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ABSTRACT

It is now well known that the Sharpe ratio and other related reward-to-risk measures may be

manipulated with option-like strategies. In this paper we derive the general conditions for achieving the

maximum expected Sharpe ratio. We derive static rules for achieving the maximum Sharpe ratio with

two or more options, as well as a continuum of derivative contracts. The optimal strategy rules for

increasing the Sharpe ratio. 

Our results have implications for performance measurement in any setting in which managers

may use derivative contracts. In a performance measurement setting, we suggest that the distribution of

high Sharpe ratio managers should be compared with that of the optimal Sharpe ratio strategy. This has

particular application in the hedge fund industry where use of derivatives is unconstrained and manager

compensation itself induces a non-linear payoff.

The shape of the optimal Sharpe ratio leads to further conjectures. Expected returns being held

constant, high Sharpe ratio strategies are, by definition, strategies that generate regular modest profits
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any investment management industry that rewards high Sharpe ratio managers.
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1 Introduction

The Sharpe ratio is one of the most common measures of portfolio performance.

William Sharpe developed it in 1966 as a tool for evaluating and predicting the per-

formance of mutual fund managers. Since then the Sharpe ratio, and its close ana-

logues the Information ratio, the squared Sharpe ratio and M-squared, have become

widely used in practice to rank investment managers and to evaluate the attractive-

ness of investment strategies in general. The appeal of the Sharpe measure is clear.

It is an affine transformation of a simple t-test for equality in means of two vari-

ables, the first variable being the manager’s time series of returns and the second

being a benchmark.1 The Sharpe ratio is also ubiquitous in academic research as a

metric for bounding asset prices.2

Unfortunately, the Sharpe ratio is prone to manipulation – particularly by strate-

gies that can change the shape of probability distribution of returns. For example,

Henriksson and Merton (1981) and Dybvig and Ingersoll (1982) show that non-linear

payoffs limit the applicability of the Sharpe ratio to the problem of performance

evaluation. More recently, Bernardo and Ledoit (2000) show that Sharpe ratios are

particularly misleading when the shape of the return distribution is far from nor-

mal.3 Spurgin (2001) shows that managers can improve their expected Sharpe ratio

by selling off the upper end of the potential return distribution. Other researchers,

recognizing the limitations of the Sharpe ratio and its relatives, have sought al-

ternatives to the reward-to-variability approach. These include stochastic-discount

factor based performance measures (c.f. Chen and Knez (1996)) and more direct

measures of active management skill ( c.f. Grinblatt and Titman (1992)). The litera-

ture on performance evaluation is a large one (c.f. Brown, 2000 reference website),

and much of it has focused on the limitations of standard measures. However, de-

1For a review of its history and use, see Sharpe (1994). For a current textbook discussion and
applications of the Sharpe ratio, see for example, Bodie, Kane and Marcus (1999) p. 754-758, and
back endsheet. For applications in the mutual fund industry, see Morningstar (1993) p.24

2See Cochrane and Saa- Requeno (1999) for a discussion of the application of Sharpe ratios to
current asset pricing research.

3To address this problem they propose a semi-parametric alternative biased on the gain-loss
ratio that, in effect discards the information in the tails of the distribution.
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spite twenty years of academic understanding of the problems of benchmarking and

performance measurement, the Sharpe ratio and its relatives remain fundamental

tools in research and practice.

In this paperwe take a different approach to the limitations of reward-to-variability

measures. Rather than pointing out their limitations and proposing alternatives, we

identify a class of strategies that maximize these performance measures, without

requiring any manager skill. We derive rules for achieving the maximum Sharpe ra-

tio when the manager has the freedom to take positions in derivative securities, and

when the manager has a given history of returns. Our analysis shows that the best

static manipulated strategy has a truncated right tail and a fat left tail. The optimal

strategy involves selling out-of-the-money calls and selling out-of-the-money puts

in an uneven ratio that insures a regular return from writing options and a large ex-

posure to extreme negative events. We also show that the best dynamic strategy for

maximizing the Sharpe ratio involves leverage conditional upon underperformance.

The results have a number of implications for investment management. Inter-

est in alternative investments has grown dramatically in the past decade. Hedge

funds in particular have attracted interest by institutional managers and high net

worth individuals. Hedge funds have broad latitude to invest in a range of instru-

ments including derivative securities. Mitchell and Pulvino(2001) documents that

merger arbitrage, a common hedge fund strategy, generates returns that resemble

a short put-short call payoff. Recent research by Agarawal and Naik(2001) shows

that hedge fund managers in general follow a number of different styles that are

nonlinear in the returns to relevant indices. In a manner similar to Henriksson

and Merton, Agarawal and Naik use option-like payoffs as regressors to capture

these non-linearities. In fact, option-like payoffs are inherent in the compensation-

structure of the typical hedge fund contract. Goetzmann,Ingersoll and Ross (2001)

show that the high water mark contract - the most common in the hedge fund indus-

try – effectively leaves the investor short 20% of an at the money call at inception,

and if the fund fares poorly, this becomes an out-of-the money call position.

Although the hedge fund industry is predicted on manager skill, the non-linear

nature of the payoffs to some of its most popular strategies, its lack of restrictions
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on use of derivatives, and its asymmetric compensation structure all make perfor-

mancemeasurement problematic. While some have proposed advanced solutions to

these problems, in this paper we identify a set of strategies that, given the freedom

to invest in derivatives or dynamically rebalance, can dramatically increase most

types of reward-to-risk-based performance measures. While others have shown that

this class ofmeasures is not robust tomanipulation, we show how to optimally game

them. As such, our analysis provides guidelines for identifying the strategies that

are most subject to failures in standard performance measurement. Interestingly,

they happen to conform to some well-known hedge fund strategies – M &A arbitrage

being one.

A recent hedge fund scandal highlights the relevance of understanding option-

based techniques for maximizing the Sharpe ratio. According to a Wall Street Jour-

nal account of 2/01/2002, Integral Investment Management, a Dallas-based hedge

fund run by biologist-turned-money manager, Conrad Seghers boasted "the highest

Sharpe ratio in the industry" in 1998. The secret to Seghers success appears to

have been in part, a short position in out-of-the-money puts on U.S. equity indices.

Quoting from the Journal account: "Mr. Seghers and museum officials recall that he

said Integral would combine the investments in such a way that he could guarantee

profits of 1 percent to 2 percent a month in flat or rising markets. The fund,he said,

could suffer losses only if the stocks to which the options were tied dropped more

than 30 percent, providing a striking degree of investor protection." As we will show

in this paper, the apparent short put position of Integral Investment Management,

coupled with the implicit short call position of the hedge fund incentive compensa-

tion contract fairly closely resembles the optimal Sharpe ratio contract we derive in

this paper. Had the Chicago Art Institute known ex ante the basis for fund’s high

historical Sharpe ratio, they might not have lost nearly $43 million.

Although hedge funds are a natural industry in which to apply our analysis, the

results are also relevant to more conventional asset classes. For example, Glosten

and Jagannathan (1994) and Low (1999) show that small stocks returns have option-

like characteristics – in particular, when measured against a large stock index, small

stocks are effectively short some fraction of a put. Our analysis shows that this fea-
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ture of small stock returns may enhance their apparent risk-adjusted performance

compared to large stocks.

The intuition behind the solution identified in this paper is thatmanagers can sell

insurance for extreme states of nature that occur infrequently. As a result, in small

sample, these insurance premia provide steady positive performance that enhances

return without adding risk Mr. Seghers’ "1 percent to 2 percent per month," if

you will. This form of distribution may be especially susceptible to small-sample

problems – it will depend crucially on whether an extreme event has or has not

occurred in the sample period.

Although we derive conditions for maximizing the expected Sharpe ratio, the

small sample properties may well indicate that managers with limited histories fol-

lowing this strategy have extraordinary high relative risk-adjusted performance.

In addition, it implies that small sample might be measured in years, rather than

months, because very infrequent events matter a lot to the measured performance

of a manager pursuing this strategy. While most hedge fund managers have rela-

tively short track records, our study shows that the data demands for performance

evaluation are higher for such managers than for mutual fund managers or others

restricted from derivatives use by regulation or charter.

More broadly, this analysis has implications for the emergence and survival of

asset markets. Markets that provide fat-tailed, left-skew returns will look relatively

attractive under a reward-to-risk metric, and thus may attract disproportionate in-

terest and investment. This is true even in large sample. However, in a setting in

which the existence of the asset market is conditional upon a return threshold, the

attractiveness of a maximal Sharpe ratio distributions is even greater. For example,

consider a market with an MSR distribution that disappears whenever the returns

hit a very low lower bound. Such amarket will tend to display highly positive Sharpe

ratios as long as it is in existence. The documented positive Sharpe ratios of the

hedge fund industry, and the short history of the industry are consistent with pro-

viding MSR-distributed returns in small sample.

The paper is structured as follows. Section 2 provides an example of how supe-

rior investment strategies may actually yield low Sharpe rations. Section 3 provides
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an example of how poor strategies might actually yield high Sharpe ratios. Section

4 derives the maximal Sharpe ratio under a range of conditions from complete mar-

kets to strategies constrained to a pair of strike prices and standard puts and calls.

Section 5 discusses the further implications of the results and Section 6 concludes.

2 Type I Error: Low Sharpe Ratios of Great Strategies

In order to identify the optimal strategy for gaming the Sharpe ratio it helps to

know what elements of a "good" strategy may lead to lower values. Why focus

on this element? Because it is easy to eliminate or sell such returns and thereby

artificially inflate a fund manager’s apparent performance.

The Sharpe ratio contains two elements. The numerator, which is the realized

return and the denominator which is the standard deviation. Thus, it is possible to

trade off high returns for a lower standard deviation and potentially improve the

quotient. In fact, this trade off implies that a manager may produce a remarkably

small Sharpe ratio even with an undeniably winning strategy.

To see this, consider a simple, perfect-foresight equity investment strategy.

Imagine an analyst who can perfectly pick firms within each industry, but is un-

able to identify which industry will perform best. Thus, for example, the analyst

can tell you if General Motors will outperform Ford, but not if they will over or

under-perform Intel.

The resulting strategy is quite simple: it shorts the bottom half of the firms

within each industry and takes a long position in the other half. Net performance is

the difference between the average buy-and-hold performance of the long portfolio

minus the average buy-and-hold performance of the short portfolio over a period

of one year. Being a zero-investment strategy, performance statistics are computed

from the spread between the return of the long leg minus the return of the short

side. Given the assumption of perfect within-industry foresight, there is no doubt

that the returns of this strategy will always be positive – the only uncertainty is the

variation in the positive return spread. The Sharpe ratio is the time-series mean of
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the net returns divided by the time-series standard deviation.4 Because of this, the

Sharpe ratio turns out to be a particularly poor measure of performance, since all

the variation, in some sense, is positive. Clearly, no human being can produce such

returns. However, the point here is that even somebody with such supernatural

abilities will not fare very well when compared with others via the Sharpe ratio.

The inability of this strategy to produce superior numbers will then help to identify

ways ordinary managers can improve their numbers without improving their actual

predictive abilities.

The Sharpe ratios of these “perfect” portfolios are influenced by variance across

firms (“heterogeneity”) and variance across years. A higher variance within industry

means that the sorting ability of an analyst is more valuable. Thus, heterogeneity

produces a higher mean performance. In contrast, time-series variation in hetero-

geneity produces greater time-series return variance, which lowers the Sharpe ratio.

Insert Table 1 Here

Table 1 presents the base case. Analysts are assumed capable of perfect sorting

within 1-digit SIC codes. To qualify for inclusion in the portfolio for a given year,

in December, a firm must have market capitalization in millions of dollars equal to

the prevailing S&P level divided by 5.0 (this means that a firm as of the year 2000

must have a market cap above $250 million) and a stock market price of $5 or more.

Each firm must have a valid return in January, available in Research Insight (from

which all data is drawn), traded on a U.S. exchange, and not an ADR. Firms in SIC 9

were also excluded since due to the paucity of firms with this coding. The data set

begins in 1981 and ends with 1999.

Of course, such returns would be an analyst’s dream. The typical annual return

spread for one analyst is between about 20% and 140%. The typical mean return

for an individual industry is about 64%. However, the return volatilities are not

4When the portfolio is zero-investment, the risk-free rate is not subtracted off in computing
the Sharpe ratio. A zero-investment portfolio can always be combined with a position in bonds.
This increases the expected rate of return by the interest rate and does not alter the standard
deviation. The Sharpe ratio can then be computed in the usual fashion. Computing Sharpe ratios
in this fashion also permits us to ignore changes in the interest rate over the sample period
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negligible, ranging from a low of 9% for SIC 2 (construction) to 31% for SIC 7 (finance).

Thus, due to the time-series variation in sorting effectiveness, even though returns

are guaranteed to be positive by the experiment, the Sharpe ratio is still a figure in

the single digits. For some industries (e.g., SIC 4: utilities), even perfect foresight is

not enough to have offered the analyst muchmore than a Sharpe ratio of 2.5! Five of

our ten industry portfolios are hard-pressed to achieve a Sharpe ratio significantly

above 3. If a fund were to have access to perfect analysts within each industry and

allocated capital equally to each, its performance would have achieved a Sharpe

ratio of only 4.26.

These “perfect portfolios” display smooth performance over the sample period,

because they contain a lot of firms. Thus, it makes little difference if we com-

pute Sharpe ratios with annual returns or with monthly returns and then annualize

them.5 For smaller portfolios with more month-to-month variation (but assuming

perfect annual sorting ability), this effect would further lower the Sharpe ratio com-

puted from monthly returns.6

Although the time-series variation problem is familiar to practitioners, its mag-

nitude may not have been. In the realm of equity buy-and-hold strategies, hypo-

thetical strategies often return Sharpe ratios between 1 and 3. Our strategy puts

these numbers into perspective: the scale upon which such unmanipulated equity

buy-and-hold strategies should be judged is not really minus infinity to plus infinity,

but, say, −5 to +5.

Despite the fact that no human being can hope to replicate the perfect foresight

returns from the portfolios analyzed in this section, the resulting Sharpe ratios

are less than spectacular. However, the problem lies not with the strategy or its

high returns, but its highest returns. If the manager could ex post discard all re-

5The more volatile the within-year returns, the lower are the monthly annualized Sharpe ratios
relative to those computed directly from annual returns. To illustrate the point, consider a port-
folio that shows (100%,−40%, 200%, −40%) forever. Thus, the mean is 55%, the standard deviation
is 101.4%. At lower frequency, the portfolio would perform at (20%,80%) forever. The mean is just
slightly lower (55%), the 2 period standard deviation is 30%.

6Variations permitting more frequent perfect foresight, more extreme portfolios, more detailed
industry abilities, or different capitalization requirements can expand the range slightly, but typ-
ically yield similar conclusions.
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turns above the minimum realized annual return, then the all returns would be the

same and positive so the Sharpe ratio would be infinite. Such a strategy would not

work in general since, without perfect foresight, the minimum return will usually

be negative, but the same general principle applies. The Sharpe ratio usually can be

improved by eliminating the highest returns. This is the subject of the next section.

3 Type II Error: UsingDerivatives ToMaximize the Sharpe

Ratio

One efficient way to truncate high returns to is through the use of derivatives. As

we noted in the Chicago Art Institute example above, a strategy tied to a market for

which options exist is particularly susceptible tomaximizing Sharpe ratio strategies.

This is particularly easy if the fund’s primary purpose is index enhancement, as

index options are readily available.

3.1 The Maximal Sharpe Ratio in a Complete Market

Consider first a market which is complete over all price outcomes or can be made

so with dynamic trading. The standard single-period portfolio problem would be to

maximize expected utility,
∑
piu(zi), where pi is the probability at time 0 for state

i realized at time T , u(·) is the utility function of the investor, and zi is the total

return (not excess return) in state i. The optimal portfolio, z◦i , is characterized by

u′(z◦i ) = θp̂i/pi (1)

where θ = E[u′(z◦)] is the Lagrange multiplier from the budget constraint and p̂i
is the risk-neutral probability of state i.7

7We express the budget constraint and hence the optimal portfolio in terms of the risk-neutral
probabilities rather than the state prices for ease of comparison with later results. The risk-neutral
probability of a state is equal to the state price multiplied by the risk-free discount factor.
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Suppose instead that the investor wishes to form a portfolio with the largest

possible Sharpe ratio. Any portfolio can be decomposed into a risk-free asset plus

a risky zero-investment portfolio, z̃ = erT + x̃. Alternatively, x̃ is the excess return

on the portfolio in question. The Sharpe ratio S of the portfolio is the ratio of the

expected return in excess of interest earned to the standard deviation. In terms of

the zero-investment portfolio (or excess return) the Sharpe ratio is8

S = E[x̃]√
Var[x̃]

=
∑
pixi[∑

pix2i −
(∑
pixi

)2]1/2 . (2)

The Sharpe-ratio-maximizing portfolio is not uniquely defined. In fact, the Sharpe

ratio is invariant to scaling by leverage so the same maximum Sharpe ratio can be

achieved at any positive expected excess return
∑
pixi = x̄ ≥ 0. Since x̄ = 0 is

trivially achieved, the mean must not be negative or the Sharpe measure is clearly

not maximized.

As shown in the Appendix, the maximal-Sharpe-ratio excess return in state i for

a portfolio with mean excess return x̄ is

x∗i = x̄ + γ(1− p̂i/pi)
where γ = x̄∑

p̂2i /pi − 1
.

(3)

So the Sharpe-ratio-maximizing payoff is linear in the likelihood ratio of the risk-

neutral probability to the true probability (or state price per unit probability).

The variance of the “optimized” portfolio is
∑
pi(x∗i − x̄)2 = γx̄. Therefore, the

square of the maximal Sharpe ratio is

S2∗ =
x̄2

γx̄
=
∑
p̂2i /pi − 1 . (4)

8Equation (2) and the following results give the true Sharpe ratio of the portfolio. In any period,
the sample Sharpe ratio may differ from this population value. Its distribution and small sample
properties will depend on the probability distribution of the states.
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This final sum can also be expressed as
∑
pi(p̂i/pi)2 so the maximal Sharpe ra-

tio is one less than the expectation of the square of the realized likelihood ratio

considered as a random variable on the states.

If the number of states is finite or the probability likelihood ratio, p̂i/pi, is oth-

erwise bounded above across states, then the maximal Sharpe ratio can be achieved

with a limited liability portfolio. The smallest excess return is

x∗min ≡min
i
x∗i = x̄ + γ

[
1−max

i
(p̂i/pi)

]
. (5)

Since γ is proportional to x̄, so is this minimal excess return. Therefore, by set-

ting the mean excess return at a sufficiently low level, the smallest total return,

x∗min + e−rT can be made positive and limited liability is achieved. If there are in-

finitely many states and the probability likelihood ratio is unbounded, then a limited

liability portfolio with a Sharpe ratio arbitrarily close to the maximal value can be

formed by holding a portfolio with excess return −e−rT (i.e., total return of zero)

in the states with the highest ratios and excess returns proportional to those given

in (3) for the states with lower ratios. Again by setting the mean excess return to

a sufficiently small number, the fraction of states with a zero return can be made

as small as desired and the resulting Sharpe ratio will be arbitrarily close to that

achieved with an unconstrained portfolio.

We now examine the properties of the maximal-Sharpe-ratio portfolio. From (3)

and (4), the return on the maximal-Sharpe-ratio portfolio in state i is

x∗i = x̄ +
x̄
S2∗
(
1− p̂i/pi

)
. (6)

So for the maximal Sharpe ratio portfolio, the return in each state deviates from

the expected return by an amount proportional to the difference of the probability

likelihood ratio p̂i/pi from 1. States with risk-neutral probability exceeding their

true probability will have smaller than average returns and vice versa. The larger the

deviation between the risk-neutral and true probabilities, the greater the difference

from the mean return.
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Comparing this portfolio to the solution to the standard problem in (1), we see

that9

x∗i = x̄ −
x̄
S2∗

(
u′(z◦i )
E[u′(z◦)]

− 1

)
. (7)

Therefore, the excess return on the maximal Sharpe ratio portfolio differs from the

average return by an amount proportional to the difference between the realized

marginal utility and the expectedmarginal utility for an optimally invested portfolio.

In particular, it is monotonically decreasing in the marginal utility. Since utility is

concave, x∗i is also monotonically increasing (but not linear) in z◦i . For typical utility

functions withu′′′(·) > 0, x∗ will be concave in z◦. That is, the total return including

interest on the maximal-Sharpe-ratio portfolio will exceed z◦i in the midportion of

the outcomes and fall short of z◦i for very good or very bad outcomes or, usually,

both.

All of these comparisons are meaningful only if the optimal portfolio for the

standard problem is identified. Note, however, that we do not actually require a

complete market in the Arrow Debreu sense to do this analysis. Take any portfolio

or asset with a particular pattern of returns to use as a basis. Next, determine the

maximal-Sharpe-ratio portfolio which can be constructed by trading a complete set

of derivative claims contingent on it. By using a basis asset as a benchmark it now

becomes possible to derive other standard performance measures.

Let B denote the excess return on a benchmark index. The covariance of the

Sharpe-ratio-maximizing portfolio with the benchmark is

Cov[x∗, B] = E[(x∗ − x̄)B] =
∑
pi
[
−Bi x̄S2∗

(
p̂i/pi − 1

)]
= x̄S2∗

∑(
piBi − p̂iBi

) = x̄S2∗ B̄
(8)

9The utility function used here can be any for which the standard problem has an “interior”
solution.
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so the beta and alpha of the maximal-Sharpe-ratio portfolio are

β∗ = Cov[x∗, B]
Var[B]

= x̄B̄
S2∗Var[B] =

x̄
B̄
S2B
S2∗

α∗ = x̄ − β∗B̄ = x̄
(
1− S2B

/S2∗) (9)

where SB is the Sharpe ratio of the benchmark. Of course, the alpha is subject to

severe manipulation. It can be made as large as desired by levering the portfolio to

increase it’s mean return.10

Other performance measures related to the Sharpe ratio have also been pro-

posed. Modigliani and Modigliani’s [1997] M-squared is measured relative to some

benchmark, B, usually an index like the S&P 500. It is the expected rate of return

that would be earned on a portfolio if it were levered so its standard deviation were

equal to that on the benchmark.

M2 ≡ x̄√
Var[x]

√
Var[B]+ erT = Sx

√
Var[B]+ erT . (11)

Clearly maximizing the Sharpe ratio also maximizes the M-squared measure for any

benchmark.

Sharpe’s [1981] information ratio is the ratio of the excess return to the stan-

dard deviation measured relative to some risky benchmark in place of the risk-free

asset. The information ratio for a portfolio with excess returns, x with respect to a

benchmark with excess return B is defined as

I ≡ E[x − B]√
Var[x − B] . (12)

10This is always true and not a particular problem with this structure. The Treynor measure,
T ≡ α/β, was introduced to avoid this problem. Like the Sharpe measure, the Treynor measure is
unaffected by leverage. The Treynor measure for the maximal Sharpe ratio portfolio is

T∗ = α∗/β∗ =
(
S2∗
/S2B − 1

)
B̄

which does not depend on the mean x̄. Of course, the Treynor measure has its own manipulation
problem. It can be made as large as desired by reducing the beta.
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This is just the Sharpe ratio for the quantity x − B instead of the excess return

x alone. Since both the excess return x∗ and the benchmark excess return B can

be purchased at a zero cost, so can the portfolio with excess return x∗∗ = x∗ + B.
Clearly this latter portfolio has the maximal information ratio which is equal in

value to the maximal Sharpe ratio derived earlier, I∗ = S∗.

The next section analyzes this problem in a exponential-normal model where the

mean-variance analysis is usually justified.

3.2 The Maximal Sharpe Ratio for a Normal Benchmark

In this section, we analyze the maximal Sharpe ratio problem for a benchmark (mar-

ket) portfolio with a normally distributed return. Let ξ denote the return on a port-

folio which is to be used as a comparison basis. This portfolio might be taken to be

the market portfolio, but it need not be. We assume that any derivative asset based

on ξ can be traded, so the market can be completed with respect to states defined

over outcomes of ξ.

For a continuous state space, analysis similar to that leading to (4) yields a max-

imal squared Sharpe ratio of

S2∗ =
∫
p̂2(ξ)/p(ξ)dξ − 1 = E [p̂2(ξ)/p2(ξ)]− 1 (13)

which is achieved by a portfolio with an excess return of

x∗(ξ) = x̄ + γ[1− p̂(ξ)/p(ξ)] (14)

where γ = x̄/S2∗ and p and p̂(ξ) are the true and risk-neutral probability densities

for the state space.

The likelihood ratio p̂(ξ)/p(ξ) can be determined as in (1) from the utility func-

tion of the representative investor who holds the benchmark

p̂(ξ)/p(ξ) = u′(ξ)/E[u′(ξ)] . (15)
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The typical conjugate assumption for a normal distribution is exponential utility.

In this case the probability likelihood ratio is11

p̂(ξ)/p(ξ) = exp

[
−ξµ − R

σ 2
+ µ

2 − R2
2σ 2

]
. (16)

The square of the maximal Sharpe ratio is12

S2∗ = exp

[(
µ − R
σ

)2]
− 1 = exp(S2ξ)− 1 (17)

where Sξ is the Sharpe ratio of the benchmark index. The maximal Sharpe ratio

clearly exceeds the benchmark’s Sharpe ratio, and the larger the benchmark’s Sharpe

ratio, the larger is the difference. For example, the annual Sharpe ratio of the S&P

500 index was 0.450 from 1926 – 2000. Assuming normality, the maximal Sharpe

ratio is 0.474, which is 5% higher. For a benchmark Sharpe of 0.6, the maximal

Sharpe ratio is 0.658, almost 10% higher.

The final column in Table ?? shows themaximal Sharpe ratio that can be obtained

for normally distributed returns. For example, for an index Sharpe ratio of 1.00, the

maximal Sharpe ratio is 1.31.

The return on the Sharpe-ratio-maximizing portfolio deviates substantially from

normal. The return is

x∗(ξ) = x̄
1+ 1− exp

(
−ξ µ−Rσ2 + µ2−R2

2σ2

)
1+ exp [(µ − R)2/σ 2]

 . (18)

This is increasing in the index, but it is bounded above by x∗max ≡ x̄(1 + [1 +
exp(S2∗)]−1) and unbounded below. The return has a “reflected” lognormal dis-

tribution; i.e., x∗max − x∗ is lognormally distributed.

11For exponential utility, u′(ξ) = e−aξ , the representative investor will hold the benchmark
portfolio unlevered for a = (µ − R)/σ 2. For this investor, E[u′(ξ)] = exp[−(µ2 − R2)/σ 2].
12Recall that if z is normally distributed with mean z̄ and standard deviation σz, then E[eαz] =

exp(αz̄ + 1
2α

2σ 2
z ).
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3.3 The Maximal Sharpe Ratio for a Lognormal Basis

This section analyzes the maximal Sharpe ratio problem in a continuous-state log-

normal environment. This permits the use Black-Scholes option-pricing techniques

to determine the risk-neutral probabilities which yields specific numerical results.

Assume that ξ has a lognormal distribution with an instantaneous expected rate

of return of µ and a logarithmic variance of σ 2 per unit time. The risk-neutral prob-

ability distribution is the same with µ replaced by r , the continuously-compounded

interest rate. As shown in the Appendix, the maximal Sharpe ratio for a lognormal

basis is13

S∗ =
(
exp

[
(µ − r)2
σ 2

T
]
− 1

)1/2

. (19)

The maximal Sharpe ratio is increasing in the absolute value of the instantaneous

risk premium of the basis, µ−r , and decreasing in its standard deviation. Increasing
both the risk premium and the standard deviation proportionally leaves the max-

imal Sharpe ratio unchanged. The maximal Sharpe ratio is also increasing in the

investment horizon, T , because lengthening the horizon is equivalent to increasing

the risk premium and the variance (not the standard deviation) proportionally.14

The Sharpe ratio of the basis alone is

Sξ = eµT − erT
eµT

√
eσ2T − 1

= 1− e−(µ−r)T√
eσ2T − 1

. (20)

This ratio is also increasing in the risk premium and decreasing in the standard

deviation of the index. For realistic parameter values, it is increasing in the invest-

ment horizon for T up to about ten years: a longer horizon than will be used in

most conceivable circumstances.15

13This formula is very similar to (17). However, (µ−r)/σ is not the Sharpe ratio of the benchmark
in this case since µ, r , and σ are the instantaneous parameters. The Sharpe ratio of the index is
given below.
14The investment horizon T is the interval over which one return is measured not the entire

period of data. For example, if five years of monthly returns are used to compute the average and
standard deviation, then the horizon is one month and not five years.
15T represents the investment horizon or rebalancing interval of the decision maker. It is com-

monly assumed that the Sharpe measure is proportional to the square root of this horizon. How-

15



Insert Table 2 Here

Table 2 shows the Sharpe ratio for the basis and for the optimized portfolio

for various parameter values. The maximum improvement beyond that available

on the basis is larger the larger is the Sharpe ratio of the basis itself. So a higher

risk premium or a smaller volatility on the basis allows for a greater percentage

manipulation of the Sharpe ratio. Also substantially more improvement is possible

over a one-year horizon than over a monthly horizon. This result follows because

the maximal Sharpe ratio increases at a faster rate than the basis Sharpe ratio with

the investment horizon.

To put these numbers into context, consider the expected rate of return required

by the index for it to produce a Sharpe ratio equal to S∗. Set the index Sharpe ratio in
(20) equal to the maximal Sharpe ratio and solve for µ to determine the “apparent”

return on the maximal-Sharpe-ratio portfolio

µapp ≡ r − 1
T
ln
(
1− S∗

√
eσ2T − 1

)
(22)

For example, if the basis risk premium of µ−r equals 10% and the volatility 20%, the
13.1% improvement in the annual Sharpe ratio is apparently equivalent to an extra

return of 146 basis points on the index. The other values for µapp are given in the

table. These are economically meaningful numbers; however, we have been careful

to label them apparent out-performance because there is no actual out-performance

implied.

ever, this is precisely true only if the expected return and variance are proportional to the interval.
Because it is the logarithmic variance and the continuously-compounded expected rate of return
which are proportional to the horizon, the index and maximal Sharpe ratios actually grow slower
and faster than the square root of the time interval, respectively, as can be seen from a Taylor
expansion of (20) and (19):

Sξ ≈ µ − rσ
√
T
(
1− µ − r + σ

2

2
T + · · ·

)

S∗ ≈ µ − rσ
√
T
(
1+ (µ − r)

2

2σ 2
T + · · ·

)
.
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The excess return x∗ on the maximal Sharpe ratio portfolio is from (14) and (48)

x∗(ξ) = x̄ + γ
(
1− exp

[
µ − r
2

(
µ + r
σ 2

− 1
)
T
]
ξ−(µ−r)/σ

2
)
. (23)

This payoff is illustrated in Figure 1 for µ = 15%, r = 5%, σ = 15%, and T = 1. The

return shown has the same expected value as that on the index, i.e., x̄ = eµT − erT .
Note that the maximal-Sharpe-ratio return is substantially less than that on the

index in both tails. The maximal-Sharpe-ratio return exceeds that on the index only

over the range from about −4% to 25%. Of course, this central range does account

for nearly 60% of the probability distribution.

Insert Figure 1 Here

Because ξ is lognormally distributed, ξ to any power is as well, and x∗(ξ) will

have a translated and reflected lognormal distribution.

px (x∗(ξ)) = δ
x̄ + γ − x∗

1

σ
√
T
φ

−δ · �n
(
x̄+γ−x∗
γ

)
+ r−µ

2 T

σ
√
T


where δ ≡ σ 2

µ − r .
(24)

The maximal Sharpe ratio return has a reflected lognormal distribution bounded

above by x̄ + γ and with an infinite left rather than right tail.

Insert Figure 2 Here

The distribution of returns on this portfolio is shown in Figure 2 along with that

of the index. Again, they are constructed to have the same expected payoff, and the

parameters used are µ = 15%, r = 5%, σ = 15%, T = 1. The variance of the return

on the optimal portfolio will, of course, be smaller than that on the index by the

factor (Sξ
/S∗)2.

Var[x∗(ξ)] = S2ξ
S2∗Var[ξ] =

S2ξ
S2∗e

2µT
(
eσ

2T − 1
)
. (25)
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Themost obvious feature of the distribution is its long left tail giving rise to negative

skewness and high kurtosis.

Because both distributions are lognormal, all other moments are determined by

the means and variances. In particular the normalized third and fourth moments

are

E[(ξ − ξ̄)3]
(Var[ξ])3/2

= (ωξ + 2)
√
ωξ − 1

E[(ξ − ξ̄)4]
(Var[ξ])2

− 3 =ω4
ξ + 2ω3

ξ + 3ω2
ξ − 3

E[(x∗ − x̄∗)3]
(Var[x∗])3/2

= −(ωx + 2)
√
ωx − 1

E[(x∗ − x̄∗)4]
(Var[x∗])2

− 3 =ω4
x + 2ω3

x + 3ω2
x − 3

(26)

where ωξ ≡ eσ2T and ωx ≡ eσ2T/δ2.

Table 3 shows the skewness and kurtosis of the maximal Sharpe ratio portfolio

and the basis portfolio for basis volatilities of σ = 15%, 20%, and 25% and horizons

of one month and one year.

Insert Table 3 Here

The equation for the maximal Sharpe ratio and the maximizing portfolio are

completely general; however, many of the specific results here depend on the log-

normal distribution assumption. For example, suppose instead the index has a

log-Laplace distribution, p(ξ) = (2βξ)−1 exp (−| lnξ − α|/β). In this case, the

maximal-Sharpe-ratio portfolio is

x∗(ξ) = x̄ + x̄S2∗

[
1− exp

(
−| lnξ − α̂| − | lnξ −α|

β

)]
where S2∗ = 2

3 exp [(α− α̂)/β]+ 1
3 exp [−2(α− α̂)β)]− 1

(27)

where α̂ is the risk-neutral value of the location parameter α.16

16The logarithmic variance of the return is Var[lnξ] = 2β2. The continuously compounded
expected rate of return is µ = 1

T [α − ln(1 − β2)). Therefore, the risk-neutral mean parameter is
α̂ = rT + ln(1− β2) so α− α̂ = (µ − r)T .
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Aswith lognormality, themaximal-Sharpe-ratio is increasing in the risk-premium

and decreasing in the logarithmic variance of the basis. Also the return on the

maximal-Sharpe-ratio portfolio is increasing in the return on the index and has an

upper bound. However, in this case, the upper bound is achieved and the returns

are equal for all ξ ≥ eα. A more striking difference is that this maximal-Sharpe-ratio

portfolio also has a lower bound, and its payoff is again constant for all ξ ≤ eα̂. So
for a log-Laplace distribution, the maximal-Sharpe-ratio portfolio eliminates both

tails of the distribution.

3.4 Maximizing the Sharpe Ratio With One Call and One Put

In practice amoneymanagermay not be able to construct the Sharpe-ratio-maximizing

portfolio because a complete market in contingent claims does not exist or because

it may be too expensive to trade or dynamically create too many options. However,

even if the manager is allowed to trade only one or two ordinary put and call op-

tions, he can significantly enhance his Sharpe ratio. Furthermore, these two options

will typically be liquid (near-the-money) options.

Suppose a money manager invests $1 in the index, purchases κ European puts

with a strike of K and sells η European calls with the strike of H (H > K) to create

the following simple linear return pattern

P =


ξ + κ(K − ξ) ξ ≤ K

ξ K < ξ < H

ξ − η(ξ −H) H ≤ ξ .
(28)

Many interesting patterns are included here. For example, writing covered calls is

equivalent to κ = 0 and η = 1. Buying portfolio insurance is equivalent to κ = 1

and η = 0. Partial write programs, partial insurance, and combinations are also

included.
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What are themean, variance, and Sharpe ratio of the portfolio P? The non-central

moments of the distribution of the portfolio’s payoff are

E[Ps] =
∫ K
0
[ξ+κ(K−ξ)]sp(ξ)dξ+

∫ H
K
ξsp(ξ)dξ+

∫∞
H
[ξ−η(ξ−H)]sp(ξ)dξ . (29)

Using (53) and (54) for z = (µ − 1
2σ

2)T and v2 = σ 2T , we have

E[P] = κKΦ(−h−K)+ (1− κ)eµT · Φ(−hK)+ eµT · [Φ(hK)− Φ(hH)]
+HηΦ(h−H)+ (1− η)eµT · Φ(hH)

and

E[P2] =κ2K2Φ(−h−K)+ 2κ(1− κ)KeµT · Φ(−hK)+ (1− κ)2e(2µ+σ2)T · Φ(−h+K)
+ e(2µ+σ2)T · [Φ(h+K)− Φ(h+H)]+ η2H2Φ(h−H)

+ 2η(1− η)HeµT · Φ(hH)+ (1− η)2e(2µ+σ2)T · Φ(h+H)

where

hZ ≡
−�nZ +

(
µ + 1

2σ
2
)
T

σ
√
T

h±Z ≡ hZ ± σ
√
T .

(30)

The Sharpe ratio is

S = E[P]− P0erT√
E[P2]− E2[P] (31)

where P0 is the initial value of the portfolio.

The initial value of the portfolio is

P0 = 1+ κP(1, T ;K)− ηC(1, T ;H) (32)

where P(·) and C(·) are the formulas for a put and a call; in this case the Black-

Scholes formulas. The Sharpe ratios for portfolios holding just one option are given

by setting κ or η to zero. The Sharpe ratios for portfolios holding options at more
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than two strikes can be computed similarly. However, as shown below, only one or

two options are required to achieve most of the possible improvement in the Sharpe

ratio.

Insert Figure 3 Here

Figure 3 shows the Sharpe ratio for using a single call in various combinations

with the basis for parameter values r = 5%, µ = 15%, σ = 15%, T = 1. For these

parameters the Sharpe ratio for the stock is 0.631. By selling 0.843 calls at a strike

of 1.0098,17 the Sharpe ratio can be pushed to 0.731. Using two strikes allows

an improvement of the Sharpe ratio to 0.743. This portfolio is characterized by

κ = −2.58, K = 0.88, η = 0.77, H = 1.12. The maximal Sharpe ratio is 0.748, so 86%

of the total possible increase in the Sharpe ratio can be achieved with one option

contract and 96% can be achieved with just two option contracts.

The improvement in the Sharpe ratio is not critically sensitive to the exact value

of the strike price. For example, a Sharpe ratio of 0.716 or 0.694 can be achieved by

using a call which is 5% in- or out-of-the-money in place of the best single call with a

strike 1% in-the-money. A Sharpe ratio of 0.737 can be achieved using both of these

options. Near-the-money options are very liquid and seldom is the strike price gap

as large as 10%. Therefore, simple puts and calls should be able to provide most of

the improvement possible in the Sharpe ratio.

Insert Figure 4 Here

Figure 4 plots the payoff on the put-call-stock portfolio and compares it to that on

the maximal Sharpe ratio portfolio.18 The distributions are similar in many respects

17Selling 5.36 puts at the same strike gives identical results. By put-call parity holding a share and
buying κ puts is equivalent to holding a share and buying a portfolio long κ calls, short κ shares,
and long bonds. The net position is κ calls and 1−κ shares. Eliminating the leveragewhich does not
affect the Sharpe ratio gives κ/(1−κ) calls for each share. Because−5.36/(−5.36−1) = 0.843 = η,
the positions are equivalent.
18The illustrated best put and call portfolio does not appear to be a “best” fit for the curve de-

scribing the maximal Sharpe ratio portfolio for the simple reason it is not best fit for the illustrated
curve.
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though the returns on the option portfolio are larger for both very high and low re-

turns on the basis. This means that the option portfolio has less negative skewness

and typically more kurtosis than the maximal Sharpe ratio portfolio.

3.5 Dynamic Optimization (Existing Return History)

Once the measurement period has begun, leverage can be used to further enhance

the recorded Sharpe ratio. Consider a money manager who has an existing history

of returns with realized average excess return, x̄h and Sharpe ratio, Sh. He wishes
to maximize the Sharpe ratio measured from these and future returns. Since the

variance can be expressed as a function of the Sharpe ratio and mean excess return,

the total-period Sharpe ratio is

S = αx̄h + (1−α)x̄f√
αx̄2h(1+ S−2h )+ (1−α)x̄2f (1+ S−2f )− [αx̄h + (1−α)x̄f ]2

(33)

where x̄f and Sf are the expected excess return and Sharpe ratio in the future and

α is the fraction of the total period which has passed.

From (33), the entire-period Sharpe ratio is monotonic in Sf so the maximal-

Sharpe-ratio portfolio should always be employed, Sf = S∗. The only remaining

question is how much leverage should be used.

Insert Figure 5 Here

Figure 5 illustrates the leverage problem for various conditions. The parameters

are α = 0.4,S∗ = 0.6, σh = 15%. The five curves show the entire-period Sharpe

ratio plotted against the expected excess return in the future for historical average

excess returns of x̄h = −2%, 2%, 6%, 10%, and 14%.

As illustrated for x̄h = −2%, extreme leverage (x̄f → ∞) should be employed

whenever the history has a negative average excess return. Fortunately, the Sharpe

ratio does not depend strongly on the expected excess return for high values, so in

practice the leverage need not be extreme to reap most of the benefits.
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If the return history has a positive average excess return, the proper strategy is

not to eliminate all excess returns in the future even if x̄h and Sh are very large.

Doing so would lower the entire-period mean and usually increase the variance.

As shown in the Appendix, the portfolio should be levered so the expected excess

return in the future is

x̄∗f = x̄h
1+ S−2h
1+ S−2∗ . (34)

This equation says the expected return in the future should be set near the

historical mean. In fact, if the historical Sharpe ratio equals the maximal Sharpe

ratio, the portfolio should be levered so its expected excess return is equal to the

historical average excess return. To do otherwise increases the variance and thereby

reduces the entire-period Sharpe ratio since the variance is measured as the squared

deviations around the weighted mean.

Note that in Figure 5 the historical standard deviation is held constant at 15%

across the different x̄h curves rather than the Sharpe ratio. Therefore, as the histor-

ical average increases from 2% to 14%, the historical Sharpe ratio rises from 0.133 to

0.933. This accounts for the decrease in the optimal leverage. The historical returns

have different weight in the entire period standard deviation and expected return

so increasing the leverage increases the former at a faster rate. This means that

with a higher past Sharpe ratio, using leverage to lower the entire period variance

gives more benefit than increasing the expected excess return.

This strategy achieves an entire-period Sharpe ratio of

S2 =



(1−α)S2∗
1+αS2∗ for Sh ≤ 0

αS2h(1+ S2∗)+ (1−α)(1+ S2h)S2∗
1+ (1−α)S2h +αS2∗

for Sh > 0 .

(35)

Insert Figure 6 Here

Figure 6 illustrates the Sharpe ratio that can be achieved with the proper strategy.

The maximal Sharpe ratio in the future is 0.6. The entire-period Sharpe ratio is,

of course, increasing in the historical Sharpe ratio. If the historical Sharpe ratio
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exceeds the maximal Sharpe ratio, then the entire-period Sharpe ratio is decreasing

in α since this good result will have more of an impact on the entire-period Sharpe

ratio. The converse also holds.

The entire-period Sharpe ratio is constant for Sh < 0 and nearly linear for Sharpe

ratios above 0.3 In fact, the plot is very much like the price of an option. Further-

more, by analogy with option pricing, a strategy which produces a volatile Sharpe

measure early on will therefore be a desired one. The money manager can recover

from a bad performance by using leverage in the future. If he has a good perfor-

mance early in the evaluation period, he can be more conservative.

4 Implications

Our analysis has direct, practical implications for regulation, performance auditing

and agency contracting. In this sense it relates to the growing literature on agency

in money management (c.f. Chevalier and Ellison (1997) and Carpenter (2000) and

Goetzmann, Ingersoll and Ross (2001)) . In settings in which the Sharpe ratio is used

explicitly or implicitly for benchmarking, the use of options, or dynamic replication

of derivative payoffs, should be may need to be constrained. Otherwise managers

may take actions that may not coincide with their investors’ interests. Further, it

may pay those allocating assets to compare the distribution of high Sharpe ratio

managers with those that can be obtained via an optimal manipulation strategy.

In settings for which the use of options is unconstrained, asymmetric performance

contracts similar to those used in the hedge fund industry appear tomitigate certain

moral hazard problems raised by the use of Sharpe ratios.

The analysis presented here also has applications for the use of Sharpe ratios in

asset pricing. Low (1999) finds that large a class of U.S. equities have asymmetric

exposure to the index. Glosten and Jagannathan (1994) liken this structural rela-

tionship to a derivative-based strategy. In effect, some assets in the U.S. market,

primarily small cap stocks, behave as if they are short a put. Our analysis shows
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that in this case, the Sharpe and Information ratios are potentially biased measures

of the attractiveness of an investment.

There may be corporate finance implications for these results as well. To the

extent that a corporate manager is evaluated against an explicit benchmark, our

strategy shows that he or she has an incentive to choose a capital structure that

mimics the payoff of the maximal Sharpe ratio. In the corporate setting, this would

mean simultaneously issuing out-of-the-money call warrants and put warrants in

a particular proportion. The former is common for certain types of firms. The

latter is rare, but not unknown. Our paper provides at least one explanation for the

existence of put warrants. In fact, even in settings where the corporate manager

is evaluated not on stock returns but on the risk-scaled deviations of corporate

earnings against a contemporaneous benchmark, our analysis suggests managers

will smooth out large positive income realizations, while recognizing large negative

hits.

The results have implications for dynamic portfoliomanagement. Brown, Harlow

and Starks (1996) show that mutual fund managers increase variance after a poor

showing in the first half of the year. While Jeffrey Busse (1999) disputes this evi-

dence using daily data, our results in this paper suggest that this dynamic behavior

is consistent with maximizing the Sharpe ratio. If our conjecture about hedge fund

compensation is correct, wewould expect to find less dynamic gaming in an industry

with asymmetric contracts. Brown, Goetzmann and Park (2000) find some evidence

that hedge fund managers increase volatility when they underperform other funds,

but not when they underperform a fixed benchmark; thus, the existing empirical

evidence is mixed.

Our analysis also has a number of subtle implications concerning the timing of

reporting and performance measurement. In particular, the longer the reporting

horizon, the more freedom the manager has to discard or shift high returns. For

example, for a fund with a monthly Sharpe ratio of 0.6, the fund only wants to

discard monthly returns more than 1.54 standard deviations above the mean, and

only 5% of the fund’s return are wasted. However, if the same fund’s performance

was measured directly from its annual returns, the fund would want to discard
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annual returns above –1.14 standard deviations above the mean, and over 60% of

the fund’s mean return would be wasted.

The shape of the optimal Sharpe ratio leads to further conjectures. Expected

returns being held constant, high Sharpe ratio strategies are, by definition, strate-

gies that generate regular, modest profits punctuated by occasional crashes. Our

evidence suggests that the “peso problem” may be ubiquitous in any investment

management industry that rewards high Sharpe ratios.

5 Conclusion

This paper focuses on methods to manipulate portfolio returns to achieve high

Sharpe ratios and related measures. It derives the optimal strategy under certain

conditions and shows that the payoff structure resembles a portfolio that is short

different fractions of out-of-the-money puts and calls, such that the fund distribu-

tion is left skewed. This result poses problems in the measurement and monitor-

ing of investment funds and perhaps corporations in general because it distorts

manager incentives. Some distortion may be mitigated by restricting the use of

derivatives in the portfolio. In unconstrained settings, however, it may be wiser

change incentives to asymmetrically reward managers based upon upside perfor-

mance, however giving a 20 percent call on the fund to the hedge fund manager

further distorts reward-to-risk based performance measurement. This compensa-

tion structure has evolved in the hedge fund universe, where portfolio composition

is not monitored, but Sharpe ratios and Information ratios are widely used.
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A Maximal-Sharpe-Ratio Portfolio in a Complete Market

Consider a portfolio with excess return, xi in state i. The probability of state i is

pi. The Sharpe ratio of this portfolio is

S =
∑
pixi[∑

pix2i −
(∑
pixi

)2]1/2 . (36)

This is invariant to scaling so with no loss of generality we can fix the expected

excess payoff at any nonnegative value
∑
pixi = x̄ ≥ 0. Then maximizing the

Sharpe ratio of excess returns is equivalent to minimizing the mean squared payoff

subject to an expected payoff of x̄ with a cost of 0.

Form the Lagrangian19

L = 1
2

∑
pix2i + λ

(
x̄ −

∑
pixi

)
+ γ

(∑
p̂ixi

)
. (37)

The first-order conditions for a minimum are

0 = ∂L
∂xi

= pix∗i − λpi + γp̂i

0 = ∂L
∂λ

= x̄ −
∑
pix∗i

0 = ∂L
∂γ

=
∑
p̂ix∗i .

(38)

The second-order condition for an interior minimum is also met.

Solving the first equation in (38) gives the maximal-Sharpe-ratio return in state

i as

x∗i = λ− γp̂i/pi . (39)

19The zero-net-wealth budget constraint is expressed here using the risk-neutral probabilities in
place of the state prices. Since the state price is e−rT p̂i, a portfolio with a risk-neutral expected
excess return of zero has a zero cost.
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Multiply (39) by pi and p̂i and sum over states. Recognizing that
∑
pi =

∑
p̂i = 1

gives

x̄ =
∑
pix∗i = λ

∑
pi − γ

∑
p̂i = λ− γ

0 =
∑
p̂ix∗i = λ

∑
p̂i − γ

∑
p̂2i /pi = λ− γ

∑
p̂2i /pi .

(40)

These equations can be solved to determine the multipliers values20

γ = x̄∑
p̂2i /pi − 1

λ = x̄ + γ . (41)

So the maximal-Sharpe-ratio portfolio is

x∗i = x̄ + γ(1− p̂i/pi) . (42)

The variance of the “optimized” portfolio is

V =
∑
pi(x∗i − x̄)2 =

∑
piγ2

(
p̂i/pi − 1

)2
= γ2

[∑
p̂2i /pi − 2

∑
p̂i +

∑
pi
]

= γ2
[∑
p̂2i /pi − 1

]
= γx̄ .

(43)

Therefore, the square of the maximal Sharpe ratio is

S2∗ =
x̄2

V
= x̄
γ
=
∑
p̂2i /pi − 1 . (44)

This final sum can also be expressed as
∑
pi(p̂i/pi)2 so the square of the maximal

Sharpe ratio is one less than the expectation of the square of the realized probability

likelihood ratio.

For a continuous state space indexed by ξ, similar analysis yields a maximal

squared Sharpe ratio of

S2∗ =
∫
p̂2(ξ)/p(ξ)dξ − 1 = E [p̂2(ξ)/p2(ξ)]− 1 (45)

20From (44) below, γ can also be written as γ = x̄/S2∗.
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for a portfolio with an excess return of

x∗(ξ) = x̄ + γ[1− p̂(ξ)/p(ξ)] (46)

where γ = x̄/S2∗ and p̂(ξ) is the risk-neutral probability density for the state space.

If the state space is indexed by a lognormal return on a basis with a continuously-

compounded expected rate of return µ and logarithmic variance of σ 2,

p(ξ) = 1

ξσ
√
T
φ

�nξ −
(
µ − 1

2σ
2
)
T

σ
√
T

 (47)

where φ(·) is the standard normal density function. The risk-neutral probability

density is the same with µ replaced by r , the continuously-compounded interest

rate.

To determine the maximal Sharpe ratio portfolio, we need the likelihood ratio

p̂(ξ)
p(ξ)

= exp

−
[
�nξ −

(
r − 1

2σ
2
)
T
]2

2σ 2T
+
[
�nξ −

(
µ − 1

2σ
2
)
T
]2

2σ 2T


=ξ−(µ−r)/σ2

exp
[
µ − r
2
T
(
µ + r
σ 2

− 1
)]
.

(48)

From (46) and (48), the maximal-Sharpe-ratio portfolio is

x∗(ξ) = x̄ + γ
(
1− exp

[
µ − r
2

(
µ + r
σ 2

− 1
)
T
]
ξ−(µ−r)/σ

2
)
, (49)

and the square of the maximal Sharpe ratio is

S2∗ = exp
[
(µ − r)T

(
µ + r
σ 2

− 1
)]
E
[
ξ−2(µ−r)/σ

2
]
− 1 . (50)
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Because ξ is lognormally distributed with logarithmic mean E[�nξ] = (µ − 1
2σ

2)T

and variance Var[�nξ] = σ 2T , ξθ is also lognormally distributed with logarithmic

mean θ(µ − 1
2σ

2)T and variance θ2σ 2T . So the maximal Sharpe ratio is

S2∗ = exp
[
(µ − r)T

(
µ + r
σ 2

− 1
)]

· exp
[
−2µ − r

σ 2

(
µ − 1

2
σ 2
)
T + 1

2

(
4(µ − r)2
σ 4

)
σ 2T

]
− 1

= exp
[
(µ − r)T

(
µ + r
σ 2

− 1
)
− 2
µ − r
σ 2

(
r − 1

2
σ 2
)
T
]
− 1

= exp

[
(µ − r)2
σ 2

T
]
− 1 .

(51)

B Maximal-Sharpe-Ratio Portfolio with Puts and Calls

Let z be normally distributed N (z̄, v2). Let Z ≡ ez, then Z is lognormally dis-

tributed with

E[Z] = E[ez] = exp
(
z̄ + 1

2
v2
)

Prob{Z > K} = Φ
(
z̄ − �nK
v

)
∫∞
K
ZdF(Z) = exp

(
z̄ + 1

2
v2
)
Φ
(
z̄ − �nK + v2

v

) (52)

where Φ(·) is the standard cumulative normal function. All this is standard for

the Black-Scholes model where Z represents the stock price at maturity ST and so

z̄ = �nS0 + (µ − 1
2σ

2)T and v2 = σ 2T . The two additional results we need are the

upper and lower noncentral truncated moments of Z .

∫∞
K
ZγdF(Z) = exp

(
γz̄ + 1

2
γ2v2

)
Φ
(
z̄ − �nK + γv2

v

)
(53)

∫ K
0
ZγdF(Z) = exp

(
γz̄ + 1

2
γ2v2

)
Φ
(
− z̄ − �nK + γv

2

v

)
. (54)
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Note that the three expressions in equation (52) are all special cases of (53). The

first line is γ = 1, K = 0. The second and third lines are γ = 0 and γ = 1.

The proof is straightforward. LetW ≡ Zγ , thenw ≡ �nW is normally distributed

N (γz̄, γ2v2). And applying the third line in (52) we get

∫∞
K
ZγdF(Z) =

∫∞
Kγ
WdFW(W) = exp

(
γz̄ + 1

2
γ2v2

)
Φ
(
γz̄ − γ�nK + γ2v2

γv

)
(55)

which reduces to the first line in (53). Equation (54) follows by complementarity.

C Maximal-Sharpe-Ratio Portfolio with a History

Let x̄h and Qh denote the historical average excess return and average squared

excess return over the recording period so far. Let xi be the excess return in state i

each period in the future and α be the fraction of the total period which has passed.

Then the Sharpe ratio for the entire recording period is

S = αx̄h + (1−α)
∑
pixi√

αQh + (1−α)
∑
pix2i − [αx̄h + (1−α)

∑
pixi]2

. (56)

The variance and hence the average or expected squared excess returns can be

expressed as a function of the Sharpe ratio and the average or expected returns so

the entire-period Sharpe ratio is

S = αx̄h + (1−α)x̄f√
αx̄2h(1+ S−2h )+ (1−α)x̄2f (1+ S2f )− [αx̄h + (1−α)x̄f ]2

where x̄f ≡
∑
pixi Sf ≡ x̄f√∑

pix2i − x̄2f
Sh ≡ x̄h√

Q2
h − x̄2h

.
(57)

It is clear by inspection of (57) that the entire-period Sharpe ratio is monotonic

in the future Sharpe ratio. Therefore, maximizing it requires maximizing the future

Sharpe ratio by holding the maximal-Sharpe-ratio portfolio as previously derived,

Sf = S∗. The only remaining question is what leverage should be used.
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If x̄h ≤ 0, then the entire-period Sharpe ratio is monotonically increasing in x̄f
so extreme leverage (x̄f →∞) should be employed, and

S → [(
1+ S−2∗

)
/(1−α)− 1

]−1/2 . (58)

If x̄h > 0, then there is a finite optimal leverage choice for x̄f . Re-express (57)

as

1+ S−2 = αx̄
2
h(1+ S−2h )+ (1−α)x̄2f (1+ S−2f )

[αx̄h + (1−α)x̄f ]2 (59)

and differentiate with respect x̄f , giving the first order condition

0 =∂(1+ S
−2)

∂x̄f

=2(1−α)x̄f (1+ S
−2
f )

[αx̄h + (1−α)x̄f ]2 − 2(1−α)αx̄
2
h(1+ S−2h )+ (1−α)x̄2f (1+ S−2f )

[αx̄h + (1−α)x̄f ]3 .
(60)

Solving the first order conditions gives the optimal leverage as

x̄∗f = x̄h
1+ S−2h
1+ S−2∗ . (61)

Substituting x̄∗f into (59) lets us express the entire-period Sharpe ratio as

S2 = αS
2
h(1+ S2∗)+ (1−α)(1+ S2h)S2∗

1+ (1−α)S2h +αS2∗
. (62)
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Table 1: Annual Perfect Sorting Ability Within 1-Digit SIC-CODE: Zero-Investment Portfolio Returns

SIC 0 SIC 1 SIC 2 SIC 3 SIC 4 SIC 5 SIC 6 SIC 7 SIC 8 SIC 9 equal-weighted
Year Agriculture Mining Construction Manufacturing Utilities+ Wholesale Retail Finance+ Services Other portfolio
1981/01-12 0.332 0.499 0.504 0.553 0.444 0.583 0.471 0.613 0.825 0.655 0.5479
1982/01-12 0.537 0.743 0.621 0.723 0.506 0.911 0.507 0.806 0.751 3.180 0.9283
1983/01-12 0.819 0.564 0.549 0.667 0.432 0.672 0.481 0.658 0.606 0.574 0.6022
1984/01-12 0.261 0.445 0.438 0.462 0.446 0.502 0.411 0.507 0.621 0.754 0.4847
1985/01-12 1.337 0.491 0.561 0.587 0.429 0.625 0.573 0.801 0.750 0.509 0.6662
1986/01-12 0.589 0.595 0.516 0.547 0.429 0.579 0.419 0.581 0.548 1.048 0.5852
1987/01-12 0.899 0.606 0.519 0.593 0.397 0.581 0.381 0.659 0.654 0.184 0.5474
1988/01-12 0.342 0.510 0.469 0.567 0.416 0.639 0.336 0.655 0.608 nan 0.5046
1989/01-12 0.233 0.642 0.568 0.586 0.433 0.594 0.488 0.689 0.963 0.596 0.5793
1990/01-12 0.422 0.392 0.506 0.578 0.338 0.518 0.423 0.642 0.531 0.351 0.4702
1991/01-12 0.566 0.684 0.773 0.791 0.491 0.926 0.713 0.933 1.221 nan 0.7885
1992/01-12 0.599 0.516 0.496 0.681 0.335 0.653 0.494 0.787 0.695 nan 0.5840
1993/01-12 0.506 0.516 0.530 0.720 0.418 0.652 0.375 0.746 0.788 nan 0.5836
1994/01-12 0.304 0.383 0.494 0.581 0.338 0.532 0.285 0.681 0.575 nan 0.4637
1995/01-12 0.961 0.584 0.672 0.838 0.511 0.726 0.435 0.930 0.909 nan 0.7296
1996/01-12 0.818 0.873 0.548 0.740 0.499 0.692 0.373 0.923 0.684 nan 0.6834
1997/01-12 0.600 0.683 0.647 0.690 0.557 0.708 0.560 0.845 0.642 nan 0.6594
1998/01-12 1.199 0.716 0.598 0.781 0.597 0.869 0.413 1.135 0.838 nan 0.7939
1999/01-12 0.810 0.792 0.712 1.546 1.222 0.763 0.412 1.952 0.884 nan 1.0103
AvgNumPerPfio 9.8 110.2 410.5 611.8 313.2 251.2 643.8 209.2 68.5 2.2 263.0
Mean 0.64 0.59 0.56 0.70 0.49 0.67 0.45 0.82 0.74 0.87 0.64
Std.Dev. 0.31 0.13 0.09 0.23 0.19 0.12 0.10 0.31 0.17 0.90 0.15

Sharpe Ratio 2.05 4.44 6.49 3.05 2.54 5.37 4.68 2.61 4.33 0.97 4.26
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Table 2: Maximal Sharpe Ratio for Various Parameter Values
T = 1 Year T = 1 Month

σ µ − r σ µ − r
5% 10% 15% 5% 10% 15%

Maximal Sharpe 15% 0.343 0.748 1.311 15% 0.096 0.194 0.295
20% 0.254 0.533 0.869 20% 0.072 0.145 0.219

S∗ 25% 0.202 0.417 0.658 25% 0.058 0.116 0.175
Basis Sharpe 15% 0.323 0.631 0.923 15% 0.096 0.192 0.287

20% 0.241 0.471 0.690 20% 0.072 0.144 0.215
Sξ 25% 0.192 0.375 0.548 25% 0.058 0.115 0.172

Improvement 15% 6.0% 18.6% 42.0% 15% 0.5% 1.4% 2.8%
20% 5.2% 13.1% 26.0% 20% 0.4% 1.0% 1.9%

S∗/Sξ − 1 25% 5.2% 11.2% 20.0% 25% 0.4% 0.9% 1.5%
µapp − µ 15% 31.0 197.4 703.2 15% 2.4 14.1 42.4

in basis pts. 20% 26.7 139.1 430.3 20% 2.1 10.3 28.7
eq. (22) 25% 26.7 118.1 329.3 25% 2.1 8.9 22.9

Table 3: Skewness and Kurtosis of Maximal Sharpe Ratio Portfolio
T = 1 year T = 1 month

σ Skewness Kurtosis σ Skewness Kurtosis
Basis MSR Basis MSR Basis MSR Basis MSR

15% 0.456 –2.663 3.372 17.801 15% 0.130 –0.590 3.030 3.625
20% 0.614 –1.750 3.678 8.898 20% 0.174 –0.438 3.054 3.344
25% 0.778 –1.322 4.096 6.260 25% 0.217 –0.349 3.084 3.217
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Figure 1: The Sharpe Ratio Maximizing Portfolio.3
5





Figure 2: The Distribution of the Sharpe Ratio Maximizing Portfolio.3
6





Figure 3: Improvement in the Sharpe Ratio using One Call Option.3
7





Figure 4: Payoff on the maximal-Sharpe-ratio portfolio with options.3
8





Figure 5: Maximizing the Sharpe Ratio with a History of Returns.3
9





Figure 6: Maximizing the Sharpe Ratio with a History of Returns.4
0
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