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ABSTRACT

This paper investigates four topics. (1) It examines the different roles played by the propensity score

(probability of selection) in matching, instrumental variable and control functions methods. (2) It

contrasts the roles of exclusion restrictions in matching and selection models. (3) It characterizes

the sensitivity of matching to the choice of conditioning variables and demonstrates the greater

robustness of control function methods to misspecification of the conditioning variables. (4) It

demonstrates the problem of choosing the conditioning variables in matching and the failure of

conventional model selection criteria when candidate conditioning variables are not exogenous.
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1 Introduction

The method of matching has become popular in evaluating social programs because it is easy to understand

and easy to apply. It uses observed explanatory variables to adjust for differences in outcomes unrelated

to treatment that give rise to selection bias. Propensity score matching as developed by Rosenbaum

and Rubin (1983) is particularly simple to apply. The propensity score is the probability that an agent

takes treatment. If the analyst knows (without having to estimate) the probability that a person takes

treatment, and the assumptions of matching are fulÞlled, he can condition on that known probability and

avoid selection in means and marginal distributions. This choice probability also plays a central role in

econometric selection models based on the principle of control functions (Heckman, 1980; Heckman and

Robb, 1986, reprinted 2000; Heckman and Hotz, 1989; Ahn and Powell, 1993) and in instrumental variable

models (see e.g. Heckman and Vytlacil, 1999, 2001, 2003 or Heckman, 2001).

The multiple use of the propensity score in different statistical methods has given rise to some confusion

in the applied literature.1 This paper seeks to clarify the different assumptions that justify the propensity

score in selection, matching and instrumental variables methods. We develop the following topics:

1. We orient the discussion of the selection of alternative estimators around the economic theory of

choice. We compare the different roles that the propensity score plays in three widely used econo-

metric methods, and the implicit economic assumptions that underlie applications of these methods.

2. Conventional matching methods do not distinguish between excluded and included variables.2 We

show that matching breaks down when there are variables that predict the choice of treatment

perfectly whereas control function methods take advantage of exclusion restrictions and use the

information available from perfect prediction to obtain identiÞcation. Matching assumes away the

possibility of perfect prediction while selection models rely on this property in limit sets.

3. We deÞne the concepts of �relevant� information and �minimal relevant� information, and distinguish

agent and analyst information sets. We state clearly what information is required to identify different

treatment parameters. In particular we show that when the analyst does not have access to the

�minimal relevant� information, matching estimates of different treatment parameters are biased.

Having more information, but not all of the �minimal relevant� information, can increase the bias

compared to having less information. Enlarging the analyst�s information set with variables that do

not belong in the relevant information set may either increase or decrease the bias from matching.

Because the method of control functions explicitly models omitted relevant variables, rather than
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assuming that there are none, it is more robust to omitted conditioning variables.

4. The method of matching offers no guidance as to which variables to include or exclude in conditioning

sets. Such choices can greatly affect inference. There is no support for the commonly used rules

of selecting matching variables by choosing the set of variables that maximizes the probability of

successful prediction into treatment or by including variables in conditioning sets that are statistically

signiÞcant in choice equations. This weakness is shared by many econometric procedures but is not

fully appreciated in recent applications of matching which apply these selection rules when choosing

conditioning sets.

To simplify the exposition, throughout this paper we consider a one-treatment, two-outcome model.

Our main points apply more generally.

2 A Prototypical Model of Economic Choice

To focus the discussion, and interpret the implicit assumptions underlying the different estimators presented

in this paper, we present a benchmark model of economic choice. For simplicity we consider two potential

outcomes (Y0, Y1). D = 1 if Y1 is selected. D = 0 if Y0 is selected. Agents pick their outcome based on

utility maximization. Let V be utility. We write

V = µV (Z,UV ) D = 1 (V > 0), (1)

where the Z are factors (observed by the analyst) determining choices, UV are the unobserved (by the

analyst) factors determining choice and 1 is an indicator function (1(A) = 1 if A is true; 1(A) = 0

otherwise). We consider differences between agent information sets and analyst information sets in Section

(6).

Potential outcomes are written in terms of observed variables (X) and unobserved (by the analyst)

outcome-speciÞc variables

Y1 = µ1(X,U1) (2a)

Y0 = µ0(X,U0). (2b)

We assume throughout that U0, U1, UV are (absolutely) continuous random variables and that all means

are Þnite. The individual level treatment effect is

∆ = Y1 − Y0.
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More familiar forms of (1), (2a) and (2b) are additively separable:

V = µV (Z) + UV E(UV ) = 0 (10)

Y1 = µ1(X) + U1 E(U1) = 0 (2a0)

Y0 = µ0(X) + U0 E(U0) = 0. (2b0)

Additive separability is not strictly required in matching, or most versions of selection (control function)

models. However, we use the additively separable representation throughout most of this paper because

of its familiarity noting when it is a convenience and when it is an essential part of a method.

The distinction betweenX and Z is crucial to the validity of many econometric procedures. In matching

as conventionally formulated there is no distinction between X and Z. The roles of X and Z in alternative

estimators are explored in this paper.

3 Parameters of Interest in this Paper

There are many parameters of interest that can be derived from this model if U1 6= U0 and agents use

some or all of the U0, U1 in making their decisions (see Heckman and Robb, 1985, 1986; Heckman, 1992;

Heckman, Smith and Clements, 1997 ; Heckman and Vytlacil, 2001 and Heckman, 2001). Here we focus

on certain means because they are traditional. As noted by Heckman and Vytlacil (2000) and Heckman

(2001), the traditional means do not answer many interesting economic questions.

The traditional means are:

ATE : E(Y1 − Y0|X) (Average Treatment Effect)
TT : E(Y1 − Y0|X,D = 1) (Treatment on the Treated)

MTE : E(Y1 − Y0|X,Z, V = 0) (Marginal Treatment Effect).

The MTE is the marginal treatment effect introduced into the evaluation literature by Björklund and

Moffitt (1987). It is the average gain to persons who are indifferent to participating in sector 1 or sector

0 given X,Z. These are persons at the margin, deÞned by X and Z. Heckman and Vytlacil (1999, 2000)

show how theMTE can be used to construct all mean treatment parameters, including the policy relevant

treatment parameters, under the conditions speciÞed in their papers.
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4 The Selection Problem

Let Y = DY1 + (1−D)Y0. Samples generated by choices have the following means which are assumed to
be known:

E(Y |X,Z,D = 1) = E(Y1|X,Z,D = 1)

and

E(Y |X,Z,D = 0) = E(Y0|X,Z,D = 0)

for outcomes of Y1 for participants and the outcomes of Y0 for non-participants, respectively. In addition,

choices are observed so that in large samples Pr (D = 1|X,Z), i.e., the probability of choosing treatment
is known. From the means we can integrate out Z given X and D to construct

E(Y1|X,D = 1) and E(Y0|X,D = 0).

The biases from using the difference of these means to construct various counterfactuals are, for the

three parameters studied in this paper:

Bias TT = [E(Y |X,D = 1)−E(Y |X,D = 0)]− [E(Y1 − Y0|X,D = 1)]

= [E(Y0|X,D = 1)−E(Y0|X,D = 0)].

In the case of additive separability

Bias TT = E[U0|X,D = 1]−E[U0|X,D = 0].

For ATE,

Bias ATE = E[Y |X,D = 1]−E(Y |X,D = 0)− [E(Y1 − Y0|X)].

In the case of additive separability

Bias ATE = [E (U1|X,D = 1)−E (U1|X)]− [E(U0|X,D = 0)−E(U0|X)].

For MTE,

Bias MTE = E(Y |X,Z,D = 1)−E(Y |X,Z,D = 0)−E(Y1 − Y0|X,Z, V = 0)
= [E(U1|X,Z,D = 1)−E(U1|X,Z, V = 0)]− [E(U0|X,Z,D = 0)−E(U0|X,Z, V = 0)]

in the case of additive separability. The MTE is deÞned for a subset of persons indifferent between the

two sectors and so is deÞned for X and Z. The bias is the difference between average U1 for participants

and marginal U1 minus the difference between average U0 for nonparticipants and marginal U0. Each of

these terms is a bias which can be called a selection bias.
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5 How Different Methods Solve the Bias Problem

In this section we consider the identiÞcation conditions that underlie matching, control functions and

instrumental variable methods to identify the three parameters using the data on mean outcomes. We

start with the method of matching.

5.1 Matching

The method of matching as conventionally formulated makes no distinction between X and Z. DeÞne the

conditioning set as W = (X,Z). The strong form of matching advocated by Rosenbaum and Rubin (and

numerous predecessor papers) assumes that

(Y1,Y0) ⊥⊥ D|W (M-1)

and

0 < Pr(D = 1|W ) = P (W ) < 1, (M-2)

where �⊥⊥� denotes independence given the conditioning variables after �|�. Condition (M-2) implies that
the treatment parameters can be deÞned for all values of W (i.e., for each W , in very large samples there

are observations for which we observe a Y0 and other observations for which we observe a Y1). Rosenbaum

and Rubin show that under (M-1) and (M-2)

(Y1, Y0) ⊥⊥ D|P (W ). (M-3)

This reduces the dimensionality of the matching problem. They assume that P is known.3 Under these

assumptions, conditioning on P eliminates all three biases deÞned in section (4) because

E (Y1|D = 0, P (W )) = E (Y1|D = 1, P (W )) = E (Y1|P (W ))
E (Y0|D = 1, P (W )) = E (Y0|D = 0, P (W )) = E (Y0|P (W )) .

Thus for TT we can identify E (Y0|D = 1, P (W )) from E (Y0|D = 0, P (W )) . In fact, we only need the

weaker condition Y0 ⊥⊥ D|P (W ) to remove the bias4 because E (Y1|P (W ) ,D = 1) is known, and only

E (Y0|P (W ) ,D = 1) is unknown. From the observed conditional means we can form ATE. Observe

that since ATE = TT for all X,Z under (M-1) and (M-2), the average person equals the marginal

person, conditional on W, and there is no bias in estimating MTE.5 The strong implicit assumption that

the marginal participant in a program gets the same return as the average participant in the program,

conditional on W , is an unattractive implication of these assumptions (see Heckman, 2001 and Heckman
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and Vytlacil, 2003). The method assumes that all of the dependence between UV and (U1, U0) is eliminated

by conditioning on W :

UV ⊥⊥ (U1,U0)|W.

This motivates the term �selection on observables� introduced in Heckman and Robb (1985; 1986, reprinted

2000).

Assumption (M-2) has the unattractive feature that if the analyst has too much information about

the decision of who takes treatment so that P (W ) = 1 or 0 the method breaks down because people

cannot be compared at a common W . The method of matching assumes that, given W , some unspeciÞed

randomization device allocates people to treatment.

Introducing the distinction between X and Z allows the analyst to overcome the problem of perfect

prediction if there are some variables Z not in X so that, for certain values of these variables, and for each

X either P (X,Z) = 1 or P (X,Z) = 0. If P is a nontrivial function of Z (so P (X,Z) varies with Z for all

X) and X can be varied independently of Z,6 and outcomes are deÞned solely in terms of X, this difficulty

with matching disappears and treatment parameters can be deÞned for all values of X in its support (see

Heckman, Ichimura and Todd, 1997).

Offsetting the disadvantages of matching, the method of matching with a known conditioning set that

produces (M-1) does not require separability of outcome or choice equations, exogeneity of conditioning

variables, exclusion restrictions or adoption of speciÞc functional forms of outcome equations. Such fea-

tures are common in conventional selection (control function) methods and conventional IV formulations

although recent work in semiparametric estimation relaxes many of these assumptions, as we note below.

Moreover, the method does not strictly require (M-1). One can get by with weaker mean independence

assumptions:

E (Y1|W,D = 1) = E (Y1|W ) (M-10)

E (Y0|W,D = 0) = E (Y0|W ) ,

in the place of the stronger (M-1) conditions. However, if (M-10) is involved, the assumption that we can

replace W by P (W ) does not follow from the analysis of Rosenbaum and Rubin, and is an additional new

assumption.

In the recent literature, the claim is sometimes made that matching is �for free� (see, e.g., Gill

and Robins, 2001). The idea is that since E (Y0|D = 1,W ) is not observed, we might as well set it to
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E (Y0|D = 0,W ), an implication of (M-1). This argument is correct so far as data description goes. Match-

ing imposes just-identifying restrictions and in this sense �at a purely empirical level� is as good as any

other just-identifying assumption in describing the data.

However, the implied economic restrictions are not �for free�. Imposing that, conditional on X and

Z, the marginal person is the same as the average person is a strong and restrictive feature of these

assumptions and is not a �for free� assumption in terms of economic content.7

5.2 Control Functions

The principle motivating the method of control functions is different. (See Heckman, 1980 and Heckman

and Robb, 1985, 1986, reprinted 2000, where this principle was developed). Like matching, it works

with conditional expectations of (Y1, Y0) given (X,Z and D). Conventional applications of the control

function method assume additive separability which is not required in matching. Strictly speaking, additive

separability is not required in the application of control functions either.8 What is required is a model

relating the outcome unobservables to the observables, including the choice of treatment. The method of

matching assumes that, conditional on the observables (X,Z), the unobservables are independent of D.9

For the additively separable case, control functions are based on the principle of modeling the conditional

expectations given X,Z and D :

E (Y1|X,Z,D = 1) = µ1 (X) +E(U1|X,Z,D = 1)

E (Y0|X,Z,D = 0) = µ0 (X) +E(U0|X,Z,D = 0).

The idea underlying the method of control functions is to explicitly model the stochastic dependence of

the unobservables in the outcome equations on the observables. This is unnecessary under the assumptions

of matching because conditional on (X,Z) there is no dependence between (U1, U0) and D. Thus, if one can

model E (U1|X,Z,D = 1) and E (U0|X,Z,D = 0) and these functions can be independently varied against

µ1 (X) and µ0 (X) respectively, one can identify µ1 (X) and µ0 (X) up to constant terms.
10 Nothing in

the method intrinsically requires that X,Z, or D be stochastically independent of U1 or U0, although

conventional methods often assume that (U1, U0, UV ) ⊥⊥ (X,Z) .
If we assume that U1, UV ⊥⊥ (X,Z) and adopt (10) as the choice model,

E (U1|X,Z,D = 1) = E (U1|UV ≥ −µV (Z)) = K1 (P (X,Z)) ,

so the control function only depends on P (X,Z). By similar reasoning, if U0, UV ⊥⊥ (X,Z) ,

E (U0|X,Z,D = 0) = E (U0|UV < −µV (Z)) = K0 (P (X,Z))
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and the control function only depends on the propensity score. The key assumption needed to represent

the control function solely as a function of P (X,Z) is thus

(U1, U0, UV ) ⊥⊥ (X,Z) .

Under these conditions

E (Y1|X,Z,D = 1) = µ1 (X) +K1 (P (X,Z))

E (Y0|X,Z,D = 0) = µ0 (X) +K0 (P (X,Z))

with lim
P→1

K1 (P ) = 0 and lim
P→0

K0 (P ) = 0 where it is assumed that Z can be independently varied for all

X, and the limits are obtained by changing Z while holding X Þxed.11 These limit results just say that

when the probability of being in a sample in one there is no selection bias.

If K1 (P (X,Z)) can be independently varied from µ1 (X) and K0 (P (X,Z)) can be independently

varied from µ0 (X), we can identify µ1 (X) and µ0 (X) up to constants. If there are limit sets Z0 and Z1

such that lim
Z→Z0

P (X,Z) = 0 and lim
Z→Z1

P (X,Z) = 1, then we can identify the constants, since in those limit

sets we identify µ1 (X) and µ0 (X) .
12 Under these conditions, it is possible to nonparametrically identify

all three treatment parameters:

ATE = µ1 (X)− µ0 (X)

TT = µ1 (X)− µ0 (X) +E (U1 − U0|X,Z,D = 1)

= µ1 (X)− µ0 (X) +K1 (P (X,Z)) +
¡
1−P
P

¢
K0 (P (X,Z))

13

MTE = µ1 (X)− µ0 (X) +
∂ [E (U1 − U0|X,Z,D = 1)P (X,Z)]

∂ (P (X,Z))

= µ1 (X)− µ0 (X) +
∂
£
P (X,Z)

©
K1 (P (X,Z) +

1−P
P K0 (P (X,Z)

ª¤
∂ (P (X,Z))

.

Unlike the method of matching, the method of control functions allows the marginal treatment effect

to be different from the average treatment effect or from treatment on the treated. Although conventional

practice is to derive the functional forms of K0 (P ), K1 (P ) by making distributional assumptions (e.g.,

normality, see Heckman, Tobias and Vytlacil (2001)), this is not an intrinsic feature of the method and

there are many non normal and semiparametric versions of this method (see Heckman and Vytlacil, 2003

for a survey).

In its semiparametric implementation, the method of control functions requires an exclusion restriction

(a Z not in X) to achieve nonparametric identiÞcation.14 The method of matching does not. The method of

10



control functions requires that P (X,Z) = 1 and P (X,Z) = 0 to achieve full nonparametric identiÞcation.

The conventional method of matching excludes this case. Both methods require that treatment parameters

can only be deÞned on a common support:

support (X|D = 1) ∩ support (X|D = 0)

A similar requirement is imposed on the generalization of matching with exclusion restrictions introduced

in Heckman, Ichimura and Todd (1997). Exclusion, both in matching and selection models, makes it more

likely to satisfy this condition.

In the method of control functions, P (X,Z) is a conditioning variable used to predict U1 conditional

on D and U0 conditional on D. In the method of matching, it is used to generate stochastic independence

between (U0, U1) and D. In the method of control functions, as conventionally applied, (U0, U1) ⊥⊥ (X,Z),
but this is not intrinsic to the method.15 This assumption plays no role in matching if the correct condition-

ing set is known (i.e., one that satisÞes (M-1) and (M-2)). However, as noted in section (6.6), exogeneity

plays a key role in the selection of conditioning variables. The method of control functions does not require

that (U0, U1) ⊥⊥ D| (X,Z) , which is a central requirement of matching. Equivalently, the method of control
functions does not require

(U0, U1) ⊥⊥ UV | (X,Z)

whereas matching does. Thus matching assumes access to a richer set of conditioning variables than is

assumed in the method of control functions.

The method of control functions is more robust than the method of matching, in the sense that it

allows for outcome unobservables to be dependent on D even conditioning on (X,Z) , and it models this

dependence, whereas the method of matching assumes no such dependence. Matching is thus a special

case of the method of control functions in which under assumptions (M-1) and (M-2),

E (U1|X,Z,D = 1) = E (U1|X,Z) = E (U1|P (W ))
E (U0|X,Z,D = 0) = E (U0|X,Z) = E (U0|P (W )) .

In the method of control functions in the case when (X,Z) ⊥⊥ (U0, U1, UV )

E (Y |X,Z,D) = E (Y1|X,Z,D = 1)D +E (Y0|X,Z,D = 0) (1−D)
= µ0 (X) + (µ1 (X)− µ0 (X))D +E (U1|X,Z,D = 1)D +E (U0|P (X,Z) ,D = 0) (1−D)
= µ0 (X) + (µ1 (X)− µ0 (X))D +E (U1|P (X,Z) ,D = 1)D +E (U0|P (X,Z) ,D = 0) (1−D)
= µ0 (X) + [µ1 (X)− µ0 (X) +K1 (P (X,Z))−K0 (P (X,Z))]D +K0 (P (X,Z)) .
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Under assumptions (M-1) and (M-2) of the method of matching, we may write

E (Y |P (W ) ,D) = µ0 (P (W ))+[(µ1 (P (W ))− µ0 (P (W ))) +E (U1|P (W ))−E (U0|P (W ))]D+{E (U0|P (W ))} .

Notice that

E (Y |P (W ) ,D) = µ0 (P (W )) + [µ1 (P (W ))− µ0 (P (W ))]D,

since E (U1|P (W )) = E (U0|P (W )) = 0.
The treatment effect is identiÞed from the coefficient on D. Condition (M-2) guarantees that D is not

perfectly predictable byW so the variation in D identiÞes this parameter. Since µ1 (P (W ))−µ0 (P (W )) =
ATE and ATE = TT = MTE, the method of matching identiÞes all of the mean treatment parameters.

Under the assumptions of matching, when means of Y1 and Y0 are the parameters of interest, the bias

terms vanish. They do not in the more general case considered by the method of control functions. This

is the mathematical counterpart of the randomization implicit in matching: conditional on W or P (W ) ,

(U1, U0) are random with respect to D. The method of control functions allows them to be nonrandom

with respect to D. In the absence of functional form assumptions, it requires an exclusion restriction to

separate out K0 (P (X,Z)) from the coefficient on D. Matching produces identiÞcation without exclusion

restrictions whereas identiÞcation with exclusion restrictions is a central feature of the control function

method in the absence of functional form assumptions.

The fact that the control function approach is more general than the matching approach is implicitly

recognized in the work of Rosenbaum (1995) and Robins (1997). Their sensitivity analyses for matching

when there are unobserved conditioning variables are, in their essence, sensitivity analyses using control

functions.16

Tables 1 and 2 perform sensitivity analysis under different assumptions about the parameters of the

underlying selection model. In particular, we assume that the data are generated by the model of equations

(10), (2a0) and (2b0) and that

(U1, U0, UV )
0 ∼ N (0,Σ)

corr (Uj , UV ) = ρjV

var (Uj) = σ2j ; j = {0, 1} .

Using the formulae derived in the Appendix, we can write the biases of section (4) as

Bias TT (P (Z) = p) = σ0ρ0VM(p)

Bias ATE (P (Z) = p) = M(p) [σ1ρ1V (1− p) + σ0ρ0V p]

12



where M(p) =
φ(Φ−1(1−p))

p(1−p) , φ (·) and Φ (·) are the pdf and cdf of a standard normal random variable and

p is the propensity score. We assume that µ1 = µ0 so that the true average treatment effect is zero.

We simulate the bias for different values of the ρjV and σj . The results in the tables show that, as we let

the variances of the outcome equations grow, the value of the bias that we obtain can become substantial.

With large variances there are large biases. With larger correlations come larger biases. These tables

demonstrate the greater generality of the control function approach given the assumption of separability

between model and errors. Even if the correlation between the observables and the unobservables
¡
ρjV

¢
is small, so that one might think that selection on unobservables is relatively unimportant, we still get

substantial biases if we do not control for relevant omitted conditioning variables. Only for special values

of the parameters do we avoid the bias by matching. These examples also demonstrate that sensitivity

analyses can be conducted for control function models even when they are not fully identiÞed.

5.3 Instrumental Variables

Both the method of matching and the method of control functions work withE (Y |X,Z,D) and Pr (D = 1|X,Z).
The method of instrumental variables works with E (Y |X,Z) and Pr (D = 1|X,Z) . There are two versions
of the method of instrumental variables: (a) conventional linear instrumental variables and (b) local instru-

mental variables (LIV ) (Heckman and Vytlacil, 1999, 2000, 2003; Heckman, 2001). LIV is equivalent to

a semiparametric selection model (See Vytlacil, 2002). It is an alternative way to implement the principle

of control functions. LATE (Imbens and Angrist, 1994) is a special case of LIV under the conditions we

specify below.

We Þrst consider the conventional method of instrumental variables. In this framework, P (X,Z) arises

less naturally than it does in the matching and control function approaches. Z is the instrument and

P (X,Z) is a function of the instrument.

Rewrite the model of equations (2a0) and (2b0) as

Y = DY1 + (1−D)Y0
= µ0 (X) + (µ1 (X)− µ0 (X) + U1 − U0)D + U0
= µ0 (X) +∆ (X)D + U0

where ∆ (X) = µ1 (X) − µ0 (X) + U1 − U0. When U1 = U0, this is a conventional IV model with D

correlated with U0. Standard instrumental variables conditions apply and P (X,Z) is a valid instrument

if:

E (U0|P (X,Z) ,X) = E (U0|X) (IV-1)
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and

Pr (D = 1|X,Z) is a nontrivial function of Z for each X. (IV-2)

When U1 6= U0 but D ⊥⊥ (U1 − U0) |X (or alternatively UV ⊥⊥ (U1 − U0) |X) then the same two conditions
identify

ATE = E (Y1 − Y0|X) = E (∆ (X) |X)
TT = E (Y1 − Y0|X,D = 1) = E (Y1 − Y0|X)

= MTE

and marginal equals average conditional onX and Z. The requirement thatD ⊥⊥ (U1 − U0) |X is strong and

assumes that agents do not participate in the program on the basis of any information about unobservables

in gross gains (Heckman and Robb, 1985, 1986; Heckman, 1997).

The analytically more interesting case arises when U1 6= U0 and D 6⊥⊥ (U1 − U0) . To identify ATE, we
require

E (U0 +D (U1 − U0) |P (X,Z) ,X) = E (U0 +D (U1 − U0) |X) (IV-3)

and condition (IV-2) (Heckman and Robb, 1985, 1986; Heckman, 1997). To identify TT , we require

E (U0 +D (U1 − U0)−E (U0 +D (U1 − U0) |X) |P (X,Z) ,X)
= E (U0 +D (U1 − U0)−E (U0 +D (U1 − U0) |X) |X)

and condition (IV-2). No simple conditions exist to identify the MTE using linear instrumental variables

methods in the general case where D 6⊥⊥ (U1 − U0) |X,Z (Heckman and Vytlacil, 2000, 2003 characterize
what conventional IV estimates in terms of a weighted average of MTEs).

The conditions required to identify ATE using P as an instrument, may be written in the following

alternative form:

E (U0|P (X,Z) ,X) +E (U1 − U0|D = 1, P (X,Z) ,X)P (X,Z)

= E (U0|X) +E (U1 − U0|D = 1,X)P (X,Z)

If U1 = U0 (everyone with the sameX responds to treatment in the same way) or (U1 − U0) ⊥⊥ D|P (X,Z) ,X
(people do not participate in treatment on the basis of unobserved gains), then these conditions are satisÞed.

In general, the conditions are not satisÞed by economic choice models, except under special cancellations

that are not generic. If Z is a determinant of choices, and U1 − U0 is in the agent�s choice set (or is
correlated only partly with information in the agent�s choice set), then this condition is not likely to be

satisÞed.
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These identiÞcation conditions are fundamentally different from the matching and control function

identiÞcation conditions. In matching, the essential condition for means is

E (U0|X,D = 0, P (X,Z)) = E (U0|X,P (X,Z)) and
E (U1|X,D = 1, P (X,Z)) = E (U1|X,P (X,Z))

These require that, conditional on P (X,Z) and X,U1 and U0 are mean independent of UV (or D). When

µ1 (W ) and µ0 (W ) are the conditional means of Y1 and Y0 respectively, these terms are zero.

The method of control functions models and estimates this dependence rather than assuming it vanishes.

The method of linear instrumental variables requires that the composite error term U0 +D (U1 − U0) be
mean independent of Z (or P (X,Z)), given X. Essentially, the conditions require that the dependence

of U0 and D (U1 − U0) on Z vanish through conditioning on X. Matching requires that U1 and U0 are

independent of D given (X,Z). These conditions are logically distinct. One set of conditions does not

imply the other set. Conventional IV in the general case does not answer a well posed economic question

(see Carneiro, Heckman and Vytlacil, 2001).

Local instrumental variables methods developed by Heckman and Vytlacil (1999, 2000, 2003) estimate

all three treatment parameters in the general case where (U1 − U0) 6⊥⊥ D| (X,Z) under the following
additional conditions

µD (Z) is a non-degenerate random variable given X (LIV-1)

(existence of an exclusion restriction)

(U0, U1, UV ) ⊥⊥ Z|X (LIV-2)

0 < Pr (D|X) < 1 (LIV-3)

Support P (D| (X,Z)) = [0, 1] (LIV-4)

Under these conditions

∂E(Y |X,P (Z))
∂(P (Z)) =MTE (X,P (Z) , V = 0) . 17

Only (LIV-1) - (LIV-3) are required to identify this parameter.

As demonstrated by Heckman and Vytlacil (1999, 2000, 2003) and Heckman (2001), over the support

of (X,Z), MTE can be used to construct (under LIV-4) or bound (in the case of partial support) ATE

and TT . Policy relevant treatment effects can be deÞned, LATE is a special case of this method. Table

15



3 summarizes the alternative assumptions used in matching, control functions and instrumental variables

to identify treatment parameters. For the rest of the paper, we discuss matching, the topic of this special

issue. We Þrst turn to consider the informational requirements of matching.

6 The Informational Requirements of Matching and the Bias When

They are not SatisÞed

This section considers the informational requirements for matching.18 We introduce Þve distinct infor-

mation sets and establish relationships among them: (1) An information set that satisÞes conditional

independence (M-1), σ (IR∗), a �relevant� information set; (2) the minimal information set needed to sat-

isfy conditional independence (M-1), σ (IR), the �minimal relevant� information set; (3) the information

set available to the agent at the time decisions to participate are made, σ (IA) ; (4) the information avail-

able to the economist σ (IE∗) and (5) the information used by the economist (σ (IE)) . We will deÞne the

random variables generated by these sets as IR∗ , IR, IA, IE∗ , IE respectively.19

After deÞning these information sets, we show the biases that result when econometricians use infor-

mation other than the relevant information set. More information does not necessarily reduce the bias in

matching. Standard algorithms for selecting conditioning variables are not guaranteed to pick the relevant

conditioning variables or reduce bias compared to conditioning sets not selected by these algorithms.

First we deÞne the information sets more precisely.

DeÞnition 1 We say that σ (IR∗) is a relevant information set if its associated random variable, IR∗,

satisÞes (M-1) so

(Y1, Y0) ⊥⊥ D|IR∗

DeÞnition 2 We say that σ (IR) is a minimal relevant information set if it is the intersection of all

sets σ (IR∗). The associated random variable IR is the minimum amount of information that guarantees

that (M-1) is satisÞed.

If we deÞne the minimal relevant information set as one that satisÞes conditional independence, it might

not be unique. If the set σ (IR1) satisÞes the conditional independence condition, then the set σ (IR1, Q)

such that Q ⊥⊥ (Y1, Y0) | IR1 would also guarantee conditional independence. For this reason, we deÞne
the relevant information set to be the minimal; i.e., to be the intersection of all such sets.

DeÞnition 3 The agent�s information set, σ (IA), is deÞned by the information IA used by the agent when

choosing among treatments. Accordingly, we call IA the agent�s information.
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DeÞnition 4 The econometrician�s full information set, σ (IE∗), is deÞned as all of the information

available to the econometrician, IE∗ .

DeÞnition 5 The econometrician�s information set, σ (IE) , is deÞned by the information used by the

econometrician when analyzing the agent�s choice of treatment, IE.

Only three restrictions are imposed on the structure of these sets: σ (IR) ⊆ σ (IR∗) , σ (IR) ⊆ σ (IA) and
σ (IE) ⊆ σ (IE∗) .20 The Þrst we have already discussed. The second one requires that the minimal relevant
information set must be part of the information the agent uses when deciding whether to take treatment.

The third requires that the information used by the econometrician must be part of the information he

observes. Other than these obvious orderings, the econometrician�s information set may be different from

the agent�s or the relevant information set. The econometrician may know something the agent doesn�t

know since typically he is observing events after the decision is made. At the same time, there may be

private information known to the agent. The matching assumptions (M-1) or (M-3) imply that

σ (IR) ⊆ σ (IE)

so that the econometrician uses the minimal relevant information set.

In order to have a concrete example of these information sets and their associated random variables,

we assume that the economic model generating the data is a generalized Roy model of the form

V = Zγ + UV where

UV = αV 1f1 + αV 2f2 + εV

D = 1 if V ≥ 0, = 0 otherwise

and

Y1 = µ1 + U1 where U1 = α11f1 + α12f2 + ε1,

Y0 = µ0 + U0 where U0 = α01f1 + α02f2 + ε0,

where (f1, f2, εV , ε1, ε0) are assumed to be mean zero random variables that are mutually independent of

each other and Z so that all the correlation among the elements of (U0, U1, UV ) is captured by f = (f1, f2) .21

We keep implicit any dependence on X which may be general. The minimal relevant information for this

model when the factor loadings are not zero (αij 6= 0) is

IR = {f1, f2} .
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The agent�s information set may include different variables. If we assume that ε0, ε1 are shocks to

outcomes not known to the agent at the time decisions are made, the agent�s information is

IA = {f1, f2, Z, εV } .

Under perfect certainty on the part of the agent

IA = {f1, f2, Z, εV , ε1, ε0} .

In either case, all of the information available to the agent is not required to obtain conditional independence

(M-1). All three information sets guarantee conditional independence, but only the Þrst is minimal relevant.

The observing economist may know some variables not in IA, IR∗ or IR but may not know all of the

variables in IR. In the following subsections, we address the question of what happens when the matching

assumption that σ (IE) ⊇ σ (IR) does not hold. That is, we analyze what happens to the matching bias as
the amount of information used by the econometrician is changed. In order to get closed form expressions

for the biases of the treatment parameters we add the additional assumption that

(f1, f2, εV , ε1, ε0) ∼ N (0,Σ) ,

where Σ is a matrix with
³
σ2f1 , σ

2
f2
, σ2εV , σ

2
ε1 , σ

2
ε0

´
in the diagonal and zero in all the non-diagonal elements.

This assumption links matching models to conventional normal selection models. We next analyze various

cases.

6.1 The economist uses the minimal relevant information: σ (IR) ⊆ σ (IE)

We begin by analyzing the case in which the information used by the analyst is IE = {Z, f1, f2} , so that
the econometrician has access to the relevant information set and it is larger than the minimal relevant

information set. In this case it is straightforward to show that matching identiÞes all of the mean treatment

parameters with no bias. The matching estimator is

E (Y1|D = 1, IE)−E (Y0|D = 0, IE) = µ1 − µ0 + (α11 − α01) f1 + (α12 − α02) f2

and all of the treatment parameters collapse to this same expression since, conditional on knowing f there

is no selection because (ε1, ε0) ⊥⊥ UV . Recall that IR = {f1, f2} and the economist needs less information
to achieve (M-1).

The analysis of Rosenbaum and Rubin (1983) tells us that knowledge of (Z, f1, f2) and knowledge of

P (Z, f1, f2) are equivalent so that matching on the propensity score also identiÞes all of the treatment
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parameters. If we write the propensity score as

P (IE) = Pr

µ
εV
σεV

>
−Zγ − αV 1f1 − αV 2f2

σεV

¶
= 1−Φ

µ−Zγ − αV 1f1 − αV 2f2
σεV

¶
= p,

the event
³
V S 0, P (f, Z) = p

´
can be written as εV

σεV
S Φ−1 (1− p), where Φ is the cdf of a standard

normal random variable and φ is its density and f = (f1, f2) . The population matching condition is

E (Y1|D = 1, P (IE) = p)−E (Y0|D = 0, P (IE) = p)

= µ1 − µ0 +E (U1|D = 1, P (IE) = p)−E (U0|D = 0, P (IE) = p)

= µ1 − µ0 +E
µ
U1| εV
σεV

> Φ−1 (1− p)
¶
−E

µ
U0| εV
σεV

≤ Φ−1 (1− p)
¶

= µ1 − µ0

and it is equal to all of the treatment parameters since

E

µ
U1| εV
σεV

> Φ−1 (1− p)
¶
=
Cov (U1, εV )

σεV
M1 (p)

and

E

µ
U0| εV
σεV

≤ Φ−1 (1− p)
¶
=
Cov (U0, εV )

σεV
M0 (p) ,

where

M1(p) =
φ(Φ−1(1− p))

p

M0(p) = −φ(Φ
−1(1− p))
1− p

As a consequence of the assumptions about mutual independence of the errors

Cov (Ui, εV ) = Cov (αi1f1 + αi2f2 + εi, εV ) = 0, i = 0, 1.

In the context of this model, the case considered in this subsection is the one matching is designed to

solve. Even though a selection model generates the data, the fact that the information used by the econo-

metrician includes the minimal relevant information makes matching equivalent to the selection model.

We can estimate the treatment parameters with no bias since, as a consequence of the assumptions made

(U1, U0) ⊥⊥ D| (f,Z), which is exactly what matching requires. The minimal relevant information set is
even smaller. We only need to know (f1, f2) to secure this result, and we can deÞne the propensity score

solely in terms of f1 and f2, and the Rosenbaum-Rubin result still goes through.
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6.2 The Economist does not Use All of the Minimal Relevant Information

Now, suppose that the information used by the econometrician is

IE = {Z}

but there is selection on the unobservable (to the analyst) f1, f2, i.e., the factor loadings αij are all non

zero. Recall that we assume that Z and the f are independent. In this case the event
³
V S 0, P (Z) = p

´
is

αV 1f1 + αV 2f2 + εVq
α2V 1σ

2
f1
+ α2V 2σ

2
f2
+ σ2εV

S Φ−1 (1− p) .

Using the analysis presented in the Appendix, the bias for the different treatment parameters is given by

Bias TT (P (Z) = p) = β0M(p), (3)

where M(p) =M1(p)−M0(p).

Bias ATE (P (Z) = p) = M(p) [β1 (1− p) + β0p] (4)

= β0M(p)

·
p+

β1
β0
(1− p)

¸
; β0 6= 0

Bias MTE (P (Z) = p) =M(p) [β1 (1− p) + β0p]−Φ−1 (1− p) [β1 − β0] (5)

where

β1 =
αV 1α11σ

2
f1
+ αV 2α12σ

2
f2q

α2V 1σ
2
f1
+ α2V 2σ

2
f2
+ σ2εV

β0 =
αV 1α01σ

2
f1
+ αV 2α02σ

2
f2q

α2V 1σ
2
f1
+ α2V 2σ

2
f2
+ σ2εV

.

It is not surprising that matching on variables that exclude the relevant conditioning variables produces

bias. The advantage of working with a closed form expression for the bias is that it allows us to answer

questions about the magnitude of this bias under different assumptions about the information available to

the analyst, and to present some simple examples. We next use expressions (3), (4) and (5) as benchmarks

against which to compare the relative size of the bias when we enlarge the econometrician�s information

set beyond Z.

6.3 Adding information to the Econometrician�s Information Set IE: Using Some but

not All the Information from the Minimal Relevant Information Set IR

Suppose next that the econometrician uses more information but not all of the information in the minimal

relevant information set. Possibly, the data set assumed in the preceding section is augmented or else the
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econometrician decides to use information previously available. In particular, assume that

I 0E = {Z, f2} .

Under conditions 1, 2 and 3 presented below the biases for the treatment parameters of section (6.2) are

reduced by changing the conditioning set in this way. We deÞne expressions comparable to β1 and β0 for

this case:

β01 =
αV 1α11σ

2
f1q

α2V 1σ
2
f1
+ σ2εV

β00 =
αV 1α01σ

2
f1q

α2V 1σ
2
f1
+ σ2εV

.

Then, we just compare the biases under the two cases using formulae (3) - (5) suitably modiÞed but keeping

p Þxed.

Condition 1 The bias produced by using matching to estimate TT is smaller in absolute value for any

given p when the new information set σ (I 0E) is used if

|β0| >
¯̄
β00
¯̄
.

Condition 2 The bias produced by using matching to estimate ATE is smaller in absolute value for any

given p when the new information set σ (I 0E) is used if

|β1 (1− p) + β0p| >
¯̄
β01 (1− p) + β00p

¯̄
.

Condition 3 The bias produced by using matching to estimate MTE is smaller in absolute value for any

given p when the new information set σ (I 0E) is used if¯̄
M(p) [β1 (1− p) + β0p]−Φ−1 (1− p) [β1 − β0]

¯̄
>
¯̄
M(p)

£
β01 (1− p) + β00p

¤−Φ−1 (1− p) £β01 − β00¤¯̄ .
Proof. These are straightforward applications of formulae (3)-(5), modiÞed to account for the different

covariance structure produced by the information structure assumed in this Section (replacing β0 with β
0
0,

β1 with β
0
1).

It is important to notice that we condition on the same p in deriving these expressions.

These conditions do not always hold. In general, whether or not the bias will be reduced by adding

additional conditioning variables depends on the relative importance of the additional information in both

the outcome equations and on the signs of the terms inside the absolute value.
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Consider whether Condition (1) is satisÞed and assume β0 > 0 for all α02, αV 2. Then β0 > β
0
0 if

β0 =
αV 1α01σ

2
f1
+
¡
α2V 2

¢ ³
α02
αV 2

´
σ2f2q

α2V 1σ
2
f1
+ α2V 2σ

2
f2
+ σ2εV

>
αV 1α11σ

2
f1q

α2V 1σ
2
f1
+ σ2εV

= β00.

When
³
α02
αV 2

´
= 0, clearly β0 < β

0
0. Adding information to the conditioning set increases bias. We can vary³

α02
αV 2

´
holding all other parameters constant. A direct computation shows that

∂β0

∂
³
α02
αV 2

´ = α2V 2σ
2
f2q

α2V 1σ
2
f1
+ α2V 2σ

2
f2
+ σ2εV

> 0.

As α02 increases, there is some critical value α∗02 beyond which β0 > β
0
0.

If we assumed that β0 < 0 however, the exact opposite conclusion would hold and the conditions would

be harder to meet as the relative importance of the new information is increased. Similar expressions can

be derived for ATE and MTE in which the direction of the effect depends on the signs of the terms in the

absolute value.

Figures 1, 2 and 3 illustrate the point that adding some but not all information from the minimal

relevant set might increase the bias for all treatment parameters. In these Þgures we let the variances of

the factors and the error terms be equal to one and set

α01 = αV 1 = αV 2 = 1

α02 = α12 = 0.1

α11 = 2

so that we have a case in which the information being added is relatively unimportant in terms of outcomes.

The fact that the bias might increase when adding some but not all information from IR is a feature

that is not shared by the method of control functions. Since the method of control functions models the

stochastic dependence of the unobservables in the outcome equations on the observables, changing the

variables observed by the econometrician to include f2 does not generate bias, it only changes the control

function used. That is, by adding f2 we simply change the control function from

K1 (P (Z) = p) = β1M1(p)

K0 (P (Z) = p) = β0M0(p)

to

K 0
1 (P (Z, f2) = p) = β01M1(p)

K 0
0 (P (Z, f2) = p) = β00M0(p)
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but do not generate any bias. This is a major advantage of this method. It controls for the bias of the

omitted conditioning variables by modelling it. Of course, if the model for the bias is not valid, neither is

the correction for the bias. Matching evades this problem by assuming that the analyst always knows the

correct conditioning variables and they satisfy (M-1).

6.4 Adding information to the econometrician�s information set: using proxies for the

relevant information

Suppose that instead of knowing some part of the minimal relevant information set, such as f2, the analyst

has access to a proxy for it.22 In particular, assume that he has access to a variable eZ that is correlated
with f2 but that is not the full minimal relevant information set. That is, deÞne the econometrician�s

information to be eIE∗ = nZ, eZo .
and suppose that he uses it so eIE = eIE∗ . In order to obtain closed form expressions for the biases we

further assume that

eZ ∼ N
³
0, σ2eZ

´
corr

³ eZ, f2´ = ρ, and eZ ⊥⊥ (ε0, ε1, εV , f1) .
We deÞne expressions comparable to β and β0 :

eβ1 =
α11αV 1σ

2
f1
+ α12αV 2

¡
1− ρ2¢σ2f2q

α2V 1σ
2
f1
+ α2V 2σ

2
f2
(1− ρ2) + σ2εV

eβ0 =
α01αV 1σ

2
f1
+ α02αV 2

¡
1− ρ2¢σ2f2q

α2V 1σ
2
f1
+ α2V 2σ

2
f2
(1− ρ2) + σ2εV

.

By substituting I 0E for eIE and β0j for eβj (j = 0, 1) into Conditions (1), (2) and (3) of section (6.3) we
obtain equivalent results for this case. Whether eIE will be bias reducing depends on how well it spans IR
and on the signs of the terms in the absolute values.

In this case, however, there is another parameter to consider: the correlation between eZ and f2. If

|ρ| = 1 we are back to the case of eIE = I 0E because eZ is a perfect proxy for f2. If ρ = 0 we are essentially
back to the case analyzed in section (6.3). Since we know that the bias might either increase or decrease

when f2 is used as a conditioning variable but f1 is not, we know that it is not possible to determine

whether the bias increases or decreases as we change the correlation between f2 and eZ. That is, we know
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that going from ρ = 0 to |ρ| = 1 might change the bias in any direction. Use of a better proxy in this

correlational sense may produce a more biased estimate.

>From the analysis of section (6.3), it is straightforward to derive conditions under which the bias

generated when the econometrician�s information is eIE is smaller than when it is I 0E . That is, it can be
the case that knowing the proxy variable eZ is better than knowing the actual variable f2. Take again the
treatment on the treated case as a simple example (i.e., Condition (1)). The bias is reduced when eZ is

used instead of f2 if ¯̄̄̄
¯̄ α01αV 1σ2f1 + α02αV 2

¡
1− ρ2¢σ2f2q

α2V 1σ
2
f1
+ α2V 2σ

2
f2
(1− ρ2) + σ2εV

¯̄̄̄
¯̄ <

¯̄̄̄
¯̄ α01αV 1σ

2
f1q

α2V 1σ
2
f1
+ σ2εV

¯̄̄̄
¯̄ .

Figures 4, 5 and 6 use the same example of the previous section to illustrate the two points being made

here. Namely, that using a proxy for an unobserved relevant variable might increase the bias. On the

other hand, it might be better in terms of bias to use a proxy than to use the actual variable, f2.

6.5 The case of a discrete treatment

The points that we have made so far do not strictly depend on all of the assumptions we have made

to produce simple examples. In particular, we require neither normality nor additive separability of the

outcomes. The proposition that if the econometrician�s information set includes all the minimal relevant

information, matching identiÞes the correct treatment, is true more generally provided that any additional

extraneous information used is �exogenous� in a sense to be precisely deÞned in the next section. In this

subsection, we present a simple analysis of a discrete treatment that does not rely on either normality or

separability of outcome equations.23

Suppose that outcomes (Yj) are binary random variables generated by the following model:

Y ∗j = µj + Uj (6)

Uj = αj1f1 + αj2f2 + εj , j = 0, 1

Yj = 1 if Y ∗j ≥ 0, = 0 otherwise,

where j = 1 corresponds to treatment and j = 0 corresponds to no treatment. People receive treatment

according to the rule

V = µV + UV (7)

UV = αV1f1 + αV2f2 + εV

D = 1 if V ≥ 0, = 0 otherwise;
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and we assume that

f1 ⊥⊥ f2 ⊥⊥ ε0 ⊥⊥ ε1 ⊥⊥ εV .

Each of these error components has a zero mean, the observed outcome is either zero or one and is given

by

Y = DY1 + (1−D)Y0.

An example of such a model arises when we observe whether a person is working or not and when the

probability of being employed might be different if the person has participated in a training program.

There are many ways in which the effect of treatment can be deÞned in this model. (see Aakvik,

Heckman and Vytlacil, 2003) One way is given by the ratio of the probabilities of observing Y1 = 1 given

that the person receives treatment and the counterfactual probability of observing Y0 = 1 given that the

person chooses treatment but does not receive it. That is, the effect of treatment is given by:

∆1 (IE) =
Pr (Y1 = 1,D = 1|IE)
Pr (Y0 = 1,D = 1|IE) .

A second deÞnition works with odds ratios:

∆2 (IE) =

Pr(Y1=1,D=1|IE)
Pr(Y1=0,D=1|IE)
Pr(Y0=1,D=1|IE)
Pr(Y0=0,D=1|IE)

.

One could also work with logs:

∆3 (IE) = log (∆1)

∆4 (IE) = log (∆2) .

Under the null hypothesis of no effect of treatment ∆1 = ∆2 = 1. More generally these ratios can be either

smaller or greater than one depending on whether there is a positive or negative effect of treatment. In

order to Þx ideas, we will call ∆1 the effect of treatment under the understanding that equivalent results

can be obtained for other deÞnitions.

The econometrician measures the effect of treatment by �matching� the observed distributions according

to some variables that he observes. Since Y0 is only observed when D = 0 the analyst attempts to identify

the effect of treatment by b∆1 (IE) = Pr (Y1 = 1,D = 1|IE)
Pr (Y0 = 1,D = 0|IE) .

The denominator replaces the desired probability Pr (Y0 = 1,D = 1|IE) by the available information Pr (Y0 = 1,D = 0|
Let there be no real effect of treatment so that, in terms of the model given by equations (6) and (7) we
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have that ∆1 = 1 and ∆2 = 1 so

µ1 = µ0 = µ

FU1 = FU0 = FU

which can be generated by setting

α11 = α01 = α1

α12 = α02 = α2

Fε1 = Fε0 = Fε

where FX denotes the cdf of X.

We initially assume that the analyst has access to the minimal relevant information set and uses it.

That is, we assume that

IE = {f1, f2} .

In this case, in large samples the estimated effect of treatment is

b∆1 (IE) = Pr (Y1 = 1,D = 1|f1, f2)
Pr (Y0 = 1,D = 0|f1, f2) =

Pr (Y1 = 1|f1, f2)
Pr (Y0 = 1|f1, f2) = ∆1(IE).

Under the null of no treatment effect, ∆1 = ∆2 = 1. Conditioning on (f1, f2) removes any dependence

on D, and we can replace the denominator of ∆1 by Pr (Y0 = 1,D = 0|f1, f2). If we do not condition on
information that contains the minimal relevant information set, this is no longer true. In general:

∆1(IE) =
Pr (Y1 = 1,D = 1|IE)
Pr (Y0 = 1,D = 1|IE) 6=

Pr (Y1 = 1,D = 1|IE)
Pr (Y0 = 1,D = 0|IE) =

b∆1 (IE) .
The biases can be substantial. Suppose that I 00E = {f2} and consider the following simulations. Assume
that the true model is

α11 = α01 = αV 1 = 1

α12 = α02 = 1

µ1 = µ0 = µV = −1
(ε1, ε0, εV , f1, f2) ∼ N (0,Σ)

where Σ is the identity matrix. Values of αV 2 are speciÞed in the examples presented below. Given these

assumptions, there is no effect of treatment so ∆1 = 1. In Þgures 7 and 8 we show what happens when the

analyst uses the population counterpart to the matching estimator:

b∆1 ¡I 00E¢ = Pr (Y1 = 1,D = 1|I 00E)
Pr
¡
Y0 = 1,D = 0|I 00E

¢
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to measure the effect of treatment. Figure 7 illustrates the case in which we assume that αV 2 = 1

whereas Þgure 8 shows the case of αV 2 = −1. In both cases matching does not estimate the true effect of
treatment when the analyst uses information that does not contain the full minimal relevant information

set. Furthermore, the discrepancy between the estimate and the true effect of treatment changes as we

change the level of f2 on which we are conditioning. Depending on the choice of f2, we get either positive

or negative estimated treatment effects. This result is again analogous to the continuous case result stating

that matching estimates are biased when the analyst does not use the minimal relevant information set.

Figures 9-14 show that equivalent results hold for the case in which the effect of treatment is deÞned by

odds ratios

∆2 (IE) =

Pr(Y1=1,D=1|IE)
Pr(Y1=0,D=1|IE)
Pr(Y0=1,D=1|IE)
Pr(Y0=0,D=1|IE)

and the analyst uses

b∆2 ¡I 00E¢ =
Pr(Y1=1,D=1|I00E)
Pr(Y1=0,D=1|I00E)
Pr(Y0=1,D=0|I00E)
Pr(Y0=0,D=0|I00E)

or the log versions of both b∆1 and b∆2.
6.6 On the use of model selection criteria to choose matching variables

We have just shown that adding more variables from the minimal relevant information set, but not all

variables in it, may increase bias. There are no rigorously justiÞed algorithms for identifying a relevant

information set. Adding variables that are statistically signiÞcant in the treatment choice equation is not

guaranteed to select a set of conditioning variables that satisÞes condition (M-1). This is demonstrated

by the analysis of section (6.3) that shows that adding f2 when it determines D may increase bias. The

existing literature (e.g., Heckman, Ichimura and Todd, 1997) proposes other criteria based on selecting the

set of variables that maximizes some goodness of Þt criteria (λ) where a lower λ means a better Þt. The

intuition behind such criteria is that by using some measure of goodness of Þt as a guiding principle one is

using information relevant to the decision process. It is clear that knowing f2 improves goodness of Þt so

that in general such a rule is deÞcient if f1 is not known.

An implicit assumption underlying such procedures is that the added conditioning variables C are

exogenous in the following sense

(Y0, Y1) ⊥⊥ D|IE, C (M-4)
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where IE is interpreted as the variables initially used as conditioning variables before C is added. Failure

of exogeneity is a failure of (M-1), and matching estimators are biased.

In the literature, the use of such rules of thumb is justiÞed in two different ways. Sometimes it is claimed

that they provide a relative guide. Sets of variables with lower λ (better goodness of Þt) are alleged to be

better than sets of variables with higher λ in the sense that they generate lower biases. However, we have

already shown that this is not true. We know that enlarging the analyst�s information from IE = {Z} to
I 0E = {Z, f2} will improve Þt since f2 is also in IA. But, going from IE to I 0E might increase the bias. So, it

is not true that combinations of variables that decrease some measure of discrepancy λ necessarily reduce

the bias. Table 4 illustrates this point using a normal example. Going from row 1 to row 2, adding f2

improves goodness of Þt and increases bias for all three treatment parameters, because (M-4) is violated.

A rule of thumb is sometimes invoked as an absolute standard against which to compare. The argument

is as follows. The analyst asserts that there is a combination of variables I 00 that satisfy (M-1) and hence

produces zero bias and a value of λ = λ00 smaller than that of any other I. Now we know that conditioning

on {Z, f1, f2} generates zero bias. However, we can exclude Z and still get zero bias. Since Z is a

determinant of D this shows immediately that the best Þtting model does not necessarily identify the

minimal relevant information set. In this example including Z is innocuous because there is still zero bias

and the add conditioning variables satisÞes (M-4). In general, such a rule is not innocuous. If goodness of

Þt is used as a rule to choose variables on which to match, there is no guarantee it produces a desirable

conditioning set. If we include in the conditioning set variables C that violate (M-4), they may improve

the Þt of predicted probabilities but worsen bias.

We can always construct a collection of conditioning variables eeIE with a better Þt and a larger bias
than can be obtained from just conditioning on {f1, f2}. Let

eeIE = {Z, S}
where

S = V − Zγ + η
η ∼ N ¡0, σ2η¢
η ⊥⊥ (f1, f2, ε0, ε1, εV ) .
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The expressions for the biases are the same as in equations (3) - (5) using eeβj (j = 0, 1) instead of βj where:
eeβ1 =

π
³
α11αV 1σ

2
f1
+ α12αV 2σ

2
f2

´
q
α2V 1σ

2
f1
+ α2V 2σ

2
f2
+ σ2εV

eeβ0 =
π
³
α01αV 1σ

2
f1
+ α02αV 2σ

2
f2

´
q
α2V 1σ

2
f1
+ α2V 2σ

2
f2
+ σ2εV

π =
σηq

α2V 1σ
2
f1
+ α2V 2σ

2
f2
+ σ2εV + σ

2
η

.

In general, these expressions are not zero so that using propensity score matching will generate a bias.

The source of the bias is the measurement error in S for V. Now, to prove that this combination of variables

has a better Þt all we need do is arbitrarily reduce σ2η. In particular, when σ
2
η = 0 we can perfectly predict

D. That is, for

2ε > σ2η > ε > 0

then

lim
ε→0Pr (D = 1|V − Zγ + η, Z) = 1 for V > 0

lim
ε→0Pr (D = 1|V − Zγ + η, Z) = 0 for V < 0.

However, when the limit is attained assumption (M-2) is violated and matching breaks down. Making σ2η

arbitrarily small, we can predict D arbitrarily well so we can always decrease λ enough to get a combination

of variables with better Þt for predicted probabilities and larger bias than a model that conditions only on

the minimal relevant information f1 and f2.

Table 4 illustrates this point by generating two such variables (S1, S2) and showing that, by reducing σ2η,

we are able to increase either of two goodness of Þt criteria (the percentage of correct in sample predictions

of D and the pseudo R2) above those of the model with IE = IR. Adding a model based on S2 and Z

(bottom row) increases the successful prediction rate over the case when the true model is used (the model

based on {Z, f1, f2}) but it is biased for all parameters and substantially biased for ATE and MTE.

The essential feature of this example is that the selected conditioning variables are endogenous with

respect to the outcome equation (they violate (M-4)). If all candidate conditioning variables were restricted

to be exogenous, our example could not be constructed. This underscores the importance of the econometric

concept of endogeneity which is sometimes viewed as an inessential distinction in matching. Although it

is irrelevant for deÞning parameters, it is essential when selecting conditioning variables.
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7 Concluding remarks

This paper considers three main points regarding the use of the propensity score in econometric evaluation

methods. The Þrst point is that the economic and statistical assumptions required to justify the use of the

propensity score are different in selection, matching and instrumental variables models. In general, one set

of assumptions neither implies nor is implied by the other. In the case of additive separability of outcome

equations, matching models are a special case of selection models that assumes that conditioning eliminates

bias whereas control function methods model selection bias. Matching makes strong assumptions that are

not required in the method of control functions. It assumes that conditional on observables the marginal

return is the average return. One beneÞt of such strong assumptions is weaker assumptions about other

features of the underlying economic model. Matching does not require separability of outcomes, exogeneity

of regressors or exclusion restrictions provided valid conditioning sets are known.

The second main point is that the literature on matching provides no guidance on the choice of the

conditioning variables that generate identiÞcation. We deÞne the concept of the �minimum relevant�

conditioning set that is assumed in matching. In general, it differs from the information set available to

the analyst. Adding more �minimum relevant� variables but not all is not guaranteed to reduce bias and

we offer examples of this point.

Our third main point is that the model selection criteria advocated to pick the variables in the condi-

tioning set are not guaranteed to work. We offer examples where goodness of Þt criteria advocated in the

literature select conditioning sets that generate more bias than conditioning sets that are less successful in

terms of model selection criterion. The methods work for choice among exogenous conditioning variables.

This highlights the point that the econometric distinctions of exogeneity and endogeneity play crucial roles

in the application of matching in the choice of conditioning sets.

The sensitivity of estimates obtained from matching to the choice of conditioning variables, the inability

of the method to model omitted relevant conditioning variables and the lack of any clear rule for selecting

conditioning variables should give pause to economists who embrace this method.24 More robust methods

based on the control function approach are more sensitive to problems of omitted conditioning variables.

Recent semiparametric advances in the development of control functions make these procedures less vul-

nerable to the distributional assumptions that plagued the earlier literature on the topic (see Powell, 1994,

and Heckman and Vytlacil, 2003).
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Appendix

Consider a general model of the form:

Y1 = µ1 + U1

Y0 = µ0 + U0

V = µV (Z) + UV

D = 1 if V ≥ 0, = 0 otherwise
Y = DY1 + (1−D)Y0.

where

(U1, U0, UV )
0 ∼ N (0,Σ)

var (Ui) = σ2i

cov (Ui, Uj) = σij

i = 0; j = 1

cov (U1, V ) = σ1V

cov (U0, V ) = σ0V

Let φ (·) and Φ (·) be the pdf and the cdf of a standard normal random variable. Then, the propensity

score for this model is given by:

Pr (V > 0|µV (Z)) = P (µV (Z)) = Pr (UV > −µV (Z)) = p
= 1−Φ

µ−µV (Z)
σV

¶
= p

so
−µV (Z)
σV

= Φ−1 (1− p) .

Since the event
³
V S 0, P (µV (Z)) = p

´
can be written as

UV
σV

S −µV (Z)
σV

UV
σV

S Φ−1 (1− p)

we can write the conditional expectations required to get the biases deÞned in Section (4) as a function of
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p. For U1 :

E (U1|V > 0, P (µV (Z)) = p) =
σ1V
σV

E

µ
UV
σV
|UV
σV

>
−µV (Z)
σV

, P (µV (Z)) = p

¶
=

σ1V
σV

E

µ
UV
σV
|UV
σV

> Φ−1 (1− p)
¶

= β1M1(p)

E (U1|V = 0, P (µV (Z)) = p) =
σ1V
σV

E

µ
UV
σV
|UV
σV

=
−µV (Z)
σV

, P (µV (Z)) = p

¶
=

σ1V
σV

E

µ
UV
σV
|UV
σV

= Φ−1 (1− p) , P (µV (Z)) = p
¶

= β1Φ
−1 (1− p)

where

β1 =
σ1V
σV

Similarly for U0 :

E (U0|V > 0, P (µV ) = p) = β0M1(p)

E (U0|V < 0, P (µV ) = p) = β0M0(p)

E (U0|V = 0, P (µV ) = p) = β0Φ
−1 (1− p)

where

β0 =
σ0V
σV

.

and

M1 (p) =
φ
¡
Φ−1 (1− p)¢

p

M0 (p) = −φ
¡
Φ−1 (1− p)¢
(1− p)

are inverse Mills ratio terms.

Substituting these into the expressions for the biases

Bias TT (p) = β0M1(p)− β0M0(p)

= β0M(p)

Bias ATE (p) = β1M1(p)− β0M0(p)

= M(p) (β1 (1− p) + β0p)
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Bias MTE = β1M1(p)− β0M0(p)− β1Φ−1 (1− p) + β0Φ−1 (1− p)
= M(p) (β1 (1− p) + β0p)−Φ−1 (1− p) [β1 − β0] .

where

M(p) =M1(p)−M0(p) =
φ(Φ−1(1− p))
p(1− p)

33



Bibliography

1. Aakvik, Arild, James J. Heckman, and Edward Vytlacil, �Estimating Treatment Effects for Discrete

Outcomes When Responses to Treatment Vary: An Application to Norwegian Vocational Rehabili-

tation Programs,� The Journal of Econometrics (forthcoming, 2003).

2. Abadie, Alberto, (2002) �Semiparametric Difference-in-differences Estimators,� Unpublished Manuscript,

Harvard University.

3. Ahn, Hyungtaik and James L. Powell, �Semiparametric Estimation of Censored Selection Models

with a Nonparametric Selection Mechanism,� The Journal of Econometrics 58:1-2 (1993), 3-29.

4. Andrews, Donald W.K. and Marcia M.A. Schafgans, �Semiparametric Estimation of the Intercept of

a Sample Selection Model,� The Review of Economic Studies 65:3 (1998), 497-518.

5. Björklund, Anders and Robert Moffitt, �The Estimation of Wage Gains and Welfare Gains in Self-

selection,� The Review of Economics and Statistics 69:1 (1987), 42-49.

6. Cameron, Stephen V. and James J. Heckman, �Life Cycle Schooling and Educational Selectivity:

Models and Choice,� Journal of Political Economy 106:2, (1998), 262-333

7. Carneiro, Pedro, �Heterogeneity in the Returns to Schooling: Implications for Policy Evaluation,�

Unpublished Ph.D. Thesis University of Chicago (2002).

8. Carneiro, Pedro, Karsten Hansen, and James J. Heckman, �Removing the Veil of Ignorance in As-

sessing the Distributional Impacts of Social Policies,� Swedish Economic Policy Review 8, (2001),

273-301

9. _____, �Estimating Distributions of Treatment Effects with an Application to the Returns to

Schooling and Measurement of the Effects of Uncertainty on College Choice,� (forthcoming 2003)

International Economic Review, May.

10. Carneiro, Pedro, James J. Heckman, and Edward Vytlacil, �Estimating the Return to Education

When it Varies Among Individuals,� Working paper, University of Chicago (2001).

11. Dehejia, Rajeev and Sadek Wahba, �Causal Effects in Nonexperimental Studies: Reevaluating the

Evaluation of Training Programs,� Journal of the American Statistical Association 94:448, (1999),

1053-1062.

34



12. GerÞn, Michael and Lechner, Michael, �A Microeconometric Evaluation of the Active Labor Market

Policy in Switzerland,� The Economic Journal 112 October, (2002), 854-893.

13. Gill, Richard D. and James M. Robins, �Causal inference for complex longitudinal data: the contin-

uous case,� The Annals of Statistics 29:6, (2001), 1-27.

14. Hahn, Jinyong, �On the Role of the Propensity Score in Efficient Semiparametric Estimation of

Average Treatment Effects,� Econometrica 66:2, (1998), 315-332.

15. Hansen, Karsten, James J. Heckman and Kathleen Mullen, �The Effect of Schooling and Ability on

Achievement Test Scores,� The Journal of Econometrics (forthcoming, 2003).

16. Heckman, James J., �Addendum to Sample Selection Bias as a SpeciÞcation Error,� in Ernst Stroms-

dorfer and George Farkas (Eds.), Evaluation Studies Review Annual Vol. 5, (Beverly Hills, CA: Sage

Publications, 1980)

17. _____, �Varieties of Selection Bias,� American Economic Review 80:2, (1990), 313-318.

18. _____, �Randomization and Social Policy Evaluation,� in Charles Manski and Irwin GarÞnkel

(Eds.), Evaluating Welfare and Training Programs (Cambridge: Harvard University Press, 1992).

19. _____, �Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making

Program Evaluations,� The Journal of Human Resources 32:3, (1997), 441-462.

20. _____, �Detecting Discrimination,� Journal of Economic Perspectives 12:2, (1998), 101-116.

21. _____, �Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture,� Journal

of Political Economy 109:4, (2001), 673-748.

22. Heckman, James J. and V. Joseph Hotz, �Choosing Among Alternative Nonexperimental Methods

for Estimating the Impact of Social Programs: The Case of Manpower Training (in Applications and

Case Studies),� Journal of the American Statistical Association 84:408, (Deccember, 1989), 862-874.

23. Heckman, James J., Hidehiko Ichimura, Jeffrey Smith, and Petra Todd, �Characterizing Selection

Bias Using Experimental Data,� Econometrica 66, (1998), 1017 -1098.

24. Heckman, James J., Hidehiko Ichimura, and Petra Todd, �Matching as an Econometric Evaluation

Estimator: Evidence from Evaluating a Job Training Program,� The Review of Economic Studies

64:4, (1997), 605-654.

35



25. _____, �Matching as an Econometric Evaluation Estimator,� The Review of Economic Studies

65:2, (1998), 261-294.

26. Heckman, James J. and Richard Robb, �Alternative Methods for Estimating The Impact of Inter-

ventions,� In James J. Heckman and Burton Singer (Eds.), Longitudinal Analysis of Labor Market

Data (Cambridge: Cambridge University Press, 1985).

27. _____, �Alternative Methods for Solving the Problem of Selection Bias in Evaluating the Impact

of Treatments on Outcomes,� in Howard Wainer (Ed.), Drawing Inferences from Self-selected Samples

(New Jersey: Lawrence Erlbaum Associates, 1986. Reprinted 2000).

28. Heckman, James J., Jeffrey Smith and Nancy Clements, �Making the Most Out of Programme

Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts,� Review

of Economic Studies 64:4, (1997), 487-535.

29. Heckman, James J., Justin Tobias and Edward Vytlacil, �Four Parameters of Interest in the Evalu-

ation of Social Programs,� Southern Economic Journal (2001), 68(2), 210-223..

30. Heckman, James J. and Edward Vytlacil, �Local Instrumental Variables and Latent Variable Models

for Identifying and Bounding Treatment Effects,� Proceedings of the National Academy of Sciences

96, (1999), 4730-4734.

31. _____, �The Relationship Between Treatment Parameters within a Latent Variable Framework,�

Economics Letters 66:1, (2000), 33-39.

32. _____, �Local Instrumental Variables,� in Cheng Hsiao, Kimio Morimune, and James Powell

(Eds.), Nonlinear statistical modeling :proceedings of the thirteenth International Symposium in Eco-

nomic Theory and Econometrics : essays in honor of Takeshi Amemiya (New York : Cambridge

University Press, 2001).

33. _____, �Econometric Program Evaluation,� in James Heckman and Edward Leamer (Eds.), Hand-

book of Econometrics, Volume 5, (Amsterdam: Elsevier, forthcoming 2003).

34. Imbens, Guido and Joshua Angrist �IdentiÞcation and Estimation of Local Average Treatment Ef-

fects,� Econometrica 62:2., (1994), 467-475.

35. LaLonde, Robert, �Evaluating the Econometric Evaluations of Training Programs with Experimental

Data,� American Economic Review 76:4, (1986), 604-20.

36



36. Navarro-Lozano, Salvador, (2002) �The Importance of Being Formal: Testing for Segmentation in

the Mexican Labor Market,� Unpublished Manuscript, University of Chicago.

37. Olley, G. Steven and Ariel Pakes, �The Dynamics of Productivity in the Telecommunications Equip-

ment Industry,� Econometrica 64:6 (1996), 1263-97.

38. Powell, James, �Estimation of Semiparametric Models,� In Robert F. Engle and Daniel L. McFadden

(Eds.), Handbook of Econometrics Vol. 4 (Amsterdam, London and New York: Elsevier, North-

Holland, 1994).

39. Robins, James M, �Causal Inference from Complex Longitudinal Data Latent Variable Modeling and

Applications to Causality,� in M. Berkane, (Ed), Lecture Notes in Statistics (New York: Springer

Verlag, 1997).

40. Rosenbaum, Paul, Observational Studies, New York: Springer-Verlag. First edition 1995, second

edition 2002.

41. Rosenbaum, Paul and Donald Rubin, �The Central Role of the Propensity Score in Observational

Studies for Causal Effects,� Biometrika 70:1, (1983), 41-55.

42. Smith, Jeffrey and Petra Todd, �Reconciling Conßicting Evidence on the Performance of Propensity-

Score Matching Methods,� American Economic Review 91:2, (2001), 112-18.

43. Smith, Jeffrey and Petra Todd, �Is Matching the Answer to LaLonde�s Critique of Nonexperimental

Methods?,� Forthcoming Journal of Econometrics.

44. Vijverberg, Wim, �Measuring the UnidentiÞed Parameter of the Roy Model of Selectivity,� The

Journal of Econometrics 57:1-3, (1993), 69-89.

45. Vytlacil, Edward, �Independence, Monotonicity, and Latent Index Models: An Equivalence Result,�

Econometrica 70:1, (2002), 331-341.

37



Notes
1See, e.g., Olley and Pakes (1996) who confuse the use of the propensity score in matching and in

control function methods.

2Heckman, Ichimura and Todd (1997) introduced this distinction into matching models.

3Papers that account for estimated P include Heckman, Ichimura and Todd (1997, 1998), and Hahn

(1998).

4See Heckman, Ichimura and Todd (1997) and Abadie (2002).

5As demonstrated in Carneiro (2002), one can still distinguish marginal and average effects in terms of

observables.

6The precise condition is that Support (X|Z) = Support (X) .
7As noted by Heckman, Ichimura, Smith and Todd (1998), if one seeks to identify E (Y1 − Y0|D = 1,W )

one only needs to impose a weaker condition (E (Y0|D = 1,W )) = E (Y0|D = 0,W ) or Y0 ⊥⊥ D|W rather

than (M-1). This imposes the assumption of no selection on levels of Y0 (givenW ) and not the assumption

of no selection on levels of Y1 or change, as (M-1) does.

8Examples of nonseparable models are found in Cameron and Heckman (1998).

9Or mean independent in the case of mean parameters.

10Heckman and Robb (1985, 1986) introduce this general formulation of control functions. The identiÞa-

bility requires that the members of the pairs (µ1 (X) , E (U1|X,Z,D = 1)) and (µ0 (X) , E (U0|X,Z,D = 0))

be �variation free� or �measurably separable� so that they can be independently varied against each other.

See Heckman and Vytlacil (2003) for a precise statement of these conditions.

11More precisely, Support (Z|X) = Support (Z). This is also the support condition used in the general-
ization of matching by Heckman, Ichimura and Todd (1997).

12This condition is sometimes called �identiÞcation at inÞnity.� See Heckman (1990) or Andrews and

Schafgans (1998).

13Since

E (U0) = 0

= E (U0|D = 1, Z)P (Z) +E (U0|D = 0, Z) (1− P (Z))
E (U0|D = 1, Z) = −(1− P (Z))

P (Z)
E (U0|D = 0, Z) = −(1− P (Z))

P (Z)
K0 (P (Z))

See Heckman and Robb (1986).

14For many common functional forms for the distributions of unobservables, no exclusion is required.

15Relaxing it, however, requires that the analyst model the dependence of the unobservables on the

observables and that certain variation-free conditions are satisÞed (See Heckman and Robb, 1985).
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16See also Viverberg (1993) who does such a sensitivity analysis in a parametric model with an uniden-

tiÞed parameter.

17Proof:

E (Y |X,P (Z)) = E (Y1|D = 1,X, P (Z))P (Z)

+E (Y0|D = 0,X, P (Z)) (1− P (Z))
=

Z ∞

−∞

Z ∞

−P (Z)
y1f (y1, U

∗
V |X) dU∗V dy1

+

Z ∞

−∞

Z −P (Z)

−∞
y0f (y0, U

∗
V |X) dU∗V dy0

where U∗V = FV (UV ) . Thus

∂E (Y |X,P (Z))
∂P (Z)

= E (Y1 − Y0|X,U∗V = −P (Z))
= MTE.

18See also the discussion in GerÞn and Lechner (2002).

19We start with a primitive probability space (Ω, σ, P ) with associated random variables I. We use

minimal sigma algebras and assume the I are measurable with respect to these random variables.

20This formulation assumes that the agent makes the treatment decision. If not, then we mean by the

agent, the decision maker.

21Models that take this form are known as factor models and have been applied in the context of selection

by Aakvik, Heckman and Vytacil (2003), Carneiro, Hansen and Heckman (2001, 2003) Hansen, Heckman

and Mullen (2003) and Navarro-Lozano (2002) among others.

22For example, the returns to schooling literature often uses different test scores, like AFQT or IQ, to

proxy for missing ability variables.

23See Aakvik, Heckman and Vytlacil (2003) for an analysis of discrete treatment effects in a latent

variables model. See also Heckman (1998) where this framework originates.

24A widely cited paper by Dehejia and Wahba (1999) claims that matching overcomes the sensitivity to

estimators problem displayed by LaLonde (1986). Smith and Todd (2001, 2003) show that the Dehejia-

Wahba results were manufactured by selectively discarding data from LaLonde�s original sample and that

when the full sample is used matching produces substantial biases. Matching does not solve the LaLonde

sensitivity problem.
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ρ0V Average Bias (σ0=1) Average Bias (σ0=2)
-1.00 -1.7920 -3.5839
-0.75 -1.3440 -2.6879
-0.50 -0.8960 -1.7920
-0.25 -0.4480 -0.8960

0 0 0
0.25 0.4480 0.8960
0.50 0.8960 1.7920
0.75 1.3440 2.6879
1.00 1.7920 3.5839

Mean Bias for Treatment on the Treated

BIASTT = ρ0V*σ0*M(p)

M(p) = φ(Φ-1(p)) / [p*(1-p)]

Table 1



ρ0V -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00
-1.00 -1.7920 -1.5680 -1.3440 -1.1200 -0.8960 -0.6720 -0.4480 -0.2240 0
-0.75 -1.5680 -1.3440 -1.1200 -0.8960 -0.6720 -0.4480 -0.2240 0 0.2240
-0.50 -1.3440 -1.1200 -0.8960 -0.6720 -0.4480 -0.2240 0 0.2240 0.4480
-0.25 -1.1200 -0.8960 -0.6720 -0.4480 -0.2240 0 0.2240 0.4480 0.6720

0 -0.8960 -0.6720 -0.4480 -0.2240 0 0.2240 0.4480 0.6720 0.8960
0.25 -0.6720 -0.4480 -0.2240 0 0.2240 0.4480 0.6720 0.8960 1.1200
0.50 -0.4480 -0.2240 0 0.2240 0.4480 0.6720 0.8960 1.1200 1.3440
0.75 -0.2240 0 0.2240 0.4480 0.6720 0.8960 1.1200 1.3440 1.5680
1.00 0 0.2240 0.4480 0.6720 0.8960 1.1200 1.3440 1.5680 1.7920

ρ0V -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00
-1.00 -2.6879 -2.2399 -1.7920 -1.3440 -0.8960 -0.4480 0 0.4480 0.8960
-0.75 -2.4639 -2.0159 -1.5680 -1.1200 -0.6720 -0.2240 0.2240 0.6720 1.1200
-0.50 -2.2399 -1.7920 -1.3440 -0.8960 -0.4480 0 0.4480 0.8960 1.3440
-0.25 -2.0159 -1.5680 -1.1200 -0.6720 -0.2240 0.2240 0.6720 1.1200 1.5680

0 -1.7920 -1.3440 -0.8960 -0.4480 0 0.4480 0.8960 1.3440 1.7920
0.25 -1.5680 -1.1200 -0.6720 -0.2240 0.2240 0.6720 1.1200 1.5680 2.0159
0.50 -1.3440 -0.8960 -0.4480 0 0.4480 0.8960 1.3440 1.7920 2.2399
0.75 -1.1200 -0.6720 -0.2240 0.2240 0.6720 1.1200 1.5680 2.0159 2.4639
1.00 -0.8960 -0.4480 0 0.4480 0.8960 1.3440 1.7920 2.2399 2.6879

*Equal to the Mean Bias for the Marginal Treatment Effect

BIASATE = ρ1V*σ1*M1(p) - ρ0V*σ0*M0(p)

BIASMTE = BIASATE - Φ-1(1-p)*(ρ1V*σ1 - ρ0V*σ0)

Table 2

M0(p) = -φ(Φ-1(p)) / [1-p]

Mean Bias for Average Treatment Effect*

ρ1V (σ1=1)

(σ0=1)

ρ1V (σ1=2)

M1(p) = φ(Φ-1(p)) / p



Table 3

Method Exclusion Required? Separability of Observables Functional Forms Marginal = Key IdentiÞcation

and Unobservables Required? Average? Condition for Means

in Outcome Equations? (Given X,Z) Assuming Separability (See text for full conditions)

Matching No No No Yes E (U1|X,D = 1, Z) = E (U1|X,Z)
E (U0|X,D = 0, Z) = E (U0|X,Z)

Control Function Yes (for Conventional, Conventional, No E (U0|X,D = 0, Z) and

nonparametric but not required but not required E (U1|X,D = 1, Z)

identiÞcation) can be varied independently of

µ0 (X) and µ1 (X) , respectively

and intercepts can be identiÞed through limit arguments

IV Yes Yes No No (Yes in E (U0 +D (U1 − U0) |X,Z)
(conventional) standard case) = E (U0 +D (U1 − U0) |X) (ATE)

E (U0 +D (U1 − U0)− E (U0 +D (U1 − U0) |X) |P (Z) ,X)
= E (U0 +D (U1 − U0)−E (U0 +D (U1 − U0) |X) |X) (TT )

LIV Yes No No No (U0, U1, UV) ⊥⊥ Z|X



 Correct in-sample prediction rate  Pseudo R2 TT ATE MTE
Z 66.88% 0.1284 1.1380 1.6553 1.6553

Z, f2 75.02% 0.2791 1.2671 1.9007 1.9007

Z, f1, f2 83.45% 0.4844 0.0000 0.0000 0.0000

Z, S1 77.59% 0.3352 0.8603 1.2513 1.2513

Z, S2 92.45% 0.7555 0.3156 0.4591 0.4591

Variables in 
Probit

Goodness of fit statistics Average Bias
Table 4

Model:		 	 	 	 	  
V= Z+f1+f2+εv	 	 εv~N(0,1)	 	 	 	
Y1=2f1+0.1f2+ε1		 ε1~N(0,1)	 	 	
Y0=f1+0.1f2+ε0		 ε0~N(0,1)	 	 	
	   	 	 f1~N(0,1)
	 	 	 f2~N(0,1)	 	 	 	 	

S1 = V + u1	 u1~N(0,4)
S2 = V + u2	 u2~N(0,0.25)
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Figure 11
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Figure 14
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