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ABSTRACT

We develop a tractable framework with a fully specified dynamic process of demographic

and labor decisions over an individual female’s life span to determine the timing of childbearing.

Fertility affects women’s behavior through three channels: its tradeoff with leisure, its interactions

with human capital investment, and its cost in terms of lost market productivity. Instead of

numerically solving a discrete-time version of the model, we propose an alternative solution

technique that provides analytic, closed-form solutions for the continuous-time dynamic

optimization problem with (discrete) time-line variables. The analytic results indicate that (i)

increased impatience has an ambiguous effect on childbearing timing; (ii) the age at first birth rises

at an increasing rate with the productivity loss from children; and (iii) women of greater ability have

births at later ages and are more sensitive to parameter changes. Calibration exercises suggest that

focusing on the median female’s response to changes in the preference, cost, and technology

parameters fails to capture their important distributional effects. 
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1. Introduction 

Fertility choice includes three distinct decisions: the number of children, the quality of children, 

and the timing of births. A vast literature studies the first two of these aspects of fertility and 

documents the decline in the total fertility rate over the past century and the accompanying rise 

in the quality of children. Much less discussed is the timing of fertility, which has undergone 

changes of the same order of magnitude as those observed in the quantity and quality 

dimensions. This focus of the literature is not surprising, since the quantity and quality aspects of 

children can be handled by standard demand and supply analysis with or without dynamics, 

while the childbearing age requires a fully specified dynamic process of demographic and labor 

decisions over an individual female’s entire life. 

As displayed in Figure I, between 1960 and 1997, the median age at first birth in the U.S. 

increased from 21.8 to 24.2. This increase is consistent across racial groups, despite a persistent 

two and a half to three year gap in age at first birth between white and black women. Not 

surprisingly, Table 1 demonstrates the greater heterogeneity in age at first birth at a point in time 

relative to the variability in median age across time. In 1997, 93 percent of first births occurred 

to women aged 15 to 34, with 55 percent falling between 20 and 29. The lower panel of Table 1 

clearly demonstrates the difference in racial groups alluded to earlier. Both black and hispanic 

women had about twice as many teenage births and slightly more first births in their early 

twenties in 1997. 

In an attempt to analyze the timing of first births, this paper develops a dynamic general-

equilibrium continuous-time model for rational individual females over their entire life course 

with endogenous timing of childbearing. The model considers three important aspects of 

endogenous fertility, namely, its tradeoff with leisure, its interactions with human capital 
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investment, and its cost in terms of productivity loss.1 Furthermore, it allows for (ability) 

heterogeneity and thus provides an explicit account for the distributive effects of preference, 

cost, and technology parameters on individual behavior and equilibrium outcomes, especially 

characterizing the distribution of ages at first birth. Notably, our focus on the timing of first 

births is a good starting point. In particular, the empirical study by Heckman and Walker (1990) 

using data from the 1981 Swedish Fertility Survey suggests that the strongest effect of economic 

variables on childbearing timing operates through the time to the first birth. 

Traditionally, the solutions to models of this nature cannot be expressed as closed form 

functions (see Hotz, Klerman and Willis (1997)). Instead, a discrete-time version of the model is 

specified and solved numerically via backwards recursion methods. A major contribution of this 

paper is to develop an alternative method for solving models of this kind that provides analytic, 

closed form solutions. In particular, we solve the model in two steps. First, given an age of 

childbearing each woman chooses the optimal consumption and human capital investment paths. 

Second, based on the first-stage solution, she selects the optimal age of childbearing. As 

previously noted, obtaining an analytic solution to the first-stage optimization problem is 

extremely difficult. In lieu of discrete-time recursion methods, we derive the hypothetical 

balanced growth paths of consumption and human capital investment assuming an infinite life 

span. This solution technique has the advantage of providing analytic solutions, but this 

advantage is coupled with an inability to address transitional dynamics. In an attempt to 

compensate partially for the loss of transitional dynamics, a discrete-time version of the model is 

used both to aid in calibrating the model and to verify the analytic results. 

The main findings of our paper are briefly summarized below. The first two results are a 

product of the general equilibrium, dynamic optimizing framework. First, increased impatience 

                                                 
1 In an empirical study by Millimet (2000), children are found to reduce women’s productivity 
and labor supply, and there is a significant feedback effect from labor to fertility decisions. 
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for society as a whole reduces time allocated to human capital accumulation but has an 

ambiguous effect on the timing of childbearing. The former result is a product of the general 

equilibrium framework, while the latter result, which contrasts sharply to that obtained in partial-

equilibrium models of family economics, comes from interactions of the former result with 

dynamic optimization. Second, the age at birth not only rises with the productivity loss from 

children, but also does so at an increasing rate – this latter finding is an outcome of dynamic 

optimization in the presence of an endogenous trade-off between childbearing and human capital 

accumulation. 

The remaining findings only can be derived in a model that explicitly accounts for 

heterogeneity. Perhaps of greatest interest, women of greater ability have births at later ages and 

are more sensitive to the productivity loss associated with children. Next, stronger peer-group 

effects reduce the incentive to invest in human capital, which decreases the relative human 

capital of all women at or above the societal mean level of human capital and raises the age at 

birth for all women at or below the societal mean level of human capital. Finally, the effects of 

changes in the preference, cost, and technology parameters on the distributions of childbearing 

ages are calibrated in the presence of ability heterogeneity. In particular, we find that many of 

these changes generate asymmetric distributive effects on the timing of childbearing, though 

some may tighten the distribution and others may widen it. 

This research is related to previous studies of demographic transition and economic 

development. Early studies along these lines focused on predicting fertility for the entire 

population or explaining differences in fertility across sub-populations (see Spengler and Duncan 

(1956) and references in the presidential addresses of Lee (1987) and Becker (1988)). This 

analysis relied heavily on changes in the age, sex, and marital composition of the population, but 

rarely attempted to formally model the evolution of these inputs. The inability of these models to 
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foresee the sharp fertility decline in the early 1930s and the subsequent rise in the 1950s 

instigated a call for deeper research in this area (see Becker (1960) and Easterlin (1968)). Hotz, 

Klerman and Willis (1997) provides a comprehensive overview of this more recent literature, so 

only a few highlights are made here. In particular, fertility became an endogenous variable in 

growth and macroeconomic models. Barro and Becker (1989) and Becker, Murphy and Tamura 

(1990) emphasize the interaction of the family with the macroeconomy. Not only does a 

household’s childbearing decision depend on economic conditions, but also these decisions feed 

back into the economy, influencing labor and capital accumulation decisions. Wang, Yip and 

Scotese (1994) follow a similar theme, but stress the dynamic interactions between labor, leisure 

and fertility choices. With the exception of two papers discussed below, a common feature of the 

endogenous growth and fertility literature is its focus on the quantity-quality tradeoff in fertility 

decisions. In contrast to these studies, we abstract from the questions of quantity and quality of 

children, allowing us to isolate the timing of women’s first birth. 

Conesa (1999) and Caucutt, Guner and Knowles (2001) construct discrete-time general 

equilibrium models of the timing of fertility. Both of these papers include some aspects of 

fertility omitted in the current paper, but exclude other aspects considered here. Conesa 

introduces idiosyncratic uncertainty in future labor earnings and analyzes its impact on fertility 

decisions by regarding children as irreversible consumption durables. However, he treats the 

evolution of human capital as exogenous. Caucutt, Guner and Knowles includes marriage and 

the quantity and quality dimensions of children as endogenous variables. To keep their model 

tractable, life is divided into five periods in which the latter three one is an adult, but only fertile 

for the first two of those three intervals. Thus, the timing of birth is reduced to a binary choice. 

Additionally, the human capital of adults evolves based on time spent in the labor market (i.e., a 

learning-by-doing rather than an education setup), which eliminates any tradeoff between human 
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capital accumulation and market production. 

Although the timing of births has not received much attention in the growth literature, the 

increase in the rate of unwed motherhood over the last thirty years and this population’s heavy 

dependence on government assistance has led to a vast literature on this topic and related issues 

amongst labor economists. The bulk of this research focuses on the affect of government transfer 

programs and marital prospects on the fraction of women having teenage births and the marital 

status of those women at the time of birth (see Hoynes (1997) and Moffitt (1995)). More 

recently, this line of literature has increased both the choices available to women and the 

complexity of their utility functions (e.g., Neal (2001), Nycheba (2001), Rosenzweig (1999) and 

Willis (1999)), but these models continue to share two common traits: (i) fertility decisions are 

limited to a small number of discrete decisions (e.g., teen versus adult or legitimate versus 

illegitimate births); and (ii) women optimize in a static environment in which there are no 

dynamic interactions. In contrast to this literature, our work concentrates on the effects of 

economic conditions on the commencement of childbearing for all women, not just those at risk 

for teenage or illegitimate childbearing, and accounts for the dynamic interactions between 

fertility decisions and other economic factors. 

The remainder of the paper is organized as follows. Section 2 describes the economic 

environment and the first stage individual female’s optimization problem. In Section 3, we 

determine the hypothetical steady-state balanced-growth equilibrium with a hypothetical infinite 

life span and a given childbearing age. Then, we pin down the age of childbearing given these 

dynamic paths to complete an individual female’s optimization problem. Additionally, we 

completely characterize human capital investment and birth timing decisions. Section 4 

calibrates the model under a given distribution of ability. We begin by examining the 

responsiveness of the timing of births and the investment in human capital to the underlying 



 6

changes in preference, cost, and technology parameters. Then, we study how these parameters 

influence the distribution of age at first birth. Finally, Section 5 concludes the paper with a 

remark concerning possible avenues of future research. 

2. The Model 

The model builds on a continuous-time, perfect-foresight framework with a fertility-consumption 

tradeoff (in both market and home goods) and a productivity loss from childbearing. The goal of 

the model is to determine the time at which childbearing begins for women of differing ability, 

based on their maximizing lifetime utility. In general equilibrium, this structure allows us to 

characterize the dynamic paths of consumption and human capital investment, as well as the 

distribution of both these paths and the age at first birth. 

Consider a society with a population that is normalized to unity in which each cohort of 

women is indexed by the age at which they can begin childbearing (M). Each woman seeks to 

maximize lifetime utility subject to the evolution equations for nonhuman wealth (b) and human 

capital (h). The lifetime utility up to an exogenous death age (M + Q) is time-separable with a 

constant time-preference rate (ρ) and an instantaneous utility that is log separable in market 

goods (c), home goods, and children. Once born, children provide utility of U0 and x is an 

indicator function for the presence of a child. Additionally, children are a (pleasant) distraction 

who decrease both home and market productivity for τ years, where β and [ ]0,1φ ∈  represent 

these losses in productivity, respectively. 

The solid line in Figure II depicts the actual loss in market productivity, where 

productivity is normalized to one in the absence of children and, for illustrative purposes, a 20 

percent productivity loss has been assumed for the τ years immediately following a child’s birth. 

This framework creates three distinct states: the years before children, the τ years in which 

children affect productivity, and the years after children have matured. To ease the notational 
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burden, we replace these three states with two. The years before children are left unchanged, but 

the years after children are born are collapsed into one state. For an appropriately chosen 

productivity loss (as depicted by the dashed line if Figure II), the total decrease in lifetime 

productivity will be identical to the three-state world previously described. 

Returning to the optimization problem, each individual divides a unit of time between 

human capital accumulation (v) and labor supply (1-v). Given the effective wage rate (w) and the 

real interest rate (r), nonhuman wealth is accumulated from net savings, which is the sum of 

wages ( )( )( )1 1v x whφ− −  and interest (rb), net of market expenditures. New investment in 

human capital is a generalized Cobb-Douglas function of effective-time input ( )( )1v xφ− , 

individual human capital and the average human capital stock of her cohort (HM), where HM 

represents peer group effects. Human capital is accumulated from new human capital investment 

net of depreciation (ηh). Note that children reduce the ability to produce human capital by the 

same amount as they reduce market production. This symmetry assumption simplifies the 

analysis and is plausible if the primary reason for a reduction in productivity is lost time due to 

childrearing. 

A representative woman of cohort M solves this intertemporal optimization problem in 

two steps. First, she chooses the optimal consumption and human capital investment paths for 

two states: having children as soon as possible (x always equals one) and never having children 

(x always equals zero). To attain an analytic solution for these paths, we derive the hypothetical 

balanced growth paths of consumption and human capital investment assuming an infinite life 

span (Q = ∞ ). Once attained, these paths provide an upper and a lower bound on each woman’s 

consumption based utility. Furthermore, a woman’s consumption based utility for any interior 

childbearing age can be expressed as a weighted average of these two bounds, for the 

appropriately chosen weights. Second, based on the first-stage solution, she selects the optimal 
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age of childbearing. We relegate the second-stage optimization problem (including the 

determination of the appropriate weights) to the next section, to be handled after the concept of 

hypothetical balanced growth with a given childbearing status is defined. 

The first-stage optimization problem is 

[ )( ) ( )( )0,
max ln I , exp

M Q

Mc v
c t M B M B xU t M dtβ τ ρ

+
 − ∈ + + + + − − ∫  

subject to 

( )( )1 1b rb v x wh cφ= + − − −&  (1) 

( ) 11 Mh v x h H hγ γφ η−= Γ − −& , (2) 

where 0Γ >  is the scaling factor for human-capital production and [ )1 0,1γ− ∈  indexes the 

strength of the peer group effect. We normalize ( )0b  to one. Under exponential discounting with 

ρ > 0, the log-linear felicity function in consumption satisfies the Brock-Gale condition 

automatically, ensuring that both lifetime utility is bounded and the intertemporal optimization 

problem is well defined. We allow within cohort variation of Γ, but restrict its distribution to be 

the same across cohorts and to have compact support. 

Except for the inclusion of a productivity loss from childbearing, equation (1) is a 

prototypical specification of the evolution of nonhuman wealth. In contrast to the human-capital 

based endogenous growth models in Lucas (1988) and Becker, Murphy and Tamura (1990), 

however, not only does the loss of productivity from childbearing explicitly enter equation (2), 

but also the peer-group effect is allowed to affect positively the rate of human capital 

accumulation. The peer-group effect serves two purposes. First, it ensures that the marginal 

benefit of investments in human capital for an individual woman is decreasing in the level of 

investment. Second, it allows for externalities in the accumulation of human capital.  

Let λ and µ denote the co-state variables associated with the evolution equations (1) and 
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(2), respectively. Let p µ λ≡  represent the relative price of human capital investment. Denote 

the relative human capital stock of an individual of cohort M as Ms h H≡ . Straightforward 

application of optimal control techniques yield the following two first-order conditions and two 

Euler equations: 

1 c λ=  (3) 

1p ws γ−Γ =  (4) 

rλ λ ρ= −&  (5) 

( )( )( ) 11 1 1v x sγµ µ ρ η γ φ −= + − Γ − − −&  (6) 

where equation (6) is obtained by substituting equation (4) into the original form of the Euler 

equation. 

Equation (3) specifies intertemporal consumption efficiency. Equation (4) equates the 

marginal benefit of human capital investment (left-hand side) and the corresponding marginal 

cost from postponement of current production. Equations (5) and (6) describe the evolution of 

the shadow prices of market goods and human capital, respectively. While equation (5) is 

standard in the growth literature, equation (6) deserves further comments. First, the shadow cost 

of human capital rises when children are present due to the direct loss in productivity. Second, 

the shadow price increases with the strength of the peer-group effect due to free riding. 

We follow the Bond, Wang and Yip (1996) techniques to analyze this generalized two-

sector endogenous model through both quantities and the relative price of human capital 

investment, p. The incorporation of the relative price greatly simplifies the analysis. Totally 

differentiating equation (3) and substituting in equation (5) yields the standard Keynes-Ramsey 

formulation governing the dynamic path of consumption 

c c r ρ= −& . (7) 

Totally differentiating equation (4) implies 
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( )1p p w w s sγ= + −& & & . (8) 

By the definition of p, we can combine equations (5) and (6) to obtain 

( )( )( ) 11 1 1p p r v x sγη γ φ −= + − Γ − − −&  (9) 

Equation (9) states that if the net rate of returns on nonhuman wealth (r) exceeds the net 

rate of returns on human capital (the remainder of the right-hand side of equation (9)), then there 

must be a net capital gain from investment in human capital to maintain no-arbitrage between the 

two alternative sources of investments. Such a net capital gain from human capital investment is 

increasing not only in the current level of relative human capital stock, but also in new 

investment in human capital. Notably, the latter effect is absent without peer groups (i.e., 1-γ = 

0). With childbearing, there will be a productivity loss, which requires a compensating increase 

in the net capital gain from investment in human capital.  

In society, the capital market is regarded as exogenous implying a fixed real interest rate. 

Aggregate female production takes a simple constant-returns-to-scale form in aggregate effective 

female labor (L): Y AL= , where aggregate effective female labor is an integral of all labor 

supplies from individuals of relevant generation-cohorts: 

( )1
t

Mit Mitt Q i M
L v h di dM

− ∈
= −∫ ∫ . (10) 

This production technology falls within the framework of Rebelo (1991) with his general capital 

specified as human capital embodied effective labor. Under linear technology, the effective wage 

is fixed at the constant marginal product of labor, 

w A= . (11) 

Since the effective wage rate is fixed, equation (8) implies that the rate of changes in the relative 

price of human capital investment must be tied exclusively with the rate of changes in the 

relative human capital measure. 
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3. Balanced Growth Analysis and Determination of Childbearing Age 

In this section, we begin by defining and characterizing the balanced growth paths of 

consumption and human capital assuming an infinite life span with a fixed childbearing age. 

After solving this family of hypothetical paths, we select the childbearing age corresponding to 

the hypothetical path that maximizes individual welfare. 

Our society excludes intergenerational transfers of human capital and wealth. Given zero 

population growth and a continuum of cohorts, there is no growth in aggregate female output or 

aggregate effective female labor in the steady state. At the individual level, the hypothetical 

dynamic paths of consumption and human capital feature perpetual growth. 

A balanced growth path is defined as a path such that c, b and h all grow at constant rates, 

while v, s and p are constant over time. Based on equations (1), (2) and (7), we can verify that 

along a steady state balanced growth path, consumption, human capital and wealth must grow at 

the same rate within a generation, which is given by 

c c b b h h r ρ= = = −& && . (12) 

For most of the analysis, we focus on a nondegenerate balanced growth path featuring a positive 

rate of growth. This can be guaranteed by imposing r ρ> . This restriction is conventionally 

referred to as the Jones-Manuelli condition in the growth literature, requiring the rate of return on 

nonhuman wealth to be sufficiently high to exceed the subjective rate of time discounting. In our 

application, the above condition is too strong. It is sufficient to assume 

Condition H: r η ρ+ > . 

In other words, the flow of human capital cannot fall below the depreciation rate of human 

capital. 

Substituting equation (12) into equations (1) and (2) yields 

( )( ) ( )1 1c b v x w h bρ φ= + − −  (13) 
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and 

( ) ( )1 1 0v r s xγη ρ φ−= + − Γ − >   . (14) 

Thus, Condition H is sufficient to guarantee the fraction of time devoted to human capital 

investment is positive. To ensure this time allocation is less than unity for any value of {0,1}x ∈ , 

we require: ( ) ( ) 1/(1 )
max 1s x r

γ
φ η ρ

−
< Γ − + −   . We will return to discuss this latter restriction 

upon solving for the balanced growth value of s. 

Combining equations (8), (9) and (14) produces 

( )( ) ( ){ }1 1 1
1

s s r r s xγη γ η ρ φ
γ

= + + − + − − Γ −  −
& . (15) 

Equation (15) is a constant-coefficient Bernoulli differential equation, which has the general 

solution 

( ) ( )( ){ } ( )1 111 1 1
0

r r ts t s s s e
γη γ η ργ γ γ

−
+ + − + − − − −   = + −   (16) 

where s is the stationary particular solution2 

( )
( )( )

( )1 1
1

1
x

s
r r

γ
φ

η γ η ρ

−
 Γ −

=  + + − + − 
. (17) 

Straightforward comparative statics yield: 
 

Proposition 1: Under Condition H, a balanced growth value of relative human capital s  for 

each woman with ability Γ exists, which possesses the following properties: 

(i) it decreases with human capital depreciation, childbearing and the productivity loss 

associated with children; 

(ii) more able women have greater levels of human capital relative to their cohort; 

(iii) peer-group effects reduce the relative human capital of all women at or above the cohort 
                                                 
2 Setting s&  equal to zero and solving for s yields the stationary particular solution of the 
differential equation, also. 
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average level of human capital. 
 

Proposition 1 states that women who produce human capital more easily and women 

whose productivity loss associated with childbearing is relatively small will have relatively high 

levels of human capital within their cohort. For an average woman in a cohort (s = 1), an increase 

in the peer group effect (1 γ− ) lowers her relative human capital. More generally, there exists a 

critical value, 1s′ < , such that for all s s′<  relative human capital rises with the peer group 

effect, while the relative human capital of those initially above the critical value falls. 

Substituting equation (17) into equation (14) yields 

( )( )1
rv

r r
η ρ

η γ η ρ
+ −

=
+ + − + −

. (18) 

Under Condition H, it is not difficult to show that ( )0, 1v ∈  without imposing any additional 

conditions. Straightforward comparative static exercises lead to: 
 

Proposition 2: Under Condition H, a balanced growth allocation of time to human capital 

investment ( )0, 1v ∈  for each woman with ability Γ exists, which possesses the following 

properties: 

(i) it increases in the interest rate and the rate of human capital depreciation, decreases in 

the rate of time preference, and is independent of the productivity loss associated with 

children; 

(ii) peer-group effects reduce the time allocated to human capital investment. 
 

As is typical in a general-equilibrium model, Proposition 2 states that investment in 

human capital falls as the discount rate ( ρ ) rises. Also, when the ability to free ride on her peers 

(1 γ− ) grows, women have less incentive to invest in human capital. Furthermore, investment in 

human capital increases with both the interest rate and the rate of human capital depreciation 
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(η ). Increases in either of these latter parameters translates into a greater cost of maintaining any 

given level of human capital stock; the former due to a greater cost in terms of forgone interest 

and the latter due to a greater fraction of the stock needing replacement. A priori, the effect of 

increasing the cost of human capital maintenance on the level of investment is ambiguous. The 

increased cost will cause women to reduce the optimal level of human capital they maintain, but 

the cost of maintaining any given stock of human capital has increased. Which of these forces 

dominates could change based on model specifications. However, under the assumption of 

common growth, the growth rate of human capital is fixed at r ρ− , so investment must rise. 

We now solve for the hypothetical level of consumption at time 0+, ( )0c +% , where the 

tilde notation represents the hypothetical steady state values for an infinite time horizon and 

fixed childbearing decision, x% . Note that changing any parameter of the model except the 

interest rate net of the discount rate, results in the same hypothetical rate of growth of human 

capital (equation (12)). So, to model heterogeneity in human capital, we have to create 

heterogeneity in the initial levels of the human capital stocks. A simple way to accomplish this 

task is to normalize ( )0h  to Γ. This normalization can be combined with equations (13) and (18) 

to produce 

( ) ( )0 1c x KAρ φ+ = + − Γ% % . (19) 

where 1K v≡ −  is a known constant given by equation (18). Since equation (19) solves a 

hypothetical path for a fixed birth decision, ( )0c +%  is not a function of B. 

The effect of childbearing on ( )0c +  is fully characterized by the loss in productivity that 

accompanies children. As seen in Figure II, we model this productivity loss as a permanent 

reduction in productivity commencing at the birth of the child and of magnitude φ. To 

approximate the actual initial level of consumption, we simply replace the step function in 

productivity induced by children with a smaller productivity loss, κ φ< , present throughout 
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each woman’s entire life (as depicted by the dotted line in Figure II). Under this approximation, 

we have, 

( ) ( )0 1c KAρ κ+ = + − Γ . (20) 

Let ( );Bκ φ  be the function that produces the value of κ resulting in the same initial level of 

consumption as a woman facing a permanent reduction in productivity φ at time B. It is 

reasonable to assume that ( );Bκ φ  is proportional to φ (by way of approximation) and convex in 

B (due to market discounting and a finite lifespan). As depicted in Figure III, we approximate κ 

by a woman’s discounted average loss in market productivity over her lifespan, 

( ) ( ) ( ); 1B Q QB e e eρ ρ ρκ φ φ − − −= − − , (21) 

where the discount rate ρ is the combination of market discounting at rate r and human capital 

growth at the rate r minus ρ.3 Notably, the signs of the derivatives of κ, rather than the exact 

functional form, are critical to the analytic results. 

Finally, we are prepared to pin down the timing of childbearing. This is done by first 

substituting everything back into the lifetime utility to derive the value function, 

( ) ( ) [ )( ) ( )

( )( ) ( ) ( ){ }
00

( ) min{ , }
0 0

ln 0 I , exp

1 ln 0 1 1 1

Q

Q B Q B Q B

V c r t t M B M B xU t dt

V c e e U e eρ ρ ρ ρ τ

ρ β τ ρ

β
ρ

+

− − − − − −
+

 = + − − ∈ + + + + − 

 = + − + − − − 

∫
. (22) 

where ( ) ( )0 1 1 /QV r Q e ρρ ρ ρ− ≡ − − +   is an integration constant, independent of B. Second, 

take the derivative of equation (22) with respect to B and set it equal to zero, which, for an 

interior solution, produces: 

( )
( )

( ) ( )
min{ , }

0

1
1

1

Q B

Q B

e e B
J B

BU e

ρ ρ

ρ τ

σ

ρ β

−

− −

−
= ⋅ ≡

 − − 
, (23) 

                                                 
3 This specification for κ slightly understates the loss in productivity both because it ignores the 
decreased ability to produce human capital and since a finite lifetime decreases the growth rate 
of human capital. 
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where ( )Bσ  is the elasticity of ( )0c +  with respect to B given by, 

( ) ( )
( )

( )
( )0 ;

0 1
c BB KAB B

c B KA B
κ φ

σ
ρ κ

+

+

∂ ∂ Γ
≡ = ⋅ ⋅ − ∂ + − Γ ∂ 

%

%
. (24) 

Indeed, we can interpret J(B) as the ratio of the marginal benefit to the marginal cost of delaying 

childbearing. When J(B) exceeds one over the range from 0 to Q, no childbearing occurs, while 

when J(B) falls below one over this range, childbearing occurs as soon as possible.  

In general, we cannot rule out the possibility of multiple equilibria. However, by utilizing 

(21) and (24), we can rewrite J(B) as: 

( ) ( ) ( ) ( )min{ , }
0

1
1 1 1Q B B Q Q

KAJ B
U e e e e KAρ τ ρ ρ ρ

φ
β ρ φ− − − − −

Γ
= ⋅

 − − + − − − Γ 
. (25) 

Then, it is easily verified that over the range [0, ]Q τ− , J(B) becomes monotonically decreasing 

with a vertical intercept ( ){ }0 0 1 0J KA U e ρτφ ρ β − = Γ − − >  . Therefore, under this 

parameterization of κ a unique solution of B can be obtained (such a solution need not be 

interior). Figure IV illustrates the three possible solutions: immediate childbearing, an interior 

solution, and no childbearing. 

Straightforward differentiation shows that J(B) is increasing in Γ, A, φ, β, and 1-γ and 

decreasing in U0, but the effect of ρ on J(B) is ambiguous (recall that in addition to the relevant 

discounting terms appearing in (25), 1K v≡ −  depends positively on the time preference rate). 

By further examining the second derivatives, we can conclude: 
 

Proposition 3: Under Condition H, a balanced growth value of the childbearing age for each 

woman with ability Γ exists and, if it is interior, it possesses the following properties: 

(i) it decreases with the valuation of children, increases with the valuation of leisure and an 

autonomous shift in the effective wage rate, and increases at an increasing rate with the 

productivity loss from children; 
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(ii) women of greater ability have births at later ages and are more sensitive to the 

productivity loss associated with children; 

(iii) stronger peer-group effects have an ambiguous effect on the childbearing age in general, 

but raise the age of birth for all women at or below the average level of human capital; 

(iv) increased impatience generates an ambiguous effect on the age of births. 
 

It is intuitive that raising the value of children, lowering the preference for leisure or 

reducing the productivity loss associated with children leads to earlier childbearing. The age at 

birth is convex in the productivity loss since it reduces earnings both directly and indirectly. 

There is the direct loss of wages due to decreased productivity, which is compounded by the 

reduction in human capital, also attributable to decreased productivity. Similarly, women of 

higher ability face a larger loss in earnings from having children, which causes them to delay 

childbearing. Furthermore, the convexity of the age at birth with respect to the productivity loss 

is greater for higher-ability women due to the same compounding effects mentioned above. 

Increasing peer-group effects generate two competing forces. First, there is an incentive 

to decrease time spent investing in human capital due to free riding. This reduction in investment 

lowers the opportunity cost of children, leading to earlier childbearing. Second, the marginal 

product of human capital in the production of human capital rises. This second effect causes 

women to invest more, which increases their human capital and, hence, raises the opportunity 

cost of childbearing. For women with human capital not exceeding the cohort average, the 

second effect dominates the first.  

There are two direct effects associated with increased impatience. First and perhaps most 

importantly, it encourages early consumption of all goods (higher ( )0c +  and earlier 

childbearing). Second, the present-discounted loss of leisure from childbearing rises with 

impatience (higher ( )1 e ρτβ −−  over the range [0, ]B Q τ∈ − ), which generates a greater 
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incentive for delaying childbirth. When analyzing the effect of altering the discount rate for a 

particular woman (a partial equilibrium analysis in which the actions of society are taken as 

given), these are the only two effects. Only when the first effect dominates the second effect can 

one conclude that increased impatience reduces the childbearing age. 

When the discount rate for society as a whole is changed, there is an indirect general-

equilibrium effect; at each point in time, women substitute away from investment in human 

capital (lower v) and into current production (higher K). This substitution interacts with the 

models dynamics to produce two competing forces with respect to the timing of childbearing. 

Lower investment in human capital decreases the loss in future productivity associated with 

childbearing (a smaller stock is effected), thereby inducing earlier births. However, increased 

market time raises the loss in market production associated with childbearing, raising the 

marginal benefit of delaying childbirth. Under the assumption of symmetric productivity losses 

in market and human capital production, it is straightforward (although algebraically tedious) to 

demonstrate that the net impact of these general equilibrium effects and the first direct effect 

mentioned above induces earlier childbearing. However, if childbearing has a greater adverse 

effect on market production relative to human capital production, this result need not hold. 

Combining Propositions 1 through 3 establishes the existence of the unique balanced 

growth equilibrium with common growth in consumption and human capital and with a non-

degenerate distribution of age at birth. 

4. Quantitative Analysis 

The quantitative analysis contains three parts. First, we calibrate the model by selecting 

parameter values consistent with real world observations. Second, we perform sensitivity 

analysis, varying the key parameter values and looking into their effects on some key 

endogenous variables, including the age at first birth and society’s ability to produce human 
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capital. Third, we form a distribution of ability measured by Γ and then compute the mean and 

the standard deviation of the birth date, as well as the minimum and maximum values 

corresponding to the ability measures. 

Although we are unable to solve for the marginal product of human capital in the 

production of human capital for any particular woman, we can assess the marginal productivity 

of human capital for society as a whole. In particular, imagine increasing every woman’s human 

capital by a common percentage. Based on equation (2), each woman’s productivity in 

generating human capital is ( ) 11 Mv x h Hγ γφ −Γ − , but the derivative of 1
Mh Hγ γ−  with respect to a 

uniform percentage increase in human capital across all women is one. Thus, the marginal 

product of human capital in the production of human capital for society as a whole is ( )1v xφΓ − . 

As in the previous section, xφ  is approximated by ( );Bκ φ . Putting these conditions together 

implies that the marginal product of human capital is 

( )1 ;E v Bκ φ≡ Γ −   . (26) 

In order to facilitate the quantitative analysis, we adjust ( )Bσ , the elasticity of ( )0c +  

with respect to B described in equation (24), to account for both a finite lifetime and the 

decreased ability to produce human capital that accompanies childbearing (paralleling the loss in 

market productivity). To aid in making these adjustments, we numerically solved a discrete-time 

version of the model via backwards induction in which the state space consisted of the current 

level of human capital and bonds. The discrete-time version of the wealth and human capital 

evolution equations (equations (1) and (2)) were substituted directly into the value function, 

eliminating time devoted to human capital accumulation (v) and consumption (c).4 For 

                                                 
4 The discrete-time model had 50 time periods, each corresponding to one year, 100 possible 
values for the level of human capital and 200 possible values for the level of bonds (including 
negative values) for each time period. Upon request, the authors can provide the algorithm used 
to solve the model (written in C++). 



 20

illustrative purposes, a representative sample of the optimal paths for human capital and human 

capital investment attained from the discrete-time model are depicted in Figure V.5 

As anticipated, a finite lifetime reduces the growth rate of human capital. In particular, 

the stock of human capital grows early in life, but then decreases later in life. For a wide range of 

parameter values in the discrete-time model, the optimal path for the human capital stock has an 

average discounted growth rate of about zero. This decreased growth in the human capital stock 

alters the approximated loss in productivity associated with childbearing, κ. κ is defined as a 

woman’s discounted average loss in market productivity over her lifespan, where discounting is 

done at the market interest rate r. Previously, human capital was assumed to grow at the constant 

rate r minus ρ, resulting in a net discount rate of ρ. By setting the average growth rate of human 

capital to zero the net discount rate returns to r.6 Thus, 

( ) ( ) ( ); 1rB rQ rQB e e eκ φ φ − − −= − − . (27) 

Substituting this expression for ( );Bκ φ  into equation (24) yields 

( ) ( )1 1

rB

rQ

KA reB B
KA e

φσ
ρ κ

−

−

Γ
= ⋅ ⋅

+ − Γ −
. (28) 

Additionally, the infinite horizon paths evaluated in the steady state ignore the decrease 

in the ability to produce human capital that accompanies childbearing. It is important to note that 

the decreased capacity to produce human capital compounds the loss in human capital 

productivity; not only do women with children receive a lower return on their human capital 

stock, but also their ability to maintain that stock of human capital decreases. In Figure V, this 

aspect of fertility can be seen in two ways. First, human capital accumulation peeks a couple of 

                                                 
5 The paths depicted in the graph have been smoothed to eliminate roughness caused by the 
discrete choice set of savings and human capital levels used to numerical solve the model. 
6 Indeed, we have performed sensitivity analysis allowing the net discount rate to vary above and 
below the market rate r and found the age of first birth relatively insensitive to such changes. 



 21

years before childbearing begins.7 Second, after childbearing, investment in human capital is 

essentially zero until a woman’s human capital stock has decreased to the level corresponding to 

her now lower societal ranking in the ability to produce human capital. The results from the 

discrete-time version of the model indicate these effects approximately triple the elasticity of 

initial consumption with respect to age of birth. Therefore, we use an elasticity of initial 

consumption with respect to B of 

( ) ( )
3

1 1

rB

rQ

KA reB B
KA e

φσ
ρ κ

−

−

Γ
= ⋅ ⋅ ⋅

+ − Γ −
. (29) 

Under this approximation, ( )J B , defined in equation (23), remains monotonically decreasing. 

As a consequence, there is at most one solution to ( ) 1J B =  and, when this solution exists, a 

unique optimal childbearing age. 

With regard to the parameterization, childbirth may begin at age 15 (M = 15, so women 

become fertile around age 14) and retirement occurs at age 65 (Q = 50, which is not crucial for 

the purpose of this study on the timing of age at first birth). We set τ = 15, that is childrearing 

takes 15 years (since we hardly observe childbirth after age 50, we can set min{ , }Q B τ τ− =  in 

equation (23) under this parameterization). Children reduce productivity 20 percent (φ = 0.20), 

which is consistent with estimates by Hotz and Miller (1988).8 As a result of the two-sector 

framework with an exogenous capital market, we can focus on one scaling factor (particularly, 

Γ), leaving the other normalized at unity (A = 1). Following the conventional growth literature, 

we select the time preference rate as ρ = 0.04, the real rate of interest as r = 0.055 and the human 

                                                 
7 The expected birth of a child (particularly in the near future) lowers the return to current 
investments in human capital, but has no effect on current market productivity. Thus, as 
childbearing approaches, women substitute market production for human capital investment, 
which results in the human capital stock peeking before the child’s birth. 
8 Hotz and Miller demonstrate that the true cost is decreasing with the age of the child, but their 
estimates produce an average loss of about 20 percent per year. Browning (1992) remarks on 
how this estimate and most other empirical estimates of the time cost of children seem 
implausibly low. 
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capital depreciation rate as η = 0.05. More specifically, the selection of a four percent time 

preference rate is consistent with Kydland and Prescott (1982), while a five percent human 

capital depreciation rate falls in the estimates from four to nine percent by Heckman (1976). 

Jones, Manuelli and Rossi (1993) obtains the real interest rate in a world without taxation 

ranging from five to nine percent, with which our figure of 5.5 percent concurs. 

In the absence of good measures of peer-group and leisure cost parameters, we choose 

the benchmark values as 1-γ  = 0.20 and β = 0.8U0. Lacking data for pinning down these three 

parameters precludes the possibility of a complete calibration exercise. We will partially remedy 

this problem through checking the sensitivity of our results to perturbations from these 

benchmarking values. Now, setting the utility from children to U0 = 0.6637 matches the 

benchmark model to the average of the mean and median age at first birth (24.8 and 24.3, 

respectively), which is 24.55. Finally, the mean value of Γ is picked at 0.132988 such that the 

relative human capital s(x) of the average female is unity. 

Under the above parameterization, we report (in bold) the benchmark values of the birth 

date (B+M) and the average-ability measure (E) in Table 2. By construction, childbearing 

commences at age 24.55. In the benchmark case, the fraction of time devoted to human capital 

accumulation (v) is 55 percent and the average ability measure is 0.0716. Our benchmark value 

of the fraction of time devoted to human capital accumulation is higher than the figure of 41 

percent computed by Jones and Manuelli (1993). This discrepancy is not unreasonable given that 

human capital is the only productive capital in our economy. For the sake of comparison, in the 

discrete-time model, which accounts for a finite lifetime and the productivity loss associated with 

children, the faction of time devoted to human capital production decreases throughout a 

woman’s life and averages about 30 percent of her time. 

By performing sensitivity analysis, we can study the robustness of the benchmark values 
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as well as verify the theoretical comparative-static predictions. First, it can be observed that the 

average productivity always decreases with impatience. Second, increasing the rate of time 

preference (ρ) has an ambiguous effect on the timing of births. Within the range 0.2 to 0.45, 

when the rate of time preference rises, the desire to substitute early consumption for later 

consumption dominates the increase in weight placed on lost leisure associated with children, 

leading to earlier births. However, once the discount rate exceeds approximately 0.045, the 

increased weight on lost leisure dominates and the age of childbearing starts to increase sharply. 

For example, an increase in the time preference rate by only half a percentage point from 0.05 to 

0.55 delays childbirth of the median female by more than three years. In general, the effects of 

time preference on age at birth are asymmetric in the sense that birth dates respond more 

sensitively when the time preference rate is either low or sufficiently high to approach the real 

interest rate. Finally, the timing of children is not as sensitive to the time preference rate as 

human capital decisions. Changes of the time preference rate by 2 percentage points (0.04 to 

0.02) cause women’s average productivity to vary by more than 25 percent from the benchmark 

value, though birth dates only vary by about 2-2.5 years. 

Next, an increase in the value of children (U0) by 20 percent leads to a decrease in birth 

dates by more than 8.5 years. However, decreases in the value of children have a greater effect 

on age at birth. Particularly, a reduction in U0 by 20 percent causes the median woman to delay 

childbearing to about age 37, more than 12 years later than the benchmark value. Indeed, a 

reduction in U0 to half of the benchmark level places this age beyond retirement (which certainly 

exceeds the biological upper bound for fertility). In contrast, society’s average ability is 

relatively insensitive to U0. This insensitivity is because (i) U0 only affects the lifetime utility and 

(ii) the productivity loss associated with children enters symmetrically into the production of 

both human capital and market goods, resulting in no direct intersectoral reallocation effects. 
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Similarly, we allow the cost of childrearing (φ) to range within 20 percent of the 

benchmark value and find only birth dates are highly responsive to this alternation. An increase 

in the cost of children delays childbearing. For example, increasing the loss in total productivity 

to 24 percent during the period of childrearing (20 percent above the benchmark) causes a delay 

in births to about age 35, which is over 10 years later than the benchmark case. We also consider 

an autonomous shift in the effective wage rate (A) within a 20 percent range of the benchmark 

value. While timing decisions are responsive to the wage rate, the response is weaker than that 

observed with respect to the cost of childrearing. This difference is primarily attributable to the 

offsetting strong wealth effect associated with a wage change. In particular, an increase in the 

effective wage rate of 20 percent results in postponing childbearing by approximately 4 years.9 

Additionally, changes in the relative leisure cost of childbearing ( β ) from 60 to 100 percent of 

U0 cause age at birth to vary by about 6-8 years. Compared to the responses of childbearing ages 

to the value of children, those with respect to the relative leisure cost are more symmetric. 

Finally, due to a free-rider problem, a stronger peer-group effect in the production of 

human capital (an increase in 1-γ ) discourages individual investment in human capital, leading 

to a delay in childbearing and a detrimental effect on the society’s average ability measure. 

Interestingly, a stronger peer-group effect induces a similar percentage change in woman’s birth 

dates and average ability (about 5 percent in response to a 10 percentage point increase in 1-γ). 

However, a weaker peer-group effect generates a more noticeable change in the average ability 

than the childbearing age (approximately 5 versus 2.5 percent). This again indicates the 

                                                 
9 Caucutt, Gunner and Knowles (2001) find that even by eliminating the gender gap in wages, 
the timing of births does not change significantly. Although our result from the alternation in the 
effective wage rate does not fully correspond to their experiments, a comparison is still 
informative. The main differences arise because (i) they allow for the substitution of time 
between leisure and market activities and (ii) they eliminate the trade-off between market 
production and human capital production (due to their learning-by-doing setup). Both of these 
differences reduce the sensitivity of birth timing to the wage rate. 
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asymmetric responses of childbearing decision. 

To analyze the effect of changing parameter values on the distribution of outcomes, we 

specify a symmetric-triangular density function for Γ centered at the mean value of 

0.132988Γ =  and ranging from minus to plus 30 percent of Γ .10 In computations, we 

approximate this continuous triangle distribution by 15 discrete points at intervals of width 

0.005699, resulting in a standard deviation for Γ of 0.00161. In the benchmark case, the standard 

deviation of E and B+M are 0.0090 and 2.75, respectively.11 Finally, since ability heterogeneity 

aggregates out, solving the model with a representative agent, as was done in the previous 

sections, is still valid.12 

The results in Table 3 suggest that despite a relatively tight distribution with a coefficient 

of variation around 0.29 (computed based on the mean of B rather than B+M), age at birth can 

vary significantly. In particular, birth dates range from 16 to 30 in the benchmark case and from 

the minimum age (15) to no children over the entire parameter space of considerations. For 

example, when the value of children decreases to about 55 percent of the benchmark value, the 

highest ability women no longer desire children at any age.13 When the value of children is 20 

percent above the benchmark value or when the productivity loss drops by 15 percent from the 

benchmark value, almost all women have first births as teenagers. 

Interestingly, changes in childrearing preference (U0) and cost (φ) parameters have 

                                                 
10 The symmetric-triangle density function with range [0.7 Γ , 1.3 Γ ] is given by, 

( ) ( ) ( )1.3

0.7
f d

Γ

Γ
′ ′Γ = Γ − Γ − Γ Γ − Γ − Γ Γ∫ . 

11 Note that the 2.75 years standard deviation in age at first birth represents only the variability 
due to ability heterogeneity, which should be substantially below the total variability in age at 
first birth. 
12 Heterogeneity in ability does not affect the hypothetical solution method due to both a linear 
market production technology and the uniform impact of childbearing on human capital and 
market production. To consider heterogeneity in ρ, or any other parameter that fails to aggregate 
out, would require resolving the model. 
13 According to Vital Statistics data, approximately 18 percent of women in the U.S. never bear 
children. 
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asymmetric “distributive effects” – higher ability women are more sensitive to both of these 

parameters. The primary causes of this asymmetry are the two compounding effects: (i) the 

direct effect of ability on the return to human capital investment from current production and (ii) 

the indirect growth effects of ability on the production of human capital. Thus, more able 

women’s ages at first birth decisions are more sensitive to changes in the parameters. As a result, 

an increase in the value of children not only lowers the mean birth date, but also results in a 

tighter distribution of births. Similarly, an increase in the cost of children delays the average 

birth and widens the spread. In contrast, whenever the effect of increased impatience is to induce 

earlier births, less able women’s childbearing timing decisions are more sensitive to changes in 

time preference. This is because her marginal benefit of delaying births is relatively flat, thus 

leading to smaller offsetting forces to the negative impacts of impatience on the age of 

childbearing. Moreover, since an exogenous change in the effective wage rate generates an 

income effect, less able women’s ages at first births respond more to this change as long as the 

biological constraint for women to become fertile does not bind.  

Finally, the distribution of birth dates tightens as the strength of the peer-group effect (1-

γ) increases, but otherwise it is not too responsive. The former result is due to asymmetric effects 

of peer-groups on human capital investment; stronger peer-group effects increase human-capital 

investment for low-ability women and decrease it for high-ability women. This convergence in 

the levels of human capital investment leads to a convergence in the costs and, hence, timing, of 

childbearing. The latter result mainly is due to the symmetry in the loss of productivity in the 

production of both human capital and market goods, which effectively eliminates the first-order 

interaction term between age at birth and peer-group effects. 

5. Extensions and Concluding Remarks 

Focusing our analysis on the timing of women’s first birth has provided several important 
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insights for public policy and policy analysis. Before addressing these findings, it is worth 

mentioning that extending our model to incorporate the traditional quantity-quality tradeoff is 

straightforward. The utility associated with children, as well as the productivity loss, both 

currently regarded as constant, can be made increasing functions of both the quantity and the 

quality of children. After these modifications, the critical decision of when to start childbearing 

remains qualitatively unchanged. If we further restrict the quantity of children to integers, we can 

also consider the optimal spacing between births. Childbearing frequency will depend positively 

on the benefits from increasing returns to scale in home activity and negatively on the increasing 

opportunity cost of time. 

Two important results arise from our endogenous timing childbearing model. First, 

despite generating substantial increases in the human capital of disadvantaged women, peer 

group effects in the production of human capital have little impact on these same women’s age at 

childbirth. An important implication of this finding is that if peer groups have a strong influence 

on teenage childbearing, they likely would operate through social avenues as opposed to direct 

economic incentives, such as the return to human capital investment. 

Second, in the quantitative analysis, depending on the parameter considered, the 

variability of behavior can be as sensitive, or even more sensitive, to changes in childbearing 

preference and cost parameter values as the average level of behavior. Thus, concentrating on the 

mean treatment effect of a parameter change could produce very misleading results for policy 

analysts, particularly when the population of interest resides primarily in the tails of the 

distribution. This lends theoretical support to the recent emphasis in the evaluation literature on 

identifying the distribution of treatment effects, instead of the average treatment effect. 

These same findings naturally lead to some extensions of the model. First, a sensitivity 

analysis with respect to heterogeneity in parameters besides women’s ability to produce human 
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capital would be interesting. In particular, two prime candidates are the utility derived from 

children and the productivity loss associated with children. Additionally, the model could be 

generalized to allow children to differentially affect the production of human capital and market 

goods. Such a change would increase the sensitivity of the allocation of time between investment 

in human capital and the production of market goods with respect to all of the parameters 

considered. Furthermore, breaking this symmetry may have noticeable impacts on the 

distribution of childbearing ages. 

Similarly, allowing for nonseparable utility in leisure and childbearing could also impact 

the distribution of childbearing ages (while nonseparability in consumption and childbearing 

may have a stronger potential to alter the results, it is probably unsolvable). Finally, marriage 

could be incorporated into the model. This would introduce a second time-line variable, which 

would significantly complicate the analysis. Yet, if an extremely stylized or partial equilibrium 

marriage market is adopted, we believe that the model could still be analyzed and calibrated. 
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Table 1: First Births by Age and Race of Mother for the United States in 1997 

 
 Percent of Births in the Specified Age Range 
Category 10-14 15-19 20-24 25-29 30-34 35-39 40+
All Women 0.01 0.24 0.30 0.25 0.14 0.05 0.01
White 0.00 0.19 0.29 0.29 0.16 0.05 0.01
Black 0.02 0.39 0.31 0.16 0.09 0.03 0.01
Hispanic 0.01 0.33 0.35 0.19 0.08 0.03 0.01
Note:  Approximately two thirds of the births in the 15 to 19 cell occur to women 
18 to 19 years old. 
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Table 2: Benchmark Equilibrium and Comparative Statics 

 
Effects on Changes in 

(Benchmark in Bold) 
B+M E 

0.020 26.86 0.0908 
0.030 25.38 0.0813 
0.040 24.55 0.0716 
0.050 24.98 0.0617 

 
 
ρ 

0.055 28.19 0.0568 
0.8·0.6637 36.82 0.0725 
0.9·0.6637 30.15 0.0721 
1.0·0.6637 24.55 0.0716 
1.1·0.6637 19.82 0.0711 

 
 
U0 

1.2·0.6637 15.82 0.0705 
0.8·0.2 15.00 0.0714 
0.9·0.2 18.85 0.0714 
1.0·0.2 24.55 0.0716 
1.1·0.2 29.88 0.0718 

 
 
φ 

1.2·0.2 34.88 0.0720 
0.8·1.0 19.37 0.0710 
0.9·1.0 22.17 0.0713 
1.0·1.0 24.55 0.0716 
1.1·1.0 26.61 0.0718 

 
 
A 

1.2·1.0 28.40 0.0720 
0.6·U0 18.09 0.0708 
0.7·U0 21.13 0.0712 
0.8·U0 24.55 0.0716 
0.9·U0 28.41 0.0720 

 
 
β  

1.0·U0 32.76 0.0723 
0.10 23.88 0.0756 
0.15 23.76 0.0735 
0.20 24.55 0.0716 
0.25 25.26 0.0698 

 
 
1-γ 

0.30 25.90 0.0680 
    
Notes: Benchmark values of other parameters are: Q=50, M=τ=15, 
A=1, r=0.055, η=0.05 and Γ=0.132988. The case of “no children” 
(B+M>65) occurs whenever U0 is as low as half of the benchmark 
value, φ is as high as twice of the benchmark value, or β is as high as 
1.5 times the benchmark value. Whenever the interior solution of 
B+M is below 15, the corner solution of 15 is applied. 
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Table 3: Distribution Effects 

 
Effect of Changes in 

(Benchmark in Bold) Mean 
of B+M 

Standard 
Deviation 
of B+M 

Minimum
Value of 

B+M 

Maximum
Value of 

B+M 
0.020 26.75 1.13 23.26 29.03 
0.030 25.21 1.71 19.97 28.71 
0.040 24.31 2.75 16.05 29.98 
0.050 24.87 5.63 15.00 38.07 

 
 
ρ 

0.055 -- -- 15.00 no children 

0.8·0.6637 36.55 3.00 27.47 42.70 
0.9·0.6637 29.90 2.88 21.22 35.82 
1.0·0.6637 24.31 2.75 16.05 29.98 
1.1·0.6637 19.65 2.61 15.00 25.01 

 
 
U0 

1.2·0.6637 16.35 2.49 15.00 20.77 
0.8·0.2 15.17 0.45 15.00 17.76 
0.9·0.2 18.76 2.38 15.00 24.10 
1.0·0.2 24.31 2.75 16.05 29.98 
1.1·0.2 29.63 2.83 21.10 35.47 

 
 
φ 

1.2·0.2 34.62 2.90 25.86 40.59 
0.8·1.0 19.28 2.72 15.00 25.41 
0.9·1.0 21.92 2.87 15.00 27.89 
1.0·1.0 24.31 2.75 16.05 29.98 
1.1·1.0 26.37 2.63 18.44 31.78 

 
 
A 

1.2·1.0 28.17 2.51 20.54 33.32 
0.6·U0 18.08 2.19 15.00 23.18 
0.7·U0 20.91 2.62 15.00 26.39 
0.8·U0 24.31 2.75 16.05 29.98 
0.9·U0 28.15 2.84 19.60 34.01 

 
 
β  

1.0·U0 32.50 2.93 23.65 38.52 
0.10 22.64 2.84 15.00 22.64 
0.15 23.52 2.79 15.15 23.52 
0.20 24.31 2.75 16.05 29.98 
0.25 25.02 2.71 16.87 25.02 

 
 
1-γ 

0.30 25.66 2.67 17.61 25.66 
      
Notes: Γ follows a symmetric-triangular density function over the interval 
[0.093092, 0.172884], 30 percent below and above the mean 0.132988. The 
standard error of Γ is 0.0161. In computation, we approximate the continuous 
triangle distribution by 15 discrete points of identical width 0.005699. 
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Figure I
Median Age at First Birth Over Time and by Race

(Based on child's race until 1980 and mother's race from that point forward)
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Figure II
Lifetime Productivity as a Function of Fertility 
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Figure III
 Average Lifetime Productivity as a 

Function of Age at Childbearing
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Figure IV
Determination of Childbearing Age
Solid circles indicate optimal childbearing ages.
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Figure V
Optimal Paths for Human Capital and Human Capital Investment

Based on a discrete-time version of the model and specific parameter values
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