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1 Introduction

Monetary policy is inevitably conducted under considerable uncertainty about the state of the

economy and the nature of recent disturbances. Analyses of optimal policy that take no account

of this are therefore of doubtful practical utility. However, in the case of purely backward-

looking models of the kind exclusively used by central banks prior to the 1990s, powerful general

principles for efficient estimation of the state of the economy and for determining the optimal

use to make of such estimates have been well-understood since at least the 1970s. In the case of a

linear economic model, a quadratic loss function for the policymaker, uncertainty only about the

state of the economy (that is, the current values of specific additive terms in the economic model),

and Gaussian disturbances, a principle of certainty equivalence applies: the optimal policy is the

same as if the state of the economy were fully observable, except that one responds to an efficient

estimate of the state of the economy rather than to its actual value. Moreover, a separation

principle applies, according to which the determination of the optimal response coefficients to

be applied to one’s estimate of the state of the economy (the optimization problem) and the

estimation of the current state of the economy (the estimation or signal-extraction problem)

can be treated as separate problems. The optimal response coefficients are independent of the

specification of the central bank’s incomplete information; and the optimal weights to place

on alternative indicators in estimating the state of the economy are independent of the central

bank’s objective function.1

However, the presence of forward-looking variables in the system to be controlled — a com-

mon feature of modern macroeconomic models, including the econometric models now used by

many central banks — complicates matters in a number of respects. For example, optimal policy

under commitment ceases in general to coincide with the outcome of discretionary optimization,

as demonstrated for the general linear model with quadratic objectives in Backus and Driffill [1]

and Currie and Levine [3]. Optimal policy under commitment (even in the deterministic case) is

no longer a function solely of the vector of predetermined variables that suffices to characterize

the set of possible future paths for the economy from a given date onward; thus one cannot

expect that in the case of partial information optimal policy can depend solely on the optimal

estimate of such a vector of predetermined variables.

Moreover, in the presence of partial information, estimation of the current state of the system

is no longer so simple. For currently observable variables will generally depend not only on the
1 Important early treatments include Chow [2], Kalchbrenner and Tinsley [4], and Leroy and Waud [5].
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current vector of predetermined variables and random observation error with known properties,

but also upon forward-looking variables, the values of which will depend on the private sector’s

expectations about future policy. This makes it far from obvious that a separation principle

should apply, even in a linear-quadratic Gaussian framework. Because the relation between the

unobserved state of the economy and the observable variables depends on expected policy, one

may not be able to solve the optimal filtering problem independently of the solution for the

optimal policy response to the estimated state of the economy.

Nonetheless, analogs of the classical control-theoretic results have been obtained for certain

special kinds of forward-looking models with partial information. With regard to the estima-

tion problem, Pearlman, Currie and Levine [8] have shown in a linear (non-optimizing) model

with forward-looking variables and partial information that the state of the economy can still

be estimated using a Kalman filter, although the solution is much more complex than in the

purely backward-looking case. Pearlman [7] has used this solution in an optimizing model to

demonstrate that certainty equivalence applies under both discretion and commitment in the

presence of forward-looking variables and symmetric partial information, that is, in the case

that both the central bank and the private sector have access to the same partial information.

In the case of commitment, “certainty equivalence” means that the optimal instrument settings

are the same linear function of the current estimate of the predetermined variables describing

the state of the economy and specific Lagrange multipliers (related to the value that alterna-

tive expectations would have had in the previous period’s policy problem) as in the case of the

corresponding optimal policy problem under certainty.

Our previous paper [9] synthesizes what is known about the case of symmetric partial in-

formation, and derives useful general formulas for computation of the optimal policy response

coefficients and efficient estimates of the state of the economy in the context of a fairly general

forward-looking (rational-expectations) model. We find that not only does certainty equivalence

continue to characterize optimal policy, but that a separation of the problems of optimal policy

and optimal estimation of the current state of the economy continues to be possible, in that the

coefficients of the optimal Kalman filter are again independent of the central bank’s objective

function.

The proof of certainty equivalence under commitment was not included in [9], in order to

save space. The present paper provides this proof. The proof is for a more general model than

in Pearlman [7] and more intuitive. In particular, our proof explicitly takes into account that,
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under commitment, the policymaker can affect the future evolution of the observable variables,

and thereby potentially affect the future information available.

Section 2 lays out the model, section 3 demonestrates certainty equivalence for the case

of full information, and section 4 proves certainty equivalence for partial information. Section

5 outlines the separation principle, and section 6 concludes. Appendix A contains technical

details regarding the degree to which the policymaker can affect the information revealed by the

observable variables.

2 The model

Consider the linear model



Xt+1

Qxt+1|t


 = A1




Xt

xt


 + A2




Xt|t

xt|t


 + Bit +




ut+1

0


 , (2.1)

where Xt is a vector of nX predetermined variables, xt is a vector of nx forward-looking variables,

it is a vector of the central bank’s ni policy instruments, ut is a vector of nX iid shocks with mean

zero and covariance matrix Σuu, and A1, A2, B and Q are matrices of appropriate dimension.

The nx×nx matrix Q may be singular (this is a slight generalization of usual formulations when

Q is the identity matrix). For any variable zt, zτ |t denotes E[zτ |It], the rational expectation

(the best estimate) of zτ given the information It, the information available in period t. The

information is specified below. Let Yt denote a vector of nY target variables given by

Yt = C1




Xt

xt


 + C2




Xt|t

xt|t


 + Ciit, (2.2)

and let

Lt = Y ′
t WYt (2.3)

be a period loss function, where W is a positive-semidefinite weight matrix.

Let the vector of nZ observable variables, Zt, be given by

Zt = D1




Xt

xt


 + D2




Xt|t

xt|t


 + vt, (2.4)

where vt, the vector of noise, is iid with mean zero and covariance matrix Σvv. The information

It in period t is given by

It = {Zτ , A
1, A2, B,C1, C2, Ci, D

1, D2, Q, W, δ,Σuu, Σvv; τ ≤ t}, (2.5)
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where δ (0 < δ < 1) is a discount factor. This incorporates the case when some or all of the

predetermined and forward-looking variables are observable.

Note that (2.1) assumes that the expectations xt+1|t in the second block of equations are

conditional on the information It. The case when these expectations are replaced by a private

sector expectations E[xt+1|Ip
t ] where the private-sector information Ip

t differs from It is treated

in Svensson and Woodford [10].

Suppose that the central bank commits itself in an initial ex ante state (prior to the real-

ization of any period zero random variables) to a state-contingent plan for the indefinite future

that minimizes the expected discounted losses

E
∞∑

t=0

δtLt.

Here E indicates the expectation with respect to information in the initial state, in which the

commitment is made. It is important to consider optimal commitment from such an ex ante

perspective, because, in the case of partial information, the information that the central bank

possesses in any given state depends upon the way that it has committed itself to behave in

other states that might have occurred instead.

We begin by reviewing the form of the commitment equilibrium under full information, when

Zt includes all elements of Xt and xt. We then turn to the consequences of partial information,

when the information is given by (2.5).

3 Certainty equivalence under full information

Note that in the case of full information, Xt|t = Xt, xt|t = xt, as a result of which it is obvious

that only the aggregated matrices A ≡ A1 + A2 and C ≡ C1 + C2 matter to the optimization

problem.

The Lagrangian for the commitment problem can be written in the form

L = E

[ ∞∑

t=0

δtLt −
∞∑

t=0

δtξ′t+1(Xt+1 −A11Xt −A12xt −B1it − ut+1)

−
∞∑

t=0

δtΞ′t (QEtxt+1 −A21Xt −A22xt −B2it)− δ−1ξ′0(X0 − X̄0 − u0),

]

where in each period t, ξt and Ξt are vectors of Lagrange multipliers conformable to Xt and xt

respectively, and where Et[·] ≡ E[·|If
t ] denotes expectations conditional on the full information,

If
t . The dating of the multipliers indicate the period information with which they are measurable
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(that is, depend on). Thus, the constraint for Xt+1, the predetermined variables, depends on

information available in period t + 1, If
t+1, whereas the constraint for QEtxt+1, the forward-

looking variables, depends on the information available in period t, If
t . (That is, there is only

one such latter constraint for each information If
t , that may be reached in period t, so there is

only one vector of multipliers Ξt for each If
t ; in other words, Ξt depends only on the information

available in period t.) The final term on the right-hand side corresponds to the constraint

imposed by the vector of initial conditions on X0,

X0 = X̄0 + u0, (3.1)

where X̄0 is known at the time of commitment.

Using the law of iterated expectations (EEtxt+1 = Ext+1)2, we may equivalently write the

Lagrangian in the form

L = E

{ ∞∑

t=0

δt
[
Lt + (ξ′t+1, Ξ

′
t)(Ayt + Bit + [u′t+1 0′]′)− δ−1(ξ′t,Ξ

′
t−1)Îyt

]
+ δ−1ξ′0(X̄0 + u0)

}
,

(3.2)

where

yt ≡




Xt

xt


 ,

and

Î ≡




I 0

0 Q


 .

We have added a term − δ−1Ξ′−1Qx0 to the right-hand side, for the sake of symmetry in notation,

but now correspondingly stipulate the initial condition

Ξ−1 = 0. (3.3)

(Note that these Lagrange multipliers do not correspond to any actual constraint upon the

planning problem.) Finally, note that equations (2.2)–(2.3) define a quadratic function Lt =

L(yt, yt|t, it). Because yt|t = yt in the case of full information, we can here write Lt = L(yt, yt, it).

Thus the Lagrangian (3.2) is a quadratic function of the evolution of the vectors yt and it.

Differentiation of (3.2) with respect to yt and it then yields the first-order conditions

Lyt + Et(ξ′t+1, Ξ
′
t)A = δ−1(ξ′t, Ξ

′
t−1)Î , (3.4)

2 More precisely, E[ΞtEtxt+1] = EEt[Ξtxt+1] = E[Ξtxt+1] (where the first equality follows since Ξt is measur-

able with respect to If
t ).
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Lit + Et(ξ′t+1,Ξ
′
t)B = 0, (3.5)

respectively, where for each of the two arguments z = y, i, Lzt ≡ ∂L(yt, yt, it)/∂zt. Recalling the

form of the quadratic function L, we have

L(yt, yt, it) =
[

y′t i′t

]



C ′

C ′
i


 W

[
C Ci

]



yt

it


 ≡ 1

2

[
y′t i′t

]



Lyy Lyi

Liy Lii







yt

it


 ,

(3.6)

so that we can write 


L′yt

L′it


 =




Lyy Lyi

Liy Lii







yt

it


 ,

where the Ljk are matrices of constant coefficients (corresponding to the second partial deriva-

tives of L), that depend only upon the matrices C,Ci, and W as above. Using this notation, we

can equivalently write the first-order conditions (3.4) – (3.5) as

Lyyyt + Lyiit + A′Et




ξt+1

Ξt


 = δ−1Î ′




ξt

Ξt−1


 , (3.7)

Liyyt + Liiit + B′Et




ξt+1

Ξt


 = 0. (3.8)

Assuming that Lii is of full rank (see Svensson and Woodford [10, appendix B] for a the case

when Lii is not of full rank), we can solve (3.8) for it, obtaining

it = −L−1
ii Liyyt − L−1

ii B′Et




ξt+1

Ξt


 . (3.9)

Substituting (3.9) into (2.1) and (3.7) to eliminate it, we then obtain a system of equations

for the evolution of yt and (ξ′t+1,Ξ
′
t)
′, that can be written in the form




0 R′

Î U







Etyt+1

Et




ξt+1

Ξt







=




V δ−1Î ′

R 0







yt


ξt

Ξt−1







, (3.10)

where

R ≡ A−BL−1
ii Liy,

U ≡ BL−1
ii B′,

V ≡ −Lyy + LyiL
−1
ii Liy.
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Here it is worth noting that U and V are symmetric matrices.

Let us assume furthermore that the square matrix on the left-hand side of (3.10) is of full

rank.3 Then we can invert this matrix, to obtain a system of the form



Etyt+1

Etξt+1

Ξt




= M




yt

ξt

Ξt−1




. (3.11)

We then wish to consider solutions to (3.11) that are consistent with given initial values for

X0 and Ξ−1 according to (3.1) and (3.3). We note that the number of variables in (3.11) is

2(nX + nx), where nX and nx is the dimension of Xt and xt, respectively, and that there are

nX +nx initial conditions ((3.1) and (3.3)). We shall restrict our attention to bounded solutions,

by which we mean solutions in which for any t, Etyt+τ , Etξt+τ and EtΞt+τ−1 satisfy a uniform

bound for all τ . Such solutions necessarily satisfy the transversality condition for an optimal

plan, and since our equations (2.1)–(2.4) will usually represent only a local approximation to

the true structural equations and true loss function, unbounded solutions need not correspond

at all closely to solutions to the true equations.

As usual (and ignoring non-generic cases), there is a unique bounded solution to (3.11)

consistent with the initial conditions if the number of eigenvalues of M inside the unit circle

(that is, with modulus less than one) is exactly equal to the number of initial conditions, nX +nx.

The eigenvalues λ of M are the roots of the characteristic equation

Det




V δ−1Î ′ − λR′

R− λÎ −λU


 = 0. (3.12)

Multiplication of the right blocks of this matrix by −λ−1, then multiplication of the lower blocks

by −λ−1δ−1, and finally transposition of the matrix does not change the sign of its determinant.

Thus we may equivalently write

Det




V δ−1Î ′ − λ−1δ−1R′

R− λ−1δ−1Î −λ−1δ−1U


 = 0.

Comparison of this with (3.12) shows that if λ is a root, λ−1δ−1 must also be. It follows that M
has as many eigenvalues with |λ| > 1√

δ
as with |λ| < 1√

δ
. Thus, since 1√

δ
> 1, at most half of the

3 Even when Q is singular, so that this matrix also is, our conclusions below remain essentially valid. Equation
(3.12) is still the relevant characteristic equation, and again there is a unique bounded solution, in the generic
case, if and only if exactly nX + nx roots are inside the unit circle. Furthermore, it is again true that there are
necessarily no more than this number of such roots, and that for δ close enough to 1, the condition assumed here
almost inevitably holds. However, we omit the algebra for the more general case.
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eigenvalues (that is, at most nX + nx) are inside the unit circle (that is, with |λ| < 1), so there

is no possibility of multiple stationary solutions to (3.11). If δ is close to 1 (as will often be the

case), there are likely to be exactly half inside the unit circle. We shall assume this condition

from now on. Thus (3.11) has a unique bounded solution in which Etyt+τ and Et(ξ′t+1,Ξ
′
t)
′ can

be expressed as linear functions of the initial conditions X0 and (3.3), for arbitrary τ ≥ 0.

In particular, the optimal equilibrium involves evolution of the instrument according to a

relation of the form

it = FXt + ΦΞt−1, (3.13)

the optimal reaction function in state-space form, where F and Φ are matrices of constant

coefficients. We have just argued that y0 and E0ξ1 can be expressed as linear functions of X0

and Ξ−1 ≡ 0; substitutions of these solutions into (3.9) then yields (3.13) for t = 0. However,

exactly the same reasoning can be applied to solve equations (3.11) for all τ ≥ t, given initial

values Xt and Ξt−1, and the unique bounded solution will be linear in the initial values, with

exactly the same coefficients in period t = 0. Thus (3.13) must hold for all t.

Similarly, the forward-looking variables evolve according to a relation of the form

xt = GXt + ΓΞt−1, (3.14)

while the Lagrange multipliers associated with the forward-looking variables evolve according

to

Ξt = SXt + ΣΞt−1, (3.15)

starting from the initial condition (3.3). Substitution of these equations into (2.1) then implies

that the predetermined state variables evolve according to

Xt+1 = (A11 + A12G + B1F )Xt + (A12Γ + B1Φ)Ξt−1 + ut+1, (3.16)

starting from the initial condition X0 and (3.3). Note that (3.15) can be integrated to yield

Ξt =
t∑

τ=0

ΣτSXt−τ .

Thus, we have

it =
t∑

τ=0

FτXt−τ , (3.17)

the optimal reaction function in integrative form, where F0 ≡ F and Fτ ≡ ΦΣτ−1S, τ ≥ 1. Thus

the most fundamental difference with respect to the discretion case is that under the optimal
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commitment, it (and xt) are no longer a linear function of the current state Xt alone, but instead

depends upon past state vectors Xt−τ as well. The inertial character of optimal policy that this

can result in is illustrated in Woodford [11].

Equations (3.13)–(3.16) then completely describe the evolution of the predetermined vari-

ables, the forward-looking variables, and the policy settings it, as a function of the sequence of

realizations of the disturbances ut (and the initial conditions (3.1) and (3.3)). Note that (3.15)

implies that the Lagrange multipliers Ξt are predetermined variables.

Note also that the matrices F, G, S,Φ,Γ, Σ depend on A,B, Q, C,Ci,W and δ, but that

they are independent of Σuu. Thus these coefficients are the same as in the optimal plan under

certainty. This is the certainty equivalence result for the case of full information.

4 Certainty equivalence under partial information

Now suppose instead that both the private sector and the central bank observe only the variables

Zt in period t, that is, have the information It rather than If
t . In this case the Lagrangian takes

the form

L = E

[ ∞∑

t=0

δtLt −
∞∑

t=0

δtξ′t+1

(
Xt+1 −A1

11Xt −A2
11Xt|t −A1

12xt −A2
12xt|t −B1it − ut+1

)

−
∞∑

t=0

δtψ′t(xt+1|t −A1
21Xt −A2

21Xt|t −A1
22xt −A2

22xt|t −B2it)− δ−1ξ′0(X0 − X̄0 − u0)

]
.

We now distinguish between zt+1|t ≡ E[zt+1 | It] and Etzt+1 ≡ E[zt+1 | If
t ], the expectation (of

any variable zt+1) conditional upon all Xτ , xτ and Zτ for all τ ≤ t. Note also that now the

distinction between the two components A1 and A2 is relevant for the problem’s constraints.

Now the multipliers ψt are measurable with respect to the full period t information, If
t , as

the term in brackets represents a constraint that applies in period t. However, they are not

necessarily measurable with respect to It (that is, they do not necessarily depend only on It) as

there is not a single constraint for each information It. Thus, ψt 6= ψt|t.

Note also that we do not write explicitly, in the Lagrangian, the constraints indicating the way

in which the choice of stochastic processes for Xt, xt, and it affects the conditioning information

in the various conditional expectations zτ |t, as a result of (2.4). As shown in Appendix A, we

obtain the correct first-order conditions even when the additional constraints (discussed there)

are omitted.
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This expression can be simplified, if we note that

E
[
ψ′txt+1|t

]
= E

{
E

[
ψ′txt+1|t | It

]}
= E

[
ψ′t|txt+1|t

]
= E

{
E

[
ψ′t|txt+1 | It

]}
= E [Ξtxt+1] ,

using the law of iterated expectations and introducing Ξt ≡ ψt|t. We can then equivalently

express the Lagrangian as

L = E

{ ∞∑

t=0

δt
[
Lt + (ξ′t+1, Ξ

′
t)(A

1yt + Bit) + (ξ′t+1|t,Ξ
′
t)A

2yt − δ−1(ξ′t, Ξ
′
t−1)Îyt

]
+ δ−1ξ′0(X̄0 + u0)

}
,

(4.1)

once again stipulating the initial condition (3.3). It should also be noted that now it must

be measurable with respect to the information It. Note also that Ξt ≡ ψt|t is measurable with

respect to It, even though ψt is not.

Differentiation of (4.1) then yields the first-order conditions

L1t + L2t|t + Et(ξ′t+1, Ξ
′
t)A

1 + (ξ′t+1|t, Ξ
′
t)A

2 = δ−1(ξ′t, Ξ
′
t−1)Î , (4.2)

Lit|t + (ξ′t+1|t,Ξ
′
t)B = 0, (4.3)

where for j = 1, 2, i, Ljt denotes the partial derivative of L(yt, yt|t, it) with respect to its first,

second, or third argument respectively. Here we have used result (A.14) from appendix A to

differentiate functions of yt|t with respect to yt. More precisely, condition (4.2) should also

contain a term that is proportional to µ′t, the vector of Lagrange multipliers associated with the

constraint on how changes in the evolution of yt affect the information content of the observables

Zτ in (2.4), as shown in appendix A. However, as is established there in (A.19), µt|t = 0, as a

result of which the neglected term has no consequences for condition (4.4) below, which is all

that matters for our subsequent analysis.

Note that the expectations in (4.2) and (4.3) are not conditioned upon the same information,

because yt may take a different value in each state of the world in period t, while it must have

the same value in each state of the world that corresponds to the same information It. (The

consequences of the latter constraint are also treated in the Appendix.) Finally, note that in

the case of full information, conditions (4.2)–(4.3) are identical to (3.7)–(3.8).

As it turns out, only the conditional expectations of these first-order conditions with respect

to public information It matter for determination of the optimal evolution of yt and it. Each

term in (4.3) is already conditional upon It. However, taking the conditional expectation of (4.2)

with respect to It, we obtain the simpler expression

L1t|t + L2t|t + (ξ′t+1|t, Ξ
′
t)A = δ−1(ξ′t, Ξ

′
t−1)Î . (4.4)
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Furthermore, a calculation similar to (3.6) implies that



L′1t|t + L′2t|t
L′it|t


 =




Lyy Lyi

Liy Lii







yt|t

it|t


 ,

where the matrices Ljk are exactly the same as in (3.6). Thus conditions (4.3) and (4.4) can

alternatively be written

Liyyt|t + Liiit + B′




ξt+1|t

Ξt


 = 0, (4.5)

Lyyyt|t + Lyiit + A′




ξt+1|t

Ξt


 = δ−1Î ′




ξt|t

Ξt−1


 . (4.6)

The pair of difference equations (4.5) and (4.6) will be observed to be of exactly the same

form as (3.7) and (3.8) in the full-information case, except that conditional expectations are

now with respect to It rather than If
t . Thus, exactly in the same way as above, we can obtain

a system of equations 


yt+1|t

ξt+1|t

Ξt




= M




yt|t

ξt|t

Ξt−1




, (4.7)

where the matrix M is the same as in (3.11).

As above (under our assumption about the eigenvalues of M), there is a unique bounded

solution for yτ |t, ξτ |t and Ξτ−1|t (τ ≥ t), given any initial values Xt|t and Ξt−1. Solving (4.5) for

it, we can associate with any such solution to (4.7) a unique bounded solution for iτ |t as well.

This solution satisfies

it = FXt|t + ΦΞt−1, (4.8)

xt|t = GXt|t + ΓΞt−1, (4.9)

Ξt = SXt|t + ΣΞt−1, (4.10)

where the matrices F, G, S,Φ,Γ, Σ are the same as in (3.13)–(3.15) for the full-information case.

Equation (4.10) can be integrated to yield Ξt as a distributed lag of past values of Xt−τ |t−τ ;

thus, using this with (4.8) , the optimal reaction function in state-space form, results in

it =
t∑

τ=0

FτXt−τ |t−τ , (4.11)
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the optimal reaction function in integrated form, where Fτ , τ ≥ 0, are the same as for the

full-information case. Again, a certain amount of inertia is introduced into the way that Xt|t

determines it (and xt).

Note that equations (4.8)–(4.10) and (4.11) take exactly the same form as (3.13)–(3.15) and

(3.17), once expectations conditional upon If
t are replaced by expectations conditional upon It.

This represents an extension of certainty equivalence to the partial-information case.

5 The separation principle

The second row of (2.1) implies that

A1
21(Xt −Xt|t) + A1

22(xt − xt|t) = 0. (5.1)

Assuming that A1
22 is non-singular, this can be solved for xt. Substituting (4.9) for xt|t, one

obtains

xt = G1Xt + G2Xt|t + ΓΞt−1, (5.2)

where again

G1 ≡ −(A1
22)

−1A1
21,

G2 ≡ G−G1.

Note that the matrices G1 and G2, like the others, are independent of the specifications of D,

Σuu and Σvv.

Substitution of (4.8), (4.9) and (5.2) into the first row of (2.1) furthermore yields

Xt+1 = HXt + JXt|t + ΨΞt−1 + ut+1, (5.3)

where H and J are given by

H ≡ A1
11 + A1

12G
1, (5.4)

J ≡ B1F + A1
12G

2 + A2
11 + A2

12G, (5.5)

and

Ψ ≡ A12Γ + B1Φ. (5.6)

Equations (4.10) and (5.2)–(5.3) then describe the evolution of the state variables yt in equilib-

rium, once we determine the evolution of the estimates Xt|t of the predetermined variables.
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Substituting (5.2) into (2.4), we obtain

Zt = LXt + MXt|t + ΛΞt−1 + vt, (5.7)

where L and M are given by

L ≡ D1
1 + D1

2G
1, (5.8)

M ≡ D1
2G

2 + D2
1 + D2

2G, (5.9)

and

Λ ≡ D2Γ. (5.10)

Equations (5.3) and (5.7) are then the transition and measurement equations for an optimal

filtering problem. Again the transformation into a problem without forward-looking variables

allows us to derive the estimation equations in a manner that is simpler than that used in

Pearlman, Currie and Levine [8].

As demonstrated in more detail in Svensson and Woodford [9], the optimal prediction of Xt|t

is then given by a Kalman filter,

Xt|t = Xt|t−1 + K(Zt − LXt|t−1 −MXt|t − ΛΞt−1), (5.11)

We can rationalize (5.11) by observing that Zt −MXt|t − ΛΞt−1 = LXt + vt, hence,

Zt − LXt|t−1 −MXt|t = L(Xt −Xt|t−1) + vt,

so (5.11) can be written in the conventional form

Xt|t = Xt|t−1 + K[L(Xt −Xt|t−1) + vt], (5.12)

which allows us to identify K as (one form of) the Kalman gain matrix. From (5.3) we get

Xt+1|t = (H + J)Xt|t + ΨΞt−1, (5.13)

and the dynamics of the model are given by (4.10), (5.2), (5.3), (5.11) and (5.13).

The Kalman gain matrix is given by

K = PL′(LPL′ + Σvv)−1, (5.14)

where the matrix P ≡ Cov[Xt −Xt|t−1] is the covariance matrix for the prediction errors Xt −
Xt|t−1 and fulfills

P = H[P − PL′(LPL′ + Σvv)−1LP ]H ′ + Σuu. (5.15)
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Thus P can be solved from (5.15), either numerically or analytically, depending upon the com-

plexity of the matrices H, L and Σuu. Then K is given by (5.14). Note that this implies that

the Kalman gain K depends only upon the matrices A, Σuu, D, and Σvv.

6 Conclusions

The above proof demonstrates the certainty-equivalence result that the optimal policy under

commitment given an estimate of the state of the economy is independent of the degree of

uncertainty and hence the same policy as under full information. Furthermore, a separation

principle holds, in that the problem of finding the optimal policy and the problem of optimally

estimating the current state of the economy can be treated as separate problems (in particular,

the optimal estimation does not depend on the loss function or the reaction function).

These results hold under symmetric partial information about the economy. As demonstrated

in Svensson and Woodford [10], in the asymmetric case in which the policymaker has partial

information and the private sector has full information, the certainty-equivalence result holds

only for the reaction function in state-space form, (4.8), but not for the reaction function in

integrative form, (4.11). Furthermore, the separation principle does not hold, since the optimal

estimation is no longer independent of the loss-function parameters and the reaction function.

A Differentiation results for conditional expectations

Here we address some technical issues that arise in the characterization of the optimal commit-

ment problem in the case of partial information. These relate to the fact that the policymaker

should recognize that his or her pattern of action affects the statistical relation between the

observables and underlying (exogenous) shocks, and thus might affect the information that is

publicly available about those shocks. This problem can be ignored in the case of discretion

because an independent optimization problem is solved in each state, and we may suppose that

behavior in any single state is of only negligible importance for the correlations that determine

the optimal linear estimates of unobserved states. But we must consider the matter more care-

fully in the case of commitment. In fact, we show here that the results presented in the text,

derived without taking into account the effects of policy upon the content of public information,

continue to be correct.
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We wish to consider the problem of minimizing a discounted sum of expected losses

E
∞∑

t=0

δtL(yt, yt|t, it) (A.1)

subject to a series of constraints of the form

M0yt+1 + M1yt+1|t = M2yt + M3yt|t + M4it + ut+1 (A.2)

for each period t ≥ 0, where M0, ..., M4 are matrices of appropriate dimension. Here it is

a vector of control variables chosen in period t, yt is a vector of endogenous state variables

determined by structural equations (A.2), and ut+1 of random disturbances in period t + 1,

assumed independently distributed over time. (For present purposes it is not necessary to

distinguish between the predetermined and non-predetermined elements of yt.) There is also a

set of initial conditions specifying

M0y0 = u0, (A.3)

where u0 is another random vector, distributed independently of the ut+1 vectors for all later

periods.

For any random variable zT , the conditional expectation zT |t denotes

zT |t ≡ E[zT |Zt, Zt−1, . . . , Z0], (A.4)

where Zt is a vector of observables in period t, implicitly defined by

Zt = D1yt + D2yt|t + vt, (A.5)

where vt is a vector of additional iid random disturbances. We introduce the notation ūt ≡
(u′t, v′t)′ for the complete vector of exogenous random disturbances in period t. The controls

must be chosen on the basis of public information, so that

it = it|t (A.6)

is also a constraint.

We may incorporate constraint (A.6) by instead writing the objective (A.1) as

E
∞∑

t=0

δtL(yt, yt|t, it|t), (A.7)

and making a similar substitution into (A.2). Then substituting (A.4) into (A.7) for the con-

ditional expectations, we obtain an objective that depends upon the state-contingent paths of
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the variables yt, it and Zt. Our problem is then to choose yt, it and, in particular, Zt in each

period t ≥ 0, as functions of the history of realizations, the state st ≡ (ū′t, ū′t−1, . . . , ū
′
0)
′, subject

to constraints (A.2), (A.3), and (A.5), so as to minimize (A.7). This will only determine the

path of it|t, but by then imposing (A.6) as well we can determine the complete evolution of the

control it.

The first-order conditions for such a problem can, as usual, be obtained by writing a La-

grangian

L =
∞∑

t=0

δtEL(yt, yt|t, it|t)

−
∞∑

t=0

δtEϕ′t+1(M0yt+1 + M1yt+1|t −M2yt −M3yt|t −M4it|t − ut+1) (A.8)

− δ−1Eϕ′0(M0y0 − u0)−
∞∑

t=0

δtEµ′t(Zt −D1yt −D2yt|t − vt), (A.9)

where ϕt+1, ϕ0, and µt are the Lagrange multipliers associated with constraints (A.2), (A.3),

and (A.5) respectively. (Thus, ϕt corresponds to (ξ′t, ψ
′
t−1) in the text. There is a separate

vector of multipliers ϕt+1 for each possible state st+1 ≡ (ū′t+1, ū
′
t, . . . , ū

′
0)
′, a separate ϕ0 for

each possible s0 ≡ ū0, and a separate µt for each possible state st. The expectation operator

E[·] indicates unconditional expectations (expectations in the ex ante state in which the optimal

commitment is chosen). The commitment is chosen prior to the realization of any period 0

states, as the systematic pattern of behavior committed to in period 0 affects the information

revealed in alternative states in that period, as in others. The aim of this appendix is to explain

the calculation of the partial derivatives of such a Lagrangian with respect to the random paths

specified for yt, it and Zt.

A.1 Properties of the conditional expectation zT |t

We first note, that the conditional expectation (A.4) is a linear operator of the form

zT |t(st) ≡ EsT [Pt,T (st, sT )zT (sT )], (A.10)

where Pt,T (st, sT ) is a (scalar) kernel. Here sT ≡ (ū′T , . . . , ū′0)′ is an arbitrary state in period

T , st is an arbitrary state in period t ≤ T, and EsT denotes the expectation over the possible

states sT , under the ex ante or unconditional probability measure. (Note that EsT [·] should not

be confused with Et[·] ≡ E[·|If
t ], the expectation conditional on the full information in period

t, If
t .) Under our assumption of normally distributed disturbances, the conditional expectation
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is simply a linear projection upon the observables. This means that the stochastic kernel takes

the form

Pt,T (st, sT ) = Pt,t(st, sT,t),

where sT,t is the predecessor of state sT in period t (that is, the part of the history that has oc-

curred as of period t, that is, the unique state sT,t in period t that fulfills sT ≡ (ū′T , ..., ū′t+1, s
′
T,t)

′).

Furthermore, Pt,t can be expressed in the standard form for linear projections,

Pt,t(s1
t , s

2
t ) = Ẑ ′t(s

2
t )E[ẐtẐ

′
t]
−1Ẑt(s1

t ), (A.11)

where s1
t and s2

t are two states in period t and Ẑt(st) is a vector of observables in period t and

earlier (including a constant) that results under st and spans the entire public information space

in period t, but that includes no redundant variables (so that the matrix E[ẐtẐ
′
t] is non-singular).

(Note that if s1
t and s2

t correspond to the same information It, we have Ẑt
(
s1
t

)
= Ẑt(s2

t ). Also,

if there are no redundant observables, Ẑt = (Z ′t, Z ′t−1, ..., Z
′
0)
′.)

The choice of a particular representation Ẑt need not concern us here. We do, however, wish

to observe certain consequences of the general form (A.11) for the stochastic kernel. One is that

the kernel is symmetric, that is,

Pt,t(s1
t , s

2
t ) = Pt,t(s2

t , s
1
t ). (A.12)

Another is that, for each fixed state s2
t , the random variable Pt,t(·, s2

t ) is a linear combination

of the vector of observables as of period t, so that Pt,t(·, s2
t ) is in the linear space spanned by

the vector of observables in period t. More generally, for any period T ≥ t and any state sT in

period T , Pt,T (·, sT ) is a random variable that is measurable with respect to the information It.

These properties of the kernel suffice for the calculations that we need to do here.

A.2 Differentiation of expressions involving conditional expectations

We now consider differentiation of expressions involving conditional expectations, of the sort that

appear in the Lagrangian (A.9). We first consider the effect upon an expression of the form zT |t

of varying the state-contingent path of random variable zT , holding fixed the state-contingent

paths of the variables (Zt, . . . , Z0), and hence keeping the stochastic kernel Pt,T unchanged.

Suppose we let

zT = z̄T + φνT , (A.13)
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where z̄T is the value of the random variable at which we wish to evaluate the partial derivative,

φ is a scalar constant, and νT is another random variable (that is, another function of the state

in period T , sT ) indicating the direction in which we wish to vary zT . Then we define the partial

derivative of a functional g(zT ) with respect to perturbations of the random variable zT as the

function [∂g(zT )/∂zT ](sT ) with the property that

∂g(z̄T )
∂φ

= EsT

[
∂g(z̄T )
∂zT

(sT )νT (sT )
]

in the case of any perturbation of the form (A.13), that is, for any random variable νT in period

T .

From (A.10), we then can observe that

∂zT |t(st)
∂zT

(sT ) = Pt,T (st, sT ), (A.14)

where st is any state in period t ≤ T . By substituting (A.13) into (A.10), differentiating with

respect to φ and using (A.14), it follows that, for any process νT ,

EsT

[
∂zT |t(st)

∂zT
(sT )νT (sT )

]
= EsT [Pt,T (st, sT )νT (sT )] = νT |t(st). (A.15)

Note that (A.15) is just the conditional expectation with respect to It of the expression that

would be obtained if one were differentiating zT instead of zT |t. This is intuitive since, by the

law of iterated expectations,

E[zT |tνT ] = E[zT |tνT |t] = E[zT νT |t].

Thus the partial derivatives of each of these equivalent expressions with respect to zT should be

the same; but the partial derivative of the final expression is obviously νT |t.

A.3 The effect of variation in the dependence of Zt on the state st

We turn next to the effect upon conditional expectations of variation in the way that the variables

Zt depend upon the state st ≡ (ū′t, . . . , ū′0)′. We consider the effect of variation in a particular

(scalar) random observable Zjt (for a given j, 1 ≤ j ≤ nZ) in the information Iτ for some τ ≥ t.

By analogy with (A.13), we consider perturbations of the form

Zjt = Z̄jt + φζt

around the random observable Z̄jt for any random variable ζt. We wish to consider the effect of

variation in φ on a conditional expectation zT |τ . We shall assume that our baseline pattern of
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variation in the observables Z̄t is such that no small perturbation changes the dimension of the

linear space spanned by the observables; that is, we assume that we are not in a degenerate case

in which Z̄jt is an exact linear combination of other observables, but would cease to be under

an infinitesimal perturbation. This is necessary in order for a partial derivative of a conditional

expectation with respect to Zjt to exist. Our assumption means that the first-order conditions

that we derive here are necessary conditions for an optimal commitment under the assumption

that optimal policy does not involve a degeneracy of this kind. (It does not seem to us likely

that it should, in general; but here we must simply note that our methods apply only to the

case in which it does not.)

Now, under the above observation, one observes that for any ζt in the linear space spanned

by the observables Z̄t in period t, the linear space spanned by Z̄lt, l 6= j and Zjt = Z̄jt + φζt

coincides with the linear space spanned by Z̄t, regardless of the value of φ. Thus, in such a case,

∂zT |τ (sτ )
∂φ

= Es̃t

[
∂zT |τ (sτ )

∂Zjt
(s̃t)ζt(s̃t)

]
= 0.

This is true in particular for ζt equal to the kernel Pt,t(st, s̃t), where st is a fixed arbitrary state

in period t, so that

Es̃t

[
∂zT |τ (sτ )

∂Zjt
(s̃t)Pt,t(st, s̃t)

]
= 0. (A.16)

This property of the partial derivative with respect to Zjt suffices for our purposes. It means

that as long as we are only interested in the expectation of our first-order conditions conditional

upon public information, we can ignore the effects upon conditional expectations of variations in

the way that observables depend upon the history of realizations. This in turn makes constraint

(A.5) irrelevant to the optimization problem. We now show this explicitly by turning to the

first-order conditions associated with our problem.

Differentiating the Lagrangian (A.9) with respect to it(st), and using (A.14) together with

(A.12), we obtain the first-order condition

Es̃tPt,t(st, s̃t)[Lit(s̃t) + ϕ′t+1(s̃t)M4] = 0,

where Lit(st) ≡ Li[yt(st), yt|t(st), it|t(st)]. This can equivalently be written

Lit|t + ϕ′t+1|tM4 = 0. (A.17)

Differentiating with respect to yt(st), we obtain the corresponding first-order condition

L1t + L2t|t + Etϕ
′
t+1M2 + ϕ′t+1|tM3 − δ−1ϕ′tM0 − δ−1ϕ′t|t−1M1 + µ′tD

1 + µ′t|tD
2 = 0. (A.18)
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Condition (A.18) holds for any possible history in any period t ≥ 0, but for t = 0 we set

ϕ0|−1 = 0, so the term δ−1ϕ′0|−1M1 is deleted.

Finally, differentiating with respect to Zjt(s̃t), we obtain,

µjt(s̃t) =
∞∑

τ=t

δτ−tEsτ

{
[L2τ (sτ ) + Eτϕ

′
τ+1(sτ )M3 + µ′τ (sτ )D2]

∂yτ |τ (sτ )
∂Zjt

(s̃t)

+ [Liτ (sτ ) + Eτϕ
′
τ+1(sτ )M4]

∂iτ |τ (sτ )
∂Zjt

(s̃t)− Eτϕ
′
τ+1(sτ )M1

∂yτ+1|τ (sτ )
∂Zjt

(s̃t)

}
,

where for each period τ ≥ t, sτ indexes an arbitrary state in that period. But taking the

conditional expectation of this with respect to It, we obtain, for a state st consistent with the

information It,

µjt|t(st) =
∞∑

τ=t

δτ−tEsτ

{
[L2τ (sτ ) + Eτϕ

′
τ+1(sτ )M3 + µ′τ (sτ )D2]Es̃t

[
∂yτ |τ (sτ )

∂Zjt
(s̃t)Pt,t(st, s̃t)

]

+ [Liτ (sτ ) + Eτϕ
′
τ+1(sτ )M4]Es̃t

[
∂iτ |τ (sτ )

∂Zjt
(s̃t)Pt,t(st, s̃t)

]

−Eτϕ
′
τ+1(sτ )M1Es̃t

[
∂yτ+1|τ (sτ )

∂Zjt
(s̃t)Pt,t(st, s̃t)

]}

= 0, (A.19)

where we use (A.16) to evaluate each term in large square brackets. Then the conditional

expectation of (A.18) with respect to It is given simply by

L1t|t + L2t|t + ϕ′t+1|t(M2 + M3)− δ−1ϕ′t|tM0 − δ−1ϕ′t|t−1M1 = 0, (A.20)

for t ≥ 0, using (A.19). (Here, we let ϕ0|−1 = 0.)

In fact, as discussed in the text (identifying ϕ′t with (ξ′t, ψ
′
t−1)

′ and ϕ′t|t with (ξ′t|t, Ξ
′
t−1)

′),

the first-order conditions (A.17) and (A.20) suffice, along with the structural equations (A.2),

to completely determine the expected dynamics yτ |t, ϕτ |t for all τ ≥ t, given initial conditions

for period t. These results suffice, in turn, to completely determine the optimal evolution of

the state vector yt and the optimal actions it, as a function of the history of realizations of the

exogenous disturbances. Hence, only µt|t (which is always zero) matters for our purposes, rather

than µt itself. Consequently, the relevant first-order conditions, (A.17) and (A.20), are the same

as if we simply neglected the constraints implied by (A.5) in computing the optimal plan.
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