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se, but by the fear of future liquidity shocks.  
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In contrast to the financial institutions literature (e.g., Diamond and Dybvig (1983)),

runs on financial markets have not been a prime subject of inquiry. Our paper of-

fers a minimalist model of a run on a financial market. The main ingredient of

our model is that investors fear (but do not necessarily experience) future liquidity

shocks. This creates two scenarios.

In the good scenario, a risk-neutral public holds most of the risky shares. In-

vestors hit by a liquidity shock in the future will sell to the risk-averse market-

making sector at a “low-inventory price,” which will be close to the risk-neutral

value of the asset. In the good scenario, the market-making sector provides the

public with low-cost insurance against liquidity shocks.

In the bad scenario, every investor conjectures that other investors intend to

sell today, thus causing a “run.” By joining the pool of selling requests today, an

individual investor can expect to receive the average price that is necessary to in-

duce the market-making sector to absorb all tendered shares today. The investor’s

alternative is to not enter the pool and instead to hold onto the shares. In making

this decision, this investor is better off if he can wait out the storm and realize

the eventual expected asset value. However, if he were randomly hit by the possi-

ble liquidity shock, this investor would need to sell his shares behind the rest of

the public. But, with the market-making sector already holding the shares of other

tendering investors, this post-run price will be worse than the average in-run price

today. If the average in-run price is greater than the expected payoff achieved by

waiting, this investor will join the herd and also sell into the run. If other investors

act alike, the conjecture that other investors sell today ends up being verified. In

the bad scenario, the market-making sector holds too many shares and provides

the public with high-cost insurance against liquidity shocks.
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Our bad scenario relies either on random or batch execution. However, if execu-

tion is sequential, investors cannot expect to avoid a later place in line by joining

the selling pool. Thus, the last investors (who now know they are last) are better

off waiting rather than joining the herd and the bad scenario unravels. In reality, fi-

nancial markets lack perfectly sequential execution in at least three circumstances.

First, there is often no sequential execution after a market closure: for example, at

the stock market opening or after a trading halt, markets are often conducted in a

“batch” mode where all orders are crossed at the same price—and, indeed, fears of

stock market runs seem higher around the NYSE opening period.1 Second, even dur-

ing normal trading, sequential execution may break down under the load of orders

flowing in, and investors’ order executions could become random. There is a lot of

anecdotal evidence that sequential execution broke down in the 1987 stock market

crash. Greenwald and Stein (1988, p15f) note that “investors cannot know with any

precision at what prices their orders are executed...trades consummated only min-

utes apart were executed at wildly different prices, so that an investor submitting

a market order had virtually no idea where it would be completed.” A tendering

investor, not knowing his place in the queue, would expect to receive some aver-

age price2—and the chain of perfect sequentiality may not just be broken on the

exchange itself, but also in the communication of brokers with the exchanges and

with their investors. This institutional breakdown could lead to an immediate tran-

sition from a situation in which liquidity shocks are not a major concern (as in a

sequential market) to a situation in which they become paramount (as in a batch

market). Third, in many over-the-counter financial markets, counterparties need

1Examining market-making inventories at the reopening of the stock markets on September 17,
2002 would allow for an interesting test of our model.

2Yet another interpretation would have a seller be unaware whether he received information
about overvaluation/undervaluation before or after other investors, as in Abreu and Brunnermeier
(2001).
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to be found, and when multiple sellers are searching for counterparties, there is

randomness as to who will find the potential buyers first.

It is important to point out that our model is not driven by the liquidity shocks

themselves. Instead, prices and market-making inventories are driven by the fear of

future liquidity shocks. Thus, the liquidity shocks might loom in the future and cause

a run today. If underlying exogenous parameters change, high volatility and runs

(low prices, high market-making inventory) can appear and disappear many times

before the liquidity shocks themselves. An empiricist might not even necessarily

recognize the relevance of actual liquidity constraints.

In a sense, the outcome of our model is perplexing. There are no transaction

or search costs or asymmetric information. Investors are numerous, risk-neutral,

and homogeneous. The market-making sector can be very deep with only slight risk

aversion (small discounts to absorb liquidity). Unlike much of the feedback trad-

ing literature, liquidity shocks can loom in the distance and need not be correlated

among investors. Unlike in the financial institutions run literature, in our financial

markets setting, there are no sequential service constraints, no productive ineffi-

ciencies, and no need for investors to join in a run in order to get anything. Rather,

our investors can attempt to “wait out the storm,” and thereby perhaps do better.

And, yet, our financial market can produce outcomes in which every investor wants

to sell to avoid selling behind the average investor. Consequently, inefficient bear-

ers of risk (the market-making sector) hold too much of the risky asset. Moreover,

there is an accelerator effect whereby small changes in the likelihood of a liquidity

shock can have big effects on the allocation of risk and the equilibrium price. The

intuition that runs can be driven by investors fearing “to come in last” is solid, and

resonates with many who witnessed the 1987 crash.
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The main assumptions and insights of the model seem both realistic and robust.

Indeed, the analytics of the model are simple, relying only on situations in which

sequential execution breaks down, and on some split of participants into a (poten-

tially only slightly) risk-averse market-making sector and an outside sector living in

fear of potential future liquidity shocks. Not requiring much machinery, the model

hints that run equilibria may not be esoteric but intrinsic to financial markets with

capacity limits (just as they are intrinsic for financial institutions). This is not to

argue that runs are frequent (indeed, they are very rare!), but that their occurrance

is not logically far-fetched.

After working with exogenous liquidity shocks in Section II, we introduce mar-

gin constraints in Section III. These constraints endogenize the probability of future

investor liquidity concerns, so that a price drop can quickly trigger investors’ fear

of a liquidity run, which in turn can trigger a further price decline, further mar-

gin constraints, etc. In this circumstance, the liquidity run becomes a short-term

high-frequency phenomenon, and normal transaction channels may be quickly over-

whelmed.

Our models work even if investor shocks are independent; however, if investor

shocks are independent, the question of why unaffected individuals do not join the

market-making sector becomes pertinent. Our paper contains a long discussion

thereof on page 18, but we believe this is indeed how liquidity runs remain limited

and how they come to an end: unaffected investors eventually join the market-

making sector, earning a positive rate of return for doing so, which compensates

them for their residual risk-aversion. With buy and sell orders flowing in more

smoothly, sequential order is restored again. In one sense, the question as to why

the market-making sector does not expand is similar to why banks in a Diamond and
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Dybvig (1983) do not find themselves quickly additional backers to avoid inefficient

liquidation.3 Such backers could earn positive expected rates of returns. Unlike in

the financial intermediation sector, we believe that this process can occur faster in

a financial market sector—and it is this process that naturally limits the depth and

duration of liquidity runs. Taken together—widespread and positively correlated

endogenous liquidity fears and runs interacting with margin constraints—allow our

model to capture at least some of the causal dynamics during a stock market crash.

Our paper now proceeds as follows: Section I lays out the model. The model’s

emphasis is on simplicity. Section II describes the equilibrium under CARA and

CRRA market-making utility. Although we solve the model under perfectly corre-

lated liquidity shocks, we then show that the intuition of our model survives even

if shocks are uncorrelated. (This section also offers an equilibrium model for the

market-making sectors’ inventory in ordinary times.) Section III adds margin con-

straints to our model, which endogenizes the liquidation probability. Section IV

discusses the economics of the equilibrium. Section V relates our work to earlier

papers, particularly the bank-run literature (Diamond and Dybvig (1983)). And Sec-

tion VI concludes.
3After all, banks have existing financial links. A similar question is why banks do not simply

sell their loans for (more) cash to other banks. The answer is probably that time and imperfect
information about asset quality play a role—but ultimately, this is how bank runs can come to an
end—and with a net profit for some willing outsiders.
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I The Basic Model Setup

Time �

Investors Trade.
Focus of our Paper.

t = 0

Possible Liquidity Shock.
Shocked Investors Trade.

t = 1

Asset Value
is realized.
t = 2

We consider a model with three dates (t = 0,1,2) and two assets: a risk-free bond

in infinitely elastic supply with a gross payoff of $1 at date two and a risky asset

(henceforth, “stock”) with gross random payoff of Z̃ at date two. For simplicity, we

normalize the date 0 and date 1 price of the bond to be $1. The date 0 and date 1

price of the stock is determined endogenously.

Shares in the stock trade at date 0 and date 1. There are two types of traders in

our market: atomistic individual investors and a competitive market-making sector.

Market-makers constitute an entire sector which encompasses not just the spe-

cialist, but all traders willing to absorb shares upon demand, i.e., regardless of the

(fear of) liquidity shocks. Still, it is reasonable to attribute a finite risk absorption

capacity to this sector and thus we assume the market-making sector is risk-averse

in aggregate. For example, many institutions and traders do not seem willing to

absorb shares during a financial markets crash, and instead prefer to wait it out.4

We also assume that the market-making sector is competitive and is characterized

4Gammill and Marsh (1988) describe the broader market-making sector during the 1987 crash in
great detail. Dennis and Strickland (2002) find that institutions are more likely than retail investors
to sell into a dropping market. Indeed, portfolio insurers even precommit to such strategies.
Amihud, Mendelson, and Wood (1990) document the liquidity decline during the 1987 crash, and
describe that “Orders could not be executed, and information on market conditions and on order
execution was delayed. Consequently, much of the burden of responding to the unexpected order
flow fell on the exchange specialists, market makers, and other traders with immediate access to
the trading floor.” Thus, the market-making sector may be smaller than often assumed, and suffer
a steeper and quicker price drop than sketched by our model.
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by a “representative” market-maker with date 0 wealth W0 and date 0 inventory of

zero shares.

Individual investors are identical and endowed with shares which sum to the

total supply of shares (normalized to one). Individual investors are assumed to be

risk-neutral. Importantly, individual investors face a potential liquidity shock at

date 1. We model liquidity shocks in various ways. In Section II, we assume that

each individual investor may be forced to liquidate her shares at date 1 with an ex-

ogenous probability s. After showing that this leads to a non-zero market-making

inventory at date 0, we parameterize the liquidity shocks and market-making util-

ity function. The liquidity shocks are assumed to be perfectly correlated across

investors in Subsection II.A and independent across investors in Subsections II.B

and II.C. In Section III, we endogenize the date 1 liquidation probability s to depend

on the date 0 stock price by introducing margin constraints. Each of these liquidity

assumptions has been employed in related literature, and each offers its own trade

off of realism and model cleanness.

To recap, there are two important differences between the market-making sector

and individual investors. First, individual investors are assumed to be risk-neutral

and the market-making sector is risk-averse (e.g., Diamond and Verrecchia (1991)).

The former assumption is not crucial to the analysis but captures the fact that the

investing public has considerably more risk absorption capacity than the market-

making sector, and that, in a Pareto efficient outcome, shares should be held by

the investing public (the most efficient bearers of risk). Second, only individual

investors face a potential liquidity shock at date 1. This provides the motivation

for trade between individual investors and the market-making sector at both dates

0 and 1. Moreover, this ensures that only the market-making sector (in equilibrium)
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is willing to buy shares in a run situation, at a price that depends on the market-

making sector’s risk-tolerance. An investor who learns that he is not subject to any

future forced liquidation can join and thereby deepen the market-making sector.5

Individual investors are assumed to submit market orders. Limit orders could

potentially deepen the market-making sector, and are thus not fully considered in

our model. Greenwald and Stein (1988, footnote 16) also note that “limit orders do

not represent an especially attractive alternative under the conditions of October

19th and 20th. An investor’s threshold price should depend on his most current in-

formation, which includes the current market price. Under very volatile conditions,

this can mean resubmitting limit orders on an almost continuous basis, which would

have been extremely difficult to accomplish.”

To close the model, we assume that the equilibrium price is determined by a

zero-utility condition on the representative market-maker. Specifically, in our batch

execution model, we assume that the price of the stock at each date is set so that

the representative market-maker is indifferent between buying the entire batch and

holding his inventory. Because the representative market-maker is risk averse, this

price is typically decreasing in his inventory. Our zero-utility condition is anal-

ogous to Kyle’s zero-expected-profits condition for a risk-neutral market-making

sector and can be justified by the joint assumptions that the market-making sector

is competitive and market-makers are free to enter or exit after each date.

There are two equivalent interpretations to the market microstructure which de-

termines the equilibrium price—and both of them can be shown to lead to the same

market-maker demand function and thus identical solutions for our model. One
5Naturally, this investor must have some risk-aversion or limited capital. Otherwise, the market-

making sector itself becomes infinitely deep when the first investor appears. Section IV.A discusses
what happens when the aggregate risk tolerance changes in a crisis.
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interpretation is that all orders are batched and executed at an identical “average”

price. For simplicity of exposition, we proceed using this specific assumption only.

Sell orders from individual investors at each date are batched and then executed

at an average price that yields zero utility for the representative market maker.

Another interpretation is that orders are executed sequentially (with lower prices

for subsequent trades) but in random order. In both cases the investor submits a

market order and is unsure of the exact price at which her shares will be executed.

In the first interpretation, we must impose a zero-utility condition in each period

while in the second interpretation we must impose a zero-utility condition on each

trade. Thus, our model applies equally to batch auction markets (e.g., at the NYSE

stock market opening and after a trading halt); and to over-the-counter markets and

to stock market crashes, when limited communication lines to the market-making

sector can change the typical deterministic sequential execution into random exe-

cution.6

II Equilibrium With Exogenous Liquidity Shocks

In what follows, we assume that individual investors are endowed with the entire

supply of shares at date 0 (consistent with an efficient allocation of risk). We an-

alyze only the situations in which individual investors may wish to sell shares at

date 0 due to the fear of a liquidity shock at date 1. These situations are the most

6An alternative setup is provided in Diamond and Verrecchia (1991). Their price setting mech-
anism differs from ours in two respects: market makers earn surplus on inframarginal trades
and they set prices by solving a dynamic optimization problem. The latter implies that market
makers forecast future buys and sells when setting today’s price. Whether or not market-makers
earn surplus is not important for the qualitative results of our model. Solving the market-makers’
price function in a dynamic optimization problem is not tractable in our setup. Nonetheless, our
qualitative results would still obtain, because the important feature of our model is that the price
at t = 1 in the event of a liquidity shock is lower than the price at t = 0.
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interesting because we intend to demonstrate that the fear of liquidity shocks can

lead to substantial market-maker inventories and thus inefficient allocations of risk.

Therefore, we ignore situations in which individual investors want to buy shares at

date 0.

Consider an individual investor who conjectures that a total of α shares will be

sold by individual investors to the market-making sector at date 0 and let p0(α )

denote the date-0 price set by the market makers when α sell orders arrive at date 0.

If this investor also sells her shares at date 0, she will expect to receive the price

p0(α ). However, if this investor chooses not to sell her shares at date 0 then either

(i) she will be forced to liquidate her shares with probability s at date 1 or (ii) she

will not be forced to liquidate her shares with probability 1 − s at date 1 and will

optimally wait to receive the expected value of the stock, µ, at date 2. If liquidity

shocks are perfectly correlated (as in Subsection A), the remaining proportion (1−α)
of shares will be liquidated at date 1 if the liquidity shock occurs. If liquidity shocks

are independent (as in Subsection B), the Law of Large Numbers ensures that the

proportion (1−α)·s of shares will be liquidated at date 1. Let p1( q1(α);α) denote

the date-1 price set by the market-makers when they hold α shares of inventory and

q1(α ) new sell orders arrive at date 1. If this investor does not sell at date 0 she

will expect to receive s·p1( q1(α);α) + (1 − s)·µ. Thus, it will be optimal for this

investor to sell if and only if

p0(α ) ≥ s·p1( q1(α);α)+ (1− s)·µ. (1)

Notice that if an investor is forced to liquidate at date 1, she receives a lower

selling price than if she had sold at date 0. A risk-averse market-making sector
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implies that p′( · ) < 0, i.e., the market-making sector will require a lower price

(greater risk premium) if it has to buy a greater number of shares. However, if she

is not forced to liquidate at date 1, she receives the expected value of the stock which

is greater than the selling price at date 0. The decision to sell at date 0 depends

critically on the investor’s beliefs about whether other investors will choose to sell

at date 0.

We consider only symmetric Nash equilibria.

Definition 1 Let F(α ) denote the expected net benefit of selling shares at date 0

(compared to not selling) when the investor conjectures that α shares will be sold at

date 0. If liquidity shocks will be perfectly correlated across investors,

F(α ) =
if tender today︷ ︸︸ ︷
p0(α ) −

if forced to liquidate tomorrow︷ ︸︸ ︷
s·p1( q1(α);α) −

if liquidation
not necessary︷ ︸︸ ︷
(1− s)·µ . (2)

where q1(α ) = (1−α) in the perfectly correlated shock case, and q1(α ) = s·(1−α)
in the independent shock case. Then (i) waiting (α� = 0) is a pure strategy Nash

equilibrium iff F(0 ) ≤ 0; (ii) selling (α� = 1) is a pure strategy Nash equilibrium iff

F(1 ) ≥ 0; and (iii) α� ∈ (0,1) is a mixed strategy Nash equilibrium iff F(α� ) = 0.

We can immediately demonstrate that (α� = 0) is not a symmetric Nash equilib-

rium if the probability of a liquidity shock is positive.

Theorem 1 Although market-makers are risk-averse and investors are risk-neutral

and not yet liquidity-shocked, the market-making sector holds inventory at date 0 if

there is a positive probability of a liquidity shock (s) at date 1.

Proof: For s > 0, F(0 ) > 0, so α� = 0 is not an equilibrium. �
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The intuition is that if the market-making sector holds zero inventory, it would

be willing to accept the first share at its risk-neutral valuation today. Thus, the first

seller would avoid the liquidation risk tomorrow without any price penalty today.

Unfortunately, there is little more we can say without parameterizing returns and

the representative market-making sector’s utility function in order to determine the

pt( · ) functions. Thus, we now consider two cases. In the first case, we assume that

the market-making sector has constant absolute risk aversion (CARA) preferences

and the stock payoff is distributed normal. We solve for the symmetric Nash equi-

libria with perfectly correlated liquidity shocks in Subsection A and independent

liquidity shocks in Subsection B. The CARA plus normality assumptions allow us to

obtain simple closed-form solutions but at the expense of rich comparative statics.

In the second case, we assume that the market-making sector has constant relative

risk aversion (CRRA) preferences and the stock payoff is distributed binomial. (For

brevity, we solve only for independent liquidity shocks in the CRRA case.) The CRRA

example yields richer comparative statics, but it can only be solved numerically.

A Example 1: CARA utility, normally distributed payoffs, and per-

fectly correlated liquidity shocks

In this example, we assume that (i) the stock payoff Z̃ is normally distributed with

mean µ and variance σ 2, (ii) the market-making sector has the negative exponential

utility function u(w) = −e−γ·w where γ is the coefficient of absolute risk aversion,

and (iii) liquidity shocks are perfectly correlated.

First, we derive the equilibrium pricing function, p0(α ). By assumption, this is

the price at which the representative market-maker is indifferent between buying α
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shares at date 0 and maintaining zero inventory of shares. Under the assumptions

of CARA preferences and normally distributed stock payoffs, the price p0(α ) solves

E[−e−γ·W̃2 ] = E[ e−γ·W0 ] =⇒ E[ W̃2 ]− γ·Var[ W̃2 ]/2 = W0 . (3)

where W̃2 ≡ W0 +α·(Z̃ − p0). Solving yields p0(α ) = µ − γ·σ 2·α/2.

Now we derive the price that obtains at date 1 in the event of a liquidity shock.

Let p1(1 − α;α) denote the price at which the representative market-maker is in-

different between buying (1−α) new shares at date 1 and maintaining an inventory

of α shares. Under the assumptions of CARA preferences and normally distributed

stock payoffs, the price p1(1−α;α) solves

E[ W̃2 + (1−α)·(Z̃ − p1) ]− γ·Var[W̃2 + (1−α)·(Z̃ − p1)]/2

= E[ W̃2 ]− γ·Var[ W̃2 ]/2

=⇒ p1(1−α;α) = µ − (1+α)·γ·σ 2/2 . (4)

Substituting p0(α ) and p1(1−α;α) into our definition of F(α ) yields the fol-

lowing result:

Theorem 2 If liquidity shocks are perfectly correlated across investors there is a

unique symmetric Nash equilibrium with

α� =



(

s
1−s
)

if s ≤ 1/2

1 if s > 1/2
. (5)

Proof: Substitute the pricing functions into equation 2. Note that F(0 ) > 0 for all s > 0 and
Fα� , the derivative of F with respect to α�, is negative. Thus, there are two possibilities. If
F(1 ) ≥ 0 then there is a unique pure strategy equilibrium α� = 1 and if F(1 ) < 0 there is
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a unique mixed strategy, α�, where F(α� ) = 0. For s > 1/2, F(1 ) > 0 thus α� = 1. For
s ≤ 1/2 solving for α� yields the result. �

Equilibrium market-maker inventory increases in the probability of a liquidity

shock. The efficient outcome would be for market makers to hold no inventory at

date zero, but the desire of investors to preempt other investors forces the risk-

averse market-making sector to inefficiently hold shares. This inefficient allocation

of risk is reflected in a lower equilibrium price for the stock. Moreover, the market-

maker inventory is convex in the liquidation probability. This is an “accelerator”

effect: fear of other investors liquidating has an immediate influence on each in-

vestor’s own decision to liquidate. For very small values of s, i.e., very little chance

of future liquidity shocks, an investor sees other investors waiting and thus does

not mind waiting herself. The market-making sector needs to hold almost no shares

today (α� close to zero) and the outcome is close to the Pareto-optimum. With in-

creasing s, the fraction of tendering investors rises ever more quickly since the first

derivative of α� with respect to s is ∂α�/∂s = 1/(1− s)2 which is increasing in s.

In fact, even if there is “only” a 50-50 chance of investors facing a future liquidity

shock, and even if the market-making sector is extremely risk-averse (γ →∞), risk-

neutral investors find themselves unwilling to hold any stock today. Naturally, this

is an extremely inefficient outcome.

Although these are not distinct equilibria, there is a flavor of two distinct sce-

narios here: a good scenario, in which the probability of liquidation is low, and the

market-making sector is not holding much inventory; and a bad (or run) scenario,

in which the probability of individual liquidation is average, and the risk-averse
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market-making sector has to absorb all shares in the economy.7

Interestingly, with CARA utility, the risk-absorption capacity of the market-making

sector (γ) and the riskiness of the stock (σ ) play no role in the equilibrium outcome

(α�). Expanding the market-making sector in both good and bad times would not

solve the allocation problem created by the fear of facing a liquidity shock.8 The

reason is that there are two countervailing forces when the market-making sector is

deep (or payoff variance is low): On the one hand, the average in-run price is higher

because the market-making sector is close to risk neutral. On the other hand, the

marginal price obtained after the run is also higher. In the case of constant ab-

solute risk aversion preferences, these two effects exactly offset each other in the

investors’ selling decision. With CARA preferences, the market-making price is lin-

ear in inventory. Although risk aversion and payoff variance affect the slope of the

linear demand curve, they do not affect the relation between average and marginal

prices. Thus, the tradeoff between tendering today and waiting is independent of

these parameters. The prime ingredient in this version of our model is investors’

fear of future liquidation, s.

7 It is straightforward to show if s ≤ 1/2 the volatility of stock returns (R̃0,1 ≡ (p1 − p0)/p0
) is

given by

σ( R̃0,1 ) = γ·σ 2·s
2·(1− s)·µ − γ·σ 2·s . (6)

As expected, the underlying value volatility σ 2 is distinct from the stock return volatility. The
volatility of stock returns increases in s, γ, and σ 2 and decreases in µ. Moreover, the change in
volatility increases in s. Thus, seemingly small changes in liquidation probability s can significantly
change market volatility.

8Of course, when the market-making sector is deep, prices are close to risk-neutral even if no
risk-neutral investor is willing to hold shares and thus the welfare loss is small.
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B Example 2: CARA utility, normally distributed payoffs, and in-

dependent liquidity shocks

The key difference between the perfectly correlated and independent liquidity shock

cases is that in the former case, all investors who did not sell at date 0 must liquidate

with probability s at date 1 whereas in the latter case, proportion s of investors who

did not sell at date 0 must liquidate with probability 1 at date 1.

The derivation of the equilibrium price function at date 0 is the same in both

cases. Thus, as we demonstrated above, if an individual investor conjectures that

a total of α shares will be sold by individual investors to the market-making sector

at date 0, she will still receive the price p0(α ) = µ − γ·σ 2·α/2 if she sells at

date 0. However, as stated earlier, because liquidity shocks are independent across

individual investors we know with probability one (by the Law of Large Numbers)

that a proportion (1−α)·s of shares will be liquidated at date 1. Let p1( (1−α)·s;α)
denote the date-1 price set by the market makers when (1 − α)·s new sell orders

arrive at date 1 and the market-making sector already heldα shares. By assumption,

p1( (1−α)·s;α) is the price at which the representative market-maker is indifferent

between buying (1 − α)·s new shares at date 1 and maintaining an inventory of α

shares. Under the assumptions of CARA preferences and normally distributed stock

payoffs, the price p1( (1−α)·s;α) solves

E[ W̃2 + s·(1−α)·(Z̃ − p1) ]− γ·Var[W̃2 + s·(1−α)·(Z̃ − p1)]/2

= E[ W̃2 ]− γ·Var[ W̃2 ]/2

⇒ p1( s·(1−α);α) = µ − [2·α+ (1−α)·s]·γ·σ 2/2 . (7)
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Replacing the perfect correlation shocks p1( (1− α);α) from the previous section

with its independent shocks equivalent p1( (1−α)·s;α) in our definition of F(α )

yields the following result:

Theorem 3 If liquidity shocks are independent across investors there is a unique

symmetric Nash equilibrium with

α� =



(

s
1−s
)2

if s ≤ 1/2

1 if s > 1/2
. (8)

Proof: Substitute the pricing functions into equation 2, with q1(α ) = s·(1−α). Note that
F(0 ) > 0 for all s > 0 and Fα� , the derivative of F with respect to α�, is negative. Thus,
there are two possibilities. If F(1 ) ≥ 0 then there is a unique pure strategy equilibrium
α� = 1 and if F(1 ) < 0 there is a unique mixed strategy, α�, where F(α� ) = 0. For
s > 1/2, F(1 ) > 0 thus α� = 1. For s ≤ 1/2 solving for α� yields the result. �

Again, market-maker inventory increases in the probability of a liquidity shock,

and the model features the “accelerator” effect: fear of other investors liquidating

has an immediate influence on each investor’s own decision to liquidate. The first

derivative of α� with respect to s is ∂α�/∂s = 2·s/(1− s)3. Thus, around s = 0.23,

the fraction of investors that unload their shares onto the market-making sector

changes one-to-one with changes in s. Above s = 0.23, even small changes in the

perceived fraction of investors can cause large changes in market-making inventory

and equilibrium pricing. Again, even if there is “only” a 50-50 chance of investors

facing a future liquidity shock, and even if the market-making sector is extremely

risk-averse (γ → ∞), risk-neutral investors find themselves unwilling to hold any

stock today.

Unlike in the perfectly correlated shocks version of our model, in this indepen-

dent liquidity shock version of our model, we know with certainty that the price at
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date 1 will be lower than the price at date 0. This creates an arbitrage opportunity.

One might reasonably ask why a market-maker would buy shares at date 0 when

she knows for sure that the price will be lower at date 1. But this is “just” a model

artifact caused by our law-of-large number assumption, though: In our model, there

is no uncertainty about the number of liquidity shocked investors next period. In

reality, however, there are many sources of uncertainty that make it possible that

the price at date 1 will be higher than the price at date 0. For example, we could

introduce some uncertainty about whether any liquidity shocks will appear. Or, a

change in the environment which make liquidity shocks unlikely for some investors

will cause them to buy the stock at date 1 and drive up its price. One might also rea-

sonably ask why investors do not short the stock at date 0 and buy it back at date 1.

Shorting stock, however, might be extremely difficult during such runs. Alterna-

tively, uncertainty about the timing of the stock price bounce back can potentially

introduce a source of risk (costly margin calls) that limits the aggressiveness of

short positions at date 0 (see, e.g., Liu and Longstaff (2000)).9

A more pertinent question—because it is not an artifact of the lack of uncer-

tainty in the number of liquidity shocked investors—is why noone simply waits to

be a standby investor to buy only at the bottom of the crash. But, this question

is bigger than just our model. What prevented an investor from becoming rich

during the 1987 (or any other) crash? Recent U.S. crashes and mini-crashes indeed

showed immediate bouncebacks, and it is these temporary liquidity and price drop

phenomena that require (at least a partial) explanation.

9Rational expectations models relying on information are similarly concerned with breaking
backward induction arbitrage links include Dow and Gorton (1994) and Allen, Morris, and Shin
(2002). See also Shleifer and Vishny (1997).
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There are a number of answers. First, there may be (unmodelled) uncertainty

about the timing of the end of the crash and about a simultaneous revision in the

expected return of the assets. Indeed, we sometimes see persistent market calami-

ties following financial market crashes, we sometimes see sharp drops followed

by immediate reversals—presumably with investors recognizing that their liquidity

constraints will not bind, that they can safely join the market-making sector, and

that the good state is about to return (see footnote 4). Such investors should do

well. Indeed, we believe this is how temporary crashes ultimately end: with enough

investors moving from the liquidity-fearing sector to the market-making sector. Sec-

ond, execution in the final stage, the termination of the run, may be as uncertain

as it is in the run initiation. A standby investor may try to wait until the bottom of

the market to buy shares for a song, but he may not be sure whether his buy orders

will be executed at the immediate last-investor run price or whether he may miss

this opportunity altogether. After all, the price in our model drops sharply and

then rebounds sharply back to µ. To the extent that other investors also wish to

jump back in, and to the extent that sequential execution is fragile or non-existent,

the spirit of our model is not incongruent with the fact that neither of the authors

ended up excessively wealthy after the last stock market crash. Third, one may

wonder why in a more dynamic context, there is not enough buffer stock to prevent

such liquidity runs in the first place. But it is costly to create stand-by liquidity.

For example, it would be costly for a large investor to carry zero-inventory most of

the time (so as to be almost risk-neutral) and who is lurking around only for the

opportunities presented in a crash. If crashes are rare, this may not be a profitable

use of resources (Greenwald and Stein (1988, p.19)). Similarly, individuals may not

find it in their interests to maintain a buffer stock of very liquid assets that could

ensure them against the rare probabilities of liquidity shocks.
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In sum, we believe liquidity runs and crashes to be sufficiently rare phenomena

that moderating market forces may not be sufficiently profitable to grip instanta-

neously, but may require a short period of time.

C Example 3: CRRA utility

Although the CARA equilibrium illustrates the importance of the fear of liquidity

shocks, the linearity of the market-maker’s demand function reduces the richness

of its comparative statics. To obtain a non-linear demand curve, we now assume

that the representative market-maker has constant relative risk aversion (CRRA)

preferences of the form u(w) =
(
w1−γ/1− γ

)
where γ is the coefficient of relative

risk aversion. We further assume that the stock payoff Z̃ takes on one of two values:

U with probability π and D with probability 1 − π . Absence of arbitrage requires

U > pt > D.

Again, the equilibrium pricing function, p0(α ), ensures that the representative

market-maker is indifferent between buyingα shares at date 0 and maintaining zero

inventory of shares. Let W2(z) ≡ W0+α·(z−p0) for z = U,D. In this example, the

price p0(α ) solves

(
1

1− γ

)
·
{
π·[W2(U)]1−γ + (1−π)·[W2(D)]1−γ

}
=
(

1
1− γ

)
W 1−γ

0 . (9)

This price function is the same whether liquidity shocks are perfectly correlated or

independent across investors.
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If a liquidity shock occurs and they are perfectly correlated across investors the

price p1(1−α;α) solves

(
1

1− γ

)
·
{
π·[W2(U)+ (1−α)·(U − p1)]1−γ + (1−π)·[W2(D)+ (1−α)·(D − p1)]1−γ

}

=
(

1
1− γ

)
·
{
π·[W2(U)]1−γ + (1−π)·[W2(D)]1−γ

}
. (10)

If a liquidity shock occurs and they are independent across investors the price

p1( (1−α)·s;α) solves

(
1

1− γ

)
·
{
π·[W2(U)+ s·(1−α)·(U − p1)]1−γ + (1−π)·[W2(D)+ s·(1−α)·(D − p1)]1−γ

}

=
(

1
1− γ

)
·
{
π·[W2(U)]1−γ + (1−π)·[W2(D)]1−γ

}
. (11)

Unfortunately, there are no closed-form expressions for the price functions,

p0(α ), p1( (1 − α);α), and p1( (1 − α)·s;α). However, a simple numerical algo-

rithm can find them exactly. We can then use a simple search algorithm to find the

equilibrium inventory of the market-making sector (α�).

Although we do not have a general proof of uniqueness for α� nor for the mono-

tonicity of the comparative statics for α� with respect to important parameters of

the model, an examination of a large region of the relevant parameter space yields

consistent results. For the numerical examples that follow, we have chosen reason-

able base-case parameters to represent market-maker wealth (roughly 1/10 of the

value of the risky asset) and risk-aversion (γ = 3). For all cases, it can be shown

that α� is unique. Figure 1 graphs the market-making sector’s equilibrium holdings

(α�) as a function of exogenous parameters for the case of independent liquidity

shocks across investors. The numerical results are qualitatively similar when liq-
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uidity shocks are perfectly correlated across investors. Typically, we find that the

market-making sector holds more inventory (α�)

• when the market-making sector has greater wealth;

• when the market-making sector has greater risk-absorption capacity (risk-

aversion coefficient γ is lower);

• when the asset is less risky (U −D is smaller holding the mean payoff πU +
(1−π)D constant);

• when the probability of a liquidity shock (s) is higher.

We already know from the CARA case that it is not the steepness of the de-

mand curve itself (i.e., the “depth”) that matters to market-making inventory: higher

risk-capacity for the market-making sector does not only allow investors to unload

shares at an attractive price in a run, but it also allows them to enjoy a better price

after a run. Instead, what matters is the second derivative of the demand curve.

Just as in the CARA case, fear of liquidity can cause the run, and the sensitivity of

α to s increases in s. But, in the CRRA case, the other parameters (such as wealth,

risk-aversion, and riskiness) matter for the relative share allocations to the extent

that they bend the market-making demand function.

III Equilibrium With Margin Constraints

Margin calls, which force investors to sell more shares if the share price declines,

are well-known to be important during financial market crashes (see, e.g., Chowdhry

and Nanda (1998)). Our model does not require margin calls, but margin calls can
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endogenize liquidity constraints, and can produce very high-frequency “phase tran-

sitions” (as well as multiple equilibria). They can amplify the already existing liq-

uidity run accelerator effect.

We now sketch a simple model of margin constraints. As before, the stock payoff

is normally distributed with mean µ and variance σ 2. The representative market-

maker has CARA utility with risk aversion parameter γ. Suppose that every investor

has financed the purchase of the stock with margin. We assume that the investor

will face a margin call, and will be forced to liquidate if her wealth (including the

stock) falls too much. If an investor cannot meet the margin requirement, she will

be forced to liquidate her share at date 1. If she can meet the margin requirement,

it will be optimal for her to do so and hold the stock to date 2. Below, we propose

a reasonable specification contrasting the component of external income that can

be allocated to covering margin constraints to the amount of margin that investors

have to provide.

Suppose, for example, a representative investor had purchased shares at price

p (determined outside the model), and let m ∈ [0,1] represent the proportion of

the investment financed with margin. Thus, if the price falls from p to p0, this

investor would need to come up with cash of m·(p − p0) in order to hold onto the

shares until the final period. One could then interpret the margin constraints to

be triggered by a decline in price from the purchase price p to p0 (a return), rather

than just being driven by a low price level per se.

Each investor has an external source of income at date 0. This external income W̃
is assumed to be distributed uniformly over the interval [0, B] and is independent of
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any stock price movements. Therefore, the endogenous probability of liquidation

is given by

s(α ) = Prob[W̃ <m·(p − p0)] = m·(p − p0)
B

= m·(p − µ)
B

+
(
m·κ
B

)
·α

≡ c0 + c1·α , (12)

where κ ≡ γ·σ 2/2, c0 ≡m·(p − µ)/B, and c1 ≡m·κ/B (> 0). We consider only the

case where the income shocks are perfectly correlated, i.e., all or no investors face

a liquidity shock at date 1 depending on the realization of W̃ .10

Theorem 4 If (i) B > p > µ > κ where κ ≡ γ·σ 2/2; (ii) B is sufficiently large; and (iii)

income shocks are perfectly correlated, then there is a unique tendering equilibrium,

α∗ ∈ (0,1), in which α∗ increases in m, κ, and (p − µ) and decreases in B.11

Proof: In the perfectly correlated income shocks case we have p0 = µ−κ·α if α proportion
tender at date 0, and p1 = µ − κ·(1+ α) if all remaining investors are forced to liquidate
at date 1. Substituting these two price functions and the liquidation probability (12) into
(2) yields

F(α) ≡ κ·[(c0 + c1·α)·(1+α)−α] . (13)

First, note that F(0) = κ·c0 > 0, so α = 0 is not an equilibrium. Second, note that
F(1) = κ·[2·(c0 + c1)− 1] < 0 by assumptions (i) and (ii), so α = 1 is not an equilibrium.
Finally, Fα = κ·[c0 + c1 + 2·c0·α − 1] < 0 by assumptions (i) and (ii), so there is a unique
α∗ ∈ (0,1) such that F(α∗) = 0.

The comparative statics results follow from the facts that (i) Fc0 = κ·(1 + α) > 0; (ii)
Fc1 = κ·α·(1 + α) > 0; (iii) c0 is increasing in m and p and decreasing in B and µ; (iv) c1

is increasing in m and κ and decreasing in B; and (v) Fκ = [(c0 + c1·α)·(1 + α) − α] +
κ·α·(1+α)·

(
∂c1
∂κ

)
> 0 when B is sufficiently large.

10The independent liquidity shocks case solution involves cubic equations. It is difficult to find
the parameter restrictions ensuring a unique equilibrium so that we can do the comparative statics.
However, there is no reason why the intuition of the equilibrium discussed in this section would
not carry over to the independent liquidity shock scenario.

11The restrictions (i) B > p > µ > κ and (ii) B sufficiently large are made for the following
reasons: The assumption µ > κ ensures that p0 > 0 so we get a meaningful margin requirement.
The assumption p > µ ensures that we are considering cases where the price of the stock has
fallen from the time it was purchased so that we can consider the effect of margin calls. Finally,
the assumption B sufficiently large ensures an interior solution for α∗. If B is not large enough
the probability of not meeting the margin call at date 1 is very high and the only equilibrium we
get at date 0 is everyone tendering (which has no interesting comparative statics).
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The intuition for the comparative statics are straightforward:

Margin Constraint (m): the more investors can borrow, the greater will be the ten-

dering proportion at date 0, because it is less likely that investors will be able

to meet margin calls at date 1.

Original Purchase Price (p): Similarly, the more investors paid relative to the cur-

rent mean (p − µ), the greater the tendering proportion at date 0, because it

is less likely investors will be able to meet the margin call at date 1. One way

to interpret p − µ is the innovation in beliefs from purchase of the stock to

now. This states that if there is a big negative shock to beliefs, then margin

calls exacerbate the price move through early liquidation: this is overreaction

to bad news. However, there is no overreaction to good news, because there

is not a margin call in that case!

Effective Variance (κ): The greater the effective variance, the more likely investors

face margin calls at date 1, because the market-makers’ demand curve is more

steeply sloped. Thus, the higher is the tendering proportion at date 0.

Expected Income (B): The higher external expected income is likely to be (to meet

future margin calls), the smaller is the tendering proportion at date 0.

Our particular underlying margin assumptions have produced the particular lin-

ear mapping of price declines into liquidation probabilities in (12). However, this

equation should only be considered an illustrative sketch for brevity of exposition:

in the real world, different investors would purchase at different price points and

face different margin constraints. The important aspect of our sketch is the pres-

ence of some positive feedback trading in the event of a crash, where a lower price
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can also increase the probability of future liquidation needs, which gave us an ex-

plicit specification for s(p0 ) and therefore s(α ). The liquidity run phenomenon

then interacts with and rationally amplifies this feedback trading (Shleifer (2000)).

One could also entertain altogether different mechanisms that accomplish the link

from stock prices to liquidation probabilities. For example, one could write down

a model in which risk management systems, principal-agent problems, or limited

horizons induce investors to be more likely to liquidate when stock prices fall. Or,

one could estimate an empirical relation on the data itself without writing down

a specific model. Thus, one could entertain other reduced-form price-liquidation

probability linkages. Indeed, for the special case c0 = 0 and c1 = 1, there are three

equilibria: one stable one in which no investor tenders and therefore no investor

is afraid of liquidation; a stable one in which every investor tenders because every

investor tenders; and one in which there is an interior tendering equilibrium. In

this case, one might even observe a sudden equilibrium switch, where one moment

noone was afraid of a liquidity shock and the next moment everyone is afraid of

liquidity shock. The relationships between prices and liquidation probabilities need

not be linear either. However, further such modeling could detract from the main

intuition of our paper: when there are some feedback effects from the underlying

stock price to liquidation probabilities, the fear of future needs to liquidate can

cause potentially rapid and violent liquidity runs.
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IV Discussion, Extensions, and Welfare

A Preventing Runs and Front-Running: Time-Varying Market Depth

The obvious question is what mechanisms could prevent the need for the market-

making sector to absorb run inventory from the public.

The first answer lies in the enforcement of perfect sequentiality. With sequential

execution the last investors (who now know they are the last investors!) would be

better off just waiting it out instead of being the last in-the-run investors. This

can unravel the tendering equilibrium. In response to the 1987 crash, the NYSE

massively expanded its communication infrastructure, a mechanism to prevent the

conversion of the sequential market into a random-execution market in times of

declines.

Interestingly, a belief that one can front-run others (get their share sales exe-

cuted with higher priority) can encourage run equilibria because it increases the ex-

pected payoff to tendering early.12 Naturally, in an equilibrium with homogeneous

agents, noone can expect to front-run anyone else. However, in a real-world context,

some heterogeneous investors may rationally or irrationally believe in their ability

to front-run. Portfolio insurance may be an example of a strategy that attempts to

precommit to withdraw funds in the case of large moves, which will thus worsen the

liquidity effects described in our own paper. Leland and Rubinstein (1988, p.46f)

describe some possible front-running in 1987: “With the sudden fall in the market

during the last half hour of trading on October 16, many insurers found themselves

with an overhang of unfilled sell orders going into Monday. In addition, several

12Within the context of the informational cascades literature (Bikhchandani, Hirshleifer, and
Welch (1992), Welch (1992)), Chen (1995b) has modelled such informational interactions in a bank-
ing run context.
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smart institutional traders knew about this overhang and tried to exit the market

early Monday before the insurers could complete their trades.”

The second answer lies in providing liquidity during runs. If the market-making

sector were to expand only in “bad” situations but offer lousy execution in “good”

situations, then each investor would be relatively better off not trading into the

market today, and instead would be relatively more eager to try to wait it out. It

is straightforward to solve a model that proves this point. For simplicity, we ana-

lyze the case in which the representative market-maker has CARA utility and the

stock payoff is normally distributed. We also assume that the liquidity shocks are

perfectly correlated across investors (the independent liquidity shocks case yields

similar qualitative results). In this example, we allow the market-making sector to

be deeper at date 1 than at date 0 (i.e., γt=1 ≤ γt=0). Again, we assume that prices

are set at each date by a zero-utility condition. However, the new prices reflect

the different market-making depth at each date. Thus, p0(α ) = µ − γ0σ 2α/2 and

p1(1 − α;α) = µ − (1 + α)γ1σ 2/2. Substituting p0(α ) and p1(1 − α;α) into our

definition of F(α ) yields the following result:

Theorem 5 If the market-making sector is deeper at date 1 (i.e., γ1 < γ0) and liquidity

shocks are perfectly correlated there is a unique symmetric Nash equilibrium with

α� =



(

s
γ0/γ1−s

)
if s ≤ γ0/(2·γ1)

1 if s > γ0/(2·γ1)
. (14)

Proof: Substitute the pricing functions into equation 2. Note that F(0 ) > 0 for all s > 0
and Fα� , the derivative of F with respect to α�, is negative since γ1 < γ0. Thus, there are
two possibilities. If F(1 ) ≥ 0 then there is a unique pure strategy equilibrium α� = 1 and
if F(1 ) < 0 there is a unique mixed strategy, α�, where F(α� ) = 0. For s > γ0/(2·γ1),
F(1 ) > 0 thus α� = 1. For s ≤ γ0/(2·γ1) solving for α� yields the result. �
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Market-making inventory α� decreases in γ0 and increases in γ1. If early on,

market makers are more risk-averse (γ0 is high), investors are less eager to tender

to market-makers at time 0 (α� is low) and more inclined to take the chance of being

forced to sell if personally hit by a subsequent liquidity shock. Conversely, if the

subsequent “standby liquidity” in a crisis is low, because the market-making risk

aversion γ1 is then unusually high, the post-run price will be lower, which prompts

investors to be more eager to sell at date 0. Casual empiricism suggests that, if

anything, the market-making sector becomes intrinsically more risk-averse during

runs than it is in ordinary times. Thus, government intervention which commits

to provide market-depth in “bad” but not in “good” times might usefully mitigate

run inefficiencies. This gives a natural interpretation to government intervention: if

correctly done, standby liquidity in market runs could help prevent runs in the first

place. (It is unlikely that the private sector could provide unusually good liquidity

only in bad scenarios, but not in good scenarios.) Interestingly, non-intervention

in good markets is as important as intervention in bad markets! Indeed, this is the

equivalent of the national petroleum reserves, which are rarely released, but whose

presence may in itself prevent runs. Greenwald and Stein (1988, p.19) discuss an

alternative mechanism, in which large financial insurers would agree to cover some

of the losses of market-makers if the market drops significantly. However, there

is anecdotal evidence that many such institutions often run portfolio-insurance

schemes and tend to sell more into a crash rather than against a crash (footnote 4).

B A Multi-Period View

The single-period setting of our model is important in one sense but not another.

Our model requires that uncertainty is resolved while market-makers hold shares
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that investors—fearing liquidity shocks—have offloaded on them. Consequently, we

do not believe our model applies to situations in which market-makers can leisurely

unravel their holdings with little risk (e.g., over many periods without uncertainty).

However, our model is robust to multiple trading periods before a potential liquidity

shock can come about. That is, given many trading opportunities prior to a potential

liquidity shock, every investor would want to offload shares immediately to avoid

having to trade behind other investors. In periods between this first period and the

period of the potential future shock, investors voluntarily do not trade. Thus, a

liquidity run can occur even if the liquidity shock is far away.

This is easy to show. Suppose investors now have two opportunities to sell,

denoted date 0 and date 1, prior to the occurance of a liquidity shock. Now, an

equilibrium is a pair (α0, α1), for which—given that α0 proportion sell at date 0—

it is optimal for an α1 proportion to sell at date 1, and vice-versa. One condition

for optimality is that someone who sells at one date does not have the incentive

to deviate and sell at the other date. But there is only one case for which this

is true: α proportion sell at date 0 and no one sells at date 1! In this case, the

date 0 price exceeds the date 1 price so no one has an incentive to deviate and

sell at date 1. Moreover, the possibility of a liquidity shock in the future makes an

investor indifferent between selling at date 0 and waiting if she conjectures that α�

(as in our earlier model) proportion of investors will sell at date 0. Note that the

opposite is not an equilibrium, i.e. no one sells at date 0 and α proportion sell at

date 1 because the date 0 price will be higher, permitting investors to front-run and

thus profit by selling at date 0. In sum, the only equilibrium is the same α� as in

our earlier model: first, active selling at date 0, followed by no more selling until
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the date at which the liquidity shock occurs.13

However, the investor liquidity shocks must be simultaneous: it is the period

with the highest probability of liquidity shocks that would matter, not the average

or cumulative probability of a liquidity shock. Luckily, many constraints seem to

appear at roughly the same relevant time for many participants: a high-frequency

financial market drop or a low-frequency economic depression may force many

individuals to seek liquidity at the same time.

Naturally, changes in model parameters might cause some readjustments as time

goes by. We have already sketched the influence of time-varying market depths in

Subsection A. Similarly, one could imagine time-varying probability assessments of

future liquidity shocks, which could lead to active trading and time-varying market-

making inventory adjustments, even in the absence of any current liquidity shocks.

(Incidentally, such a model can easily explain relatively high trading volume in the

presence of only mild news.)

C The Social Cost of Investor Fear

In our model, there is no asymmetric information or trading costs–and yet the mar-

ket outcome can be significantly worse than the Pareto-optimal allocation. In what

follows, we analyze the social cost of investor fear when market-makers have CARA

utility and the stock payoff is normally distributed. Our analysis considers exoge-

nous liquidity shocks which are either perfectly correlated or independent across

investors.
13Note that in this independent shocks version of our model, we must again resort to a competi-

tive market-making sector to prevent an individual market-maker to exploit to wait for the vulture
opportunity.
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C.1 Perfectly correlated liquidity shocks

In what follows, our benchmark is not a price of µ, but a requirement that risk-

neutral investors must not sell at date 0 (similar to the analysis in Diamond and

Dybvig (1983)). In this Pareto-optimal outcome, the risk-neutral investors hold all

the shares at date 0 and sell to the market-making sector at date 1 only if they are

actually hit by a liquidity shock. Consequently, every investor would sell shares with

probability s at a price p1 = µ − γ·σ 2/2 (assuming that the market-maker sector

executes these sell orders at a price that yields no utility gain for them) and would

retain shares with probability 1− s (with expected value µ). Thus, investors’ utility

would be

µ − γ·s·σ
2

2
. (15)

In the batch-execution model, risk-neutral investor sell with probability α� at date 0

at the average price p0 = µ − (γ·α�·σ 2)/2, liquidate with probability (1−α�)·s at

date 1 at the average price p1 = µ − (1 + α�)·γ·σ 2]/2, and retain shares with

probability (1− s)·(1−α�) at expected value µ. Thus, investors’ utility is



µ − γ·σ2

2 · s
(1−s) if s ≤ 1/2

µ − γ·σ2

2 if s > 1/2
(16)

By assumption, the market making sector has zero expected utility gain thus a

total welfare comparison only requires a comparison of the investors’ utility. Simple

algebra shows that equilibrium welfare (expected selling price) is below the Pareto-
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optimal level of welfare by the amount:




γ·σ2

2 · s2

(1−s) if s ≤ 1/2

γ·σ2

2 ·(1− s) if s > 1/2
(17)

The Pareto-inferior outcome is caused by a prisoner’s dilemma among risk-

neutral investors that cannot easily be overcome. The welfare loss is increasing in

the market-maker’s risk-aversion and the payoff variance σ 2 since inefficient risk-

sharing is exacerbated. Finally, the welfare loss is greatest when s = 1/2 because

the market-making sector must absorb all shares in this case, not just those of the

liquidity-shocked individuals. Because α� increases at a faster rate as s approaches

1/2, the welfare loss increases in s for s ∈ [0,0.5). However, because (i) α� = 1

for all s ≥ 1/2 and (ii) as s increases the market makers would hold an increasing

proportion of shares in the Pareto-optimal outcome, the welfare loss decreases in s

for s ∈ (0.5,1].

C.2 Independent liquidity shocks

In the Pareto-optimal outcome, the risk-neutral investors hold all the shares and

sell to the market-making sector only if they are actually hit by a liquidity shock.

In this case, investors sell shares with probability s at a price p1 = µ − γ·sσ 2/2

(assuming that the market-maker sector executes these sell orders at a price that

yields no utility gain for them) and would retain shares with probability 1− s (with

expected value µ). Thus, investors’ utility would be

µ − γ·s
2·σ 2

2
. (18)
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In the batch-execution model, risk-neutral investor sell with probability α� at date 0

at the average price p0 = µ − (γ·α�·σ 2)/2, liquidate with probability (1−α�)·s at

date 1 at the average price p1 = µ − [2·α� + (1−α�)·s]γ·σ 2/2, and retain shares

with probability (1− s)·(1−α�) at expected value µ. Thus, investors’ utility is



µ − γ·σ2

2 · s2

(1−s)2 if s ≤ 1/2

µ − γ·σ2

2 if s > 1/2
(19)

As in the perfectly correlated case, the welfare loss is increasing in γ and σ 2 and

the welfare cost is greatest when s = 1/2.

D Some Final Thoughts

Contagion effects across investors fall naturally out of the model. In the bad sce-

nario, there are spillovers in the decisions of investors to sell their shares. This

causes each individual investor to fear that he may have to sell (for exogenous rea-

sons) behind every other investor. If selling late, he will get only the marginal price

after everyone else has already sold to the market-making sector, which—already

being burdened with the inventory of all other investors—can only offer a very low

price.

The negative payoff externalities among investors causes an accelerator effect,

in which just small increases in the probability of future liquidity shocks cause

a large layoff of risky shares onto the risk-averse market-making sector. Again,

the accelerator effect does not amplify the effects of the actual liquidity shock! It

amplifies the extent to which one investor’s fear of a future liquidity shock has a

negative spillover on other investors’ fears.
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The idea of financial contagion and spillover effects across markets and institu-

tions, as modelled, e.g., in Allen and Gale (2000), also apply naturally to our scenario.

By expanding the domain of liquidity runs from financial institutions to financial

markets, our model suggests that cross-liquidity constraints could be more impor-

tant than previously thought. Financial crises could transmit not only from one

institution to another, but across both financial institutions and financial markets.

We have repeatedly pointed out that runs are not caused by liquidity shocks

themselves, but by fears of future liquidity shocks. The probability of a future liq-

uidity shock may constantly fluctuate, even though the liquidity shock itself can be

off on the horizon. Consequently, an empiricist can observe dramatic price move-

ments and market-making inventory changes without observing any actual liquidity

shocks. And, for the rare empiricist able to measure the fear of liquidity shocks (s),

depending on its value, seemingly small changes can cause large sudden changes

in the desire of investors to unload shares onto the market-making sector.14

V Related Literature

Our financial markets runs model has both similarities and differences to the finan-

cial intermediation runs models, foremost Diamond and Dybvig (1983). Our model

is also driven by investor liquidity shocks and payoff externalities. However, our

model does not require a sequential service constraint, productive inefficiencies, or

a total loss if an investor fails to join a run.15 Indeed, working out the endogenous

14Although our model has emphasized purely rational behavior, where the fear of liquidity
shocks is rationally assessed or derived from margin constraints, our equilibrium could also be
embedded in a world of “non-rational behavioral economics,” if the fear of a liquidity shock (the
need to terminate an investment early during a market run) were itself non-rational.

15Allen and Gale (2000) and similar financial contagion models, though quite different, build on
the Diamond and Dybvig framework and retain these two assumptions. The same can be stated
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pricing and market inventory is a major focus of our paper. Also, in both cases, a

“lender of last resort” can prevent the run.

There is also related literature on stock market crashes. Grossman and Miller

(1988) present a two trading period model in which all traders are not simultane-

ously present in the market. In the first period, there is a temporary order imbalance

which must be absorbed by market makers. Between the first and second period,

new information arrives about the security so the market-making sector is exposed

to risk. However, the market-making sector is small and has low risk absorption

capacity. Thus, the equilibrium price falls more than if all traders were available

to absorb the imbalance. In the second period, the remaining traders arrive to

buy some of the market makers inventory and the price rises. The key feature of

their model which produces crashes is the asynchronous arrival of traders in the

market, combined with the limited risk-bearing capacity of market makers. Green-

wald and Stein (1991) extend the Grossman and Miller (1988) analysis by assuming

that traders can only submit market orders in the second period of trade. This in-

troduces transactional risk (uncertainty about the price at which their trades will

execute) which reduces the willingness of buyers to absorb the market makers in-

ventory in the second period. Knowing this, the market makers demand a larger

risk premium in the first period to absorb the temporary order imbalance, which

causes prices to fall even further than in the Grossman and Miller analysis. Like

Greenwald and Stein (1991), we permit only market orders and have an uncertain

execution price.

Although our model is closest in spirit Greenwald and Stein (1991), it is quite

different. First and foremost, runs in our model occur when investors think that

for the liquidity crisis and international runs on currency reserves literature, e.g., Caballero and
Krishnamurthy (2001). Geanakoplos (2001) embeds collateral crises into a broader model.
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others will tender and therefore choose to tender themselves. In Greenwald and

Stein, there are no runs (defined as “I tender because I think you will tender”) in the

spirit of bank runs. Rather, Greenwald and Stein (1991) have crashes in price be-

cause the uncertain execution price with batch orders introduces an extra risk which

makes the price fall further than if investors could submit limit orders. Second, our

financial market runs are endogenous and are not driven by asynchronous trading

arrivals or exogenous supply shocks. Indeed, the Greenwald and Stein (1991) model

is driven by the uncertainty in the number of arriving value traders, an uncertainty

which does not even exist in our model. Third, the negative externality in their

model is that value buyers may destroy the value opportunities for other buyers. In

our model, the negative externality derives from investor selling, not buying. Fur-

ther, this ever-present negative externality forces market-makers to hold a socially

suboptimal inventory of shares. And finally, they argue that circuit-breakers might

help: in our model, circuit-breakers are counterproductive.

There are also other areas of research more distant in spirit, but which also ex-

plain facets of financial market crashes. There is a large literature examining the

impact of portfolio insurance (e.g., Grossman (1988), Brennan and Schwartz (1989),

Genotte and Leland (1990), Jacklin, Kleidon, and Pfleiderer (1992), Donaldson and

Uhlig (1993), Grossman and Zhou (1994), Basak (1995)). Portfolio insurers are usu-

ally modelled as agents who display positive feedback trading (of an accelerating

kind) for exogenous (often assumed) reasons. This literature’s primary goal is to

show that portfolio insurers can exacerbate crashes (discontinuous movements).

Models differ in choosing discrete single-shot vs. continuous time modelling tech-

niques, implications on what portfolio insurance does for general price volatility in

ordinary markets, and in how asymmetric information matters. Our own model dif-
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fers from this literature in that the reason for selling is not the (usually exogenous)

consumption motive, but the direct negative externality arising endogenously from

other investors’ trading.

Other papers have also presented ingenious mechanisms that can elicit large

price changes. In Madrigal and Scheinkman (1997), an informed strategic market-

maker attempting to control both the order flow she receives and the information

revealed to the market by the prices she sets may choose an equilibrium price sched-

ule that is discontinuous in order flow thus prompting large changes in price for

arbitrarily small changes in market conditions. In Romer (1993), uncertainty about

the quality of others’ information is revealed by trading, and large price movements,

such as the October 1987 crash, may be caused not by news about fundamentals

but rather by the trading process itself. In Sandroni (1998), market crashes can be a

self-fulfilling prophecy when agents have different discount rates and different be-

liefs about the likelihood of rare events (even if these beliefs converge in the limit).

Barlevi and Veronesi (2001) present a model in which uninformed traders precip-

itate a stock price crash because as prices fall they rationally infer that informed

traders have negative information which leads them to reduce their demand for the

stock and drive its price even lower. The key feature of their model is that the unin-

formed traders have locally upward sloping demand curves which, when combined

with the informed’s downward sloping demands, can generate an equilibrium price

function discontinuous in fundamentals.

Finally, we are not the first to employ margin constraints to generate (multiple)

equilibria. In Chowdhry and Nanda (1998), perhaps the paper most similar to our

own endogenous liquidity constraint section, some investors engage in margin bor-

rowing to obtain their desired investment portfolio. Because shares can be used as
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collateral there is a link between the price of the stock and the capacity to invest in it

which introduces the possibility of multiple equilibria. For example, lower (higher)

stock prices can be a self-fulfilling equilibrium because it diminishes (increases) the

capacity for levered investors to purchases their desired amount of stock which in

turn makes the price fall (rise) rational.16

VI Conclusion

Our paper has developed a theory of financial market runs: socially inefficiently

large market-making inventory in batch or random-ordering financial markets. Batch

markets are the standard stock market opening mechanism and auction mechanism

on some foreign exchanges. Random-ordering markets are common in many over-

the-counter markets. They also can occur (infrequently) after a large price drop,

when limited communication channels between investors and the financial system

fail and break down the perfect sequentiality of execution. In such cases, investors’

fears of future liquidity constraints can cause a prisoner’s dilemma among investors

today. This destroys efficient risk-sharing and aggravates any fundamental price

drops.

Aside from sequential execution and reasonable fear of liquidity shocks (but

not necessarily actual liquidity shocks), our model required very little machinery.

Thus, it is the (presumably rare) combination of breakdown of sequential execution

and a common fear of liquidity shocks, perhaps caused by or related to margin

constraints, that facilitates a run on a financial market.

16For a more recent example, Yuan (2000) demonstrates that margin constraints can be beneficial
because they may apply to informed investors and thus reduce the adverse selection problem with
uninformed investors.

39



Figure 1. Comparative Statics under Market-Making CRRA Utility
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Comparative statics when investors face independent liquidity shocks. Our base
parameters are a down-stock-value of D = 10 and an up-stock-value U = 20 with
equal probability π = 0.5, a risk aversion coefficient of γ = 3, and market-making
wealth of W = 1.5 (i.e., roughly 1/10 of the value of the financial market).
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