. The table also indicates whether the Hopf bifurcation is supercritical.

Recall that supercriticality of the Hopf bifurcation implies that attracting equilibrium cycles exist

for values of b lower than bh. That is, for Taylor rules that are more backward-looking than the

one associated with bh. Recall also that for values of b larger than bh the equilibrium displays local

indeterminacy (of order two) because for such values of b all eigenvalues of the Jacobian matrix A

have negative real parts. Thus, the smaller is bh, the larger is the range of values for the degree of

backwardness for which the equilibrium displays some sort of indeterminacy, either in the form of

a continuum of equilibria converging to the steady state or in the form of equilibria converging to

a cycle. It follows from table 2 that bh tends to decrease as households become more risk averse

(large σ), as the money demand elasticity increases (ρ close to 1), as the markup increases (η small

in absolute value), and as the share of real balances in the CES production function increases (α

large). The value of b at which the Hopf bifurcation occurs is quite insensitive to large variations

in the degree of price stickiness. Finally, the bifurcation ceases to be supercritical for highly active

Taylor rules.

5 A Two-Factor Model

In this section, we consider a generalization of the theoretical model presented in section 2 that

allows for endogenous labor supply and assumes that labor in addition to real balances is a factor

of production. This specification is of interest because it implies a well-defined equilibrium even in

the limiting case in which money balances become unproductive.

Suppose that output is produced via the following production function that takes labor, h, and

real balances, m, as factor inputs

y(m,h) =
[
αmρ + (1 − α)(hζ)ρ

] 1
ρ

, ρ < 1 and ζ ∈ [0, 1]. (36)

When the parameter ζ equals zero, this production function is the same as that presented in

equation (34), featuring real balances as the sole factor input. If α = 0, then the production

function is similar to that assumed in most of the related literature, which ignores the productive
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role of money (e.g., Rotemberg and Woodford, 1999; and Clarida, Gaĺı, and Gertler, 1999).12

Therefore, the two-factor model presented here encompasses both the baseline model of section 2

and the standard model studied in the related literature.

To introduce endogenous labor supply we consider two alternative forms for the period utility

function:

u(c, h) =
c1−σ

1 − σ
(1 − h)ξ; σ > 1 and ξ < 0 (37)

and

u(c, h) =
c1−σ

1 − σ
+

1
ξ
(1 − h)ξ ; σ, ξ > 0, (38)

where 1 − h denotes the fraction of time devoted to leisure. These specifications of preferences are

commonly used in the equilibrium business cycle literature. The household chooses sequences for

cj , hj , mj, P j ≥ 0, and aj so as to maximize

U j =
∫ ∞

0
e−rt


u(cj , hj) − γ

2

(
Ṗ j

P j
− π∗

)2

 dt, (39)

subject to (3),

ȧj = (R − π)aj − Rmj +
P j

P
y(mj , hj) − cj − τ, (40)

and

y(mj, hj) = Y dd

(
P j

P

)
, (41)

taking as given aj(0), P j(0), and the time paths of τ , R, Y d, and P . The Hamiltonian of the

household’s optimization problem takes the form

e−rt



u(cj , hj) − γ

2

(
Ṗ j

P j
− π∗

)2

+ λj
[
(R − π)aj − Rmj

+
P j

P
y(mj, hj) − cj − τ − ȧj

]
+ µj

[
Y dd

(
P j

P

)
− y(mj , hj)

]}
.

The first-order conditions associated with cj , hj , mj, aj, and P j and the transversality condition
12One can show analytically that in steady state y → hζ as α → 0.
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are, respectively,

uc(cj , hj) = λj, (42)

−uh(cj , hj)
uc(cj , hj)

= yh(mj , hj)
R

ym(mj , hj)
, (43)

λj

[
P j

P
ym(mj , hj) − R

]
= µjym(mj , hj), (44)

λ̇j = λj (r + π − R), (45)

λj P j

P
y(mj , hj) + µj P j

P
Y dd′

(
P j

P

)
= γr(πj − π∗) − γπ̇j, (46)

and

lim
t→∞

e−
∫ t
0
[R(s)−π(s)]dsaj(t) = 0, (47)

where πj ≡ Ṗ j/P j .

As before, we limit attention to symmetric equilibria, so we drop the superscript j. In equilib-

rium, the goods market must clear. That is,

c = y(m,h). (48)

Combining the resource constraint (48) with (10), (42), and (43), we have that in equilibrium

consumption, hours, and real money balances can be expressed in terms of λ and πp. Formally, we

have that

c = c(λ, πp), (49)

h = h(λ, πp), (50)

m = m(λ, πp). (51)

Using these expressions and eliminating the multiplier µ by means of (44), we can write (45) and

(46) as

λ̇ = λ (r + π − ρ(πp)), (52)

π̇ = r(π − π∗) − c(λ, πp)λ
γ

{
1 + η

[
1 − ρ(πp)

ym(m(λ, πp), h(λ, πp))

]}
. (53)
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A competitive equilibrium is then defined as a set of functions of time (λ, π, πp) satisfying (12),

(52), and (53).

Consider first the preference specification given in equation (37), featuring nonseparability in

leisure and consumption. In this case, it is straightforward to show that equation (49)-(51) are

strict correspondences. That is, for a given pair (λ, πp), there exist more than one triplet (c, h,m)

that can be supported as an equilibrium outcome. It follows that in this case, equations (12), (52),

and (53) represent a system of differential correspondences, whereby for each equilibrium value of

the state vector (λ, π, πp), its rate of change (λ̇, π̇, π̇p) can take multiple values. Thus, under the

first preference specification given above, the economy is subject to instantaneous indeterminacy.

Consider now the second preference specification given in equation (38), featuring additive

separability in consumption and leisure. In this case, it can be shown that equations (49)-(51)

express the equilibrium values of (c, h,m) as functions (i.e., single-valued correspondences) of λ

and πp. Thus, in this case the reduced form of the equilibrium given by (12), (52), and (53)

represents a system of (single-valued) differential equations. For the remainder of this section, we

therefore focus on the additively separable preference specification.

It turns out that for values of ξ 6= 1 and values of ζ < 1, there does not exist an explicit

representation of (c, h,m) in terms of λ and πp. That is one can at most obtain a system of

implicit functions of the form F (y, x) = 0, where y = (c, h,m) and x = (λ, π, πp). This feature

of the equilibrium conditions complicates a great deal the task of determining the local stability

of the steady state, of proving existence of a Hopf bifurcation, and, particularly, of determining

the supercriticality of the Hopf bifurcation. For this reason, we assume, as in Hansen (1985) that

labor supply is infinitely elastic, ξ = 1. We also assume that the CES production function (36) is

homogeneous of degree one in labor and real balances, ζ = 1. In this case, equations (49)-(51) take

the following explicit form:

c = c(λ) ≡ λ−1/σ, (54)

h = h(λ, πp) ≡ c(λ)

[
α

(
α

1 − α

ξ

ρ(πp)
c(λ)σ

)ρ/(1−ρ)

+ 1 − α

]−1/ρ

, (55)

and

m = m(λ, πp) ≡ h(λ, πp)
[

αξc(λ)σ

(1 − α)ρ(πp)

]1/(1−ρ)

(56)
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Introducing the change of variable used in section 3—i.e., p = lnλ − lnλ∗, w = π − π∗, and

z = πp−π∗, where π∗ and λ∗ denote the steady-state values of π and λ, respectively—the linearized

version of the equilibrium conditions (12), (52), and (53) takes the form given in equations (29) and

(30). To evaluate the coefficients of the Jacobian matrix A in this linearized system, we calibrate

the economy as follows: The values assigned to σ, π∗, η, γ, ρ′(π∗), R∗, ρ, and GDP velocity are

those given in table 1. The long-run log-log interest elasticity of money is still given by 1/(ρ − 1).

For this calibration, the element A21 of the Jacobian matrix A in equation (30) is positive and

element A23 is less than −r. It follows that the conditions of proposition 4.1 and corollary 4.1 are

satisfied. Thus, the equilibrium displays a unique Hopf bifurcation at b = bh > r. Furthermore, for

values of b less than bh there exists a unique equilibrium converging to the steady state, whereas

for b greater than bh there exists a continuum of equilibria converging to the steady state. The

value of b at which the Hopf bifurcation occurs is bh = 1.47 implying that as long as the average

lag in the inflation measure to which the central bank responds is longer than 9 weeks, then a

unique equilibrium converging to the steady state exists. The central result of our analysis is to

show although the equilibrium is locally unique, when b < bh, globally the equilibrium can display

endogenous aggregate fluctuations in the form of deterministic cycles.

To determine the criticality of the Hopf bifurcation we assume, as before, that the interest rate

feedback rule is given by (35), that is, ρ(πp) = R∗ +D(πp −π∗). Thus, our calibration implies that

D = 1.5. As in the model without labor, for our calibration the Hopf bifurcation is supercritical.

The first Lyapunov coefficient of the dynamic system at the critical parameter value b = bh is

-94.47. It follows from the supercriticality of the Hopf bifurcation that for b < bh attracting cycles

exist in a neighborhood of (λ∗, π∗, π∗). Figure 3 depicts the phase diagram associated with the

equilibrium conditions in the space (πp
t , ln(yt/y

∗), πt). In the graph, the average lag in the central

bank’s inflation measure is about 9 weeks (b = 1.3925). Because b is less than bh, the equilibrium

is saddle-path stable (i.e., there exists a unique equilibrium trajectory converging to the steady

state). However, the figure shows that trajectories starting off the saddle path may converge to

an equilibrium cycle around the steady state. Thus, like in the model without labor, equilibrium

displays a severe case of indeterminacy.13

13Recall that for values of b greater than bh, the equilibrium system possesses three roots with negative real parts.
This means that for these values of b, there exists a continuum of equilibria converging to the steady state.
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Figure 3: Two-Factor Model: Endogenous Cycles Under Backward-Looking Taylor Rules

−1.5
−1

−0.5
0

0.5
1

1.5

0

2

4

6

8

10
0

1

2

3

4

5

6

7

8

log(y
t
/y*)πp

t

π t

Note: All variables are in percent. Inflation, πt, and average lagged inflation, πp
t , are

expressed in annual rates. The smoothing parameter b is set at 1.3925 (about 9 weeks)
and the remaining parameters take the values shown in table 1.

Figure 4 shows the time path of a trajectory converging to the limit cycle. The cycle has a

frequency of about 8 years and features inflation rates fluctuating between 0.5 and 8 percent per

year. Along the limiting cycle the nominal interest rate varies between 0.5 and 12 percent per year.

Aggregate activity peaks at 1.4 percent above trend and bottoms out at 1.3 percent below trend.

A natural question that arises from the above analysis is whether cycles exist for highly

backward-looking interest-rate rules, that is, for b close to zero. Given our calibration of all other

parameter values, the smallest value of b for which we could numerically detect the existence of

economically meaningful cycles is 1.36. Below this value of b, cycles continue to exist but become

economically irrelevant, as they violate the zero lower bound on the nominal interest rate. Our next

step is therefore to consider interest rate rules that respect this non-negativity constraint. Specif-

ically, we analyze the existence of endogenous equilibrium cycles under an interest-rate feedback

rule of the form

R = ρ(πp) ≡ R∗ exp
[

D

R∗ (πp − π∗)
]

. (57)
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Figure 4: Two-Factor Model: Time Paths of Equilibrium Cycles
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in annual rates. The smoothing parameter b is set at 1.3925 (about 9 weeks).

Note that as the target variable πp converges to −∞, the instrument R approaches zero from above.

We set all parameter values as in table 1. In particular, we set R∗ = 0.0147, π∗ = 0.0103, and

D = 1.5, respectively. At the intended steady state, the interest rate rule is active with a slope

of 1.5. Because the above rule respects the zero bound on the nominal interest rate, as the target

variable πp becomes sufficiently small, the policy stance becomes passive (limπp→−∞ ρ′(πp) = 0).

As shown in Benhabib, Schmitt-Grohé, and Uribe (2001a), when the interest rate feedback

rule respects the zero lower bound, is continuous, and has a slope greater than unity at the target

steady state, which is the case for the feedback rule given in (57), then there typically exists a

second steady state at which monetary policy is passive and inflation is below the value targeted

by the central bank. We refer to this second steady state as the liquidity-trap steady state because

the economy is trapped in an equilibrium in which the government fails to achieve its inflation

target. For the parameterization considered here the annual inflation rate at the liquidity trap is

0.72 percent, compared to a target rate of inflation of 4.2 percent. The nominal interest rate is 2.46

percent per year whereas at the target steady state it is 6 percent.
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Around the target inflation rate π∗, the exponential interest-rate rule given in equation (57) is

identical up to first order to the linear rule given in (35). It follows that the change in functional

form preserves the the local stability properties of the economy in the neighborhood of the target

steady state and does not affect the existence of the Hopf bifurcation nor the size of bh. Thus, under

the exponential rule, the economy still undergoes a Hopf bifurcation at bh = 1.4658. Moreover,

for values of b < bh there exists a unique equilibrium converging to the target steady state and for

values of b > bh there exists a continuum of such equilibria.

The particular functional form assumed for the feedback rule may affect the criticality of the

Hopf bifurcation. However, our calculations show that the first Lyapunov coefficient at b = bh is

still negative (l1(0) = −58.2). It follows that the Hopf bifurcation is supercritical and that, for the

arguments presented before, attracting cycles exist for b < bh. Again, we use numerical methods

to detect these cycles. The upper left panel of figure 5 displays the limit cycle that emerges for a

Figure 5: Two Factor Model and ρ(πp) = R∗eD/R∗(πp−π∗)
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value of b very close to the one at which the Hopf bifurcation takes place. In particular, we set

b = 1.45, so that the average lag of the inflation measure to which the central bank responds is
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about 9 weeks. The cycle is shown with a solid line. Also indicated in the figure are the target

steady state and the liquidity trap steady state. The figure reveals that along the cycle the inflation

rate never falls down to the level of inflation that prevails in the liquidity trap. Specifically, the

lowest value of inflation along the cycle is 1.07 percent per year, whereas inflation at the liquidity

trap is 0.72 percent per year. At the same time, output varies from 0.68 percent above trend and

0.66 percent below trend. It takes about 16 years to complete one cycle.

5.1 Equilibria Converging to the Liquidity Trap

For values of b below 0.99 × bh, i.e., when the average lag length in the central bank’s inflation

measure exceeds 9 weeks, our numerical tools were unable to detect equilibrium cycles. We conjec-

ture that at some lower value of b the equilibrium cycles are absorbed into a homoclinic orbit. On

this homoclinic orbit, the (one-dimensional) unstable manifold associated with the liquidity-trap

steady state travels around the target steady state and ends back at the liquidity trap. As we

further lower b, the homoclinic orbit breaks and is replaced by equilibrium trajectories connecting

the target steady-state with the liquidity trap steady state. Such trajectories connecting steady

states are known as ‘saddle connections.’ (See the discussion in section 7 referring to Alexander and

Yorke, 1978, as well as the Bogdanov-Takens bifurcation diagram in Kuznetsov, 1998, page 322.)

Along these trajectories, the economy can start out in a small neighborhood around the target rate

of inflation π∗ and then spiral down into the liquidity trap.

To analyze the existence of a saddle connection, we apply a theorem due to Kopell and Howard

(1975). (For a statement of the theorem and other details, see the appendix.) Loosely speaking,

this theorem says that if the equilibrium system satisfies a number of conditions at the critical point

(b,D, λ, π, πp) = (bh, 1, λ∗, π∗, π∗), then around that point the equilibrium displays either endoge-

nous cycles, or a homoclinic orbit, or a saddle connection for values of (b,D) in the neighborhood

of
(
bh, 1

)
. The conditions of the theorem concern the first and second-order terms of a Taylor series

expansion of the system of equilibrium conditions with respect to (b,D, λ, π, πp) around the critical

point. The conditions of the Kopell-Howard theorem are satisfied by the equilibrium conditions

of the model for (b,D) in the neighborhood of
(
bh, 1

)
, when the other parameters take the values

shown in table 1. See the appendix for the sketch of the proof and a discussion.

We were able to identify numerically the existence of attracting endogenous cycles for D = 1.5
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and values of b between 0.989×bh and bh. As the top-right panel of figure 5 shows, for b = 0.989×bh,

the system features a homoclinic orbit. For values of b below 0.989×bh, the homoclinic orbit breaks

open (see the bottom-left panel of figure 5). For these values of b we were unable to numerically

identify endogenous cycles. Guided by the Kopell-Howard theorem, we conjecture the existence

of saddle connections linking the intended and the liquidity-trap steady states. Moreover, we can

numerically rule out that the saddle connection runs from the liquidity trap to the intended steady

state. Specifically, if the connection was indeed from the liquidity trap to the intended steady state,

then one could place the economy on the saddle path converging to the intended steady state—

recall that the stable manifold associated with the intended steady state is one-dimensional—and

run time backwards. The resulting trajectory should converge to the liquidity trap. Our numerical

analysis suggests, however, that this is not the case.

We conclude that when the central bank follows a backward-looking interest rate rule, then,

depending upon how backward-looking the rule is, the competitive equilibrium features one of

the following forms of indeterminacy: multiple trajectories converging to the intended steady state,

endogenous attracting cycles, a homoclinic orbit, or a saddle connection linking the intended steady

state with the liquidity trap. It also follows from the above analysis that for sufficiently backward-

looking interest-rate rules to be conducive to macroeconomic stability, they must be accompanied

by trigger policies that are activated in the event that the economy threatens to depart from the

desired steady-state. These accompanying policies must have the characteristic of making the

liquidity trap unsustainable.

In Benhabib, Schmitt-Grohé, and Uribe (2002b), we propose several fiscal and monetary policies

that preserve the appealing features of Taylor rules, such as local uniqueness of equilibrium near

the inflation target, and at the same time rule out the deflationary expectations that can lead an

economy into a liquidity trap. There, we analyze in detail two types of regimes that succeed in

accomplishing this task. One is to enact a fiscal stimulus package should the economy begin to

experience persistent deflation. This active fiscal stance must be strong enough to require positive

inflation—and thereby a departure from the liquidity trap—to be sustainable. The second trigger

policy we propose consists in switching to a money-growth-rate peg when the economy is headed

toward the liquidity trap. Switching to a money-growth-rate peg helps avoid the liquidity trap only

if accompanied by an appropriate fiscal stance. Christiano and Rostagno (2001) propose to switch
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to the second policy option suggested by Benhabib, Schmitt-Grohé, and Uribe (2002b) as soon as

inflation falls only slightly short of its target value. In this way, they hope to be able to avoid not

only the liquidity trap equilibrium but also other undesired bounded equilibria not converging to

the steady state, such as the endogenous cycles identified in this paper or the chaotic dynamics

characterized in Benhabib, Schmitt-Grohé, and Uribe (2002a).

6 Interest Rate Smoothing

Recently, a growing literature has focused on the empirical and theoretical relevance of interest-

rate rules that incorporate lagged values of the nominal interest rate as an explicit argument. Sack

(1998) estimates this type of rule using U.S. data and finds a statistically significant coefficient on

the lagged interest rate of about 0.65. On theoretical grounds, a number of authors, including Levin,

Wieland, and Williams (1999), Rotemberg and Woodford (1999), and Giannoni and Woodford

(2002) have suggested that the performance of Taylor rules can be improved by adding lagged values

of the nominal interest rate. Moreover, the work of Rotemberg and Woodford and of Giannoni and

Woodford suggests that the coefficient on the lagged interest rate should be greater than one. In

discrete time, the Taylor rule augmented to allow for a smoothing component takes the form:

Rt − R∗ = φ(Rt−1 − R∗) + θ(πt − π∗); with θ, φ > 0. (58)

We can write the continuous-time version of (58) as

Ṙt = −b(Rt − R∗) + Db(πt − π∗); with Db > 0. (59)

The case in which the smoothing parameter is less than one in the discrete-time version of the rule

(φ < 1) corresponds to setting b > 0 in the continuous-time counterpart, and the case in which the

smoothing coefficient is greater than one (φ > 1) requires setting b < 0.

In the case that the coefficient on the lagged interest rate is less than one (φ < 1 in discrete

time or b > 0 in continuous time), the interest-rate rule can be expressed as a backward-looking

rule of the type studied earlier in this paper. In effect, integrating (59) from the infinite past to

32



the present we obtain

Rt = R∗ + D(πp
t − π∗),

where πp
t is a weighted average of past inflation rates defined by equation (11). Note that because

b > 0, it must be the case that D > 0 to ensure that the nominal interest rate depends positively

on inflation in the policy rule (59). The above policy rule is identical to (35). It follows that all

of the results of the previous sections carry over immediately. In particular, the equilibrium is

indeterminate under an active policy stance because either the system displays local indeterminacy

or because attracting equilibrium cycles exist, or because a saddle connection exists.

The case in which in the discrete-time version of the Taylor rule the smoothing parameter is

greater than unity (φ > 1) is captured in the continuous-time version by restricting b to be negative.

This ‘superinertial’ specification of the policy rule has been advocated by Rotemberg and Woodford

and Giannoni and Woodford as optimal. In this case we must set D < 0 so that the coefficient on

inflation in (59) is positive. Using forward integration on (59), we can express the nominal interest

rate as a function of a weighted average of future expected inflation rates. This operation yields

Rt = D(πf
t − π∗) + R∗, with D < 0, (60)

where πf
t is a measure of expected future inflation given by

πf
t ≡ −b

∫ ∞

t
eb(s−t)πsds.

Because in the discrete-time case the lagged interest rate is a predetermined variable at time t, the

interest rate rule (59) puts an equilibrium restriction on the weighted sum of future inflation rates,

making πf
t a predetermined (non jump) variable rather than a free (jump) variable. Differentiating

the above expression one obtains π̇f
t = b(πt − πf

t ). Note that in this case the structure of the

system of equilibrium conditions is identical to the one associated with the backward-looking rule,

given by equations (23)-(25), with πf
t taking the place of πp

t , with the linear specification for the

policy rule given in (60), and the restrictions b < 0 and D < 0. Therefore we can immediately

apply the analysis of section 3. In particular, the local stability of equilibrium can be determined

by characterizing the eigenvalues of the 3×3 Jacobian matrix A given in equation (30). The
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determinant of this matrix is bA21(1 − D) < 0, where A21 > 0 is defined by equation (31). Thus,

the number of eigenvalues with positive real parts is either zero or two. At the same time, the trace

of A is given by r − b > 0, which indicates the existence of at least one eigenvalue with positive

real part. It follows that the system has exactly two eigenvalues with positive real parts. Because

the reduced form of the equilibrium conditions involves two jump variables (λ and π) and one non

jump variable (πf ), it follows that the equilibrium is everywhere locally determinate and no Hopf

bifurcation exists. It is worth noting that when b is negative local uniqueness and the absence of a

Hopf bifurcation obtain even if D is positive (as long as it does not exceed unity) and irrespectively

of whether the interest rate rule responds actively (Db > 1) or passively (Db < 1) to changes in

current inflation.14 Also, the interest-rate rule requires that the monetary authority respond by

increasing the nominal interest rate in response to short-term increases in inflation—as reflected

by a positive inflation coefficient in equation (59)—and by decreasing the interest rate in response

to long-run increases in inflation—as reflected by a negative inflation coefficient in equation (60).

7 Discussion and Conclusion

A question that emerges naturally from our findings concerns the way in which the location and

shape of the equilibrium cycles identified in this paper change as one varies the deep structural

parameters of the model. Of particular interest are variations in the average lag-length of the

inflation measure to which the central bank responds. A partial answer to the issue of robustness

of our central result is given by the sensitivity analysis performed in section 4.4. But, as the analysis

in section 5 makes clear, more general theoretical results exists. The cycles that emerge from a Hopf

bifurcation—like steady states— will change as we vary parameters globally (see Alexander and

Yorke, 1978). Under some regularity conditions, they will not disappear into the thin air but they

can: (a) go out of the domain of definition of endogenous variables; (b) can close upon themselves

via another distinct Hopf bifurcation; or (c) their amplitude can go to infinity. In case (a), if, for

example, some non-negativity constraints become binding, then studying the dynamics properly

would require incorporating the constraints into the analysis. Case (b) would be detectable in

our analysis since the conditions for a second Hopf bifurcation would be observed from the linear
14When D is greater than one and b is negative, then the equilibrium is either locally indeterminate or does not

exist.
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dynamics. We can indeed rule out this case, for we have shown in Proposition 4.1 that in our

model the Hopf bifurcation is unique. Case (c) which may involve the absorption of the cycle by

a homoclinic orbit, can result in more complex dynamics. The saddle connection characterized in

section 5.1 is just one example of such dynamics.

In the baseline economy of section 2, where output was produced with real balances as the

sole input, we were able to identify numerically the existence of attracting cycles for average lag

lengths in the Taylor rule of about 1.5 months. In the more realistic economy of section 5, where

the production technology allowed for both real money balances and labor services as factor inputs,

cycles were detected for average lag lengths in the cental bank’s moving average of inflation of over

nine weeks. It follows from the results of Alexander and Yorke (1978) that the fact that we were

not able to numerically detect cycles for longer policy lags does not necessarily imply that such

cycles do not exist in that region of the parameter space.

We close the paper by taking stock of our findings and placing them in perspective. A number

of studies, most notably Bernanke and Woodford (1997), Carlstrom and Fuerst (2000a,b) and

Benhabib, Schmitt-Grohé, and Uribe (2001b), have stressed the perils of interest-rate feedback

rules whereby the interest rate responds to forecasts of future inflation. It has been emphasized

in particular that such rules may give rise to aggregate instability in the form of self-fulfilling

expectations. One response to this problem has been to postulate rules featuring a weighted

average of past observed inflation rates as the measure of inflation to which the central bank

responds. For example, Carlstrom and Fuerst (2000a) conclude that to ensure uniqueness of the

rational expectations equilibrium the central bank should react aggressively to past inflation rates.

In analyzing the stabilizing properties of backward-looking interest-rate rules, the literature extant

has limited attention to the study of equilibria in a small neighborhood around the steady state in

which all endogenous variables are expected to converge asymptotically to the steady state.

In this paper we consider a larger class of equilibria. Namely, equilibria in which the economy

can diverge from the steady-state and be attracted to a limit cycle. Our central result is that

endogenous equilibrium cycles exist under backward-looking interest rate rules. The existence of a

limit cycle necessarily implies the indeterminacy of equilibrium. For any trajectory originating in a

certain, relatively large neighborhood of the limit cycle—including any arbitrarily small neighbor-

hood around the steady state—will converge to the cycle itself. This type of indeterminacy opens

35



the door to aggregate fluctuations driven solely by changes in agents’ expectations about the future

path of the economy. This means that the mere introduction of a backward-looking component

into interest-rate policy is not sufficient to guarantee aggregate stability.

The results described above are disconcerting, as they suggest that a policy rule commonly

believed to be stabilizing can in fact be destabilizing. But the paper also provides constructive

findings for the design of monetary policy. Interest-rate rules whereby, in addition to current

inflation, the central bank responds aggressively to the lagged interest rate are shown to ensure

that the inflation target is locally the unique equilibrium and that no bifurcations exist. For this

result to hold it is required that the coefficient on the past value of the interest rate in the Taylor

rule be greater than unity. That is, the feedback rule must be superinertial. If that coefficient is

positive but less than one, then equilibrium cycles continue to exist. Rotemberg and Woodford

(1999) and Giannoni and Woodford (2002) have also found that interest-rate feedback rules with

a coefficient greater than one on past interest rates deliver a unique equilibrium. Moreover, these

papers find that such rules are indeed optimal. Our findings can be viewed as an extension of their

analysis in two important respects. First, their work is limited to equilibria where all endogenous

variables are expected to converge asymptotically to the steady state. Second, those papers do not

allow for a cost channel in the transmission of monetary policy. Therefore, our paper demonstrates

that the result that a coefficient greater than one on the lagged interest rate is stabilizing applies

more generally and to a richer class of economic environments than previously studied.

Appendix

Theorem 7.1 (Kopell and Howard, 1975, combines Theorem 7.1 and Corollary 7.1)

Let Ẋ = Fµ,ν (X) be a two-parameter family of ordinary differential equations on Rn, F smooth in

all of its arguments, such that Fµ,ν(0) = 0. Using a Taylor expansion Ẋ = Fµ,ν (X) can be written

Ẋ = (A + µA1 + νA2) X + Q (X,X) + R1 (X,µ, ν)

where A, A1, A2 are n× n matrices, the vector Q (X,X) contains the terms quadratic in xi and is

independent of (µ, ν) , and R1 (X,µ, ν) = o(µxi, νxi, xixj).
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Also assume:

1. dF0,0(0) ≡ A has a double zero eigenvalue corresponding to a single eigenvector e.

2. The mapping (µ, ν) → (det dFµ,ν(0), σ (dFµ,ν(0))) has a nonzero Jacobian at (µ, ν) = (0, 0),

where σ (dFµ,ν(0)) is the sum of the principal minors of dFµ,ν(0).

3. [dF(0,0)(0), Q(e, e)] has rank n.

Then there is a curve f (µ, ν) = 0 such that if f(µ0 , ν0) = 0, then Ẋ = Fµ0,ν0(X) has a

homoclinic orbit. This one-parameter family of homoclinic orbits (in (X,µ, ν) space) is on the

boundary of a two-parameter family of periodic solutions. For all | µ |, | ν | sufficiently small, if

Ẋ = Fµ,ν(X) has neither a homoclinic orbit nor a periodic solution, there is a unique trajectory

joining the critical points.

It is straightforward to check that the theorem above applies to our system (12), (52), and (53)

with parameters (µ, ν) =
(
b − bh,D − 1

)
. First we note that the steady state of our system is

independent of the parameters (b,D) , as required by the theorem. Assumption (1) is satisfied at

parameter values (b,D, λ, π, πp) = (bh, 1, λ∗, π∗, π∗). To see this note that at D = 1, b = bh, and

r 6= b, by construction, the roots of the Jacobian corresponding to the system (12), (52), and (53)

must be (0, 0, r − b), irrespective of other parameters. This is because given b = bh, there is always

a pair of roots that sum to zero (they could be real or pure imaginary). The proof is given by

Orlando’s formula in Gantmacher (1960), page 196. The sum of the roots is the trace, r− b, which

means the third root is r− b. Finally, the determinant is singular because the first row is (0, 1,−1)

and the third row is (0, b,−b), which means that the two roots that add up to zero must in fact be

real and equal to zero. Conditions (2.) and (3.) are full rank conditions, which will hold generically

over the parameter space. We checked that they also hold for the particular calibration of section

5; numerical computations are available upon request. We should note that the theorem is valid for

| b − bh |, | D − 1 | sufficiently small, so that the numerical analysis that we provided in section 5

is necessary to establish the existence of the cycles, the homoclinic orbit and the saddle connection

in the neighborhood of our calibrated values of b and D. An alternative approach to establish the

saddle connection and cycles in three dimensional systems, once the existence of a homoclinic orbit

can be ascertained, is that of Shil’nikov: see Kuznetsov (1998), pages 213-225.
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Benhabib, Jess, Stephanie Schmitt-Grohé, and Mart́ın Uribe, “Monetary Policy and Multiple Equi-

libria,” American Economic Review, 91, March 2001b, 167-186.
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