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shown that individual responses on subjective survival probabilities are generally consistent with

life tables. However, survey responses suffer serious problems caused by focal responses of zero and

one. This paper suggests using a Bayesian update model that accounts for the problems encountered

in focal responses. We also propose models that help us to identify how much each individual

deviates from life table in her subjective belief.  The resulting individual subjective survival curves

have considerable variations and are readily applicable in testing economic models that require

individual subjective life expectancies.
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I. Introduction 

Many economic models are based on the forward-looking behavior of economic 

agents. Although it is often said that “expectations” about future events are important in 

these models, it is the probability distributions of future events that influence the models. 

For example, an individual’s consumption and saving decisions are believed to depend 

upon concerns regarding future interest rates, the likelihood of dying, and the risk of 

substantial future medical expenditures. According to our theories, decision makers have 

subjective probability distributions about these and other events in their lives, and 

moreover, use them to make decisions about their saving practices. 

A typical objective of empirical models on intertemporal decision making is to 

estimate responses to changes in variable levels, such as changes in saving due to an 

anticipated change in the interest rate. A second objective is to find the extent of an 

individual’s risk aversion; namely, what is his or her response to changes in outcome 

variability? For instance, do changes in the variability of future income lead to changes in 

saving practices? These are worthwhile objectives due to the importance of society of 

choices that depend on uncertain future events. For example, poverty in old age depends 

partly on an individual’s consumption choices at a younger age. Consequently, how is 

consumption influenced by mortality risk and the uncertainty of medical expenditures? 

Why do some individuals purchase adequate insurance against unfavorable outcomes 

while others do not? Why do many reach retirement age with inadequate financial 

provisions for post-retirement living expenses? Is it due to misperceptions about the 

probabilities of reaching old age? Do people maintain excessive housing into old age as a 
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hedge against inflation risk? The answers to these and similar questions depend on our 

understandings of decision maker reactions to future uncertainty. Moreover, creating 

policies that alleviate the consequences of such decision-making processes depends on 

answers to the aforementioned questions. 

In a few economic models, we have data on probability distributions that are 

assumed to approximate those required by decision making models under uncertainty. 

Life cycle models of consumption, in which mortality risk helps determine savings, have 

been estimated by assuming that individuals have subjective probability distributions on 

mortality risk that are the same as those found from life tables (Hurd 1989). A 

precautionary motive for saving thus depends on the risk of future medical outlays. It 

therefore seems reasonable that the distribution of outlays as estimated from micro data 

represents a good approximation of the subjective probability distributions used by 

decision makers (Hubbard, Skinner and Zeldes, 1995). More generally, Manski (1993) 

has proposed using observed outcome probabilities in panel data as estimations of the 

subjective probability distributions for individuals on the panel on the grounds that the 

sampling exercise can itself be taken as a “model” of the subjective probability process.  

In most applications, however, we do not have adequate data for probability 

distributions thus requiring the use of unverifiable assumptions in estimations. For 

example, in macroeconomic models expectations are assumed to be rational, which often 

yields an estimated relationship. Yet, the rationality assumption cannot be tested outside 

of the model’s immediate context. In life cycle models on saving, a cohort’s average 

mortality risk may not be well approximated by the mortality risk found on life tables due 

to changes in risk; that is, a cohort may not believe that the mortality experience of older 
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cohorts will be the same as his or her own. Furthermore, individuals within the same 

cohort will have different subjective evaluations of probability distributions and its 

influence on their behavior, even if it is systematically incorrect. However, such 

evaluations are not generally observable. These individual heterogeneities often become 

problematic in parameter estimates. For example, consider a typical individual utility 

function, 
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where ct is the consumption at time t, and γ is the risk aversion parameter. The first order 
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where ht is the individual subjective hazard rates, while X represents certain socio-

demographic variables. In this framework, if ht is not observed but correlated with Xt, we 

will have a typical endogeneity problem. If ht is poorly measured, estimations of γ will 

subsequently be biased. 

Previous studies have typically obtained individual mortality risks through two 

different approaches: either by using life tables or by using well-known variations in 

mortality rates by economic status. Since mortality risk life tables only vary by age, race, 

and sex, there are not enough variations from which to calculate mortality risks. If 

subjective mortality risks of individuals with different economic status vary in the same 

way as observed mortality rates, model estimations using standard life tables will lead to 

biased estimates. Moreover, forecasts of economic status distributions will be incorrect 

such that poorer individuals who believe that their mortality risk is higher will spend 
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money faster than what is predicted by the model. Yet, according to observable 

characteristics, mortality risk variations can, in principle, be calculated given that some 

economic variables are potentially endogenous. More importantly, individuals surely 

have subjective probability distributions that are partly related to observable variables. 

Two recent surveys have posed questions regarding individual subjective 

probabilities including, Asset and Health Dynamics among the Oldest Old (AHEAD) and 

the Health and Retirement Survey (HRS). Hurd and McGarry (1995) reveal that average 

survival probabilities are very close to those presented in life tables. In a more recent 

paper, Hurd and McGarry (2002) use panel data from HRS and find that respondents 

modify their probabilities in response to new information such as the onset of a new 

illness. Their findings are consistent with an earlier study of Hamermesh (1985) who 

surveys a selected sample of economists about their survival probabilities. Although on 

average self-reported survival probabilities are consistent with life tables, at the personal 

level, however, these probabilities face a serious problem. In all age groups, we find that 

a large fraction of respondents give what we call focal-point responses: 0.0 and 1.0. 

These responses cannot represent the respondents’ true probabilities as the distribution of 

true probabilities should be continuous, and moreover, true probabilities cannot literally 

equal zero or one. Thus the main focus of this paper is to “recover” the “true” subjective 

survival curve for each respondent. To do so, we develop a Bayesian update model to 

accomplish this objective. 

In our model, for individuals at age a, we let the prior survival probability 

distribution at a future point in time (a+t) be a truncated normal between zero and one 

(we do not include zero and one). The conditional density of the observed survival 
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probability is assumed to be a censored normal between zero and one, allowing for the 

focal points. In addition, we suggest two approaches that model the deviations of each 

individual’s belief from the life table.  

We use the posterior density mean as an individual’s estimated subjective survival 

probabilities, and estimate the model using the observed death record. Our model 

produces optimistic indices to measure the deviation of her subjective belief from the life 

table. Consequently, the survival curves for each individual produced by the optimistic 

indices do not encounter problems associated with focal points and have considerable 

variations. These subjective survival curves are readily applicable to life cycle models 

and other economic models that require individual subjective mortality risk. 

The remainder of the paper is organized as follows: Section 2 introduces the self-

reported subjective survival probabilities including their consistency with the life table 

and problems associated with individual responses. Next, Section 3 introduces a Bayesian 

method that helps us to recover underlying subjective survival curves. Section 3 also 

introduces two approaches that are used to represent individual deviations from life 

tables. In Section 4, we estimate the model and conduct the out-of-sample prediction. 

Lastly, we present the paper’s conclusions in Section 5. 

II. Individual Subjective Mortality Risk 

In the AHEAD sample, each respondent is asked a series of questions about how 

likely various presented future events will occur.  These future events include: an income 

that is consistent with changes in inflation, major medical expenses, leaving a bequest, 

receiving financial help from family members, moving to a nursing home,  and surviving 
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for another 10-14 years.2 In particular, the survival probability question AHEAD posed to 

respondents is as follows:  

[Using any] number from 0 to 100 where “0” means that  you think there 

is absolutely no chance and “100” means that you think the event is 

absolutely sure to happen … What do you think are chances that: You will 

live to at least A?(A is an age that is 11-15 years older than the 

respondent’s current age) 

 

To examine whether these survival probabilities carry useful information, we 

compare the subjective survival probabilities with the life tables. Table 1 lists the  

average and median survival probabilities from AHEAD and the 1992 life tables for the 

target ages used in the AHEAD survival questions as calculated by the first two waves of 

AHEAD (e.g., 85 years of age for subjects aged 70-74, 90 years of age for subjects aged 

75-79, etc.). In general, younger AHEAD respondents have average subjective 

probabilities that closely mirror life table averages, while older respondents have 

averages that are substantially higher.3 In general, AHEAD medians are closely related to 

those in the life table.  

Table 2 lists the percentage of those respondents who gave continuous responses, 

focal responses, and no responses in the two waves. Table 2 also lists the transition 

probabilities of different response modes between the two waves. In wave 1, only 41.5% 

of respondents gave continuous responses, with more than 30% of them providing either 

                                                 
2 Bassett and Lumsdaine (2001) find that all responses contain a common component. 
3 Several reasons are suggested in Hurd, McFadden and Gan (1997) for this finding. One reason is that the 
AHEAD survey does not include respondents who reside in nursing homes or other institutional care 
facilities. Thus AHEAD represents a healthier population than is represented by a life table.  
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zero or one as their answers. The subjective probabilities for the remainder of the 

population are not available. In wave 2, more than 75% of respondents gave continuous 

responses, where approximately 19% of the population either responded zero or one. 

Thus the prevalence of focal-point responses indicate that subjective probability 

measurements in AHEAD cannot represent the respondents’ true probabilities. Without 

correcting for focal responses of zero or one, it is impossible to derive a survival curve 

that varies over time. Thus the primary objective of this paper is to “recover” the “true” 

subjective survival curve for each respondent, especially for those who give focal 

responses of zero or one. In the next section, we develop a Bayesian update model to 

achieve this objective. 

III. Modeling Individual Subjective Survival Curves 

Before we present the model, it is necessary to define the notations that we use 

throughout this paper. 

• a: age. 

• t: time at risk. 

• Lo(t): life table survival probability from birth. 

• Soa(t) = Lo(a+t)/ Lo(a): life table survival probability from age a. 

• Λ0(t): life table integrated mortality hazard rate. 

• λ0(t): life table mortality hazard rate. 

• T: an age at which Lo(T) = 0, say T = 108. 

• i: individual. 
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• Sia(t): personal survival probability from age a to target age a + t for subject i. 

Since survival probabilities differ for different people at the same age a, we let 

Sia(t) be a random variable with a density π(sia(t)), or π(siat). 

• Λia(t): personal integrated mortality hazard rate at age a. 

• λ ia(t): personal mortality hazard rate at age a. 

• τ: time at risk in interview survival question. 

• piaτ: response to interview survival question. We assume that piaτ is measured with 

an error. The density of piaτ conditional on personal survival probability from age 

a to age a+ t is given by: ( )τττ iaiaia sSpf = .   

By definition, an individual i’s survival curve is: 

( ) 




 +−=Λ++Λ−= ∫

t

iaiaiaia drraatatS
0

)(exp)()(exp)( λ         (1) 

It is first necessary to specify the plausible families of λia(a+t) that satisfy this 

equation. We propose to use the population hazard function λoa(a+t) as a base, while 

minimally modifying it to calculate individual λia(a+t).  Two alternative ways to specify 

the λia(a+t) function include: 

).()( 0 tata aiia +=+ λγλ                       (2) 

The parameter γi is an individual “optimism” parameter. In comparison with the 

life table, if γi >1, then the person is “pessimistic”; however, if γi < 1, then the person is 

“optimistic”. Since this model in (2) scales the population hazard, we will refer to it as a 

“hazard-scaling” model from now on. 

The second model specification is given as: 
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+=+                           (3) 

This model represents an accelerated failure time frame where the individual 

thinks of herself as aging forward from her current age more or less rapidly than the 

average person. If a large γi corresponds to slow future aging, i.e, γi>1, then the person is 

“optimistic;” however, if γia < 1, then the person is “pessimistic”.  Similarly, we refer to 

the model in (3) as the “age-scaling” model as it scales ages to represent individual 

optimism. 

If there is no response error or focal bias in piaτ, the models in (2) and (3) are 

accurately identified has having no free parameters. We can then take these models as 

actual survival information, and subsequently, decide which model works best. If a 

response error or focal bias in piaτ  is present, then the personal survival curve is not 

forced through piaτ at age a + τ. In this case, we use a Bayesian framework instead. Our 

basic assumptions are addressed below. Prior belief for the personal survival curve 

density iatS is )( iatsπ . The mean for prior density is ( )at0exp ∆Λ−ψ  where ψ  represents a 

parameter for measuring the population’s average subjective optimistic degree (when 

1=ψ , the mean of prior distribution iatS  corresponds with the life table value). 

Given iatS , the self-reported survival probability iatp has a density of ( )iatiat spf . The 

difference between the self-reported survival probability iatp and the subjective survival 

probability iatS  is the measurement error.  
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The primary objective of this paper is to use the observed τiap to update the prior 

density )( τπ ias and to obtain the posterior density ).|( ττπ iaia ps  After we observe τiap , the 

posterior density of iatS  is given by: 

                       
( ) ( )

( ) ( )∫
=

ττττ

τττ
ττ π

π
π

iaiaiaia

iaiaia
iaia

dssspf

sspf
ps )( .                                   

If the loss function is given by: ( ) ( )2ˆˆ, itititit SSESSL −= , the best estimator for τiS  

is ( )τττ iaii pSES =ˆ . We apply τiŜ  to the observed death record to obtain the model’s 

parameter values. The log-likelihood function is given by: 

( )∑∑ −+=
deadalive

ˆ1lnˆlnln itit SSL .               (4) 

 We can obtain estimates of parameters of the prior and posterior densities by 

maximizing the log-likelihood function in (4).  

IV. Estimation and Out-of-Sample Prediction 

Maximizing the likelihood function in (4) requires specifying the distribution 

functions. The probability of an agent whose current age is a and who survives until age 

a + t is given by iats . Different agents will have different survival probabilities. For the 

population of agents who share the same age a, their surviving probabilities are a random 

variable Siat. Let the prior distribution for the random variable Siat, )( τπ ias  be the 

truncated normal distribution. We also let the mean of Siat be ( )at0exp ∆Λ−ψ , variance 2
2σ , 

while the truncation range is 10 << ias . The prior distribution is given by: 
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where iav and 2σ satisfy the equation:  

( ) ( )220 ,,1,0exp σνησνψ iatiatat −=∆Λ− .                                      (6) 

The right hand side of (6) represents the mean of the truncated normal in (5) with 

its formula provided in the Appendix. We let the conditional density of the responses to 

interview survival questions follow a censored normal distribution:  

( ) 






 −
=

1σ
µφ ττ

ττ
iaia
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p
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Furthermore, we assume that the expected value of the conditional distribution 

is ias . Thus, iaµ and 1σ satisfy the following equation: 
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The formula for the mean of the censored normal is given in the Appendix. The 

censored normal captures the idea that many observations may be at zero or one. 

Given iatp , the posterior distribution is given by: 
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The distribution in (7) is no longer a normal or a censored normal. The best 

estimator for iaS  under a mean square loss function is its mean: 

( ) iaiaiaiaia dspssS τπ∫=
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0
ˆ
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When 0=iatp , we have 
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Thus, the posterior distribution iaS given 0=τiap  is: 
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Then, the best predictor for iaS  when 0=iatp  is: 
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Similarly, when 1=iatp , 
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with the best predictor being given by: 
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In (8), (9) and (10), we obtain the predicted iaŜ  given the observed subjective 

survival probability of τiap . 

Since respondents are interviewed every two years, we update information 

regarding whether they are still alive accordingly. The likelihood function in (4) should 

be changed to: ( )∑∑ −+=
dead

2
alive

2
ˆ1lnˆlnln iaia SSL .  However, the self-reported survival 

probability is not merely the survival probability during a two-year period. Rather, it 

typically represents a survival probability 10-15 years in the future.  

From (1) and (2), iγ  in the hazard-scaling model can be calculated by: 

( )
τ

τγ
a

ia
i

S

0

ˆlnˆ
∆Λ

−= .                               (11) 

Therefore,  

2
ˆ

iaS = τ
τ

aa
iaS 020ˆ ∆Λ∆Λ ,                                                         (12) 

After substituting the above expression of iγ̂ , the log-likelihood function can be 

written as: 
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( )∑∑ ∆Λ∆Λ∆Λ∆Λ −+=
deadalive

020020 ˆ1lnˆlnln ττ
ττ

aaaa
iaia SSL . 

Although we cannot arrive at the explicit expression of iγ  through the age-scaling 

model, we can numerically solve the following equation to obtain the estimated value of 

iγ . 

( )







Λ+








+Λ−= aaS

i
ia 00 ˆ

expˆ
γ
τ

τ . 

Then, 

τγγ
τ

ia
ii

ia SaaS ˆ
ˆ
2

ˆ
expˆ

002 















+Λ−








+Λ= .                       (13) 

In sum, we let the prior survival probability distribution from age a to age a+t be 

a truncated normal (between 0.0 and 1.0).  Moreover, the conditional density of observed 

survival probabilities is assumed to be a censored normal, when wallowing for the focal 

points 0.0 and 1.0, while the posterior density of the survival probabilities will have a 

distribution that does not allow for the focal points 0.0 and 1.0. In order to obtain the 

model’s parameter values, we apply the posterior distribution mean to actual death 

records between wave 1 and wave 2 in order to estimate a person’s survival probability. 

Both the hazard-scaling model in (2) and the age-scaling model in (3) are 

estimated. In each model, we first let ψ =1, constraining the mean of the prior density to 

be the same as that of the life table. Whenever we do this, we refer to the model as the 

constrained model. In addition, we let ψ be a parameter to be estimated. In this case, we 

let the data determine if the prior density mean is the same as the life table survival 

probability. We refer to such a model as an unconstrained model. Table 3 lists the results 

of four different specifications: constrained hazard-scaling model, unconstrained hazard-
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scaling model, constrained age-scaling model, and finally, unconstrained age-scaling 

model. All four specifications yield reasonable estimates that are highly significant. 

Moreover, likelihood ratio tests favor unconstrained models over constrained models. 

Since we use a survey that has three-waves of data, we can apply the estimated 

parameters to actual survival experiences from wave 3 observations and compare the log-

likelihood of each model in order to select the best one.  We select the sample that are 

comprised of individuals who are still alive in wave 2, then calculate the log-likelihood 

values separated by those who are alive in wave 3 and those who are dead between waves 

2 and 3. The log-likelihood from the out-of-sample prediction is given by: 

( )∑∑ −+=
3 & 2 b/w wave dead

4
3  wavein alive

4
ˆ1lnˆlnln iaia SSL  

The log-likelihood values from the out-of-sample predictions are reported in 

Table 3. The two unconstrained models perform much better than the corresponding two 

constrained models. Between the two unconstrained models, the hazard-scaling model 

yields slightly better likelihood values than the unconstrained age-scaling model. 

For each specification, we calculate the optimistic indices γi for each individual. 

The formula to calculate γi in the hazard-scaling model is given by Equation (11) while 

the formula to calculate γi in the age-scaling model is provided in Equation (13).  Table 4 

presents the summary statistics of the indices and the correlation coefficients from the 

four different models’ indices.  

From Table 4, we find that the correlation coefficients among different indices are 

very high. The lowest correlation coefficient between the unconstrained hazard-scaling 

model and the age-scaling model is -.8975. The negative signs for the correlation 

coefficients between the two models are expected; that is, in the hazard-scaling model, 
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the larger the index, the less optimistic a person is. The inverse result can be found for the 

age-scaling model; namely, the larger the index, the more optimistic a person is. The 

highest correlation coefficient between the unconstrained and the constrained hazard 

scaling models is .9887, which is very close to 1.  

Although the correlations among the four different specifications are very high, 

the means of estimated iγ  from the four different models differ significantly. These 

means are also reported in Table 4. The estimated iγ̂  for unconstrained specifications 

portrays a more optimistic picture than those for constrained specifications. In the hazard-

scaling model, the average iγ̂  in the constrained specification is 1.020, indicating that an 

individual’s subjective survival probability on average is very close to the life table. In 

the unconstrained version of the hazard model, the average iγ̂  is .822, indicating that 

people are generally optimistic about their survival probabilities. Similar patterns occur in 

the two specifications of the age-scaling model. 

In the constrained specification, the means of the prior densities (truncated 

normal) are constrained according to life-table survival probabilities. The Bayesian 

update model only changes its σ2, i.e., the standard deviation of the original normal 

density that generates the truncated normal density (See (5) and (6)). Although updating 

σ2 may have some effects on the means of the prior densities, the effect is minimal. 

Therefore it is not surprising to see that the constrained versions of both models are very 

similar to life tables.  In the unconstrained specification, and in addition to obtaining the 

value of σ2, the updated Bayesian model also changes the mean of the prior densities 

through ψ.   
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Although different specifications yield different levels of optimistic indices, an 

important feature of all these indices is that a significant heterogeneity exists among all 

individuals.  The individual heterogeneity in γi can be summarized by a simple regression 

that uses the optimism indices to regress certain demographic variables. In this 

regression, four different optimism indices represent dependent variables, while 

independent variables include a constant, the person’s age, a male dummy, an African-

American dummy, the Hispanic dummy, and lastly, a marriage status dummy. We report 

the estimation results in Table 5.  

From the estimates reported in Table 5, the coefficients for African American 

dummies are negative for the hazard scaling model specifications and positive for the 

age-scaling model specifications. All coefficients indicate that African Americans are 

more optimistic than White respondents. No difference exists between Hispanic and 

White respondents in terms of their optimism indices. Another pattern that can be found 

in all four specifications is the finding that male respondents are more optimistic than 

female respondents. In addition, older respondents are generally more optimistic than 

younger respondents in three specifications. The only exception is the unconstrained age-

scaling model where the age coefficient is insignificant. Finally, whether a person is 

married does not make any difference in his/her optimism indices.  

Tables 6 through 9 provide the predicted survival probabilities of four different 

specifications, the stated survival probabilities, and the life table survival probabilities. 

The predicted survival probabilities in the unconstrained specifications are higher than 

those based on constrained specifications. This derives from the fact that the 
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unconstrained specifications produce indices that indicate more optimism than those 

based on unconstrained specifications. 

In Figure 1, we produce two fitted probability histograms for males and females 

between the ages of 70-74 at the time the survey is conducted for the constrained hazard-

scaling model. The histograms for all other age groups and all other models are the same 

save for their location. From this figure, all focal responses of zero and one have moved 

away from zero and one. For example, for males who are between 70 – 74 years old at 

the time of the survey, the predicted probabilities of surviving to age 85 are .22 and .61 if 

the responses are zero and one, respectively. Figure 2 has various survival curves for both 

males and females at age 70 for both constrained and unconstrained specifications in the 

hazard-scaling model. Graphs based on other models at other age categories look similar. 

In Figure 2, the lines personal-p=1 and personal-p=0 represent the survival curves if the 

response is one and zero, respectively. The line personal-p=Average represents the 

survival curve if the response represents the average of all responses. Not surprising, a 

person whose response is one typically has the highest survival curve, thus demonstrating 

the highest survival probabilities, while a person whose response is 0.0 has the lowest 

survival curve.  

The densities of prior and posterior densities are illustrated in Figure 3. The first 

panel in Figure 3 shows the prior and posterior densities if the response is one, with the 

posterior density lying to the right of the prior density. Similarly, in the second panel in 

Figure 3, the posterior density lies to the left of the prior density if the response is zero. 

This is what one would expect from the Bayesian update model. The third panel in Figure 

3 illustrates a case where the response is 0.5. Finally, we produce histograms of the 
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estimated optimistic parameters γi for all four models in Figure 4. The average and 

standard deviations of γi are also given in the histograms.  There are significant variations 

between these indices. The significant variations in optimistic indices produce significant 

variations in individual survival curves. 

IV. Conclusions 

Many economic models are based on forward-looking behavior on the part of 

economic agents. Surveys such as HRS and AHEAD ask individuals for their 

expectations on the probability of given future events occurring in their lifetime. On 

average, the subjective probability of a future event is consistent with the observed 

probability that the event does occur. In other words, individual survival probabilities are 

consistent with those from the life tables.  

However, at the micro level, the subjective probability responses in HRS and 

AHEAD suffer serious problems with focal responses of 0.0 and 1.0. Consequently, 

applying subjective probabilities are extremely limited if “true” subjective survival 

probabilities are not recovered.  

In this paper, we suggest a Bayesian update model that is based on actual survival 

information to account for problems caused by focal responses of 0.0 and 1.0. As a result, 

individual survival curves derived from the model do not suffer the problems of focal 

responses. We also propose two approaches to model the individual heterogeneities of 

their subjective survival curves. One approach modifies the life table hazard rates while 

another approach models the subjective aging process that is different from the life table 

aging process. The model is estimated from the observed survival information of our 

sample. From the estimated model, we construct several optimistic indices for each 
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individual and conduct a test that is based on out-of-sample prediction. These optimistic 

are used to create individual subjective survival curves that have considerable variations 

and are readily applicable to economic models that require individual subjective survival 

curves. In a companion paper, we apply these individual subjective survival curves to a 

life-cycle model of savings and bequests. 
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Mean of the Truncated Normal Distribution.  
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Mean of the Censored Normal Distribution.  

 

If [ ]2* ,~ σµNx  and ex =  if ex ≤* , or *xx =  if fxe ≤≤ * , or fx =  if 
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using the properties of the truncated normal mean. 
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Table 1 Self-Reported and Life Table Survival Probabilities 

 
  Target Age 

  Male   female 
  80 85 90 95 100  80 85 90 95 100 
          Wave 1         
Means                      
AHEAD 0.557 0.510 0.382 0.332 0.302  0.570 0.510 0.386 0.307 0.289

Life Table 0.593 0.422 0.252 0.114 0.037  0.716 0.605 0.432 0.232 0.081
Median            
AHEAD 0.500 0.500 0.400 0.250 0.100  0.500 0.500 0.450 0.100 0.100

Life Table 0.593 0.422 0.252 0.115 0.037  0.723 0.603 0.433 0.232 0.076
# of obs 90 951 631 436 175  575 1334 978 664 309 
      Wave 2     
Means            
AHEAD 0.524 0.279 0.622 0.278 0.574  0.516 0.283 0.692 0.296 0.559
Life Table 0.614 0.457 0.284 0.138 0.078  0.736 0.633 0.464 0.260 0.138
Median            
AHEAD 0.500 0.200 0.600 0.200 0.600  0.500 0.200 0.600 0.200 0.600
Life Table 0.629 0.456 0.285 0.140 0.051  0.746 0.632 0.465 0.261 0.100
# of obs 95 1044 675 451 223  620 1436 1090 807 498 
 
 

Table 2 Focal Responses 
 

    Wave 2   
  continuous 0 1 NA Total 

Wave 1 continuous 2,700 328 221 153 3,413 

  79.3% 9.6% 6.5% 4.6% 41.5% 
 0 1,599 201 177 104 2,041 
  76.4% 9.9% 8.7% 5.1% 24.8% 
 1 452 60 64 29 605 
  74.7% 9.9% 10.6% 4.8% 7.4% 
 NA 1,467 169 350 173 2,159 
  68.0% 7.8% 16.2% 8.0% 26.3% 
 Total 6,189 758 812 459 8,218 
  75.3% 9.2% 9.9% 5.6%  
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Table 3:  Estimation Results 

 
 Hazard-scaling  Age-scaling 

Parameter ψ=1 ψ is a  ψ=1 ψ is a 
  parameter   parameter 
Std dev of conditional density: 1σ  .3255 .1837  .5434 .2793 
    (censored normal) (.1197)a) (.0154)  (.0012) (.0312) 
Std dev of prior density: 2σ  .2045 .1165  .3159 0.1083 
    (truncated normal) (.0045) (.0176)  (.0000011) (.0304) 
Average optimistic parameter: ψ   .7226   0.6590 
  (.0507)   (.0011) 
Maximum Likelihood Value: -1495 -1483  -1500 -1491 
Log likelihood for out-of-sample  
      Prediction 

-1692.9 -1532.4  -1644.1 -1533.4 

a) Standard errors are in parenthesis. 
 
 
 
 
 

Table 4: Correlation Coefficients among Four Optimistic Indices 
 

 Hazard-scaling Hazard-scaling Age-scaling Age-scaling 
 (constrained)a)  (unconstrained) (constrained) (unconstrained)  

Hazard-scaling  1 .9887 -.9000 -.9019 
    (constrained)  (.00024)b) (.0014) (.0018) 
Hazard-scaling   1 -.8975 -.9284 
 (unconstrained)   (.0017) (.0016) 
Age-scaling    1 .9479 
    (constrained)    (.0015) 
Age-scaling    1 
  (unconstrained)     
Means 1.040 .822 1.051 1.271 
   (std error) (.375) (.296) (.227) (.186) 
a) “constrained” means ψ =1; “unconstrained” means ψ is a parameter to be estimated. 
b) Standard errors are in parenthesis, calculated from bootstrapping 1,000 times of the 
    sample. 
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Table 5: Summary Regressions of Four Optimistic Indices 

 
 Hazard-scaling Hazard-scaling Age-scaling Age-scaling 
 (constrained)  (unconstrained)  (constrained) (unconstrained) 

Constant 1.120 1.546 .740 1.201 
 (.38)a) (.050) (.039) (.189) 
Age -.011 -.0089 .0036 -.0036 
 (.00081) (.00064) (.00050) (.0051) 
Male -.176 -.132 .0982 .0914 
 (.010) (.0079) (.0059) (.00475) 
Black -.065 -.052 .0625 .0446 
 (.022) (.012) (.0091) (.0074) 
Hispanic .065 .0043 .0021 -.00467 
 (.022) (.017) (.014) (.011) 
Married .0066 .0072 -.0095 .0034 
 (.0104) (.0082) (.0063) (.0052) 
No. of obs. 6089 6089 6089 6089 
R2 .0948 .0909 .0638 .0859 
a) Standard errors are in parenthesis. 
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Table 6: Fitted Survival Probabilities  
(Constrained hazard-scaling model) 

 
      Nonfocal Focal Focal  All   
   Respondents Respondents Respondents Respondents  
Age Target Life   piaτ = 0 piaτ = 1   

Group Age Table Predicted Stated Predicted Predicted Predicted Stated 

Female 
  
             

  
 

     70-74 85 0.5880 0.5565 0.5001 0.3571 0.7592 0.5604 0.5095 
   (0.0696)a)  (0.0218) (0.0213) (0.1215)  
     75-79 90 0.4250 0.4426 0.4616 0.2486 0.6584 0.4107 0.3885 
   (0.0745)  (0.0155) (0.0348) (0.1319)  
     80-84 95 0.2240 0.2904 0.4139 0.1398 0.4806 0.2485  0.3029 
   (0.0666)  (0.0176) (0.0213) (0.1113)  

          

Male         
     70-74 85 0.3970 0.4293 0.4845 0.2270 0.6342 0.4383 0.5103 
   (0.0680)  (0.0225) (0.0250) (0.1199)  
     75-79 90 0.2500 0.3086 0.4127 0.1466 0.5091 0.2936 0.3820 
   (0.0651)  (0.0133) (0.0446) (0.1079)  
     80-84 95 0.1130 0.1848 0.3960 0.0771 0.3208 0.1645 0.3324 
   (0.0543)  (0.0119) (0.0561) (0.0845)  
a) Standard errors are in parenthesis.  
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Table 7: Fitted Survival Probabilities 
(Unconstrained hazard-scaling model) 

 

      Nonfocal Focal Focal All Respondents 
      Respondents Respondents Respondents     
Age Target Life   piaτ = 0 piaτ = 1   

Group Age Table Predicted Stated Predicted Predicted Predicted Stated 

Female                 
     70-74 85 0.5880 0.6266 0.5001 0.4659 0.8062 0.6322 0.5095 
   (0.0708)a)  (0.0193) (0.0207) (0.1084)  
     75-79 90 0.4250 0.5171 0.4616 0.3602 0.7069 0.4927 0.3885 
   (0.0769)  (0.0169) (0.0323) (0.1162)  
     80-84 95 0.2240 0.3634 0.4139 0.2117 0.5551 0.3213 0.3029 
   (0.0790)  (0.0242) (0.0158) (0.1167)  

         

Male         
     70-74 85 0.3970 0.5042 0.4845 0.3339 0.6838 0.5129 0.5103 
   (0.0710)  (0.0304) (0.0227) (0.1092)  
     75-79 90 0.2500 0.3814 0.4127 0.2224 0.5777 0.3667 0.3820 
   (0.0750)  (0.0199) (0.0377) (0.1109)  
     80-84 95 0.1130 0.2673 0.3960 0.1191 0.4503 0.2390 0.3324 
   (0.0771)  (0.0171) (0.0380) (0.1146)  
a) Standard errors are in parenthesis. 
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Table 8: Fitted Survival Probabilities 
(Constrained age-scaling model) 

 
      Nonfocal Focal Focal All Respondents 
      Respondents Respondents Respondents     
Age Target Life   piaτ = 0 piaτ =1   

Group Age Table Predicted Stated Predicted Predicted Predicted Stated 

Female                 
     70-74 85 0.5880 0.5561 0.5001 0.5589 0.7554 0.5589 0.5095 
   (0.0565)  (0.1167) (0.0195) (0.1167)  
     75-79 90 0.4250 0.4452 0.4616 0.2516 0.6629 0.4136 0.3885 
   (0.0611)  (0.0141) (0.0342) (0.1276)  
     80-84 95 0.2240 0.2917 0.4139 0.1505 0.4750 0.2529 0.3029 
   (0.0524)  (0.0165) (0.0249) (0.1024)  

          

Male         
     70-74 85 0.3970 0.4306 0.4845 0.2320 0.6399 0.4407 0.5103 
   (0.0552)  (0.0209) (0.0250) (0.1154)  
     75-79 90 0.2500 0.3112 0.4127 0.1572 0.5070 0.2974 0.3820 
   (0.0524)  (0.0132) (0.0476) (0.0998)  
     80-84 95 0.1130 0.1788 0.3960 0.0850 0.2879 0.1602 0.3324 
   (0.0431)  (0.0123) (0.0646) (0.0717)  
a) Standard errors are in parenthesis. 
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Table 9: Fitted Survival Probabilities  
(Unconstrained age-scaling model) 

 

      Nonfocal Focal Focal All Respondents 
      Respondents Respondents Respondents     
Age Target Life   piaτ = 0 piaτ = 1   
Group Age Table Predicted Stated Predicted Predicted Predicted Stated 

Female                
     70-74 85 0.5880 0.6689 0.5001 0.5850 0.7728 0.6733 0.5095 
   (0.0384)  (0.0202) (0.0241) (0.0606)  
     75-79 90 0.4250 0.5531 0.4616 0.4720 0.6592 0.5413 0.3885 
   (0.0446)  (0.0184) (0.0369) (0.0649)  
     80-84 95 0.2240 0.3825 0.4139 0.3007 0.4864 0.3598 0.3029 
   (0.0457)  (0.0286) (0.0179) (0.0662)  

          

Male         
     70-74 85 0.3970 0.5342 0.4845 0.4427 0.6329 0.5392 0.5103 
   (0.0394)  (0.0351) (0.0258) (0.0613)  
     75-79 90 0.2500 0.4043 0.4127 0.2812 0.5122 0.3956 0.3820 
   (0.0458)  (0.0684) (0.0429) (0.0657)  
     80-84 95 0.1130 0.2715 0.3960 0.1738 0.3719 0.2509 0.3324 
   (0.0488)  (0.0239) (0.0417) (0.0728)  
a) Standard errors are in parenthesis. 
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Figure 1: Histograms of predicted survival probabilities 
 

Predicted Survival Probabilities to age 85 among 70-74 year males: Constrained Hazard-Scaling 
Model 

 
 

Predicted Survival Probabilities to age 85 among 70-74 year females: Constrained Hazard-Scaling 
Model 
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Figure 2: Survival curves 
 

Survival Curves-Males aged 70: Unconstrained Hazard-Scaling Model 

 
Survival Curves-Females aged 70: Unconstrained Hazard-Scaling Model 
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Survival Curves-Males aged 70: Constrained Hazard-Scaling Model 

  
 

 
Survival Curves-Females aged 70: Constrained Hazard-Scaling Model 
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Figure 3: Densities of prior, conditional and posterior distributions 
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Figure 4: Histogram for optimistic indices 
Histogram for optimistic index: unconstrained hazard-scaling model 

mean = 0.8229, standard deviation = 0.2956 

 
 

Histogram for optimistic index: constrained hazard-scaling model 
mean = 1.0398, standard deviation = 0.3752 

 



 38

 
Histogram for optimistic index: unconstrained age-scaling model 

mean = 1.2708, standard error = 0.1855 

 
Histogram for optimistic index: constrained age-scaling model 

mean = 1.0617, standard deviation = .2049 

 
 




