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1 Introduction

The recent literature in applied economics, and empirical Industrial Organization in particular, has often
turned to discrete choice models to estimate demand for differentiated products or different alternatives. In
these models, consumer utility functions, market shares, and substitution patterns depend on differentiated
characteristics that are observed by the econometrician. In addition, these models aso typically alow for
unobserved product characteristics through the inclusion some form of “symmetric unobserved product
differentiation” (SUPD)

The most common example of SUPD are logit errors in consumers’ utility functions (see McFadden,
1974). These logit errors represent unobserved (to the econometrician) product differentiation that is sym-
metric across products. The economic jfusition for including unobservable product differentiation is that
an econometrician typically does not observe all of the product characteristics that are relevant to consumers’
choices. From an econometric standpoint, allowing for unobservable product differentiation often prevents
these models from predicting zero market shares, an obviously desirable feature. Its inclusion can also ease
estimation.

This paper argues that while SUPD in itself may be helpful, standard models (e.g. logit models, probit
models, nested logit models, and random fioieint models) implement it in an undesirable way. These
models assume that the number of products or alternatives available in a market and the dimensionality of
SUPD are linked in an extremely particular way. Sfeally, each product added to the market adds one
additional dimension to SUPD space. This results in very little “congestion” in unobserved characteristic
space and can be problematic in situations where different consumers face different numbers of products,
either because consumers are drawn from different geographies or from different time p&eésgsrchers
may intuitively think that in markets with more products, characteristic space shfllldg” in some

sense. These standard models place strong restrictions on how this occurs with regards to unobservable

INotable exceptions are Bresnahan (1987) and Feenstra and Levinsohn (1994).
2There are many examplesin the literature. Berry and Waldfogel (1999) and Rysman (2002) face cross-sectional variation in the

number of available products. Berry, Levinsohn and Pakes (1995), Bresnahan, Stern and Trajtenberg (1997) and Petrin (1999) face
temporal variation. Nevo (2002) and Shum (1998) face both. Arcidiacono (2000) studies high school students choosing colleges
after acceptance letters have been received, so his “consumers” face different number of “products” because of an institutional

process. This list is very far from exhaustive.



characteristics.

We show that these restrictions play a mgjor role in econometric identification of two of the major
quantities of interest in differentiated product markets. First are the welfare effects of new products. This
problem is one that has been recognized, e.g. in Trajtenberg (1990) Petrin (1999) and Berry and Pakes
(1999). Because of the lack of crowding in the standard treatment of SUPD, welfare calculations in these
model s tend to overpredict gains from the introduction of new products. This problem has potentially serious
implications for policy issues such as the construction of price indices.

Second and less recognized are the implications of SUPD on estimated substitution patterns. We ar-
gue that using the standard versions of SUPD can lead to misleading econometric conclusions regarding
price elasticities, both in terms of magnitudes and statisticalfsignice. The basic idea here is that the
restrictions of standard SUPD force variation in the number of products in the choice set to identify (or
help identify) price elasticites. Interestingly, we show that with these restrictions, one can “identify” price
elasticites without ever observing any variation in prices. We feel that this source ofichin is ad-hoc
since it relies completely on the precise assumption that there is very little congestion in unobserved product
characteristic space. This source of idfaition is even more unreliable if, as is often the casdjfidw”
different products has some arbitrariness fb it.

There are two previous approaches in the literature that address these issuéisst $&eof work (e.qg.
Berry, Levinsohn and Pakes (1995) - henceforth BLP, and Petrin) tries to reduce the importance of SUPD
by linking substitution patterns to observable continuous characteristics (e.g. BLP) or observed groupings
(e.g. the nested logit). The basic idea is to keep SUPD (e.g.. logit errors) in the model but, by allowing
significant amounts of heterogeneity in tastes aroolmsrved product characteristics, attempt to reduce
SUPD's importance. These methodologies have worked to varied extents in reducirfiutrecien of SUPD
— success is proportional to the econometrician’s abiligbser ve the relevant differentiated characteristics.
However, as ifiexible SUPD still exists in these models, its effects still exist.

A second and more recent approach, advocated by Berry and Pakes (1999) and Bajari and Benkard

(2001), eliminates SUPD altogether from the model. In their “pure hedonic” models, products are un-

3For example, with cars and computers, the empirical definition of what constitutes a“choice” clearly has some arbitrariness to

it (e.g. BMW 3 Series vs (BMW 330, BMW 325) vs. (BMW 330i, BMW 330Ci, BMW 330 Ci Convertible).



observably differentiated only with respect to a single dimensional unobserved characteristic.*  As new
products enter, this unobserved product space fills up. We envision a couple of potential limitations of this

type of model. First, this approach might be unreasonably restrictive in the opposite direction from the
standard models. While thereis a sense that unobserved product space expands too much with logit errors,
thereisasensethat it expands too little with the pure hedonic models. It may be restrictive to disallow new
products from expanding unobserved characteristic space (e.g. differentiate in new dimensions). Again we

expect this restriction to be less significant as the econometrician is able to observe more of the relevant
characterigtics - this will depend on the empirical application. These models can also be more complex to
estimate than models including a logit error.

This paper suggests a third approach, which we interpret as somewhat of a compromise between the
above two. We argue that it is only thinecessary inflexibility of standard SUPD that can adversely
affect parameters of interest such as substitution patterns and welfare effects. As such, we keep SUPD in
our model, but allow the SUPD to be considerably midegible than is currently used. Thitexibility
allows an econometrician &stimate how fast unobserved product space expands with the addition of new
products, noassumeit, as prior work does.

In essence, our approach allows functions of the number of products in a market (and/or the number of
products in a group or nest) to enter the discrete choice estimating equation. While this might initially seem
ad hoc, we show that each of these models have an intuitive and realistic structural interpretation.

Thefirst structural model is one of retail product congestion. Products in this model are sold through
a retail market with a limited number of stores. As new products enter the market, they can “crowd out”
existing products from retail stores. This model generates an additive adjustment to the estimating equation
which is a function of the number of products. The second model allows the variance of the logit error to be
smaller in markets with more products. We show how this feature can arise from a model in which products
in crowded markets differentiate into dimensions that consumers care less about. This model generates a
multiplicative adjustment of the estimating equation, also a function of the number of products.

We proceed as follows. In Section 2 we argue that 1) traditional discrete choice models place unnec-

essary restrictions on SUPD, 2) that these restrictions can “identify” parameters that intuitively should not

4Feenstra and Levinsohn (1995) also estimate a multidimensional pure hedonic model, albeit without any unobserved charac-

teristics.



be identified, and 3) that these restrictions can bias parameters of interest. Section 3 introduces our two

models of product congestion and discusses their estimation. In Section 4, we present Monte-Carlo results

which show that in the presence of product congestion, standard estimation procedures can give biased re-
sults (sometimes very large) and that these biases tend to be in particular directions. Section 5 applies our
techniques to a data set previously used in Rysman (2002).

Lastly, note that much of our applications are focused on the context of estimating aggregated discrete
choice models. The reason that we focus on aggregated discrete choice models is that these tend to be
estimated on data across markets (in space or time) where one often observes changes in the size of the
choice set. As our technique is expressly for dealing with such changes, this is where it is most applicable
and probably most relevant. However, our comments and techniques are equally applicable for discrete
choice models estimated on individual level data (e.g. product, employment, or transportation choice) when

there are changes in the choice set over individuals or time.

2 Unobserved Differentiation in Common Discrete Choice M odels

This sectionfirst argues that error structures used in traditional discrete choice models are unnecessarily
restrictive, which leads to undesirable idécttion results. Second, the section shows that these restrictions
have adverse affects on parameters of interest such as price elasticities and welfare calculations. We also
briefly suggest our solutions to the problem, though this is formalized and further motivated in Section 3.
Throughout, we use the nested logit model to illustrate our points. However, our arguments extend to other

discrete choice models as well.

2.1 ldentification

We use derivative-based ideitation arguments to show how the nested logit model handles economically
interesting variation in a restrictive way. For exposition, assume theré& areducts and an outside option,

labelled product 0. Théd products are in one negiand the outside option is in a nest by itself. In the nested

5In particular, it appliesto random coefficientsmodels. Notethat the nested logit model isaspecial case of arandom coefficients

model where random coefficients are only on group dummy variables.



logit modd, the utility obtained by consumer i from product j ( j > Q) is:
Uij = Bo+ XjB1+ (ig + €ij

where e isdistributed Extreme Value with variance (r 1,)?/3, ¢ g Isconstant for each individual acrossthe

product nest and ¢4 is distributed such that ¢4 + &i; is distributed Extreme Value with variance (= u1)?/3.

Asis standard, we assume ujg = (i + €io, Normalizing the mean utility of the outside option to 0. The

variance scale parameters x4, and u, are not separately identified but the ratio u,/ x4 is, so it is useful to

define the parameter o = /1y, and normalize u, = 1. In what follows, we interpret X; as the price of

product j, but our arguments trivially apply to elasticities with respect to general product characteristics.®
This model implies that the within-group market share fgris:

eXp(ﬁo + Xiﬁl)
Zlﬂ:l eXp(ﬂo + Xk,Bl)

Sjig =

LettingD = Zi:l exp(f, + Xkf1), the group and total market shares are:

o

Sg=1+Dr, Sj = SjigSy

Researchers observe 3 forms of variation under the nested logit moddirskltgpe is variation in within-
group market shares due to changes in observable product characteristics. Looking at this derivative tells us

what parameters are idefigid by this type of variation. That comparative static is:

OSjig
6_)(,- = B1Sjig(1 = Sjjg)

Therefore, this type of variation idefigs ;. The second type of variation is variation in group market
shares due to changes in observable product characteristics. The third type of variation is variation in group
shares due to changes in the number of products. In order to focus on group-level changesXassuxe

Vj. Inthat case, the derivatives of group sheyvith respect toX andJ are:

08y _ _ 0y _ (-5
ax—ffﬁlsg(l Sy) 53 -°" 3

e ignore endogeneity issues regarding. price, which has been a focus of the prior literature. These issues are completely
independent of the point we are making, which isvalid whether price movements are purely exogenous or whether they are endoge-
nous and one mudéind some exogenous source of price variation. We also follow the existing literature by assuming that product

characteristics (other than price) and the number of products in the market is exogenous.



Therefore, there are two sources of identification for o : cross-group switching from changes in the number
of products and cross-group switching from changes in observed characteristics. There are also two sources
of identification for 8, within-group switching from changes in observed characteristics and cross-group

JS;j

OXJ_) are cap-

switching from changes in observed characteristics. Three comparative s%atjé%( and
tured by only two parameterg{ ande), so the model implies a restrictive relationship between the effects.

The easiest way to see this restriction is to note that the nested logit model assumes that the ratio between
= andZ¥ is 4,3, but 8, could be identied by‘jf—)j('jg.

These features have perverse implications for idieation. Observing markets where product charac-
teristics (or price) differ across markets but the number of products is the same in all markets can identify
bothe andp,. Therefore, a researcher can identify the effect of adding a product to the choraéhsat
ever observing variation in the number of products. Even more unintuitively, one can identify cross-price
elasticities of products within the grompthout ever observing changes in relative prices of the products (for
an example of this, see the start of Section 3.1). In our Monte Carlo results, we show that even when there
are “good” sources of iderfication, e.g. relative price variation to identify price elasticities, potentially
spurious idenfication from changes in the number of products in the choice set can bias these elasticities.
Lastly, note that one way to summarize the basic intuition here is that all of the parameters in standard
discrete choice models can be idéetil by estimating only in markets with the same number of products.

Therefore, any variation due to the fact that markets have different numbers of products is necessarily han-

dled in a restrictive way.

2.2 Implicationsfor Estimating Elasticitiesand Welfare

Why do standard discrete choice models identify effects that intuitively should not beigldhtBecause

they make very restrictive assumptions about the relationship between unobservable characteristic space
and the number of products. Spigcally, standard discrete choice models assume that markets with a high
number of products are no more crowded (in unobserved characteristic space) than markets with a small
number of products. For instance, we can write utility in the nested logit model in terms of dummy variables

for products ¢;):

"Note that the constant term Po isidentified by the level of market shares relative to the outside good.



Ui =ﬂ0+Xjﬂ1+Cig+d1€i1+....+ dJEiJ j >0

One might expect a new product to crowd out the initial unobserved product space. But the Jth product
differentiates in an entirely new dimension (that of d;) which is associated with an entire new set of logit
errors, so the dimensionality of unobserved product space expands with the addition of the new product.

An implication of this restriction is that all products are “equi-distant” from each other in unobserved
characteristic space and this distance remains constant as the number of products in the market changes.
Precisely, if one randomly chooses two products in each of two markets, the expected difference between
uj1 andu;; is the same regardless of the number of products in the markets (for ease, supp¥se=that
Vj). This is counterintuitive in the following way. With classical product differentiation models such as the
Hotelling model or the Salop circular model in mind, one would naturally expect products in markets with
more products to be “closer” in characteristic sphdéis restriction of logit based models ends up playing
a strong role in identifying price elasticities, as exhibited in the previous section.

There are a couple of additional perverse implications resulting from the lack of crowding. First, we
expect these models to relatively under-predict elasticities in markets with more products (as they assume
away congestion in large markets). We examine this issue in Monte-Carlo experiments. There is also a
problem valuing new products. Because there is no crowding, we expect valuations of new products to be
overestimated. This point regarding welfare has been made in previous work (Petrin (1999), Trajtenburg

(1990)) and is also exemfikkd in our Monte-Carlo experiments.

2.3 Proposed Solutions

We now bridly suggest two adjustments to these logit based models. These adjustments allow the models to

deal with product crowding in a much mdiexible way, alleviating the overidefitation discussed above.

8For example, consider a Hotelling model where products space themselves out as much as possible. With two products in the
market, the expected distance between two randomly chosen products (without replacement) is trivially 1, with 3 products in the
market, the expected difference is 1/3*1 + 2/3*1/2 = 2/3, with 4 products it is 3/6* 1/3 + 2/6*2/3 + 1/6* 1 = 5/9, with 5 products it

is4/10* 1/4 + 3/10*2/4 + 2/10*3/4 + 1/10*1 = 1/2.
9The CES demand system also does not display crowding, and is in fact subject to many of the criticisms about elasticities and

welfare effects that we make of the logit. Extensions of the additive and multiplicative adjustment to the CES model are available

from the authors.



At the same time, our approach allows for the estimation of the rate at which the dimensionality of product
space increases. For sake of clarity, we present both models in terms of the nested logit model, but either
adjustment is applicable to other models, such as the logit and the random coefficients model.

In the additive model, we add a function f (J; y) with parameter y to the term S, + X; ;. We show
in the next section how an additive model with f(J; y) declining in J can arise from a model of retal

crowding. In the additive case, the within-group share function is:

exp(fo + Xjf1+ F(357))
e exp(Bo + Xify+ F(I5 7))

Now, the three comparative statics discussed above are:

Sjig =

0sj 0 0
a)l(lg—ﬁls”g(l Silg) a—§=aﬁ15g(l—5g) 6—59—0%(1 Sg)( +f(~]’7))

Thefirst 2 comparative statics are the same as before, but the third now depends on parameters in the new
function. This feature gives the nested logit model the ability to match all of the observed variation. Now the
parameter can be clearly interpreted as capturing cross-group variation due to variation in characteristics
(such as price) while the parameters in the new function capture cross-group variation due to changes in the
number of products.

In the multiplicative model, we allow the variance of the unobservable portion of utility to depend on
the number of products. In the nested logit model, this meafisiog 1, = u,(J; 7).2° If u5(J; ) < 0,
products in crowded markets are in a sense closer together. Equivalently, additional products are differen-
tiated into dimensions that consumers care less about. We formalize this point in the next section. In the
multiplicative model, the within-group market share function is:
Y 1eXp(ﬂ,?z+(3(k£l)

As with the additive model, parameters in(J; ) give the model the extra lever required to match the

Sjjg =

three comparative statics.
Now consider the effects of the additive and multiplicative adjustments on welfare and elasticity calcu-

lations. Clearly, estimating’(J; y) < O would allow the additive model thnd smaller welfare beffies

10if 115, depends on J, then 1 (and o) does also. We address this issue in Section 3.4

9



as the number of products increases. Similarly, the multiplicative adjustment allows for attenuated welfare
benefits from high numbers of products. Also, these adjustments affect elasticities. In particular, allowing
crowding (either f/(J; y) < 0or u5(J; 7) < 0) resultsin greater increasesin elasticities as markets become

crowded then those implied by standard models.

3 A Structural Interpretation

In this section, we exhibit structural models that generate the adjustments suggested in the previous sec-

tion. Doing so provides a structural interpretation of the new parameters, which can aid in understanding
and adding further to the model (for instance, writin§rat-order condition for the producers). First, we
show how the additive adjustment can arise from a model of retail congestion. Second, we show how the
multiplicative adjustment can arise from a model in which products in crowded markets differentiate into

dimensions that consumers care less about.

3.1 A Mode of Product Congestion

We begin with a story. Suppose one is interested in estimating a nested logit model of competition between
fast foodfirms (one nest is the fast food restaurants and one nest is a composite “outside” good). Data is
obtained on prices and market shares for two time periods of data. findhéme period, there is only one
firm, M D, and in the second period, there is entry and thusfimas, MD and BK. Suppose that prices
are identical for alfirms in all periods, that in thirst period,M D has a 50% market share, and that in the
second period, botM D andBK have 25% market shares.

Since the entry oBK “steals” market share only from D (and not the outside alternative), a nested
logit model will necessarily estimate = O, i.e. that the within-group variance is zero. This= 0
implies 1) thatMD andBK are identical in all respects to all consumers, and 2) that the cross price-elasticity
betweenMD andBK is infinite. Note that idenfication here has come solely from changes in the number
of products, as there is no variation in prices.

Now consider an alternative story of what is going on in this data. Supposefitms@perate through
outlets (franchises), and there is important geographical differentiation (i.e. all else equal, consumers tend

to go to the nearest outlet location). Other than geographic differentiation through their outlets locations,

10



the food served by BK and M D isidentical. In the first period, there are two outlets, both franchised to

MD. In the second period there are aso two outlets, but one of the M D outlets has been taken over by

BK. Since prices remain constant and M D and BK serve identical food, this story is perfectly consistent

with the market share data above. But is the nested logit prediction of infinite price elasticities correct in

this example? We would expect not. Due to the strong geographic differentiation, we would expect a price

cut by BK to only partially cut into M D’s market share. The nested logit model estimate o£ O is
highly misleading here - unintuitive restrictions of the model (rather than valid price variation) is incorrectly
identifying price elasticities to be fimite.

The intuition behind this story can motivate a structural model in wiiidnters the discrete choice
estimating equation. In the example, unobserved product space (in this case franchise locations) is subject
to congestion - the entry bBK reduces the number of outld$D has. This “crowding” at the outlet level
confounds the observation that a new product has entered. Standard logit based models simply do not deal
with such congestion well - hence the incorrectly predicted price elasticities. We now present a formal model
of such retail crowding or product congestion that deals with this issue. If we were to take this model (or the
multiplicative model introduced below) to the fast food data described above - price elasticitiesnabuld
be identfied - an intuitive outcome given the lack of any variation in prices.

Suppose that the products of interest are sold through a retail market consisRrrgtafl outlets. As
in the above example, we consider the standard case where market shares are observed at the product level
- data at the retail outlet level isot observed. Modelling unobserved retail outlets is simply a way of
motivating our more general logit errors. Assume that each retail outlet sells only one of the wholesale
products, and that produgtis sold in R; retail outlets Wherezj R; = R. The twist of our congestion
model is that logit errors represent idiosyncratic, unobserved consumer preferenaetadvautl ets rather
than overproducts (In the next section we expand the model to one in which consumers have logit errors
based arountoth retail outletsand products). Precisely, the logit utility function for consurn@urchasing

from retail outletr takes the following form:

Uijr = Uj +€ir
whereu; measures mean product quality. A typical sfieation foruj isu; = X;8 —apj +¢;, where

11



(Xj,¢&;) are product j's characteristics (observed and unobserved respectivelypaimlits price. The
important distinction between this and a standard logit model is that it cor@jn®te;;. Intuitively, €
might capture the fact that consumers live different distances fromR tie¢ail outlets.

Note how this model captures congestion as new products enter the market. In the standard logit model,
when new products enter the market, ngware drawn for the new products. In the extreme version of our
congestion model, where the number of retail stdRetoes not change as new products enter, there are no
new unobservable terms drawn. The dimensionality of the unobserved product space remains the same as
the new products simply crowd out the old products from retail stores.

To aggregate the model to the level of observation (the product level), we need to aggregate over retail
outlets. The share of produgtis the sum of the shares of all the retail outlets that carry proflués the

probability thati buys fromr is the same across outlets that carryhe market share for produgts:

Rj el

S5 = —— 1
I 142 Reet M
el +In(Rj)
= In (2)
1+Zkyw(m

3.2 Esimating the Additive M odel

For individual level data, 1 could be estimated by maximum likelihood. For aggregate data, this model can

be estimated using the Berry (1994) inversion:

In(%) = uj +In(R))

In practice, one needs to parametrically speéfy In the simplest case, where each product is sold in

an equal number of stores, we hdtg= %‘ and we only need to specify. One example is:
R=yo+7.J

whereJ is the number of products. As scaling &dis unidentfiable from the constant term in the utility

function, a normalization is necessary, an obvious one being:

R=y+1—-7y)J

12



Thisis attractive in that it nests the purelogit model (y = 0) aswell asthe pure congestion model (y = 1).
With y = 0, the number of retail outlets (and correspondingly the dimension of SUPD) increases propor-
tionally to the number of products, with = 1 it does not change in the number of products. Intermediate
cases are captured by<0y < 1.

Another suggestion for parameterizing the additive term is to (&;ln= y In(J). Inthis casey =0is
still the standard Logit model and= —1 is still a full crowding model (in the sense that expected welfare
depends on observable product characteristics but not the number of products). Also, thasipaaould
be estimated in the aggregate case by linear techniques. A drawback is that tHisatp@ciacks a clear
structural interpretation of the parameter.

Lastly, one might estimatR(J) non-parametrically. Given thaktis discrete, this is extremely simple -
one just includes indicator functions for different market size (with a normalization fodpne

The assumption that all products are sold by an equal number of retail stores might not seem reasonable.
However, given no data on retailers, it is hard to imagine how one could intuitively separate out effects of
product characteristics and price on utilities versus their effects on the number of retail stores carrying the

product. To formalize this, suppose that
Rj — f(J)errl—rzpj +73¢;

so that product characteristics do affé&t In this case, for example, is not separately iderfied from
B. With other spedications ofR;, the different effects might be idefied computationally, but this identi-
fication would be completely dependent on non-linearities. As such, we suggest tiieapeciwhere all
products are sold by an equal number of stores.

The assumption that logit errors are not correlated for the same product sold across different outlets may
also seem unreasonable. However, we can obtain a very similar estimating equation in a model that relaxes

this assumption. Suppose consumers have unobserved tastes over both pretatts| stores, i.e.
Uijr = Uj + € + pe,

filj is consumei’s product spedic taste,eizjr is consumei’s product-retail outlet speic taste, ang is

a weighting parameter that measures the relative importance of the two unobservables. This formulation is

very similar to the standard nested logit model. With the standard nested logit distributional assumptions (

13



e?,, distributed Type | Extreme Value, e distributed such that e, + pe?;, distributed Type | Extreme Value),

we get the following product level market shares:

NG
. [Riee] e +pnR))
! 1+Zk |:Rk exp(%)]p 1+Zk exp(uk + p In(R))

where R; is the number of retail stores that product j issold at. Again assuming all product are sold at an

equal number of stores and that
R=y+1-7y)J

we get

__ &pluj +pinGy/I+1-7))
1+ expluc+pin(y /I +1—7))

Sj
which leads to the estimating equation:
5
In(g) =uj+piny/I+1-y)

Note that p and y are formally separately identified in this model, but this separate identification is due to
non-linearities in thed term and might be unreliable in practice. For instance, consider thefispéon

In(R;) =y In(J). Then the estimating equation is:

|n(S—S:)) = uj +py In(J)

where only the produchy is identfied. Clearly, with a non-parametric spcation of R(J), p is also
unidentfied. Note that this lack of ideffitation is not a bad thing. It simply means that our model is robust
to unobserved tastes at both the product and retail store level. Separating the parametergs(e:g.is
irrelevant for empirical or welfare implications.

This congestion model is easily generalizable to more realistic models such as nested logit and random

coeficients models. For example, consider the nested logit utility function:
Uijr = Uj + ig + €ir

14



where ¢4 is consumer i’s idiosyncratic tastes for products in grogp Note that this nested error term is
defined over product groupings and not retail store groupings (since retail stores are not observable, one
cannot group them). Product shares in this model are given by:

R e+ (Zkegj Rke%)a
Sreg R 14+ 3, (Syeg Ree¥ )

and estimation can proceed using the Berry inversion:

Sj = SjjgSy =

S.
In(é) =uj+oIn(R) + (L1—0)Insjq

One issue in the nested logit model is how to speBify The number of retail outlets per product could
be a function of the number of products in the nest, the total number of products in the market or some
weighted average of the two. Our model is similarly adaptable to multiple level nested logit models, other

GEV models (e.g. the model of Bresnahan, Stern and Trajtenberg) and randdicieusfmodeld?

3.3 Variancein Discrete Choice Models

This subsection presents a structural firsdition of the multiplicative model. For motivation, consider the
evolution of the market for ready-to-eat breakfast cereals. Initally, the market contained only a few products,
and differentiation was across fundamental and likely very important features such as healthiness and taste.
Recently, with so many many new products, it is likely that some products are distinguishable only by the
colors on their box. The basic idea here is that as more products enter the market, they differentiate into
dimensions (e.g. color of box) that are less important to consumers. This section shows that if we allow for
this type of effect in unobserved characteristic space, we end up with our multiplicative model.

Standard discrete choice models imply that each product differentiates into a separate dimension, and
that each dimension is equally important. Our innovation is to adjust the model so that products in crowded
markets differentiate into dimensions that matter less to consumers. As a result, consumers are more re-
sponsive to changes in observable (to the econometrician) characteristics such as price in a crowded market,

and the welfare from the last product is much lower in a crowded market.

11For random coefficients models, one could either 1) simply include the total number of products in the estimating equation
(in essence assuming congestion occurs equally across products), or 2) extend the intution from the nested logit model described
above. Instead of counting the number of productsin the same nest, one could count the number of products weighted by how close

they are in characteristic space.
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Animpediment to developing thismodel isthat important conceptsfor analyzing product differentiation,
such as the distance between products and travel costs for consumers, are not explicit in models such as
the logit and probit. In contrast, these concepts are explicitly specified in an address (Hotelling) model.
Therefore, our strategy is to specify a generalized empirical model and then an address model, and then
present conditions such that the two models have the same implications for market shares. We then impose
the features we want on the address model and show how those features |ead to atractable adjustment in the
empirical model.

Anderson, De Palma and Thisse (1992), ADT, present an algorithm for linking an address modd to a
logit model .*2 By link, we mean that the models match each other in terms of market shares and elasticities
to the mean utilities. Here, we extend their model for our purposes. We define the logit model as follows:
A unit mass of agents choose 1 of J + 1 products (which can be thought of as J products and an outside
option). Each product is defined by quality level u;. Each agent i receives utility level u;; from a given
product defined by uij; = uj+ €jj, where €jo... €;; is arandom variable drawn from an extreme value
distribution with variance scale parameter n. Each agent chooses the product that confers the highest utility,

so the market share for product j is:

~_exp(uj/p)
' Tl explue/u]

Now we turn to specifying the address model corresponding to thislogit model. Thereare J + 1 distinct
products, each characterized by a vertical utility uj and a vector of characteristics z; € R over which
consumers have idiosyncratic tastes. Each consumer i is characterized by avector ¢; € R" that describes
the consumer’s ideal product. Let the function(l) represent the consumer cost of travel in dimenkiile

assumé’ > I” = (I’) < ©(1”), so location in higher dimension is less important. A consumer locatgd at

who consumes produgtreceives utility level:
L
Gjc)=uj—> t)d—-2%)* j=0,....J.

=1

ADT assume that travel costs are constant across dimensions and previous empirical work does so as well

12| fact, ADT present a general algorithm for linking an address model to any linear random utility model of discrete choice.

Our adjustments are extendable to more other models, but all inuition is clear from the logit case.
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(at least implicitly). Allowing travel cost to depend on the dimension is the structural change that we use to
generate a more flexible discrete choice model suitable for estimation.
Consumers are distributed in R- according to the probability density g(ci). Consumers choose the

option that confers the most utility. Therefore, the market share of product j is:

S = [ _ g()dg, j=0,...,J
M

where M; = (6 € RH[Tj(6) = max (Ti(@)))

.....

Note that Zfz(ﬁj = 1. We seek assumptions such that:

Condition 1 (Match) s; =§ and &L = 24 j,k=0,...,J

oug ~ Ouk

Satisfying Condition 1 requires specifying how the extreme value distribution pins down consumer and
product locations in the address model. As Section 2.2 points out, the idiosyncratic portion of utility in the
logit model can bethought of asavector of product-specfic dummy variables interacted with the consumer’s
vectore;. In the address model, we use the vector of dummy variables to create product locations, and the
vectore; to create consumer locations. To begin, we assume that the number of product characteristics in

the address model is equal to the number of productsl.i#. J. Then, product locations are spéed as

follows:
b ifl=j, j,I=1...3
z'j _ I
Assumption 1 —b otherwise
Z'O = —b I == 1, ey J
Products are located at positions such-ab, —b, ... ,b, ..., —b, —=b} € R’. The paramete mea-

sures the proximity of products. The sfezation mimics the vectatt; but with the advantage (over some-
thing like {0, 0, ... ,b,...,0,0}) that consumers who are indifferent between products are located on the
axis. This simpliies notation in specifying consumer locations.

Given product locations and the consumer utility function, specifying the distribution of consumers

defines the address model. First, consider the casé &= ¢ VI. ADT show that for this case, Condition 1

17



a) Logit

0.4 08 1.2 1.6 2.0
— T

Characteristic 2

L . L . L . L . L . L . L . . L .
-1.6 -1.2 -08 -0.4 -0.0 0.4 0.8 1.2 1.6 2.0

Characteristic 1

Figure 1: Consumer Distribution in the Address Modd that Matches a Logit Model

issatisfied if:
J I’ 4b ij —
g (1+ z7_; expldbz (c] —cP) /ﬂ])

©)

wherec(u) : R**! — R’ issuchthat ¢! (u) = (u! — u®)/4bz(j)

A few features of the model bear comment. Travel costs (7) and product distances (b) enter in the same way.
Not surprisingly, a given distribution of consumers could generate the same market shares either because
products are distant from each other or because travel costs are high. Also, u hasthe inverse role of z and
b. That is, for agiven set of market shares and elagticities, high variance of ¢ in the logit model is accounted
for by high travel costs or distant products in the address model. Finally, the lack of crowding is made
explicit in Assumption 1. Each product is equidistant from the outside option and equidistant from each
other, regardless of how many products there are.

For further insight into the model, consider the J = 3, m = 2 case. Figure 1 draws a contour map
of gic)forb =1, - = 1and ¢ = 2. Contour lines form an approximation of an equilateral triangle in
between each product. The graph makes it clear how little is pinned down by linking the address model

to the empirical model. For instance, for a different set of parameters b, 7, and x, we simply compute a
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different distribution of consumers and the implications for market shares are unchanged. This gives some
leeway in modelling how the environment changes as J increases.

Now consider our adjustment, that z(l) decreasesin|. Given Assumption 1, each product is differen-
tiated into a distinct dimension so each prodyaan be associated with a separate travel eopt. The
assumption that(j) decreases ifj means that products with highare differentiated into a dimension that
consumers do not value highly. These products add very little to total welfare and have very high elasticities
with respect to observable features)(— exactly what we might expect in crowded markets.

The next question is, how can decreasing travel costs be represented in the logit model? In Equation 3,
we would like to replace with 7 (j) but haveb andg(-) remain the same. From inspection, it is clear that
Condition 1 can be safigd if we allowx to also depend on So the fact that some product’s unobservable
differentiation is in less important dimensions is captured in the logit model by having those products have
lower variance in their unobservable utility. We replaceith z(j) andux with z(j) and rewrite Equation

3as:

j=1

1] I, expldor (j) (¢! — ¢)/7())]
g(c) = (4b)° 1 (ﬁ((’J))) (H——= —

(14 =1, explaz (i)(c) — /(D)
For the appropriately chosei(j), the distributiong(c) is unchanged. Using this equation as the link
between the address model and the empirical model implies that the new logit share function is:

_ e/
1+ >0, expluy/zi(K))

S

whereup = 0.

A major concern for estimating this share function is that it requires researchers to assign products to
specfic dimensions. Researchers are unlikely to want to make assumptions about something so abstract.
A solution is to integrate over all possibilities (with equal weights). ThereJamossible sequences df
products in dimension space. fee | : [1, J!] x [1, J] — [1, J] such thatl (m, j) give the location of

choicej in sequencen. Thens; can be written as:

G =3 SPLAIM D] 1
T A1+ S explu/adl (m. k)] 3!
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This share function looks computationally burdensome. A further simplification is available by noting that

this share function treats each product symmetrically. So there exists afunction x(J) such that:

__epu/ud)
1+ 30, exp(ug/u(3))

(4)

j
3.4 Estimating the Multiplicative Model

Aswith the additive model, the multiplicative model can be estimated by maximum likelihood (typically for
individual level data) or the Berry (1994) inversion:

In(sj) — In(s0) = %

where J is the total number of products in j’s market. Note that one needs to normaliz€]) for some
value of J and then parameterize(-). One caveat is that a non-linear estimation technique is required to
estimate this equation, but it is otherwise straightforward.

Interesting issues arise if the researcher would like to use this approach in a nested logit framework.

Consider the model in Section 2.1. Writing out the market share accountipg #ord u, results in:

er//lz (ZI‘(]=1 eUk/,uz)/‘Z/lll
Zk:l euk/u2 14+ (ij:l euk/#z)/lz H1

Sj

In the multiplicative approach advocated in this papgriepends od. That suggests that; should depend
on J as well. We derive an expression fey as a function ofx, by assuming that the varianceqf; stays

constant inJ and using the fact thaty ande;; are distributed independently:

<&)2= var(eij)  _ var (i) _ (uom)® /3
H1 var (fig +€j)  var(lig) +var(e)  var(lg) + (upm)?/3

T + U3 (5)

A natural approach is to specify; = /a + u,(J)? and estimate. The resulting Berry (1994) inversion of

the share function (keeping track of) is:

W$—ww=%+

H1— U2
1 H

In(sjig)-
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which again would be straightforward to estimate with non-linear techniques. Note that in this formulation,

o varies withJ. Thisc (J) is not directly estimated, but can be computed with:

(D) we((d)

J) = =
7 13 a+ up(3)?

4 MonteCarlo Results

We now turn to Monte Carlo simulations of our additive and multiplicative models. figsirgoal is to

see how standard logit based models perform when the data is actually generated according to one of our
product congestion models. In particular, we examine how the standard models do at estimating cross-price
elasticities and the welfare effects of new product introductions.

The rows of Table 1 and Table 2 contain various speaions of our additive and multiplicative nested
logit models. In all spefications, we simulate data from a very large number of markets (N=1000). Because
of this large amount of data, there is very little estimation error in our estimates (and resulting elasticities),
so these estimates can essentially be interpreted as asymptotic results. In each market, there are between
2 and 10 products, distributed uniformly across this range. There are two nests in each mafkst, the
contains all the inside products, the second contains only the outside alternative. To simplify things, price
is exogenously drawn from a log-normal distribution. In all models, consumers’ utility functions have a
coeficient on price set at -1 and a constant of -0.5. As is standard, the utility from the outside alternative is
normalized to zero.

The various spefications in the two tables differ in three dimensions. First is the type of model
used to generate the data, additive (sfiegiions (A1)-(A6), or multiplicative, (M1)-(M6)). Second is the
parameter measuring product congestion in the particular meded,z. We also varys, measuring the
strength of nesting. Because of the large amount of data, the “Truth” subrows in the tables are not only the
true values of these quantities, but also the estimation results from our congestion models. The “Nested
Logit” subrow contains the results of naive nested logit estimation on these data.

Thefirst row of Table 1 contains results for the pure congestion version of the additive model. In this
modely = 1, i.e. the number of retail outlets does not change as the number of products increases. Naive

nested logit estimation of this model gives extremely poor results. The nested logit estimates the average
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Table 1: Monte Carlo Results for Additive Model

Own-Price| Cross-Price| Outside good| Welfare Welfare Percent

Model Elasticity | Elasticity | P Elasticity |2 Products| 10 Products| Increase
Al1-Pure Congestion| True Estimate -1.19 0.07 0.03 0.20 0.20 0.0%
=1, =0.8 NL Estimate -32.06 5.79 0.01 1.26 1.26 0.6%
A2 True Estimate -1.18 0.07 0.03 0.21 0.26 26.0%
=0.95, =0.8 |NL Estimate -1.62 0.24 0.01 0.56 0.74 32.4%
A3 True Estimate -1.17 0.08 0.04 0.23 0.41 79.0%
=0.8, =0.8 [NL Estimate -1.25 0.14 0.03 0.32 0.62 94.4%
Ad True Estimate -1.16 0.10 0.06 0.27 0.63 133.6%
=0.5, =0.8 [NL Estimate -1.18 0.11 0.05 0.29 0.72 144.9%
A5 True Estimate -1.82 0.18 0.03 0.21 0.24 15.5%
=0.95, =0.5 |NL Estimate -2.53 0.40 0.01 0.54 0.65 19.7%
A6 True Estimate -4.38 0.62 0.03 0.20 0.22 5.9%
=1, =0.2 NL Estimate -6.03 0.99 0.01 0.53 0.57 8.3%

own-price elasticity® to be -32.06, while the actual own-price elasticity is -1.19. Within-group cross price
elasticities are also off by two orders of magnitude, and estimates of across-group (to the outside alternative)
price elasticities are about 18% of their true value. The last three columns of the table show the estimated
welfare effects of going from 2 to 10 products. While in actuality, there is no welfare gain to this experiment
(since in a pure congestion model new products “completely” crowd out the old ones), the nested logit
estimates suggest minor gains. Interestingly, in this case the nested logit model does a reasonable job at
matching welfare gains, but a terrible job at price elasticittes.

There is a clear intuition why in the presence of congestion, standard estimation methods are prone to
overestimate within-group cross-price elasticities, andderestimate across-group cross-price elasticities.
The standard nested logit sp@écation underestimates the nesting paramef@.g. in (Al), the nested logit
model estimates = 0.005 while in truth,c = .8). The reason for this can be seen by comparing the

estimating equation for the standard nested logit model:

In(%)leﬂ—apj +(1=0)In(s)) +¢; ©)

13The elasticities reported in the tables are averages across the entire dataset. For example, average own-price elasticity is the
average of the estimated price elasticities over all the products in the dataset. The average cross price elasticity is the average of all

the cross price elasticities in the data (i.e. the average of the cross price elasticities between each product and every other product).
14This does match the fast food franchise story in the previous section, where the nested logit model prediftsthus

correctly measuring the welfare gains due to the entrig kfto be O.
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Table 2: Monte Carlo Results for Multiplicative Model

Own-Price| Cross-Price| Outside good| Welfare Welfare Percent
Model Elasticity | Elasticity | P Elasticity |2 Products| 10 Products| Increase
M1 True Estimate] -1.55 0.22 0.05 0.32 0.76 135.1%
=-0.1, J =0.8 |NL Estimate -2.01 0.35 0.14 0.36 0.89 145.0%
M2 True Estimate -1.72 0.23 0.05 0.30 0.58 93.5%
=-0.2, J =0.8 [NL Estimate -2.40 0.51 0.14 0.41 0.86 109.7%
M3 True Estimate -1.88 0.25 0.05 0.28 0.44 55.9%
=-0.3, J =0.8 [NL Estimate -2.96 0.75 0.14 0.49 0.88 78.5%
M4 True Estimate -2.14 0.27 0.04 0.26 0.32 23.6%
=-0.4, J =0.8 |NL Estimate -3.98 1.16 0.14 0.60 0.92 53.8%
M5 True Estimate -1.92 0.44 0.03 0.72 0.90 24.5%
=-0.4, J =0.5 [NL Estimate -6.53 2.28 0.18 1.51 191 26.2%
M6 True Estimate -1.85 0.56 0.01 2.73 3.01 10.4%
=-0.4, J =0.2 |NL Estimate -16.92 6.63 0.22 5.10 5.55 8.8%

to the estimating equation in the additive mode!:
S.
|n(§) = XjB —oap; + (L—0)In(sjq) + o IN(R;(J)) +¢; (7

Comparing the two equations, note that the estimating equation (6) has a missing variable, o In(R;(J)).
Recall that R;(J) will declinein J if there is any congestion, i.e. if the number of retail storesin which
product j is sold declinesin J. Typically the within group share, In(s;,q), will also declinein J, so the
omitted variable will be positively correlated with In(s;;g) (or the typical instrument for In(sjg), i.e. J).
Thiswill tend to bias the estimate of & downwards in the standard nested logit model. The underestimate of

o suggests too much insulation between groups. As such, across-group substitution is estimated to be too
weak, and within-group substitution too strolig.

Models (A2) through (A6) perturb the parameters of the model. In (A2) through (A4), the congestion
parameteyp is varied. As would be expected, the nested logit estimates are closer to the trudk@sases
(recall thaty = 0 implies no congestion, i.e. the standard nested logit medeé truth). However, even at
y = 0.5, there are still sigficant biases in the nested logit results. Models (A5) and (A6) change the nesting
parameter. While changings affects the absolute levels of the results, it does not appear tdisagrily

change the percentage level of bias.

15For the multiplicative model, we also find that the standard nested logit model seriously underestimates the ratio 15/ 1and
overestimates within group substitution. On the other hand, with the multiplicative specification, the nested logit also overestimates
across-group substitution. This may be due to the fact that in the multiplicative Spatidbn, own-price elasticities are typically

overestimated by more than with the additive sfieation.
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Results for the multiplicative model, presented in Table 2 are similar. We parameterize u,, the scale

parameter for variance within the product nest, as.

JT
=2
1+J°

H2

Following Equation 5, we specify 1, = /a + u,(J)2. Under this specification, u, is normalized to 1 for
single product markets and z = 0 implies a standard nested logit model. We generate data for the cases of
a = 0.525, a = 3, and a = 24 which correspond to x,/u, = 0.8, 0.5 and 0.2 for a single product market.
As 7 decreases from O, u, and the ratio u,/u;, (= o) decrease and the market becomes more and more
congested. Each row compares true and estimated results for models with successively lower values of 7.

Similar to the previous case, the standard nested logit model overestimates own- and cross- price elas-
ticities. The difference between the two cases becomes greatedeyeases. The estimated own-price
elasticity is 30% away from the truth for M1, and 86% greater for M4. Just as striking are the welfare
results. For M1, both modefind large gains from going from 2 product to 10 products. However, for M4,
the true model shows a 23.6% gain in welfare from adding 8 products to the market. The standard model
predicts a 53.8% gain. Spéciations M5 and M6 show that asdecreases, the nested logit model does a
better job of estimating welfare changes but a worse job of estimating elasticities.

For model (A2), Table 3 compares estimates of elasticities and welfare across markets with different
numbers of products. Most important to note is that the standard model overestimates within-group cross-
price elasticities and underestimates outside alternative price elasticitab fmarket sizes. This is likely
a result of the downward bias imparted eérdescribed above. While the true sigma is equal to 0.8, the
estimated sigma is just 0.196.

For the multiplicative model, Table 4 breaks out the: —0.4 case by number of products. The standard
model over-predicts price elasticities and, in percentage terms, predicts a much smaller change in own-price
elasticity as the number of products increases. From the welfare changes, we seeihat #@4 case
is close to a full-crowding model. There is almost no welfare gain after the 4th product. Intuitively, the
standard model tries to capture this by estimating little differentiation between products (which is a very low
o) but doing so causes the model to drastically overpredict price elasticities.

In summary, these Monte-Carlo results show that if there is in fact product congestion, estimation by
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Table 3: Monte Carlo Results for Additive Model (A1)

Num of Own-Price Cross-Price Outside Option Welfare
Products Elasticity Elasticity Price Elasticity

Truth Estimate| Truth Estimate| Truth Estimate| Truth Estimate| Truth Estimate

2 0.50 0.31] -1.646 -1.703 0.055 0.085 0.740 0.554| 0.195 0.300

3 0.50 0.31] -1.918 -1.901 0.038 0.058 0.448 0.339| 0.209 0.336

4 0.50 0.31] -2.034 -1.986 0.030 0.046 0.330 0.251| 0.222 0.364

5 0.50 0.31] -2.123 -2.058 0.025 0.038 0.279 0.213| 0.234 0.387

6 0.50 0.31] -2.191 -2.112 0.022 0.033 0.215 0.165 0.245 0.406

7 0.50 0.31] -2.198 -2.112 0.019 0.029 0.173 0.134| 0.255 0.424

8 0.50 0.31] -2.221 -2.130 0.017 0.026 0.161 0.125 0.265 0.439

9 0.50 0.31] -2.232 -2.137 0.016 0.024 0.146 0.113| 0.275 0.453

10 0.50 0.31] -2.275 -2.175 0.014 0.022 0.130 0.102| 0.284 0.467

Table 4: Monte Carlo Results for Multiplicative Model (M4)
Num of Ratio Own-Price Cross-Price Outside Option Welfare
Products Elasticity Elasticity Price Elasticity

Truth Estimate | Truth Estimate | Truth Estimate [ Truth Estimate | Truth Estimate

2 0.80 0.32 -1.53 -3.17 0.40 1.96 0.16 0.23 0.26 0.60

3 0.75 0.32 -1.81 -3.81 0.32 1.32 0.12 0.17 0.29 0.67

4 0.72 0.32 -2.01 -4.14 0.27 1.00 0.10 0.13 0.30 0.72

5 0.70 0.32 -2.18 -4.33 0.24 0.81 0.08 0.11 0.31 0.77

6 0.68 0.32 -2.32 -4.46 0.22 0.68 0.07 0.10 0.31 0.81

7 0.66 0.32 -2.45 -4.56 0.20 0.58 0.06 0.09 0.32 0.84

8 0.64 0.32 -2.56 -4.63 0.18 0.51 0.06 0.08 0.32 0.87

9 0.63 0.32 -2.67 -4.68 0.17 0.46 0.05 0.07 0.32 0.90

10 0.62 0.32 -2.76 -4.73 0.16 0.41 0.05 0.06 0.32 0.92

standard methods can give biased and very mideading estimates. These biases can be up to an order of

magnitude.

4.1 Other Typesof Congestion

A caveat of the above monte-carlo results is that the simulated data comes from exactly the congestion
process we specify. Here we Htieexamine how our models perform when congestion comes from some
alternative model. Since our models are misdipegiin this case, we don't expect to recover parameters of
interest exactly, but we do expect to perform better than models with standard logit errors. The data used for
estimation in Tabl@? are generated by a random di@énts (on observable characteristics) model. There

are random coétients on both the constant term and on a single observed characteristic that is distributed
uniformly acrosdirms. Congestion in unobserved characteristic space is generated by a one dimensional
locational (with transport costs) model. Sgaxlly, products differ in their location in a Hotelling linear

city model. Products spread equally across the linear city. Thus, markets with more products have more
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Table 5: Monte Carlo Results for Locational Congestion

Low Transport Costs |Medium Transport Costs| High Transport Costs
Num. of True RCM RCM +| True RCM RCM +| True RCM RCM +
Products| Elasticities Mult |Elasticities Mult [Elasticities Mult
2 2.73 2.87 2.85 1.28 247 155 0.42 1.77 0.61
3 4.16 428 4.22 2.75 357 251 1.00 241 1.03
4 5.05 5.13 5.02 3.74 421 3.67 1.83 277 1.97
5 5.65 571 5.62 4.46 4.63 4.20 2.63 299 2.39
6 6.09 6.12 6.07 5.00 492 4.69 3.28 3.14 292
7 6.42 6.43 6.38 5.42 513 5.01 3.80 3.26 3.24
8 6.68 6.67 6.63 5.76 530 5.30 4.24 3.34 358
9 6.89 6.86 6.87 6.04 543 554 4.60 341 381
10 7.06 7.01 7.09 6.27 553 5.77 491 3.46 4.06

congestion in unobserved characteristic space.®

Table ?? shows estimates of own-price elasticities for three different data sets. The data sets differ in
the magnitude of transportation costs in the linear city. As transport costs increase, the importance of these
unobserved product characteristics increases relative to the importance of the observed product character-
istics. As a result, one can interpret the different data sets as capturing differing levels of success of the
econometrician in measuring relevant product characteristics in the market of interest.

For each data set, three sets of elasticities are reported. Iirsheolumn are the true elasticities
generated by the model. The second column are elasticities derived from estimating a standard random
coeficients model (plus logit errors). The third column are estimates from a standard randficiesuef
model plus our multiplicative adjustmeHt. With the lowest transportation costs, the missfieation of
unobserved product differentiation does not cause fsogmit bias in the price elasticities. Both the standard
RCM model and the congestion model do a reasonable job. With medium transport costs, the accuracy of

the RCM results decreases - while the true elasticities range from 1.28 (in a market with two products) to

16The outside good is assumed to incur no transport costs. We also include very low variance logit errors in the data generating
process to prevent zero market shares (to generate a small variance (relative to other consumer heterogeneity) logit error, we
inflated the means and variances of the random coefficients - these werefg;"N(0, 5), £1;"N(5,5)). As a result, unobserved

product characteristic space includes both the congestable linear dimension and a small, non-congestable logit error dimension.
1"The multiplicative model worked a bit better than the additive one on this Hotelling style unobserved product differentiation.

Note also that while welfare calculations were more accurate with our multiplicative and additive models than the standard random
coeficient model, neither model obtains particularly realistic welfare numbers. This is to be expected, as the top of the demand

curve is going to be highly dependent on the form of unobserved product differentiation.
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6.27 (in amarket with 10 products), the RCM estimates range from 2.47 to 5.53. Note that the upward bias

in elagticitiesin small markets and the downward bias in large markets corresponds to some of the intuition
developed in theintroduction. Standard logit errors are unable to fully capture the fact that through conges-

tion, elasticities increase in crowded markets. In contrast, our congestion model perforifisasitinibetter

- elasticities range from 1.55 to 5.77. In the last group of results, the biases in the standard RCM model are
even larger, while our congestion model still performs well. For small markets, for example, where the true
elasticity is 0.42, the RCM model estimates an elasticity of 1.77. Our congestion model estimates it to be
0.61. In summary, while it is hard to address potential mis$jgation issues (as there is a continuum of
potential misspefications), these results support our intuition, suggesting that our congestion models can
do signficantly better than standard logit based models at addressing arbitrary congestion in unobserved

product characteristic space.

5 Example

Rysman (2002) studies a data set on the Yellow Pages industry, measuring the positive feedback loop be-
tween consumers’ choice of directory to use (which is driven by the amount of advertising in the directory)
and retailer’s placement of advertisements in directories (which is driven by consumer usage patterns). Rys-
man models the consumer’s decision as a discrete choice between available directories and drednspeci
outside option. He observes a cross-section of directories and usage behavior where consumers in different
geographic markets have access to different numbers of directories. Figure 2 shows the percentage of con-
sumers served by different numbers of directories. The variance in this number of directories makes this is
a natural place to apply the techniques presented in this paper. Correctly estimating the elasticity of usage
to the quantity of advertising in a directory is important for measuring the importance of the feedback loop.

In addition, correctly measuring the welfare bétseof competing directories is important for the policy
question studied in the pap€r.Rysman also estimates retailer demand for advertising and a publisher’s
first-order condition for setting the quantity of advertising. Here, we focus only on the consumer’s decision.

The data set consists of observations on the number of uses, per household, per month, in the distribution

18The policy question is whether or not welfare improves as competition increases. Multiple directories reduce market power but

dissipate network effects.
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Figure 2: Percentage of People Served by Each Number of Directories

areas of 428 directoriesin 1996.1° We assume a representative consumer needs information of the kind they
could find in the Yellow Pages M times per month . The exogenous parameter M is constant across markets.
Each time a consumer needs information, the consumer can use one of the Yellow Pages in the area or turn

to the outside option. The utility to consumer i from using directory j is.
Uij = B1In(A)) + Xj B2+ + &ij

The variable A; is the quantity of advertising at directory j and the matrix X; represents demographic
variablesthat may affect usage.?® The variable & j represents directory-specfic factors that are unobservable
to the econometrician, such as the quality of the book or regional usage habits.

We estimate this basic model in 3 different ways: with standard logit errors, with the additive adjustment,

19The datawas collected by National Yellow Pages Monitor for use by Yellow Pages publishers and advertising agencies. NY PM
survey respondents maintain diaries of their Yellow Pages usage for 1 week. NYPM normally surveys between 1,000 and 3,000
people per MSA, dthough NYPM used 11,200 respondents in the Los Angeles area. This usually resultsin at least afew hundred

respondents even for very small directories.
20As a measure of advertising, Rysman uses the number of pages in a book times the number of columnsin adirectory. Theis

number is multiplied by 0.8 for directoriesthat are observably smaller than astandard directory. For X, each directory isassociated

with acentral county, and X comes from county level census data.
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and with the multiplicative adjustment. To see clearest what the data tells us about congestion, we use non-
parametric spefications of the additive and multiplicative terms. That is, we allow the number of retailers
or the variance scale parameter to take on different values for each number of products in the market.
A complicating factor is that Yellow Pages distribution areas overlap with each other. A directory may
face no competitors for some of its consumers and 1 or more competitors for another group of consumers.
Furthermore, we observe distribution areas but we cannot distinguish how much usage comes from different
portions of a directory’s distribution area.

Implementing the simple logit model is straightforward. We obsepyghe market share for directory
j) andsy (the market share for the outside opfirin directory j’s total market, and sub-markets (areas of
a directory’s market that are served by a uniform set of directories) are distinguished only by the presence
of an “irrelevant alternative”. Under the logit model, the rajps, is independent of the presence of these
alternatives s@; /s is the same in each sub-market. Therefore, we can use the standard logit equation. For

the simple logit model, we estimate:
In(sj) — In(sp) = In(A)) + Xj B +¢;

To implement the additive model, we simply take the additive term to be the population weighted average

of R;j across submarkets. In that case, we estimate:

In(sj) — In(so)

whereR; = Z W iRaw
keK(j)

aIn(A)) + X8+ Ry +¢;

Here,K (}) is the set of sub-markets irls market areay ;, is the percentage gfs population that lives in
sub-markek. The parameteR; is to be estimated, separately for eacandJ (k) is the number of products
in sub-markek.

To implement the multiplicative model, we push the model to its logical extreme and assume that the
scale parameter differs for directories across sub-markets. That is, the varianeg differs for the same

product based on the number of competitors for consunidrerefore, the market share for prodids:

exp(u; /)
Sj = Wi &
: k;(j) JkZieD(k) exp (Ui /1 54)

2l\we assume that M = 26. The highest number of uses per household in our data set is 23.6 with an average of 11.4. The

average for sp in our data set is 47.7%.
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where D (k) is the set of directories in sub-marketk and u ; is to be estimated separately for eathThe
variableu; is the mean utility for producf. For a given set of parameters we can infer (via gixed
point algorithm) the vector of mean utilitiesthat implies sub-market shares that aggregate up to the market

shares we observe. Then we can estimate the remaining parameters via the equation:
uj =a|n(Aj)+ Xjﬂ‘i—fj

We estimate all 3 spefications by the Generalized Method of Moments (Hansen (1982)) using the same set
of instruments as in Rysman (2002).

We observe very few markets with more then 5 directories so, in practice, we restrict markets with 6, 7
or 8 directories to have the same adjustment parameter. Results appear in Table 6. Parameter estimates show
that the additive spefication and the multiplicative spémation produce very similar results. Crowding
appears to be important in both models. The parameters for the additive adjustment are close to being
monotonic inJ and decrease at a decreasing rate. The parameters for the multiplicative model show that the
variance for markets with multiple directories are much smaller then for those with only one directory. The
parameters do not vary much in markets with more than one directory, suggesting that this model could be
estimated with a singlg for all oligopoly markets. The biggest change in the explanatory variables across
the 3 models is that the cdefient on advertising is lower in the multiplicative model. The low éoefnt
compensates for the reduced variance in crowded markets.

Table 7 presents summary statistics. Tingt column presents the elasticity of usage from advertising.

As in our monte-carlo results, the standard logit model overestimates (advertising) elasticities. In single
product markets the standard logit overestimates the advertising elasticity by 29% relative to the additive
model and 76% relative to the multiplicative model. Another feature to notice is how the crowding models
generate larger increases in elasticity as the number of products increase. When the number of products goes
from 1 to 8, the standard logit model shows that elasticity increases by 18% whereas the additivena®del

that elasticity increases by 30% and the multiplicative mdahels 79%. This coincides with our intuition

about how standard logit based models restrict the extent to which crowding can occur as the number of
products increases.

Equally as striking are the welfare calculations. The logit model predicts that even the 7th and 8th Yellow

Pages directories imply non-trivial welfare increases, over a third of whétsdirectory generates. On the
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Table 6: Estimation Resultsfor Yellow Pages Data

Standard Additive Multiplicative
Variable Coef Std Err Coef Std Err Coef Std Err
advertising 0.75  (0.08) 0.64  (0.07) 0.22  (0.04)
constant -6.55  (1.21) 511 (1.01) -2.08  (0.43)
% urban population -0.01 (0.01) -0.01 (0.00) 0.00 (0.00)
% lived in diff county 0.08 (0.02) 0.07  (0.01) 0.02  (0.01)
% lived in diff state 0.05 (0.03) 0.03 (0.02) 0.01 (0.01)
% own house -0.01 (0.01) -0.02 (0.01) -0.01 (0.00)
% grad hi school -0.05  (0.02) -0.04  (0.01) -0.01  (0.00)
% grad college -0.02  (0.02) 0.00  (0.02) -0.01  (0.01)
per cap income 0.03  (0.03) 0.01  (0.02) 0.01  (0.01)
telco book 1.09 (0.13) 1.05  (0.10) 0.38  (0.05)
county pop. growth rate 0.01  (0.02) 0.01  (0.01) 0.01  (0.01)
% take public trans. -0.05 (0.04) -0.05 (0.03) -0.01 (0.01)
% have not moved 0.07 (0.02) 0.06 (0.02) 0.02 (0.01)
pop. density -1.3E-04 (6.1E-05)| -6.9E-05 (3.5E-05)| -3.0E-05 (1.3E-05)
Adjustment J=1 0.00 Fixed 1.00 Fixed
JF2 -0.35  (1.00) 0.35  (0.03)
JF3 -0.28  (0.99) 0.36  (0.04)
JF4 -0.71  (0.98) 0.30  (0.03)
J=5 -0.80  (1.00) 0.32  (0.04)
J6,7,8 -0.91  (0.99) 0.34  (0.05)

other hand, the additive and multiplicative specifications imply much lower benefits from new directories.
When going from 1 to 8 directories, the standard model! finds that welfare increases by over 400%. Under the
additive model, welfare increases by 145% and under the multiplicative model, welfare increases by 109%.
Note that the additive and multiplicative models actually find that welfare decreases for some increases in
the choice set. Thisresult would likely disappear if we put more structure on our additive and multiplicative

J functions.

6 Conclusion

This paper highlights problems that arise as aresult of the way that standard discrete choice models handle
symmetric unobserved product differentiation. We show that restrictive assumptions about the relationship
between the number of products in a market and the dimensionality of unobserved product space can lead
to significantly biased estimates of elasticities and welfare changes. We suggest two solutions, an additive

and amultiplicative adjustment to the standard estimating equations. We present structural interpretations of
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Table 7: Summary Variablesfor Yellow Pages Data

Elasticities Welfare
Standard Add Mult Standard Add Mult
1 0.58 0.45 0.33 0.20 0.27 0.25
2 0.61 0.52 0.53 0.36 0.36 0.20
_g 3 0.63 0.54 0.53 0.51 0.50 0.28
S 4 0.65 0.57 0.65 0.63 0.46 0.22
§ 5 0.66 0.58 0.61 0.74 0.50 0.33
a6 0.67 0.58 0.58 0.84 0.53 0.43
7 0.68 0.59 0.58 0.93 0.60 0.48
8 0.68 0.59 0.59 1.02 0.66 0.53

our solutions, showing how they could arise from the appropriate agent maximization problem. We present
Monte Carlo evidence that shows the efficacy of our adjustments, and we examine how our adjustments
performin area data set.

An interesting question is what circumstances are appropriate for which adjustment. The additive ad-
justment is typically easier to implement then the multiplicative adjustment. It canfiggeiti a linear
manner, and can easily be extended to multi-nested models or randdigieneframeworks. While the
multiplicative model can be applied in those circumstances, one must maintain that each choice has the same
variance or abandon the random utility interpretation of the model. Conversely, the multiplicative model can
be applied even in the simple logit case where the researcher is not willing to specify an “outside option”.
While the two models seem to obtain similar results, they are not identical, so the choice of model might
be important for spefic applications. In this case, it might be fruitful to do formal non-nested testing of
the models. Lastly, note that it is also possible to combine the two models - i.e. ittidadditive and

multiplicative adjustments in the estimating equation.
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