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ABSTRACT
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costs. Extreme funds are more likely to have good rather than poor risk adjusted performance. Our

analysis also reveals a number of implementation issues relevant to other applications of SDF models.
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l. Introduction

The question of whether mutual fund managers can deliver expected returns in excess
of naive benchmarks has long been controversial. If fund managers can "beat the
market,” it has implications for the efficiency of financial markets. If they
underperform, it has implications for the structure of the fund management industry.
From an investor's perspective, the problem is to choose from a large universe of
investment alternatives. For these reasons, measuring the investment performance of
fund managers remains an important research problem.

In this paper we study the use of stochastic discount factor (SDF) models in
evaluating the investment performance of portfolio managers. With this approach
abnormal performance is measured by the expected product of a fund's returns and a
stochastic discount factor. Specifying the SDF corresponds to specifying an asset-pricing
model.

A variety of models for SDFs have been developed in previous studies. Our
goal is to provide empirical evidence on the performance of a wide set of models,
using a common experimental design. This is important because inferences about
abnormal performance will generally depend on the SDF chosen. Some models may
attribute abnormal performance to particular types of naive trading strategies, and the
power to detect truly superior performance will differ across models.

We evaluate the models on a set of artificial mutual funds, where we control
the extent of market timing or security selection ability. We find the performance
measures are not highly sensitive to the choice of the SDF, excluding the few models

that perform poorly on our test assets. Many of the models are biased, producing small
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negative alphas when the true performance is neutral. The average bias is about 0.15%
per month when the artificial fund selects stocks randomly. Previous evidence based
on SDFs that U.S. equity mutual funds have negative abnormal returns, reflects a
biased measure (Chen and Knez, 1996). Most of the models have sufficient power to
detect truly superior ability, and no single model vastly out performs the others.

We use the models to evaluate performance in a monthly sample of 188 equity
mutual funds. We find that the average mutual fund alpha, measured net of expenses
and trading costs, is no worse than a hypothetical stock-picking fund with neutral
performance. Since the artificial funds pay no transactions costs or management fees,
our results suggest that the average mutual fund has enough ability to cover these costs.
Thus, using a wide set of SDF models and more recent data, our findings are broadly
consistent with Jensen (1968), who used the CAPM. We also find that extreme funds are
more likely to have good, rather than poor, risk adjusted performance.

Our analysis produces a number of useful discoveries relevant to general
applications of SDF models. First, the performance measure for a given fund is
invariant to the number of funds in the system. Second, SDF models perform better
when a risk-free asset is included as a test asset, as this helps to identify the conditional
mean of the SDF. Third, when the SDF is based on traded factors, it is important to
require the model to "price" the traded factors. Finally, compared to their
unconditional counterparts, conditional models (i.e, those that used lagged
instruments) deliver smaller average pricing errors for the returns of "dynamic
strategies" based on the instruments. However, the cost of these smaller average

pricing errors is larger variances for the pricing errors on the original test assets.
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The remainder of this paper is organized as follows. Section Il reviews
performance evaluation with stochastic discount factors. Section Ill describes the
models and empirical methods. Section 1V describes how we construct the artificial
mutual funds. Section V describes the data. Section VI presents results on the
estimation of the stochastic discount factor models and Section VII presents our
evaluation of the models in the context of fund performance evaluation. Section VIII
uses the models to evaluate performance in a sample of mutual funds, and section IX

offers concluding remarks.

Il. Performance Evaluation with Stochastic Discount Factors

A central goal of performance evaluation is to identify those managers who possess
investment information or skills superior to that of the general investing public, and
who use these advantages to achieve superior portfolio returns. In order to identify
superior returns, some model of "normal" investment returns is required; that is, an
asset pricing model is needed. Modern asset pricing theory posits the existence of a
stochastic discount factor, m,, which is a scalar random variable, such that the

following equation holds:

E(””!+1R+1‘ :-IIVVt) =0, (1)

where R,,, is the vector of primitive asset gross returns (payoff divided by price) and 1
is an N-vector of ones. W, denotes an information set available at time t and E(-|V\4)

denotes the conditional expectation. Virtually all asset pricing models may be viewed
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as specifying a particular stochastic discount factor, m,,,. The elements of the vector
m,,, R, may be viewed as "risk adjusted" gross returns. The returns are risk adjusted

by "discounting” them, or multiplying by m,,,, so that the expected "present value" per

t+17

dollar invested is equal to one dollar. Thus, m,,, is called a stochastic discount factor

(SDF). We say that a SDF "prices"” the assets if equation (1) is satisfied.

A. Conditioning Information

Empirical work on conditional asset pricing uses predetermined information
variables, Z, which are elements of the public information set W,. By the law of
iterated expectations, equation (1) holds when we replace W, with Z, and we are

interested in equation (2):

E(mt+1 Rt+l -1 IZT):O (2)

According to equation (2), it should not be possible to detect mispricings of the
primitive assets using only the information in Z. A conditional approach to
performance evaluation allows a researcher to set the standard for what is "superior"
information by choosing the public information Z,. When Z, is restricted to a constant
we have an unconditional measure. With an unconditional measure, any
information about future returns is assumed to be superior information that may

generate abnormal performance.
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B. Measuring Performance

For a given SDF we define a fund's conditional alpha similar to Chen and Knez (1996) as:*

Ol ° E(m+1Rp,t+1|Zt)_ 1 (3)

where one dollar invested with the fund at time t returns R, ., dollars at time t+1. In
the case of an open-end, no-load mutual fund, we may think of R, as the net asset
value return. More generally, if the fund generates a payoff V,, for a cost ¢, > 0, the
gross return is Ryt Voaa/ G

If the SDF prices the primitive assets, a,, will be zero when the fund
(costlessly) forms a portfolio of the primitive assets, provided the portfolio strategy
uses only the public information at time t. In that case R, ,,, = X(Z)'R,,;, where X(Z)) is

the portfolio weight vector. Then equation (2) implies that

oy =[E(M.X{2) R.Z)] =x(2 ) [E(M.R.Z)] =x(z)1- 1=0.

In many models m,,, is the intertemporal marginal rate of substitution for a
representative investor, and equation (2) is the Euler equation which must be satisfied in
equilibrium. If the consumer has access to a fund for which the conditional alpha is not
zero, he will wish to adjust his portfolio, purchasing more of the fund if alpha is positive
and less if alpha is negative. This generalizes the interpretation of the traditional

Jensen's alpha as a guide for marginal mean-variance improving portfolio choices.

' Chen and Knez (1996) study an excess return conditional-alpha, E(Mrps1|Z+), Where ry=Rp-Rq and Ry is a Treasury
bill return. Our definition of « , is based on raw returns. The excess return alpha for a fund is simply the difference

between the raw return alpha of the fund and the raw return alpha of the Treasury bill. When the alpha of the bill is zero
the two are equal.
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The SDF alpha can correctly indicate abnormal performance, but not without
further restrictive assumptions. In particular, o, depends on the SDF chosen, and the
SDF is not unique unless markets are complete. Thus, different SDFs can produce
different measured performance. This mirrors a problem in classical approaches to
performance evaluation, wherein performance is sensitive to the benchmark. Roll
(1978), Dybvig and Ross (1985), Brown and Brown (1987), Chen, Copeland and Mayers
(1987), Lehman and Modest (1987) and Grinblatt and Titman (1989) address this issue.
Given these ambiguities, it is important to assess the sensitivity of performance
measures to the specification of the SDF. Our goal in this study is to compare a number

of models in a unified setting.
I11. The Models and Methods

A. The General Approach
We estimate SDFs using the Generalized Method of Moments (GMM, Hansen, 1982)

on the following moment conditions, which follow from equation (2):

H{m..R..- JA z]=0. @)

The stochastic discount factors that we evaluate are listed below.

Linear factor: mt., =a(Z)+b(Z)F.. (5)

=Z'B (LF.,)" .

Primitive-efficient m®,, =M(Z)'R... (6)
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=(MZ,)Ry;
Numeraire portfolio: m",,  =[(AZ)'R,., + (1-(AZ)'DR..I", (7)
Bakshi-Chen: m®,, =exp{Z'C In(R,)} (8)

In these equations, R,,, is an N-element vector of the gross returns on a set of
primitive assets and Z, is an L vector of lagged instruments. A, B, C, and M denote the
parameters of the various models. In equation (7) we partition R.,,=(R, ,;,R; ), where
R, is an (N-1)-element vector. A brief description of each model appears below.
B. Linear Factor Models
Models in which m,,, is linear in prespecifed factors are known as linear factor models.
The Capital Asset Pricing Model is one such model in which m,,, is a linear function of
the market portfolio return (Dybvig and Ingersoll, 1982). Linear factor models can be
unconditional or conditional. In the conditional versions of the models, we follow
Dumas and Solnik (1995) and Cochrane (1996), and assume that the weights a(.) and b(.)
in equation (5) are linear functions of Z,. Thus, in equation (5) B is an L x (K+1) matrix
of parameters, where K is the number of factors. To identify the parameters, we require
N3 K+1.

We consider two sets of linear factor models: one based on nontraded factors
(e.g. industrial production) and another based on traded factors (e.g. the S&P 500

index). For the traded factor models, we impose the restriction that the model price the
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traded factors.? For both the traded and non-traded factor models, we impose the
restriction that the model price the risk-free asset.’

Typically, beta pricing models are estimated by least squares or maximum
likelihood methods, while SDF models use the GMM. In SDF models with nontraded
factors, Kan and Zhou (1999) show that GMM estimates of the risk premium for a
factor are imprecise relative to OLS or MLE estimates, when the mean and variance of
the factor are known. Jagannathan and Wang (2000) show that the efficiency of GMM
estimates of factor premiums can be identical to OLS when additional moment
conditions, identifying the mean and factor variance, are appended to the system. Our
empirical evidence shows how the pricing accuracy of SDF models can be enhanced
through ancillary moment conditions. We find, in experiments not reported in the
tables, that the precision of the traded-factor models' parameters is lower and the
pricing errors are much larger when the models are not forced to price the factors. The
non-traded factor models, in particular, are much less accurate when they aren't forced

to price the risk-free asset.

? For example, in the unconditional CAPM, My = @ + bRyu1, Where Ry is the gross market return. Requiring the
model to price the market return and also a zero beta return we have:

E{[a+bRm1]Rm1}=1 and E{[a+bRmt1]Rot+1}=1.
These two conditions identify the parameters a(.) and b(.) in equation (5) as functions of the first and second moments

of the market index and the zero beta return. Similar restrictions apply to multifactor and conditional models, as shown
by Ferson and Jagannathan (1996).

* In other words, we impose the condition that E(m..RF -1|Z;)=0, where RF is the gross risk-free return. Since RF; is
included in Z,, this condition identifies the conditional mean of the SDF: E(Mu4]Z:) = Re ™.
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C. Primitive-Efficient Stochastic Discount Factors
Consider a conditional projection of an m,,, that satisfies equation (2) onto the vector

of primitive returns R,,,. The solution is:

M =1 E(RuRuTZ)" Ry (©)

We call the stochastic discount factor m™,,, a primitive-efficient stochastic discount
factor. This term reflects the fact that m™,, is a linear function of a conditionally
minimume-variance efficient portfolio.*

We follow Chen and Knez (1996) and Dahlquist and Soderlind (1999), who
assume that the weights M(Z)) = 1' E(R,,, R..,'| Z)" in equation (6) are linear functions
of Z. Thus, M isan N x L matrix and L is the dimension of Z. The system is exactly
identified, with NL parameters and NL orthogonality conditions.® With this
assumption, the primitive-efficient model is comparable to linear factor models, in the
sense that the conditional model is equivalent to a "scaled” unconditional model. By

multiplying the primitive assets by the lagged instruments, we form "dynamic

* Specifically, the minimum variance portfolio has its target mean chosen to minimize the uncentered second moment
of the portfolio return. Grinblatt and Titman (1989) propose an unconditionally mean-variance efficient portfolio as a
benchmark for performance measurement. Chen and Knez (1996) develop primitive efficient SDFs for performance
evaluation and Dahlquist and Soderlind (1999) study their sampling properties by simulation. He, Ng and Zhang
(1998) specialize the approach to handle a large number of primitive assets.

® The solution for M may, in this case, be obtained in closed form by manipulating equation (4). The solution is given
by:

Vec(M) = (HHG (ZeA 1, 1+,

where H is the NL x T matrix formed by putting the NL vectors (Z A R+1) in its columns, and Z is the T x K matrix
of the Z's. We require T > NL to invert the (HH') matrix.
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strategies." The conditional model will price these dynamic strategies in the sample, by

construction.

D. Numeraire portfolios

Long (1990) proposes a model in which the SDF is the inverse of the gross rate of
return on a "numeraire portfolio." He shows that if there are no arbitrage
opportunities, then some numeraire portfolio exists. Kang (1995) uses a numeraire
portfolio to evaluate fixed income mutual funds and Hentschell, Kang and Long (1998)
use the approach for international bonds. We estimate numeraire portfolios using
equation (7). R,,,, is the first primitive asset, which we take to be the Treasury bill, and
Ais an (N-1)xL matrix of parameters. In the conditional version of the model, we
assume that the weights are linear functions of the lagged instruments. Here, the SDF

is a nonlinear function, and the conditional model is not equivalent to an

unconditional model applied to the dynamic strategy returns, (R+1A Z ).6

E. The Bakshi-Chen Model
Bakshi and Chen (1998) propose a model in which the SDF is an exponential of a
linear function of the log returns on the primitive assets. This formulation has the

potential advantage that the SDF is constrained to be positive. The existence of some

® The moment conditions of (7) must be modified because the gross asset return matrix multiplied by the numeraire
portfolio has a linear combination of columns that is nearly a vector of ones, and the GMM weighting matrix is
singular. To resolve this problem we use N-1 primitive assets in the formation of the numeraire portfolio, and we ask
the SDF to price N primitive assets. (In joint estimation with a fund, we use N-2 of the primitive assets in forming the
numeraire portfolio.) We also follow Long (1990) and Kang (1995) by using nonlinear least squares, where the GMM
weighting matrix is the identity matrix. Such estimates are consistent but not efficient. We experimented with a full
GMM approach but found the estimates to be numerically unstable; this is one practical disadvantage of the numeraire
portfolio approach.
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strictly positive SDF is equivalent to a lack of arbitrage opportunities in a perfect
market. (Lack of arbitrage does not require that all SDFs are strictly positive.) The
Bakshi-Chen formulation, like the numeraire portfolio model, is nonlinear in the

primitive asset returns.’

F. Measuring Mutual Fund Performance

Our approach for estimating alphas is to form a system of equations as follows:

u, =[m,R., - A Z

U2t =0, - m+1R],t+l +1 (10)

The sample moment condition is g=T'1ét(u:I'1,u2't)'. We use the GMM to

simultaneously estimate the parameters of the SDF model and the fund's alpha. The
parameter o, is the mean of the conditional alpha, defined by equation (3). Thus, we
examine the average performance of a fund.®

A potential problem with this simultaneous approach is that the number of
moment conditions grows substantially if many funds are to be evaluated. We

therefore estimate the joint system separately for each fund.® Separate estimation is

" We experimented with imposing nonnegativity in the other models, using a differentiable approximation to the
function Max(0,m) that was proposed by Bansal, Hsieh and Viswanathan (1993). This produced numerically unstable
estimates and dramatically increased the pricing errors. We also examined exponential models, similar to Bakshi and
Chen (1998), using our three traded and four nontraded factors. These models performed much worse than the models
which use the primitive assets to form the SDF.

® For a discussion of time-varying conditional alphas, see Christopherson, Ferson and Glassman (1998).

® We evaluated a simpler two-step approach where the SDF is estimated in a first step, and the fund abnormal return is
measured in the second step by simply multiplying the gross fund return by the fitted SDF and subtracting one. The
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not restrictive, however. We show in the Appendix that the estimate of a fund's alpha
and its standard error are invariant to the number of funds in the system. Thus,
estimating the system for one fund at a time is equivalent to estimating a system with

all of the funds simultaneously.

1V. Artificial Mutual Funds

We construct artificial mutual funds with varying amounts of known performance,
using stock returns from the CRSP data files, for the sample period July 1963 through
December, 1994. We characterize the funds as either stock pickers or market timers. A
stock-picking fund gets noisy signals about the "non-market" component of the future
returns of many stocks, and selects securities on the basis of these signals. An artificial
market-timing fund receives a noisy signal about the future return of the Standard
and Poors 500 index, and invests in the index or in Treasury bills.”® When the signals
are completely random, the managers have no ability. We use this case to evaluate the
performance statistics under the null hypothesis of no abnormal performance. Then,

we evaluate the various measures given known levels of ability.

average performance is the sample mean of the abnormal return. Such two-step estimators are consistent, but the
standard errors do not account for the first stage estimation error in the parameters of the SDF. We found that the two-
step approach is remarkably less efficient than the joint estimation procedure.

' This abstraction of market timing is consistent with Merton and Henriksson (1981) but it does not capture the range
of trades that may actually be employed by market-timing funds. Our objective in drawing this characterization is partly
to provide artificial returns that are likely to have different properties from those of our artificial stock pickers; hence, the
extreme strategy of shifting between the market index and cash.
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A. Artificial Stock Pickers

An artificial stock picker starts with a value weighted portfolio of 200 stocks randomly
chosen from the largest 1,000 companies, ranked by market value as of January, 1963.
We run the model from January through June and discard the first six months, using
the returns for July, 1963-December, 1994 in the analysis. The portfolio is updated

monthly, with buy and sell candidates chosen according to the following model:

SIGNAL; ., =y 8it"'(:l-' Y)FO(EH) (11)

Here, the signal received for stock i at time t-1 is a convex combination of an

information term, ¢,, and a noise term, Fo(e,). The quality of the signal is

determined by the parameter, y (0 £y £1). The information term for stock i is the
residual for the next month from a market model regression: r, =a, +p;r,, +¢, Where
r.. 1S the CRSP value-weighted market return in excess of a one-month Treasury bill.
The noise component of a stock picker's signal is the product of an independent N(0,1)

random variable, F, and the standard error of the market model residual ¢, for firm
i, O(Sn)- A manager with perfect stock picking ability (y :1) observes the market

model residual one period ahead. A stock picker with no ability (y :0) observes a
random signal.

For later interpretation of the empirical results, it is useful to relate the
parameter, y, to a common measure of investment information. Active portfolio
managers use the information coefficient, IC, defined as the correlation between the

signal and subsequent returns. (See, for example, Grinold and Kahn, 1995.) Here, the
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correlation between the signal and the security specific return, e, is Y/‘/y 2 +(1- Y )2.

Thus, if y =0 the correlation is zero and if y =0.8 the correlation is 0.97. We find below
that the best performing actual mutual funds (those in the upper 5%) have performance
similar to artificial mutual funds with y values of 0.20 to 0.25, or IC values of 0.24 to 0.32.
Each month, the artificial stock picker receives a signal for each stock in the
available universe, which includes all NYSE, AMEX and NASDAQ stocks on the
CRSP files with stock prices larger than $2.00 per share." Each month, the portfolio
manager turns over 6% of the value of the portfolio.*? All stocks in the universe are
first ranked on the basis of their signals. Stocks within the portfolio with the smallest
SIGNAL values are sold, until 6% of the portfolio has been sold. Stocks outside the
portfolio with the largest SIGNAL values are purchased. The total number of stocks in
the portfolio is fixed at 200, so for each stock sold a new stock is added. When more
than one stock is purchased in a given month, the weights on the purchased stocks are
equal. The weights of stocks remaining in the portfolio evolve through time based on

the returns earned, with dividends reinvested.

B. Artificial Market Timers
It is well known that classical measures of alpha are biased and otherwise difficult to

interpret in the presence of market timing behavior [e.g. Grant (1977), Grinblatt and

" We exclude low price stocks to keep the universe representative of equity mutual fund holdings, and to avoid the
extreme return patterns observed for such stocks. For missing data we assign a return of zero, with the following
exceptions. For delisted stocks with missing return data, (CRSP codes of 500 and 520-584), we follow Shumway
(1997) and assign a return of -30%. For liquidated stocks with missing return data (CRSP code 400), we assign a
return of -100%.

2 We arrived at this figure based on the 73% mean annual turnover of growth funds for the period January, 1976
through December, 1992 from the January, 1993 Morningstar, Inc. compact disk database.
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Titman (1989)]. Specific market-timing models, such as Treynor and Mazuy (1966) and
Merton and Henriksson (1981), as well as their conditional counterparts developed by
Ferson and Schadt (1996) and Becker, et al (1999), rely on highly stylized assumptions.
No previous study has examined the performance of a collection of SDF models in the
context of known market timing ability.

Our artificial market timers invest in either the market index (Standard and
Poors 500) or a one month Treasury bill. The portfolio return for month t is therefore
equal to RF, + x,, r.,, Where r_, is the excess return of the S&P 500 over that of the one-

month Treasury bill, RF,. The portfolio weight x,, is a binary variable given by:

%, = {05*(1+y)<n}i{r, £0} + {05*(1+y)>n}I{r, >0}, (12)

where I{.} is the indicator function and m is an independent random variable,
uniformly distributed on the interval (0,1).

The parameter vy, (O £y £ 1), measures the signal quality. When the
information is perfect (y :1), the manager invests the entire portfolio in the market
index if the return on the market portfolio in the next period is greater than the return of
the Treasury bill. Otherwise, the manager invests the entire portfolio in Treasury bills.
When the manager has no market timing ability (y :O), the portfolio is either 100% in
the market or bills, based on a coin flip. y may be interpreted by the correlation it implies
between the portfolio weight, x,,, and the indicator for a positive market excess return,
I{r,>0}. If y =0 the correlation is zero, and if y =1 the correlation is 1.0. In between these

values the correlation depends on the value of p=Prob{r, >0}, but the value of y is a close
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approximation to the correlation.® We find below that the best performing actual
mutual funds (those in the top 2.5% to 5%) have performance measures similar to an

artificial market-timing fund with values of y equal to 0.55 to 0.6.

V. The Data

We use four different data sets in our study: primitive assets, economic factors,
instruments for public information, and mutual fund returns. A brief description of

each data set appears below. Details are provided in the appendix.

A. Primitive Assets

Primitive assets should reflect the returns available to investors and fund managers.
Of course, it is not practical to measure the entire universe of investment
opportunities. For this study, we consider nine primitive assets: a short-term risk free
security, two long-term bond returns, and stock portfolios that mimic large-cap, small-
cap, value, growth, momentum and contrarian investment strategies. Value and
growth portfolios are motivated by Fama and French (1993, 1996); momentum and
contrarian portfolios are motivated by Grinblatt, Titman and Wermers (1995) and

Ferson and Khang (2000).

® et q° Prob{x., =13 = p*(1+y)/2+(1- p)*[l- (1+y )/2] . Choosing p=0.57 (the frequency of positive excess
returns in our sample), the correlation between x.. and I{rn>0} is given by y,/ p(1- p)/o(1- g) »vy.
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B. Economic Factors

We group the factors into "traded" and "nontraded" factors. For the nontraded factor
models we consider four factors: the rate of inflation and measures of growth for
money, industrial output and consumer spending. These factors are motivated by Lucas
(1978), Breeden (1979), Ferson and Harvey (1991) and Chan, Foresi and Lang (1996).

For our traded factor models, we consider three factors: monthly excess
returns on the S&P 500 index, a long-term government bond and a low-grade
corporate bond portfolio. These factors are similar to those used by Chen, Roll and
Ross (1986) and Ferson and Harvey (1991).

We also consider a three-factor model based on Fama and French (1993, 1996).
Here the factors are a market index and the return differentials between small and
large-cap stocks, and between high and low book-to-market stocks.

Finally, we consider an exact, three-factor version of the Arbitrage Pricing
Model (Ross, 1976). Here the factors are the excess returns on the first three asymptotic
principal components in a large sample of monthly stock returns. These factors are

similar to those used by Connor and Korajczyk (1988) and Ferson and Korajczyk (1995)."

C. Information Variables
Previous studies have identified a number of variables that are useful in predicting

security returns over time. We consider two instruments only: a short term interest

" The principal components data are courtesy of Robert A. Korajczyk. We do not expand the set of primitive assets to
include the three principal components, in order to avoid the extreme colinearity that would result. Instead, when we
estimate the APT models we replace the SP500, low-grade bond return and contrarian portfolio with the three principal
components. We experimented with using the original nine primitive assets to estimate the APT models, and found
that the models performed more poorly when the principal components were not included among the primitive assets.
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rate and a stock market dividend yield. These two variables have figured most
prominently in studies of mutual fund performance (see Ferson and Schadt (1996),
Ferson and Warther (1996) and Becker, et al., 1999)."

Table 1 presents summary statistics of our data. The correlations (not shown)
among the non traded factors range from -0.58 to 0.33; the correlation between the
lagged instruments is -0.05; the correlations between the nontraded factors and the

primitive asset returns range from 0.48 to -0.18. Most are in the range -.15 to +.20.

V1. Estimating the Stochastic Discount Factor models

In Tables 2 and 3 we evaluate the fit of the stochastic discount factor models in the
sample of primitive assets. The models are estimated using monthly data for the
period July, 1963 through December, 1994. The first row of the A panels reports results
for a constant discount factor model, in which the SDF is assumed to be fixed over
time, and equal to the inverse of the sample mean of the gross return of the
one-month Treasury bill. A constant-SDF model can be motivated by risk neutrality,
where the marginal rate of substitution of a risk-neutral investor (with time-additive,
state-independent utility) is constant over time. For our purposes, this provides a

simple point of comparison for the performance of the models.

" In an earlier draft of this paper we considered an expanded list of instruments, including a lagged measure of the slope
of the U.S. Government term structure, a lagged yield spread in the corporate bond market (BAA versus AAA) and a
dummy variable indicating that the next month is January.
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A. Summary statistics of the Average Pricing Errors

Table 2 presents summary statistics for the time-series of the fitted SDF's. The means
of most of the SDFs are close to the inverse of the mean of the gross Treasury bill
return, as can be seen by comparison to the constant SDF model. Thus, including the
one-month bill as a primitive asset is generally effective in controlling the mean of the
SDF. The four nontraded-factor model is the exception, where the mean of the SDF is
slightly above 1.0. As the complexity of the models increases (more factors are used, or
we move from an unconditional to a conditional model), the standard deviation of
the fitted SDF generally increases. Recall that for the linear factor and primitive
efficient models, a conditional model is equivalent to an unconditional model fit to
the primitive asset returns, and also the "dynamic strategy" returns obtained by
multiplying the primitive returns by the lagged instruments. Hansen-Jagannathan
(1991) show that the minimum variance of an SDF increases when the number of
assets increases, because the mean variance frontier can only expand as more assets are
included. Thus, it makes sense that the conditional SFD models could have larger
standard deviations.

The SDFs have more negative values when more factors are used. The four
nontraded factor model, for example, produces a large number. The conditional
models also have more negative values. More frequent negative values are expected,
other things equal, as the SDF becomes more volatile. However, negative values mean
that the SDF assigns positive prices to negative payoffs at some points in time. The
Bakshi-Chen model avoids negative SDF values, but at the cost of more variability.

While a larger variance of an SDF is useful, according to the equity premium puzzle of
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Mehra and Prescott (1985), a more volatile SDF implies lower power to detect
abnormal performance.

The Hansen-Jagannathan (1997) distance measure is a summary of the mean
pricing errors across a group of assets. The measure may be interpreted, analogous to
Hotelling's T? statistic, as the maximum "t-ratio" of pricing errors for portfolios of the
primitive assets. Its advantage in our setting is that the standard error of the "t-ratio" in
guestion is not affected by estimation error in the SDF, as it depends only on the test
asset returns. Thus, there is no penalty or advantage to a volatile SDF. The HJ measure
may also be interpreted as the distance between the candidate SDF and one that would
correctly price the primitive assets. When the lagged instruments, Z, are used to form
dynamic strategy returns, and these are included, we have the conditional Hansen-
Jagannathan distance measure, denoted by "HJcon" in the table. When Z is restricted to
a constant and the dynamic strategies are not included, we have the unconditional
measure denoted by "HJun."*®

Using the unconditional HJ distance all of the unconditional models, except
for the APT, have smaller pricing errors than would be obtained by the constant SDF
model, discounting the returns at a fixed risk-free rate. The primitive-efficient and
Bakshi-Chen models produce the smallest distances, essentially zero by construction.
The numeraire portfolio also produces a small unconditional measure. This does not
mean that these models will perform well for performance measurement. An out-of-

sample evaluation is needed. The unconditional Fama-French model has a smaller

' For a given set of test asset gross returns R, instruments Z and a candidate stochastic discount factor m, let
r= RA?Z./ E(Z)), where ./ denotes element-by-element division. The population value of the Hansen-Jagannathan

distance measure takes the quadratic form: E(mr-1)'{E(rr') '} E(mr-1). We report the sample moment counterpart.
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unconditional distance measure than the CAPM or three-factor model. The
unconditional four-factor model also has a small distance measure.

The conditional models generally produce larger unconditional HJ distances
than their unconditional model counterparts. In attempting to price the dynamic
strategies implied by the lagged instruments, the conditional models sacrifice some
accuracy on the primitive returns. We also examine the mean absolute pricing errors
on the primitive assets (not reported in the tables) and find they are larger for the
conditional models. This is consistent with Ghysels (1998).

The conditional models are estimated with the objective of pricing both the
primitive assets and the dynamic strategy returns. Given this objective, they should
perform better, in the sample, according to the Hicon measure. Table 2 shows that this
measure is smaller for five of the eight conditional models.

The conditional primitive-efficient and Bakshi-Chen models produce the
smallest conditional distances, essentially zero by construction. The largest conditional
distances appear for the numeraire portfolio, APT and Fama-French models. The
conditional version of the Fama-French model does not register an improvement
over the conditional CAPM, nor over the unconditional Fama-French model. This
indicates that the conditional Fama-French model does a poor job pricing dynamic

strategies, consistent with Ferson and Harvey (1999).

B. The Dynamic Performance of SDF Models
The HJ distances summarize the relative fit of different models to the cross-section of

test assets, but they provide no insight into the economic magnitudes of the pricing
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errors for particular assets. Table 3 examines the dynamic performance of the models,
focussing on the individual primitive assets. While R,,; may be predictable based on Z,,
an SDF model implies that m,,R,,, should not be predictable using Z. We run
time-series regressions of the model pricing errors, m,R,,, -1, on the instruments Z,,
and report the sample standard deviations of the fitted values of the regressions. If the
standard deviations are small, the model "explains"” the predictable variation in the
returns. Unlike the HJ distance measures, the standard deviations reflect no penalty for
a model that gets the average return wrong. Thus, the standard deviation is a pure
measure of the ability of the model to explain predictable variation in the returns,
analogous to the variance ratios in studies such as Ferson and Korajczyk (1995)."

The constant discount factor, which explains none of the predictability, is
shown as a point of reference. For example, the standard deviation of the predictable
returns for the S&P 500 is shown as 1.05% per month, while the standard deviation of
the raw return is about 4% (Table 1). This means that the R? in a regression of the S&P
500 return on the lagged instruments is about (.01/.04) = 6%.

Panel A summarizes results for the unconditional models. None of the
models can explain the predictable variation in the fixed income returns (govt, junk,
tbill) better than a constant discount factor model.” It is hard to find factors that can
explain the dynamics of both stock and bond returns. A few of the unconditional

models explain a good fraction of the predictability in the equity portfolio returns. The

' Kirby (1998) presents alternative tests based on restrictions to the coefficients of predictive regressions for returns and
dynamic strategies, and shows they are closely related to the HJ distance measure of the previous section. He also finds
that the Fama French (1996) model does not explain dynamic strategies very well.

'® Recall that for the APT models, the SP500, junk bond and contrarian portfolio are replaced by the first three
principal components.
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unconditional four-factor model, APT, numeraire portfolio and primitive-efficient
models perform poorly. The product m, R, in these models has larger regression
coefficients on Z, than R,,, does.

Panel B of Table 3 presents results for the conditional SDF models. The
conditional primitive-efficient and Bakshi-Chen models produce standard deviations
close to zero. This is because the models are fit to make the expected product of the
errors with the lagged instruments equal to zero in the sample. In general, the
conditional models perform better than their unconditional counterparts. The
exceptions are the CAPM and Fama-French models. The Fama-French model
deteriorates substantially in its conditional version, again illustrating that it performs
poorly in the presence of dynamic strategies.

The results in Tables 2 and 3 suggest a refinement of the results of Ghysels
(1998). In the context of beta pricing models, Ghysels finds that conditional models
have larger mean squared pricing errors on the primitive assets than unconditional

models. Tables 2 and 3 are consistent with this finding. However, conditional models
have smaller pricing errors on the dynamic strategy returns, (R+1A Z ) and do a better

job of controlling the predictable components of the primitive asset returns. More
research is needed to compare the out-of-sample performance of conditional and

unconditional models along these dimensions (see Simin, 2000).

V1. Evidence on Artificial Mutual Funds

Table 4 presents summary statistics for the returns of the artificial mutual funds. Panel

A covers the stock pickers. When y =0, the stock picker's average return is 0.92% per
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month, similar to that of the market index.” With higher levels of ability, the average
return rises to more than 6.4% per month, at y =0.8. At the same time, the standard
deviation of return rises from about 5% to about 9% per month. The regression betas
on the S&P 500 rise from 1.05 to 1.33 as ability moves from y =0 to y =0.8. As ability
increases, the portfolio favors stocks with increasingly positive market model
residuals. Such stocks tend to have larger standard deviations of return and also,
higher betas. The first order autocorrelations are about 0.20 for all ability levels, similar
to the autocorrelation of an equally weighted portfolio of small stocks.

Panel B summarizes the artificial market timers, for ability levels between
v =0.5 and y =1. The beta of the timers' returns on the S&P 500 is always close to 0.5,
since the strategies hold the S&P 500 about half of the months and the Treasury bill the
other half. The standard deviations of return vary from 2.5% to 3.4% per month, and
the mean returns vary from 0.7% to 2.3% per month across the ability levels. The effect
of ability on the portfolio returns is not as great for the market-timing funds as for the
stock-picking funds. This makes sense, as a stock-picking fund is informed about many
stocks, and its errors can be partly diversified, while the timer has only a single,
market-wide signal. Due to sampling variation, neither the mean nor the standard
deviation of the timers' portfolio return is strictly monotonic in y . Successful market
timers may be considered to generate "underpriced” options (Merton and Henriksson,
1981). As timing ability increases, the market timers generate increasingly right-skewed

return distributions; thus the returns get more option-like. Such skewness creates

" For y =0, there is randomness in the portfolio returns due to the signal, diminishing in its effect as y approaches

1.0. To ensure representative values we run both the uninformed picker and timer for 100 trials, rank these on their
sample average returns, and report the figures for the median-return artificial funds.
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problems for traditional approaches to performance evaluation, as discussed by

Jagannathan and Korajczyk (1986) and Leland (1999).

A. Performance of the Models with Artificial Funds

Table 5 summarizes the performance of the artificial mutual funds using the SDF
models. Panels A and B show the alphas and their t-ratios for the stock pickers. Perhaps
the most striking impression is that, with some exceptions, the performance results are
remarkably similar across the SDF models. This is interesting in view of the sensitivity
of beta pricing models to the performance benchmark, as documented by previous
studies.

Most of the models have a mild bias, producing negative alphas when y =0 and
there is no abnormal performance. The average alpha for an uninformed stock picker is -
0.19% per month for the unconditional models, and -0.12% for the conditional models.?
The typical standard error is about 0.10%. The conditional models tend to have smaller
biases, excepting the Fama-French factors, where the bias is slightly larger in the model's
conditional form. Among the linear factor models, the APT has the largest negative bias.

Chen and Knez (1996), using primitive-efficient models, find that mutual
funds have insignificant but negative abnormal returns. Using unconditional models,

they find the average alpha for 68 funds, 1968-89, is -0.09% per month. Our results

% When we discuss averages across the models, we exclude the numeraire portfolio models from the calculations. We
repeat this exercise, where the artificial fund returns are computed without the Shumway (1997) adjustments for delisted
stocks. In this case the average alpha is -0.18% per month with the unconditional models, and -0.08% with the
conditional models.
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using the artificial funds are similar, suggesting that their findings reflect a biased
performance measure.?

Dahlquist and Soderlind (1999) study primitive efficient models using weekly
Swedish data, 1986-95. They find no significant biases in the average pricing errors, but
they do find size distortions, where tests for the hypothesis that o, =0 reject the null
hypothesis too often.

When y >0 the results in Table 5 provide information on the power of the
models to detect superior fund performance.”? Most of the models are able to detect
superior performance at the higher ability levels (y 3 0.25). The t-ratios in Panel B
indicate that the conditional models often have slightly higher power than the
unconditional models. The Fama-French model is an exception, where power is lower
in its conditional form. The four-factor model generates smaller t-statistics than the
other factor models when the ability levels are high. Also, the numeriare portfolio
estimates have huge standard errors, and thus low power, relative to the other
models.

Panels C and D of Table 5 show the performance measures for the artificial
market timing funds. Again, with a few exceptions the results are not highly sensitive

to the benchmark SDF. When the artificial timer switches randomly between the

%! Chen and Knez (1996) compute alphas for excess returns, R,-Ry, whereas we use raw returns. Since the primitive
efficient models are exactly identified, the average pricing error of the Treasury bill is identically zero and the two alphas
are the same. In overidentified models the two alphas can differ. For example, in our linear factor models the average
pricing error for the one-month bill is 0.05% per month. This could explain a fraction of the negative bias that we find
for these models, but not the similar bias we find in the primitive efficient models. Furthermore, the 0.05% average
reflects a great deal of dispersion across the models, consistent with the large standard errors attached to the average
pricing errors.

2 Of course, a complete analysis of statistical power should use size-adjusted empirical critical values for the test
statistics. Our use of the term "power" here is therefore imprecise.
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market and cash, the average unconditional alpha is 0.005% per month, and the
conditional alpha is -0.099%. The typical standard error is, again, about 0.10% per
month. Thus, the model biases, especially for the unconditional models, are
somewhat smaller in the face of uninformed market timing.

All of the models, except for the numeraire portfolio, can detect high levels of
ability. However, compared with the stock-picker results, we find smaller t-ratios for a
given IC. This is consistent with the smaller effect of y on the market timers' returns.
Most of the models have less power to detect market timing rather than stock picking
ability. There are also some differences in power across the models. The primitive-
efficient SDFs have slightly smaller t-ratios than the average model at the higher
ability levels, and the four-factor models have markedly lower power.?

We conclude that no model for the SDF clearly dominates the others. The
worst performing models are the numeriare portfolio and the model with the four
nontraded factors. The poor performance of the latter model likely reflects the low
correlation of monthly stock returns with the economic variables. Given the
numerical instability of the numeraire portfolio model, its poor performance and large
standard errors may be expected. The relatively high computation costs of this model

present another disadvantage.

% Dahlquist and Soderlind (1999) find that primitive efficient SDF models have low power, when the alternative
hypothesis of abnormal performance simply adds a constant amount to the portfolio return.
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VIII1. Using the Models to Measure Mutual Fund Performance

We use the SDF models to measure performance in a sample of open-ended mutual
funds that tries to control survivorship bias by including discontinued funds. The data
come from Elton, Gruber and Blake (1996), and include all funds that were categorized
as "common stock"™ funds in the 1977 edition of Wiesenberger's Investment
Companies, and that had at least $15 million in total net assets under management at
the beginning of 1977.% Variable annuity funds (which are usually tied to insurance
products) and funds that place restrictions on the purchaser are excluded. The
remaining 188 funds are followed through name changes and mergers for the period
1977 to 1993. (See Elton, Gruber and Blake, 1996.) We believe that few of these funds
engage in active market timing. Therefore, we rely more on our results for the
artificial stock-picking funds in evaluating the actual funds' performance. The
monthly returns for the mutual funds reflect the reinvestment of dividends and
capital gains, and are net of most expenses, except front-end load charges and exit fees.
Summary statistics for the returns of the funds are presented in panel C of Table 1.

Table 6 summarizes the distribution of the mutual fund alphas under the
various models. We report the values at selected fractiles of the distribution across the
188 funds. By comparing these with the alphas in Table 5, where the degree of ability is
known, we interpret the results. Averaged across the models, the mean and median
alphas both round to -0.1% per month and the 10% tail cutoffs are nearly symmetric.
The 2.5% tails suggest mild left skewness. The Bonforoni p-values, based on the extreme

t-ratios in the sample, suggest that the extreme performing fund is more likely to have a

? We thank Martin Gruber for graciously sharing these data with us, and Micropal for permission to use the data.
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positive than a negative alpha.® Dahlquist and Soderlind (1999), in a weekly sample of
Swedish funds for 1991-95, find small positive alphas and mild right skewness. Their
sample suffers from survivorship bias, which is likely to affect both of these findings.

In Table 6 the distributions of the alphas for the actual mutual funds are not
highly sensitive to the SDF model, similar to what we found for the artificial funds.
Averaged across the models the average alpha for the median fund, is -0.06% per
month using unconditional models, and -0.09% using conditional models. The
average risk-adjusted performance of a typical mutual fund lies between that of an
artificial stock-picking fund with neutral performance, and an uninformed market
timer. With a typical standard error for alpha of about 0.1% per month, the differences
are not statistically significant. Thus, the overall impression is that the average mutual
fund performance is consistent with the null hypothesis of no ability.

These results are interesting in view of the fact that the artificial funds do not
pay transactions costs, while actual funds do. Bogle (1994) suggests that turnover and
expense ratios can be combined for a rough measure of the total expenses implicit in
mutual fund returns. He argues that 1.2% is a conservative estimate of the costs of a
round-trip trade. With turnover averaging 6% per month, he estimates typical trading
costs to average about 0.9% per year. Based on Morningstar data, the average expense
ratio for mutual funds over our sample period is about 1.08% per year. Adding these
two figures gives 1.98% per year, or about 0.17% per month. Based on the average
alphas, the typical mutual fund in our sample beats the uninformed stock picker, even

after covering these transactions costs. If we add back the 0.17% per month for

% The Bonforoni p-value is the smallest tail area of the t-ratios for the 188 funds, multiplied by 188.
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transactions costs, the typical fund's conditional alpha is significantly higher than
either type of artificial fund. Thus, the evidence is consistent with the view that the
average mutual fund manager has enough ability (or exerts enough effort) to cover
transactions costs and the expense ratio, which includes the management fee.

While the distribution of the measured fund performance is not highly
sensitive to the SDF model -- once the poorly performing models are excluded -- this
does not imply that the relative performance for individual funds is robust. Individual
fund alphas could shift position within the distribution, leaving the overall shape of the
distribution intact. To investigate this issue we compute a correlation matrix of the
individual alphas across the models. Each pair of models produces 188 pairs of
"observations"” on funds' alphas. We compute the sample correlations for these 188
observations. We find that the correlations are often quite high. For example, the
correlation between the conditional and unconditional versions of the CAPM is 0.99.
The correlation is 0.84 between the conditional CAPM and the conditional primitive
efficient model. The lowest correlations are between the poorly performing models and
the others. For example, the correlations between the four nontraded-factor models and
the others are between 0.52 and 0.66. Most of the other correlations are in the 0.82-0.96
range. We conclude that the relative performance measured for the individual funds

tends to be highly correlated across the SDF models.

IX. Concluding Remarks

This paper studies the stochastic discount factor (SDF) framework for evaluating the

performance of mutual funds. We provide a comparison of a large number of asset
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pricing models in a uniform experimental design. We find that no model for the SDF
clearly dominates the rest, but some models are clearly inferior. The worst performing
models are the numeriare portfolio and a linear factor model with four nontraded
economic factors. The choice between conditional and unconditional models presents
a tradeoff. Conditional models can deliver smaller average pricing errors for dynamic
strategies, and better control the predictability in pricing errors, but at the cost of larger
variances of the pricing errors on the primitive assets of the model.

We evaluate the models using artificial "mutual funds,” where we control
the extent of market timing or security selection ability. The good news is that the
measured performance is not highly sensitive to the specification of the SDF, excepting
the few models we found to be clearly inferior. The bad news is that many of the SDF
models are biased, producing negative alphas when stock-picking performance is
neutral. The average bias is about -0.19% per month for unconditional models and -
0.12% for conditional models. This is less than two standard errors, as a typical
standard error is 0.1% per month. However, the magnitudes suggest that previous
evidence (Chen and Knez, 1996) of negative abnormal mutual fund returns in SDF
models reflects a bias in the measure.

We use the models to evaluate performance in a monthly sample of 188 equity
mutual funds. These results update and generalize the evidence in the classic study of
Jensen (1968), who used the CAPM to conclude that a typical fund has neutral
performance, after accounting for expenses. We find that the average mutual fund alpha
is no worse than the hypothetical stock-picking fund with neutral performance,

although it is below the alpha of a hypothetical uninformed market timer by as much as
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0.07% per month. These hypothetical funds pay no expenses. If we add back expenses of
about 0.17% per month to the mutual fund alphas, the average fund's performance is
higher than the hypothetical funds with no ability. Overall, we see no evidence that a

typical fund has poor performance after we adjust for model biases and expenses.

Appendix

Invariance of Performance Measures to the Number of Funds

Referring to the system (10), partition g = (g,', g,')' where g, depends on only the
parameters of the SDF and g,=a,-h, where h :T'lé {mHRp’t+1 - 1}, and the

dimension of g, is the number of funds in the system. Conformably partition V, the
asymptotic covariance matrix of g, where V, is the upper left block, etc. The GMM
weighting matrix is W = V' is also conformably partitioned. The GMM estimator for

the system chooses the parameter vector 6 to minimize g'Wg, which implies:

5
g'Wa—g = (A1)

The structure of this problem implies that a partition of dg/06 according to g, and g,
(the rows) and the parameters of the SDF and O D (the columns) is of the form:

Jdg égd;; Oy
Z_% - A2
0 &d, 16 (A-2)

where gd,, and gd,, are full matrixes. Solving for right hand partition of equation

(A.1), corresponding to o, we obtain:
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a,=h- V\£21VV2191 (A3)

Standard expressions for partitioned matrix inversion allow us to write

W22 = (V22 - V21 \/11_l Vlz)_l! and W12 =- Vll_l Vlz sz- ThUS,

a,=h+ V21V1_1191 (A4)

Equation (A.4) shows that o, reduces to h, which is the two step estimator described in

the text, when either of two conditions are satisfied. The conditions are (1) the
covariance between the moment conditions g, and g,, V,, is zero; or (2) the moment
condition g,=0, which is satisfied when the SDF model by itself is exactly identified.
(This applies for the primitive efficient SDF model.) From (A.4) we can compute the

asymptotic variance of the estimators:

Avar( ) = Avar(h) + V,, vV, 'V, +2V, V., Acov(g,,h). (A.5)

Equations (A.4) and (A.5) imply that the estimates of o, and the standard errors for
any subset of funds is invariant to the presence of another subset of funds in the
system. To see this, partition o, = (a,lj,a,f), and examine the partition of equation (A.4)
corresponding to ocll,. The result is identical whether or not oc,f is present. Similarly,
partition equation (A.5) to observe that the asymptotic variance of a; is exactly the

same whether or not oc§ IS present.
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Data Description

Our short-term risk free security is the one-month Treasury bill, from Ibbotson
Associates via the Center for Research in Security Prices (CRSP). To represent longer
term fixed income assets we use the returns of an approximate 20 year U.S.
Government bond, from Ibbotson Associates, and the return of a low-grade corporate
bond from Blume, Keim and Patel (1991) series. We update this series (which goes
from February of 1926 through January of 1990) with the Merrill Lynch High Yield
Corporate Bond Index return, from the Salomon Center Newsletter (Spring and
Summer, 1993), and from the Wall Street Journal.” Our large-cap strategy, and the
market portfolio in the CAPM, is the return on the S&P 500 index.

We form five additional primitive assets from common stock portfolios
constructed by Carhart, Krail, Stevens and Welch (1996).”” For each month Carhart et
al. group the common stocks on the CRSP tape into thirds according to each of three
independent criteria, producing 27 portfolio return series. The grouping criteria are (1)
the past return for months t-2 to t-12, (2) equity market capitalization, and (3) the ratio
of book equity to market equity. We form a small-cap portfolio by equally weighting
the nine portfolios with the lowest market capitalization. For the momentum
(contrarian) strategy we use an equally weighted average of the nine portfolios with
the highest (lowest) t-2 to t-12 returns, thereby controlling for book-to-market and firm

size. For the value (growth) strategy we use an equally weighted average of the nine

% We are grateful to Don Keim for making the Blume, Keim and Patel (1991) data available to us.

?" These data are courtesy of Mark Carhart.
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portfolios with the highest (lowest) book-to-market ratio, thus controlling for firm size
and past relative return effects.

Our nontraded risk factors include the rate of inflation and measures of growth
for money, industrial production and consumer spending. The inflation rate is the
monthly percentage change in the consumer price index, CPI-U, from Ibbotson
Associates via CRSP. The growth of money is per-capita, inside money (Citibase
FM2.monthly) less currency or M1 (FM1.monthly) divided by the total U.S. civilian
noninstitutional population (P16.monthly), deflated by the consumer price index, and
used in the form of the first difference of the logarithms. For industrial production we
use the continuously-compounded growth rate of the seasonally adjusted index number,
1992=100 (Citibase IP.monthly). Our measure of consumer spending is the monthly real,
per capita growth rate of aggregate personal consumption expenditures for consumer
nondurable goods (Citibase GMCN) plus services (GMCS), divided by the population.

Our traded economic factors include monthly excess returns on the S&P 500
index, and the long term government and corporate bonds described above. The
factors for the Fama and French model are formed from the small-cap, large-cap, value
and growth portfolios described above.

We use two lagged instruments for public information. The one-month bill
yield is from the CRSP riskfree files. The yield is calculated from the bid prices on the
last trading day of the previous month. We subtract from the 1-month vyield the
average of its values for the previous 12 months, a simple form of stochastic

detrending. The dividend yield is the price level at the end of the previous month on
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the CRSP value-weighted index of NYSE + AMEX firms, divided into the previous

twelve months of dividend payments for the index.
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Table 1
Summary Statistics

panel A: The primitive asset rates of return

sp500 0.0091133 0.0423373 -0.215200 0.165700 0.003994
govt. bond 0.0058926 0.0296860 -0.084100 0.152300 0.051763
low grade bond 0.0069866 0.0234560 -0.081000 0.130000 0.221632
one-month bill 0.0052717 0.0022346 0.002100 0.013500 0.937797
momentum 0.0147299 0.0532051 -0.288311 0.188122 0.114470
contrarian 0.0081780 0.0532749 -0.216222 0.324533 0.137965
value 0.0139884 0.0523659 -0.262444 0.304667 0.165299
growth 0.0085136 0.0529997 -0.265411 0.191722 0.130837
small 0.0119945 0.0574457 -0.294078 0.304522 0.205066

panel B: Economic variables

non-traded factors:

inflation rate 0.0042135 0.003228 -0.0046000 0.0181000 0.646433
industrial production 0.0024553 0.008288 -0.0424745 0.0334559 0.366964
personal consumption 0.0012924 0.004751 -0.0189459 0.0181018 -0.167308
real money supply 0.0007191 0.005490 -0.0163079 0.0318874 0.769596

lagged instruments:

tbyld 0.0002039 0.013158 -0.0562000 0.0489558 0.799197
vwyld 0.0370277 0.008048 0.0251967 0.0612818 0.973259

panel C: Mutual fund returns:
Equally-weighted portfolios sorted by sample mean returns (January, 1977 - December, 1993)

Lower 2.5% 0.00336927 0.056832 -0.2556400 0.1675400 0.040739
Lower 2.5% - 5% 0.00814162 0.049622 -0.2543120 0.1451120 0.027890
Lower 5% - 10% 0.00929043 0.043067 -0.2118689 0.1257611 0.043084
Median fund 0.01191584 0.047639 -0.2159600 0.1653800 0.081600
Upper 10% - 5% 0.01505460 0.051957 -0.2324656 0.1461400 0.080769
Upper 5% - 2.5% 0.01585514 0.049884 -0.2325460 0.1408760 0.060769
Upper 2.5% 0.01694441 0.059543 -0.2683660 0.1681320 0.054545

Note.- The data are monthly from July of 1963 through December, 1994, a total of 378 observations (the lagged instruments
are known at the end of the previous month). For the mutual funds the sample period is January, 1977 through December,
1993 and there are 204 observations. The units are decimal fraction per month. p, is the first order sample autocorrelation.



Table 2
Stochastic Discount Factor Models

E(m) sd(m) pP.(m)  min(m) max(m) num(m<O0) HJun HJcon
Constant discount factor 0.995 0.000 0.000 0.995  0.995 0 0.144 0.319
UNCONDITIONAL MODELS
SDF-CAPM (ucapm) 0.994 0.071 0.004 0.733 1.37 0 0.136 0.311
Three traded factors (u3fac) 0.994 0.081 0.084 0.688 1.44 0 0.134 0.309
Fama-French (uff) 0.989 0.225 0.234 -0.204 1.68 2 0.078 0.235
APT (uapt) 0.995 0.145 0.091  0.024 1.59 0 0.329 0.329
Four nontraded factors (u4fac) 1.010 1.220 0.208 -2.760 6.95 71 0.099 0.296
Primitive-efficient (upem) 0.995 0.380 0.094 -0.695 2.65 3 1.2E-25 1.2E-25
Numeraire portfolio (unum) 0.995 0.521 -0.031 0.444 7.43 0 0.008 0.300
Bakshi-Chen (ubc) 0.995 0.423 -0.009  0.249 4.77 0 3.7E-10 0.052

CONDITIONAL MODELS

SDF-CAPM (ccapm) 0.989 0.218 -0.048 -0.576 1.80 3 0.172 0.270
Three traded-factors (c3fac) 0.994 0.291 -0.039  -0.532 2.09 6 0.179 0.266
Fama-French (cff) 0.979 0.565 0.098 -5.450 243 11 0.164 0.284
APT (capt) 0.985 0.228 0.128 -0.214 1.78 3 0.346 0.474
Four non-traded factors (c4fac) 1.020 2.060 -0.016  -6.440 7.79 96 0.035 0.068
Primitive-efficient (cpem) 0.995 0.566 0.242 -1.890 2.47 16 1.7E-19 1.7E-19
Numeraire portfolio (cnum) 0.995 9.220 0.001 -117.0 75.2 53 6.9E-7 1.080
Bakshi-Chen (cbc) 0.995 0.677 0.166  0.007 5.67 0 7.2E-10 1.9E-08

Note. - Various models for stochastic discount factors (SDFs) are estimated using the equations in the text and monthly data
for July of 1963 through December 1994 (378 observations). The units of the returns are monthly decimal fractions. E(m) is
the sample mean, sd(m) is the sample standard deviation and p, (m) is the first order autocorrelation of the estimated

stochastic discount factor. The primitive assets used in estimating the models are the Standard and Poors 500, a long term
government bond, a low-grade corporate bond, a one-month Treasury bill, and five portfolios grouped as described in the
text, according to lagged returns (momentum, contrary), book-to-market ratios (value, growth) and market capitalization
(small stocks). For the APT models, three asymptotic principal components replace the sp500, low-grade bond and
contrarian portfolios. HJun and HJcon are the Hansen-Jagannathan measures of misspecification. HJcon is the conditional
measure, which uses the returns and the lagged instruments, while HJun uses no lagged instruments. The lagged instruments
are the one-month Treasury bill yield and the dividend yield of the CRSP value-weighted stock index.



Table3
Dynamic Performance of Stochastic Discount Factor Models

SDF model  Primitive Assets

sp500 govt  junk momentum contrary  value growth small  tbill

PANEL A: UNCONDITIONAL MODELS

Constant

discount factor 1.05 0.496 0.553 1.37 1.30 1.29 1.39 1.55 0.18
ucapm 0.79 1.46 1.27 0.46 0.55 0.54 0.46 0.30 1.75
u3fac 1.16 1.84 1.65 0.82 0.94 0.91 0.83 0.65 2.13
uff 0.27 1.03 0.78 0.25 0.20 0.16 0.25 0.24 1.29
uapt 1.83 1.18 1.28 1.32 2.07 2.02 2.09 2.24 0.95
udfac 7.80 7.38 7.50 8.15 8.47 8.31 8.27 8.64 6.94
upem 4.46 5.45 5.00 3.70 4.40 3.98 4.05 3.75 5.83
unum 490 5.98 5.62 4.24 496 4.60 457 4.33 6.44
ubc 410 481 4.42 3.62 4.07 3.79 3.83 3.63 5.05

PANEL B: CONDITIONAL MODELS

ccapm 1.22 1.15 1.10 0.91 1.09 0.92 1.06 0.78 1.19
c3fac 1.14 1.53 1.34 1.42 1.18 1.40 1.23 1.52 1.19
cff 7.20 6.48 6.75 7.47 8.24 8.14 7.56 8.13 6.66
capt 0.55 0.64 0.51 0.22 0.17 0.32 0.27 0.26 0.49
céfac 2.15 1.99 2.07 2.24 2.30 2.24 2.35 2.33 2.04
cpem 78E-9 7.7E-9 7.7E-9 8.0E-9 7.9E-9 7.9E-9 79E-9 8.0E-9 7.5E-9
cnum 0.38 0.12 0.25 0.21 0.21 0.15 0.19 0.34 0.35
chc 6.3E-8 6.4E-8 65E-8 6.3E-8 6.3E-8  6.4E-8 6.2E-8 6.3E-8 6.6E-8

Note.-Various models for stochastic discount factors (SDFs), denoted by m, are estimated using the equations in the text.
The standard deviations of the fitted pricing errors are shown in the table. The fitted pricing errors are the fitted values of a
regression of mu1Rw1-1 on Z;, where my. is the SDF, Ry is the particular asset gross return and Z; is the vector of lagged
instruments. The primitive assets used in the SDF models are the Standard and Poors 500 index (sp500), the long term
government bond (govt), a low-grade corporate bond (junk), a one-month Treasury bill (tbill), and five portfolios grouped as
described in the text, according to lagged returns (momentum, contrary), book-to-market ratios (value, growth) and market
capitalization (small). In the case of the APT models, the SP500, junk bond and contrarian portfolios are replaced by the
three asymptotic principal components. The lagged instruments are the one-month Treasury bill yield and the dividend yield
of the CRSP value-weighted stock index. The symbols denoting the various models are the same as shown in Table2.



Table 4
Summary Statistics of Artificial Mutual Funds

Ability() Mean Std Min Max [} SP500beta

PANEL A: ARTIFICIAL STOCK PICKERS

0.00 0.0094926 0.0527125 -0.205859 0.222765 0.144480 1.05901
0.10 0.0116396 0.0572638 -0.282882 0.169699 0.212161 1.11825
0.20 0.0152671 0.0665882 -0.325791 0.266646 0.219904 1.20855
0.25 0.0207156 0.0748688 -0.353136 0.316370 0.241416 1.27060
0.30 0.0253968 0.0813125 -0.357061 0.303963 0.224202 1.33252
0.35 0.0315279 0.0833675 -0.301477 0.300201 0.259412 1.30099
0.40 0.0386342 0.0854730 -0.322398 0.296783 0.251474 1.30930
0.50 0.0530149 0.0896819 -0.337816 0.460395 0.198480 1.28819
0.60 0.0574245 0.0892648 -0.336422 0.406289 0.214116 1.33832
0.70 0.0644359 0.0906787 -0.251885 0.353727 0.200964 1.28475
0.80 0.0642396 0.0904048 -0.302697 0.364462 0.190315 1.32745

PANEL B: ARTIFICIAL MARKET TIMERS

0.50 0.0072781 0.0321722 -0.215200 0.165722 -0.023750 0.572041
0.55 0.0088169 0.0285112 -0.116979 0.165722 -0.087784 0.448242
0.60 0.0102663 0.0293961 -0.108228 0.165722 -0.023375 0.482613
0.65 0.0131346 0.0337522 -0.215200 0.165722 0.005960 0.650919
0.70 0.0126723 0.0297808 -0.108228 0.134300 0.001528 0.506642
0.75 0.0162635 0.0296212 -0.090300 0.165722 -0.085124 0.528737
0.80 0.0149506 0.0283264 -0.116979 0.165722 -0.138601 0.475052
0.85 0.0187121 0.0281571 -0.108228 0.165722 -0.038624 0.510130
0.90 0.0205448 0.0258198 -0.075913 0.165722 -0.030016 0.465304
0.95 0.0208255 0.0247428 -0.089058 0.134300 -0.038660 0.437822
1.0 0.0232471 0.0259912 0.002120 0.165722 -0.069138 0.513261
S&P500 0.0091133 0.0423373 -0.215200 0.165700 0.003994 1.00

Note. - Monthly artificial mutual fund returns are generated for 378 months from July, 1963 through December of
1994. Panel A summarizes the properties of the returns for artificial stocks pickers with varying degrees of ability, v .
When y = 0, there is no ability and when y =1 there is perfect ability, as described in the text. Panel B presents
summary statistics for the artificial market timing mutual funds. For comparison purposes the Standard and Poors 500
index return is shown on the last line. Std is the standard deviation of the monthly return, p; is the first order
autocorrelation and SPOO beta is the regression coefficient of return on the Standard and Poors 500 index return.



Table 5
Estimates of Performance for Artificial Mutual Funds

Results of joint estimation of a stochastic discount factor model and the performance of an artificial mutual fund for the July, 1963-December, 1994 period (378
months). The ability level of the artificial fund is indicated by the parameter , as explained in the text. Umean and Cmean are the averages taken across the
unconditional and conditional models, respectively, excluding the numeraire portfolio models.

PANEL A: STOCK PICKERS: Estimates of Alpha

g= 0 0.10 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 0.80
Ucapm -0.0017 -0.00079 0.00119 0.00517 0.00925 0.01529 0.02158 0.0354 0.0394 0.04649 0.04616
Ccapm -0.0112 -0.00089 0.00098 0.00483 0.00867 0.01435 0.02104 0.0372 0.0390 0.04666 0.04579
U3fac -0.0017 -0.00079 0.00118 0.00519 0.00925 0.01529 0.02163 0.0355 0.0394 0.04657 0.04622
C3fac -0.0012 -0.00097 0.00133 0.00534 0.00873 0.01463 0.02145 0.0373 0.0392 0.04695 0.04561
UFF -0.0019 -0.00058 0.00149 0.00532 0.00993 0.01575 0.02209 0.0360 0.0393 0.04644 0.04631
CFF -0.0007 -0.00128 0.00129 0.00491 0.00901 0.01417 0.01957 0.0375 0.0397 0.04627 0.04605
UAPT -0.0021 -0.00165  -0.00002 0.00428 0.0093 0.01572 0.02151 0.0356 0.0397 0.04636 0.04752
CAPT -0.0025 -0.00205  -0.00048 0.00384 0.0086 0.01397 0.02095 0.0355 0.0397 0.04534 0.04791
U4fac -0.0022 0.00028 0.00130 0.00303 0.00779 0.01482 0.01899 0.0321 0.0376 0.04056 0.04248
Céfac 0.0009 -0.00126  -0.00154  -0.00149 0.00526 0.00958 0.01549 0.0322 0.0345 0.04177 0.03845
Upem -0.0018 -0.00086 0.00125 0.00529 0.00936 0.01519 0.02158 0.0357 0.0394 0.04637 0.04617
Cpem -0.0013 -0.00105 0.00109 0.00473 0.00869 0.01438 0.02146 0.0378 0.0397 0.04610 0.04578
Unum 0.0000 0.00000 0.00000 0.01165 0.00764 0.02249 0.02157 0.0353 0.0400 0.04828 0.04835
Cnum -0.2085 -0.26184  -0.02144  -0.03494  -0.19293  -0.22835 0.00510 0.0000 0.0000 0.00000 0.00000
UBC -0.0021 -0.00091 0.00121 0.00506 0.00948 0.01551 0.02181 0.0357 0.0392 0.04634 0.04609
CBC -0.0009 -0.00018 0.00177 0.00521 0.00967 0.01447 0.02212 0.0378 0.0403 0.04665 0.04707
Umean -0.00192 -0.00075 0.00108 0.00476 0.00919 0.01536 0.02131 0.03514 0.03914 0.04559 0.04585

Cmean -0.00124 -0.00109 0.00063 0.00391 0.00837 0.01365 0.02029 0.03647 0.03887 0.04568 0.04524
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PANEL B: STOCK PICKERS: T-ratios for Alpha

g= 0 0.10 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 0.80
Ucapm -1.782 -0.810 1.0306 3.392 5.3597 7.3395 10.474 13.652 16.870 17.662 17.841
Ccapm -1.234 -0.969 0.8889 3.254 5.1544 7.1033 10.535 14.699 17.061 18.333 18.101
U3fac -1.801 -0.818 1.0370 3.418 5.4096 7.3992 10.594 13.697 16.999 17.816 17.954
C3fac -1.346 -1.059 1.2211 3.600 5.1798 7.2096 10.754 14.366 17.204 18.498 17.860
UFF -1.892 -0.575 1.2941 3.496 5.6197 7.4028 10.756 14.004 16.754 17.465 18.046
CFF -0.773 -1.239 1.1099 3.091 5.0309 6.4928 8.8363 14.114 16.446 16.976 17.193
UAPT -2.059 -1.660 -0.022 2.897 5.6794 7.5496 10.514 13.640 17.550 17.376 18.676
CAPT -2.776 -2.209 -0.447 2.703 5.4236 7.0883 11.141 14.421 18.043 17.888 19.472
U4fac -1.504 0.085 0.6646 0.941 1.9786 4.0348 3.946 6.529 5.6697 3.416 7.895
Céfac -0.429 -0.527 -0.5638 -0.336 1.1439 1.5609 2.613 5.663 5.4207 5.179 5.501
Upem -1.625 -0.815 1.0358 3.452 5.2338 6.9908 9.807 14.035 16.443 16.795 17.226
Cpem -1.199 -0.998 0.8826 2.849 4.6608 6.5091 9.137 13.681 15.667 15.948 16.099
Unum 0.000 0.000 0.0000 0.006 0.0035 0.0103 0.010 0.0144 0.0170 0.0221 0.0235
Cnum -0.002 -0.002 -0.0001 -0.000 -0.0015 -0.0009 0.000 0.0000 0.0000 0.0000 0.0000
UBC -1.852 -0.862 0.9977 3.375 5.2879 7.2364 9.879 13.763 16.401 17.033 17.343
CBC -0.883 -0.184 1.4774 3.299 5.4932 7.0509 10.485 14.291 17.479 17.496 17.499
Umean -1.788 -0.779 0.8625 2.996 4.9384 6.8504 9.4243 12.76 15.2409 15.366 16.426

Cmean -1.236 -1.026 0.6527 2.637 4.5838 6.1449 9.0716 13.034 15.3315 15.759 15.961
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PANEL C: MARKET TIMERS: Estimates of Alpha

g= 0 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

Ucapm 0.00058 0.0018 0.0034 0.0046 0.0056 0.00866 0.0094 0.0117 0.0143 0.0139 0.0169
Ccapm -0.00094 0.0021 0.0028 0.0057 0.0054 0.00649 0.0075 0.0097 0.0121 0.0135 0.0150
U3fac 0.00058 0.0019 0.0034 0.0046 0.0056 0.00872 0.0095 0.0117 0.0143 0.0139 0.0169
C3fac -0.00104 0.0023 0.0025 0.0056 0.0052 0.00669 0.0076 0.0096 0.0122 0.0137 0.0150
UFF 0.00052 0.0022 0.0039 0.0046 0.0055 0.00872 0.0097 0.0117 0.0144 0.0136 0.0169
CFF 0.00018 0.0011 0.0027 0.0065 0.0057 0.00664 0.0072 0.0099 0.0124 0.0125 0.0147
UApt 0.00089 0.0015 0.0038 0.0039 0.0061 0.00801 0.0089 0.0118 0.0135 0.0132 0.0161
CApt -0.00083 0.0011 0.0028 0.0042 0.0057 0.00667 0.0073 0.0098 0.0119 0.0129 0.0148
U4fac -0.00097 0.0000 0.0038 0.0064 0.0067 0.00750 0.0071 0.0095 0.0120 0.0125 0.0148
Céfac -0.00310 -0.0023 0.0076 0.0072 0.0097 0.00629 0.0080 0.0098 0.0116 0.0134 0.0149
Upem 0.00071 0.0019 0.0035 0.0050 0.0056 0.00873 0.0091 0.0117 0.0142 0.0138 0.0169
Cpem -0.00084 0.0018 0.0035 0.0060 0.0056 0.00686 0.0077 0.0103 0.0123 0.0131 0.0152
Unum 0.00000 0.0039 0.0033 0.0044 0.0057 0.01017 0.0076 0.0118 0.0130 0.0135 0.0157
Cnum -0.25733 -0.0291 -0.0039 -0.2497 0.0000 -0.19672 -0.0200 0.0000 0.0000 0.0000 0.0000
UBC -0.00196 0.0017 0.0037 0.0045 0.0053 0.00934 0.0099 0.0123 0.0147 0.0141 0.0175
CBC -0.00042 0.0026 0.0026 0.0063 0.0057 0.00716 0.0084 0.0095 0.0129 0.0138 0.0157
Umean 0.00005 0.0016 0.0036 0.0048 0.0058 0.00853 0.0091 0.0115 0.0139 0.0136 0.0166

Cmean -0.00099 0.00124 0.0035 0.0059 0.0061 0.00669 0.0077 0.0098 0.0122 0.0133 0.01504
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g= 0 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

Ucapm 0.5398 1.709 3.191 4.535 5.448 8.949 9.636 12.916 17.657 17.605 24.114
Ccapm -1.6068 2.267 2.949 6.044 5.983 7.464 8.624 12.273 16.823 19.967 24.607
U3fac 0.5313 1.708 3.149 4.466 5.374 8.997 9.649 12.796 17.396 17.404 23.856
C3fac -1.0687 2.386 2.616 5.752 5.484 7.590 8.417 11.658 16.377 20.129 24.186
UFF 0.4604 1.896 3.472 4.546 4.958 8.571 9.972 12.069 16.486 15.493 22.860
CFF 0.1707 1.005 2.364 6.119 5.214 6.866 7.694 10.506 15.076 14.803 21.684
UApt 0.7992 1.409 3.493 3.714 5.777 7.849 8.668 12.733 15.805 15.377 21.491
CApt -0.8498 1.084 2.847 4.363 6.060 7.518 8.087 12.298 15.801 17.589 23.104
U4fac -0.5175 0.017 2.174 2.931 3.385 4.692 4.747 4.4030 6.2784 9.6236 8.9699
Céfac -1.3931 -0.765 3.011 2.421 3.536 3.099 3.600 4.5043 6.4141 6.3667 8.7328
Upem 0.5271 1.423 2.659 4.303 4.270 7.233 8.265 10.177 14.317 13.047 19.888
Cpem -0.7176 1.512 2.963 5.418 4.835 6.579 7.620 10.170 14.689 14.857 22.035
Unum 0.0000 0.003 0.003 0.004 0.005 0.008 0.006 0.0098 0.0107 0.0113 0.0129
Cnum -0.0035 -0.000 -0.000 -0.004 0.000 -0.006 -0.000 0.0000 0.0000 0.0000 0.0000
UBC -2.0128 1.205 2.524 4.003 3.443 7.805 9.702 10.684 15.562 11.639 21.708
CBC -0.4825 2.437 2.343 5.889 5.507 7.223 8.849 9.5886 16.574 19.231 24.016
Umean 0.0467 1.338 2.952 4.071 4.665 7.728 8.663 10.825 14.786 14.312 20.4124

Cmean -0.8497 1.418 2.727 5.144 5.2313 6.619 7.5558 10.143 14.536 16.135 21.1949



Table 6
Tests with Mutual Fund Returns

Tests are based on 188 equity mutual funds and monthly data for the January, 1977 to December, 1993 period. The number of observations is 204. The
distribution of funds' alphas for each model are summarized by the values of alpha at various fractiles of the distribution for the 188 funds. Umean and Cmean
are the averages, taken across the unconditional and conditional models, respectively, but not including the numeraire portfolio models. The symbols denoting
the various models are the same as in Table I1l. The symbols denoting each model are the same as in Table I11. Bonfor. Max. (Min>) are the p-values based on
the Bonferoni inequality using the t-ratios for the alphas and assuming a t distribution. These are the one-tailed areas, or p-values, associated with the maximum
(minimum) of the 188 p-values, multiplied by 188.

Bonfor. Left Left Left Mean Median Right Right Right Bonfor.

Min. 2.5% 5% 10% 10% 5% 2.5% Max.
Ucapm 0.089 -0.008 -0.005 -0.003 -0.001 -0.0007 0.001 0.002 0.002 0.000
Ccapm 0.519 -0.008 -0.005 -0.003 -0.001 -0.0008 0.001 0.002 0.002 0.000
U3fac 0.059 -0.008 -0.005 -0.003 -0.0007 -0.0006 0.001 0.002 0.002 0.000
C3fac 0.551 -0.008 -0.006 -0.004 -0.001 -0.001 0.0009 0.001 0.002 0.000
UFF 0.007 -0.009 -0.005 -0.003 -0.0006 -0.0004 0.002 0.002 0.003 0.000
CFF 0.154 -0.010 -0.006 -0.004 -0.001 -0.0008 0.002 0.002 0.002 0.000
UAPT 0.161 -0.008 -0.005 -0.003 -0.0008 -0.0006 0.0013 0.002 0.003 0.000
CAPT 0.032 -0.009 -0.006 -0.003 -0.0011 -0.0008 0.0013 0.002 0.003 0.000
U4fac 1.000 -0.006 -0.005 -0.004 -0.001 -0.0007 0.002 0.003 0.004 0.450
Cafac 1.000 -0.010 -0.008 -0.005 -0.002 -0.001 0.002 0.003 0.004 0.002
Upem 0.746 -0.00781 -0.005 -0.003 -0.0008 -0.00067 0.0015 0.002 0.0024 0.000
Cpem 0.580 -0.00950 -0.006 -0.004 -0.0012 -0.00094 0.0013 0.002 0.0023 0.000
Unum 1.000 -0.00208 -0.0005 0.000 0.0012 0.000 0.0051 0.006 0.0064 1.000
Cnum 1.000 -0.00250 0.0114 0.024 0.177 0.207 0.2780 0.286 0.290 1.000
UBC 0.183 -0.00852 -0.0051 -0.003 -0.0006 -0.00044 0.0018 0.002 0.0026 0.000
CBC 0.066 -0.00956 -0.0062 -0.004 -0.0012 -0.00095 0.0015 0.002 0.0021 0.000
Umean -0.00790 -0.00501 -0.00314  -0.00075  -0.00058 0.001514 0.002 0.002714

Cmean -0.00915 -0.00617 -0.00385  -0.00121  -0.00089 0.001428 0.002 0.002488



