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Abstract

We model Moore’s Law as efficiency of computer producers that rises as a
by-product of their experience. We find that

• Because computer prices fall much faster than the prices of electricity-
driven and diesel-driven capital ever did, growth in the coming decades
should be very fast, and that

• The obsolescence of firms today occurs faster than before, partly because
the physical capital they own becomes obsolete faster.

1 Introduction
In 1965, the co-founder of Intel, Gordon Moore, predicted that the number of tran-
sistors per integrated circuit would double every 18 months. This has come to be
known as Moore’s Law. The Pentium 4 processor arrived in 2000 with 42 million
transistors. The 2001 arrival of the Itanium processor, with 320 million transistors, is
ahead of Moore’s schedule. Recently, even Moore has wondered if this kind of growth
can continue. But Meindl, Chen, and Davis (2001) suggest that it can go on for at
least another 20 years. By then, a chip will have more than a trillion transistors and
the computing power of the human brain.

Moore’s Law states, in other words, that the efficiency of computer producers
grows very fast. We argue that the Law is an example of a rise in efficiency that always
occurs among producers of any good as a by-product of their experience with making
and selling it. Electricity and internal combustion, for example, are technologies for

∗The University of Chicago and NYU, and Vanderbilt University. We thank the National Science
Foundation for support, and Peter Thompson for comments. Chia-Ying Chang, Jong-Hun Kim and
John T. Roland provided research assistance.
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which similar laws have held over long periods, although the improvements were less
dramatic.1

We adopt an Arrow (1962) type of formulation in which aggregate experience fully
determines the growth of efficiency. Our results are:

1. The long-run growth rate and the approach to it depend on three parameters
(Proposition 1): (i) The share in output of the capital to which the law applies,
(ii) the elasticity of capital-producers’ efficiency with respect to experience, and
(iii) proportionally on the rate of labor growth,

2. The approach to the steady-state is slower than it would be in Solow (1956). The
bigger the technology’s learning potential, the longer the transition (Proposition
2),

3. Firms’ market—to-book values reflect the age and type of capital that the firms
own; they decline faster with age in high-tech epochs and high-tech sectors and,

4. After fitting the model to three technologies — Electricity, internal combustion,
and information technology — it predicts that in the coming decades consump-
tion will grow much faster than it did during the 20th century because the
cost of computing falls much faster than the cost of machines did 70-100 years
ago. We do not have a precise forecast, but the best fit of the model implies a
long-run productivity growth of 7.6 percent per year.

Why focus on experience?–The engine of growth in our model is not investment,
but experience. Now, we know that R&D raises firms’ profits and efficiency and that
schooling and on-the-job training raise workers’ pay and productivity. Such invest-
ment raises output, but by just how much depends on the return to the investment.
That rate of return depends, in turn, on just what kind of investment is made. And
this is where experience comes in. It teaches us what kind of research will yield fruit,
which subjects students should learn in school, and what kind of training workers
should get on the job. Vernon (1966) argues that the American firm maintains its
lead because it sells to the world’s richest and most sophisticated customer, and so
learns from him and adapts to his wants. This customer’s wants dictate the kind of
product that he will buy, and his skills dictate the technology that his employer must
use. Dealing with him keeps the firm on its toes and ahead of the pack.

Sustained productivity growth is probably impossible if nothing is invested in
education, training, or research, but the payoff to that investment will depend on

1Neither Thomas Edison nor Rudolf Diesel were as good as Moore at predicting the future
development of the technologies that their ideas helped spawn. They were overly optimistic. For
example, in 1912 Diesel predicted that diesel motors would soon use plant oils (Anso and Bugge,
2001) and in 1922, Thomas Edison predicted that “the motion picture is destined to revolutionise
our educational system and ... in a few years it will supplant largely, if not entirely, the use of
textbooks” (Oppenheimer, 1997).
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what precise products and processes are targeted. Market experience provides firms
with the signals they need in order to make the best choices. With a general-purpose
technology (GPT), the big impact of experience lies probably in the development
of the GPT’s applications. For computers, the applications are software and the
internet, for electricity they were household appliances and light industrial equipment,
and for the internal combustion engine they were automobiles and trucks. These are
the products that link the GPT to the ultimate wants of the consumer and the cost-
saving needs of the manufacturer, and this is where experience really counts.

2 Three learning curves
The learning law.–If returns to scale are constant and if competition is atomistic,
the average cost of producing a good equals its equilibrium price. Thus we can simply
assume that price, p, is a function of the cumulative output of all producers combined,
K:

p =
µ
K

B

¶−β
, (1)

where B is a constant. The log-linear version of (1) is

ln pt = β0 − β lnKt−1,

where β0 = −β lnB. We estimate this equation for three general-purpose technolo-
gies: Computers, electricity, and the internal combustion engine. Figure 1 presents
pairwise combinations of ln pt and lnKt−1 on an annual basis for each technology and
plots a regression line through the points. The axes denote indices of the variables p
and K but on a log scale.
Estimates of β.–Table I shows our estimates of β and the average growth rates

of p and K, denoted by gp, and gK. The computer has by far the highest β, |gp|,
and gK.2 The process started slowly — the 1960’s were the age of the mainframe and
minicomputer, and in spite of a fast-growing K as indicated by the horizontal spacing
between the points, the decline in p was relatively slow — and since then it has kept

2To construct a quality-adjusted price index for computers, we join the “final” price index for
computer systems from Gordon (1990, table 6.10, col. 5, p. 226) for 1960-78 with the pooled
index developed for desktop and mobile personal computers by Berndt, Dulberger, and Rappaport
(2000, table 2, col. 1, p. 22) for 1979-99. Since Gordon’s index includes mainframe computers,
minicomputers, and PCs while the Berndt et al. index includes only PCs, the two segments used
to build our price measure are themselves not directly comparable, but a joining of them should
still reflect quality-adjusted price trends in the computer industry reasonably well. We then obtain
a quality-adjusted measure of computer production by deflating the nominal dollar value of final
computer sales from the National Income and Product Accounts (Bureau of Economic Analysis,
2001, table 7.2, line 17) with our price index, cumulating the result over time, and setting the index
to 1000 in the final year of the series (i.e., 1999). Finally, we divide our price index for computers
by the implicit price deflator for GDP (Bureau of Economic Analysis, 2001, table 3) to build the
normalized price index that appears on the vertical axis of Figure 1 and in the regressions used to
estimate β, and set the index to 1000 in the first year of the series (i.e., 1960).
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TABLE I
Estimates of β

Technology β̂ gp gK

Computer 0.62 -24.12 39.11
Electricity 0.35 -2.12 7.11
Automobile 0.20 -2.19 13.29

accelerating. The wider vertical spacing after 1990 suggests that the effects of learning
by doing have now become even stronger. Our estimate of β exceeds Gordon’s (2000),
partly because his data do not cover the latest price declines, and partly because we
use different sources.3 Nevertheless, while rising at the very high rate of 24% per
year, the quality of capital per dollar spent doubles only every 2.9 years. This is very
fast, but not as fast as the 18 months that, according to Moore’s Law, it takes the
efficiency of computer chips to double. Evidently, other components of computers do
not evolve quite as fast as computer chips.

Panels (b) and (c) of Figure 1 and the last two rows of Table I show that for
electricity usage and automobile sales the relation between K and p is flatter than
it has been for computers.4 We choose annual electricity output rather than a cu-
mulative measure because the accumulation of electrically-powered and long-lasting
equipment is probably proportional not to cumulative but to current electricity usage.
(Cumulative usage leads to similar estimates of β). For motor vehicles, we use

3We also estimate the learning parameter with a time trend in the specification. The trend term
is negative and statistically significant for computers and positive and significant for electricity and
automobiles. The β coefficient for computers falls to -0.87 and is no longer statistically significant,
while the β’s for electricity and autos become -0.745 and -0.230 respectively and remain significant.
Since our learning model does not include a time trend in the pricing process, we use the β’s from
the trendless specification in our analysis.

4Electricity prices are averages of all electric energy services in cents per kilowatt hour from the
Historical Statistics of the United States (U.S. Bureau of the Census, 1975, series S119, p. 827)
for 1903, 1907, 1917, 1922, and 1926-70, and from the Statistical Abstract of the United States for
1971-89. We interpolate under a constant growth assumption between the missing years in the early
part of the sample. For 1990-2000, prices are U.S. city averages (June figures) from the Bureau of
Labor Statistics (http:www.bls.gov). We then divide the price index by the implicit price deflator
for GDP, joining the series from Balke and Gordon (1986, table 1, pp. 781-782) for 1903-1929 with
that of the Bureau of Economic Analysis for later years, and set it to 1000 in the first year of the
series (i.e., 1903).

We construct the quantity measure as the total use of electric energy (kilowatt-hours) for 1902,
1907, 1912, 1917, and 1920-70 from Historical Statistics (series S120, p. 827), again interpolating
between missing years assuming constant growth. For 1971-2000, we join the total electric energy
consumed by the commercial, residential and industrial sectors (in BTU’s) from the U.S. Federal
Power Commission. We then set the index to 1000 in the final year of the series (i.e., 2000).
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the quality-adjusted value of cumulative sales.5

Is learning faster in booms?–The relation betweenK and p is negative, but does a
rise in K cause p to fall as (1) would imply? Do investment booms lead to faster price
declines? Apparently so. Let us take a look at low-frequency co-variation between K
and p. In Figure 2, we use the three estimates of (1) reported in Figure 1 to compute
a series of price predictions, p̂ ≡ β̂0 − β̂ lnKt, and plot them along with the data —
not as a function of K (as we did in Figure 1) but as a function of t. In the left
panels we plot the logs of p̂t and pt, and in the right panels we plot the deviations of
their logs from linear time trends. The two series are in all three cases positively and
significantly correlated. For example, both electricity and autos boomed in the late
1910’s and 1920’s, and their p̂t’s also decline sharply at these times. Then they both
slumped during the Great Depression and showed very little price decline. Figure 2
also shows that the post-1990 acceleration in the price decline for computers is not
due to a failure of (1) but, rather, mostly to a speed-up in the growth of K. For
computers, however, price declines lead output growth.

Other evidence on the learning curve in (1).–Klenow (1998) notes that plant-
level productivity-growth and labor input are positively correlated, which indirectly
supports (1). Most micro evidence would reject the extreme form of (1) because a
firm’s own experience matters more to its efficiency than the experience of others.
In quarterly data, for example, Irwin and Klenow (1994) find that semiconductor
firms learn only about a third as much from the experience of others as they do
from their own experience, and in monthly data on wartime shipbuilding, Thompson
and Thornton (2001) find that the contribution of the experience of others is even
smaller. The difference arises probably because the transfer of information from
firm to firm is slow and incomplete. When information flows fully and instantly —
as it did among subjects in some experiments run by Merlo and Schotter (2000) —

5Quality-adjusted (hedonic) prices for new motor vehicles for 1906-40 are from Raff and Trajten-
berg (1997, table 5.4). We linearly interpolate between these estimates, which are available every
two years, to construct an annual series. For 1947-83, we use hedonic prices from Gordon (1990,
table 8.8, col. 6, p. 345) as joined by Raff and Trajtenberg to their series. We use fluctuations
in the wholesale prices of motor vehicles and equipment from Historical Statistics (series E38, p.
199) to approximate the series between the endpoint of Raff and Trajtenberg (i.e., 1940) and the
starting point of Gordon (i.e., 1947). For 1984-2000, we use producer prices of motor vehicles from
the Bureau of Labor Statistics (http://www.bls.gov). This final segment is not adjusted for quality,
yet quality improvements in the auto industry have been far less dramatic in recent years than in
the earlier part of our sample. We join the various components to form an overall price index.

We build a quantity index using the value of factory sales of cars, trucks and buses for 1906-70
(Historical Statistics, series Q149 and Q151, p. 716), ratio-spliced to the industrial production index
for automotive products (Economic Report of the President, 2000, table B-52) for 1970-2000. We
then obtain a quality-adjusted measure of motor vehicle production by deflating with the price index
described above, cumulating the result over time, and setting the index to 1000 in the final year of
the series (i.e., 2000). We then divide our price index for motor vehicles by the GDP deflator and
set the result to 1000 in the first year of the series (i.e., 1906) to obtain the normalized prices that
appear on the vertical axis in Panel (c) of Figure 1.
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watching someone else perform a task is as efficiency-enhancing as learning by doing.
In reality, the distinction between own and outside experience probably fades only at
low frequencies so that in annual data the distinction probably still matters. But the
simplicity of (1) delivers the analytic results and is thus a good place to start.

3 Model
The model is a version of Arrow (1962) but with a production function for final goods
the form of which is Cobb-Douglas and not Leontief.

Preferences.–Lifetime utility is

Z ∞
0
e−ρt

c1−σt

1− σ
dt,

where c is per capita consumption, ρ is the discount factor and σ is the elasticity
of substitution. From this we have the relation between gc,t, the growth rate of per
capita consumption at date t, and the rate of interest rt:

gc,t =
rt − ρ

σ
. (2)

Final good.–The constant-returns-to-scale production function for final goods is

Y = Nf (k) ,

where K is capital, N is labor in efficiency units, k = K/N , and f (·) is increasing
and concave. Assume that N grows at the rate gN .

Capital.–We set physical depreciation at zero. The resource constraint is

Nc+
1

q

dK

dt
= Y, (3)

where c is consumption per worker and q is the number of new computers per unit
of output foregone. The number of new machines produced is dK

dt
= q (Y −Nc) .

Learning by capital producers.–Since capital does not depreciate the current
stock, K, is also the cumulative output of capital. We assume that the law in (1)
holds. Competitive supply of capital then means that the price of K always equals
the cost of production:

p =
1

q
=
µ
K

B

¶−β
. (4)

If β = 0, q is a constant and this is a one-sector Solow (1956) type model with no
technological progress.
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Investment.–A firm is too small to affect K and it perceives pt as given. It will
invest to the point where the cost of a machine equals the present value of its marginal
products:

pt =
Z ∞
t
e−
R s
t
rτdτf 0 (ks) ds, (5)

and this implies that

dp

dt
= −f 0 (kt) + rt

Z ∞
t
e−
R s
t
rτdτf 0 (ks) ds (6)

= −f 0 (kt) + rtpt.
The implied rental price, f 0 (k), equals the user cost of capital rp − dp

dt
, so that the

marginal product of a dollar of foregone consumption satisfies the equation

1

p
f 0 (k) = r − gp. (7)

3.1 Long-run growth

Assume that
y = Akα; α+ β < 1. (8)

The model’s long-run properties are as follows:

Proposition 1 The long run growth-rates of c, p, k and K are

gc =
αβ

1− α− β
gN . (9)

gp = − β (1− α)

1− α− β
gN . (10)

gk =
β

1− α− β
gN . (11)

and
gK = gk + gN =

1− α

1− α− β
gN . (12)

Proof. With f as in (8), (6) reads

gp = r − αAkα−1

p
. (13)

Since k = N−1Bp−1/β, (13) reads

gp = r − αA
µ
N

B

¶(1−α)
p−1+(1−α)/β.
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If r, gN and gk are constants, the second term on the right-hand side must also be
constant, which means that

(1− α) gN +

"
(1− α)

β
− 1

#
gp = 0.

This in turn implies (10). Since gk + gN = −gp/β, we have (11), and since gy = αgk,
this implies that the per capita growth of output and consumption is (9). (12) follows
at once.
Properties.–Growth is proportional to the growth of labor, gN , and increasing in

α and β. It becomes infinite as α + β → 1. The parameters of the utility function
affect only the level of output and the rate of interest.

3.2 The transition

We now solve for the evolution of Kt from some starting value K0.We do it only for
the special case of linear utility — i.e., σ = 0. This fixes the interest rate at r = ρ.
Free riding causes diffusion lags.–When σ > 0, we expect diffusion lags would

arise because rapid accumulation of K would bid up r. But when σ = 0, r is constant
at ρ, and any lags that may arise in the diffusion of K will occur for one reason alone:
The desire to free ride by waiting for the price of K to decline further. This is clear
from the user cost formula (7). A major difference between our model and Solow’s,
however, is that the explicit solution (15) is based on the assumption that σ = 0,
and for this case convergence in Solow’s model is instantaneous, or at least the Solow
economy would invest its entire output until the steady state capital-labor ratio is
reached. The same extreme outcome occurs here, but only when σ and β are both
zero. This makes sense because when β = 0 our model collapses to Solow (1956).
The transition.–We shall solve for the time path of the variable

z ≡ K
1−α−β

N1−α .

Let
a = (1− α) gN + (1− α− β)

ρ

β
, (14)

and b = (1− α− β) α
β
AB−β. Then

Proposition 2 The solution for zt is

zt = z0e
−at +

b

a

³
1− e−at

´
. (15)

It starts at z0, and converges to

b

a
=

(1− α− β) α
β
AB−β

(1− α) gN + (1− α− β) ρ
β

at the exact rate a given in (14).
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z =K1 - α  - β/N1 - α    b/a 

 (1-α)gN 

(1-α-β) 

Figure 3: Growth of K as a function of z.

Proof. Since σ = 0, rt = ρ for all t. Using (13),

gp = ρ− αA
kα−1

p
= ρ− αA

µ
K

B

¶β µK
N

¶α−1
.

By (1), gp = −βgK, which allows us to eliminate gp and get to

gK = − ρ

β
+

α

β
AB−βN1−αK−(1−α−β). (16)

From the definition of z, this equation reduces to

gK = −ρ

β
+

α

β
AB−βz−1.

But, also from the definition of z,

gz = (1− α− β) gK − (1− α) gN

= −a+ b
z
. (17)

Solving (17) leads to (15).

Having solved for zt, we then can solve forKt and all the other variables. Equation
(17) allows us to also express how the growth of gK converges to its steady state value
as z reaches b/a. Figure 3 shows that relation.
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Figure 4: The effect of α on a and gc.

The speed of convergence.–Eq. (14) shows that the speed with which z converges
to its steady-state value is decreasing in α and β. A higher α means that the marginal
product of capital diminishes more slowly. A higher β offsets the decline in the
marginal product of capital by reducing the price of new capital. As β → 0, a→∞
because the free-riding incentives disappear, and convergence is immediate.
The dual effect of α.–The Cobb-Douglas form of (8) implies that the share of

new capital is constant. A higher α slows down the transition rate, a, but raises long-
run consumption growth gc = αβ/ (1− α− β). Herein lies the tension we face in
fitting the transition and in getting a realistic rate for long-run consumption growth.
The tension is evident in Figure 4, which will be useful in explaining the results of
the projections that we shall make. Note how sensitive long-run growth is to α as it
approaches the value 1−β and as the rate of convergence approaches its lowest value
of (1− β) gN .
Incorporating a second capital.–Computers are not the only capital in the econ-

omy and, hence, some capital does not take part in the learning. The value of α is
therefore smaller than capital’s share in output. We now introduce a second cap-
ital, the price of which is fixed at unity. Only a few lines of algebra are needed.
The resource constraint becomes Y = Nc + (1/q) dK/dt + dX/dt, and the intensive
production function is

f̃ (k, x) = A∗kα
∗
xγ.

Assuming that x depreciates at the rate δ, its rental, r + δ, would be equated to its

12



marginal product, γAkα
∗
xγ−1, so that the optimal stock of x would be

x =

Ã
γAkα

∗

r + δ

!1/(1−γ)
.

Output per worker would then be

y =
·
A∗

µ
γ

r + δ

¶¸γ/(1−γ)
kα

∗/(1−γ)

= Akα,

where A =
h
A∗

³
γ
r+δ

´iγ/(1−γ)
, and where

α =
α∗

1− γ
. (18)

The analysis goes through exactly as before, but with α given by (18).

4 Simulations
In this section we report the results of simulations that focus on the diffusion of
information technology and on the diffusion of a composite technology that includes
both electricity and internal combustion. We could find adequate data only for the
United States and confine our parameter choices accordingly even though we think of
the world economy as the right unit just as Kremer (1993) did in a similar context.
In the solution for zt in (15), the parameters α, β, and gN are given to us from data
other than kt. Table 2 reports the values for these parameters that we will use in two
sets of calibrated simulations, which we refer to as “baseline” and “adjusted”.

TABLE II
Parameter Choices for Simulations

Baseline Adjusted
Technology α̂ β̂ ĝN α̂ β̂ ĝN

Computers. 0.21 0.62 2.05 0.35 0.62 1.05
Electricity 0.27 0.35 2.27 0.44 0.42 1.27
Autos 0.04 0.20 2.26 0.08 0.28 1.26
Electricity+Autos 0.29 0.34 2.26 0.47 0.41 1.26
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Baseline simulations.–For this set of simulations, we picked the parameters as
follows:

1. For α, we use data on shares of the GPT-capital, α∗, and the remaining capi-
tal, γ, and apply (18). The share of computers in equipment investment over
1960-2000 is about 30 percent. But if we include software and other forms of
IT-related investment, the share is now nearly 60 percent (Bureau of Economic
Analysis, 2001, table 1). If capital’s share in output, after allowing for struc-
tures, is about 30 percent, this implies an α∗ of 0.18 for the share of computers
in output and a γ of 0.12. Eq. (18) then gives an α of 0.21 for computers.
Autos and electricity are concurrent and so we consider them both individually
and together. For 1900-1940, Devine (1983, pp. 349, 351) reports that electric
motors were the source of mechanical drive for about 87 percent of machinery
by 1939, with internal combustion being the source of another 2 percent. Since
the latter must have excluded cars and trucks, it is an underestimate, and we
will assume a share of 10 percent. We choose shares from 1939 because they
are the closest available observations to the mid-point of our sample. Assum-
ing once again a 30 percent share of capital in output delivers an α∗of 0.26 for
electricity, 0.03 for autos, and 0.29 for the two combined. These imply γ values
of 0.04, 0.27, and 0.01 respectively, from which we compute the estimates of α
reported in the left panel of Table II.

2. For β we use the elasticities reported in Table I. When building the composite
for electricity and motor vehicles, however, we weight the β’s for the individual
technologies by their share in the sum of the composite α∗ (i.e.,

³
.26
.29
× .35

´
+³

.03

.29
× .20

´
= 0.34).6

3. For gN we use the U.S. population growth plus one percent per year as an
adjustment for the growth of labor quality — this adjustment is based on Denison
(1962, Table 32, p. 266), who reports a contribution of 0.67 percent of education
to the growth in national income over the 1920-57 period.7 We round this
number upward to 1 percent to account for changes in the quality of education.

Adjusted simulations.–For this set of simulations, we treat labor quality differ-
ently, and adjust β upwards. The details are as follows:

6We also weight the price and quantity indices for electricity and motor vehicles in this way when
constructing the composites used in our simulations.

7We obtain population data from Bureau of the Census, “Historical National Population Esti-
mates” (Census Bureau web page), which includes July 1 estimates of the resident population for
1900-99. Members of the Armed Forces overseas are included in the totals for 1940-79 only. Data
for real personal consumption expenditures are from the Survey of Current Business (August 2000,
table 2A) for 1929-2000, and from Balke and Gordon (1986, pp. 787-8) for 1900-28.
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1. Instead of adjusting gN for quality, we raise capital’s share. In the context
of Solow’s model, to get realistic convergence speeds, Barro and Sala-i-Martin
(1992, p. 227) use a “broad” capital share of 0.8. In that case α = α∗/ (1− γ)
is higher because γ includes human capital. Given the size of our β estimate for
computers, however, using a capital share of 0.8 would violate the constraint
that α + β < 1. We therefore will use a more modest value for the “broad”
capital share of α∗ + γ = 0.67 in the adjusted simulations.

2. Measurement error in K would cause our procedure to underestimate the abso-
lute value of β. Also, the price-index for computers may inadequately recognize
quality — the computer performs a lot of functions and it is unlikely that we
could measure them all. The auto price series is quality-adjusted for the 1906-40
period and the 1947-83 periods, but the limited number of product character-
istics that Raff and Trajtenberg (1997) could reliably use in constructing these
hedonic prices, when coupled with rapid changes in the quality of the charac-
teristics themselves, suggests that, per quality unit, auto prices fell faster than
our Figure 1 reports. This means that the true beta for autos is larger than
the one that we estimate, at least before the Second World War. To correct
for measurement error and the possibility of inadequate adjustment for quality
changes, we increase the β for motor vehicles by 40 percent. Finally, our use
of electricity production as a stand-in means that we probably do not measure
electricity-capital well. This is because one kilowatt produces more utils now
than it did earlier in our sample period due to substantial improvements in the
quality of equipment. We correct for this by raising the β for electricity capital
by 20 percent.

3. For gN we use the U.S. population growth and do not adjust for quality, since
it is now included in the broader capital share.

Figure 5 presents the transitional dynamics for computers, and Figure 6 shows
them for the electricity-auto composite. With α and β pinned down by the data,
we are left with two free parameters: z0 and A/Bβ (or, simply, b). To facilitate
comparisons across the technologies, we choose values for these two parameters so
that the predicted time-path of kt passes through the first and fortieth year of the
empirical time-path of kt. Panel (a) in each figure uses the baseline values of α and
β from the left panel of Table II, and reports the values of a, b, and z0 implied by
our fitting of the time paths. Panel (b) in each figure shows that a dramatic shift in
the time path of kt is possible when we simultaneously raise α, β, and the share of
capital in output as indicated for the “adjusted” model. These adjustments generate
diffusions with an S-shape. In other words, the transition path for z must always be
concave, as (15) makes clear, but because k is a transform of z that essentially takes
z to a power greater than unity, k can acquire a convex portion early on when β is
large enough. Our “adjusted” parameter settings, when substituted into (9), imply
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(a) baseline model (b) adjusted model

  Fig. 6. Electricity and motor vehicles: Actual and predicted diffusions.
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a steady-state growth rate for consumption of 7.6 percent per year, and thus an
optimistic outlook for consumption in the 21st century.

Fitting the model to productivity growth after 1960 and after 1900.–Figure 7
compares productivity growth for the two sets of technologies. We have forty years
or so of coverage for the computer and about a hundred years for electricity and
internal combustion. All three technologies were around for decades before they
appear on our diagrams, but one can argue that when they come into our view, they
are at a similar stage of development. In any event, this is what we shall assume,
and therefore we can extrapolate the future of the computer from the experience
of the other two technologies. The figure shows that the model overpredicts the
productivity growth of the economy between 1975 and the end of the sample. This
is the well known productivity slowdown paradox, and our model does nothing to
resolve it. The model also overpredicts productivity between 1910 and 1924. Then,
in both cases, there is a period of underprediction, followed in the end by a period of
overprediction. We summarize all of this in Table III.

TABLE III
Implications of Model Extrapolations

Electricity and Autos Computers
underpredict 1903—1908 (5 years) 1960—1973 (13 years)
overpredict 1909—1940 (31 years) 1974—1999 (25 years)
underpredict 1941—1993 (52 years) 2000— ?

5 The firm’s age and its market-to-book value
When there are no costs to adjusting capital, the value of capital inside a competitive
firm must equal the value of capital outside of it. Our model predicts that a fall in
the price of capital should manifest in the market values of those firms that use that
type of capital — the GPT-using firms. To support this claim, we shall now establish
the following facts: The faster is the decline in the price of new capital, the faster
will the value of capital inside the firm decline, especially in the sectors that use the
capital in question.

Market-to-Book ratios for firms.–As capital does not depreciate, the book value of
a unit of capital purchased at date τ is always pτ . At date t > τ , the market-to-book
ratio for that unit of capital is just

pt
pτ
= egp(t−τ). (19)

A firm owns capital of various ages. Let Ks be the amount of vintage-s capital that
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the firm owns, and let τ be the date that the firm started up. At date t > τ , the
market-to-book ratio for that firm is just

M

B
=
ps
Ps

τ=tKτPs
τ=t pτKτ

=
1Ps

τ=t e
−gp(τ−t)κτ

, (20)

where κτ = Kτ/
Ps

τ=tKτ is the fraction of the firm’s capital that is of vintage τ . We
shall ignore Jensen’s inequality in (20) and use the approximation

sX
τ=t

e−gp(τ−t)κτ ≈ e−gpTK = e
β(1−α)
1−α−β gNT

K

,

where we used (10), and where

TK = The average age of the firm’s capital stock.

Substituting this approximation into (20) we have the baseline specification

log
µ
M

B

¶
j
= − β (1− α)

1− α− β
gNT

K
j , (21)

where “j” is a firm index. The equation (21) would arise in a steady state in which,
for some reason, the age of capital differed over firms.

Market-to-book ratios vs. the age of the firm’s capital.–We estimate (21). To
compute a firm’s T̂K, we take the opening book value of a firm’s property, plant,
and equipment (item 182) for the year that it enters Compustat and apportion it
equally to each pre-Compustat year, using the year of incorporation as the start-up
date and assuming a depreciation rate of 8.5 percent. Direct purchases of property,
plant and equipment (item 128) and capital obtained through acquisitions of other
firms (item 129) are available for later years. Using these annual investment figures,
the depreciation rate, and the year of incorporation, we then compute the average
age of the capital stock using the shares of each firm’s 1998 capital attributable to
past years as weights. Data on investment are available only for recent decades and
so the 1998 cross-section is the only one that we analyze.8 The results are in Table
IV.

8We assume that a firm invests a constant amount I in each year from incorporation until
appearance in the Compustat files. With this investment strategy, the average age of capital for a
firm that appears on Compustat s years after incorporation is

agek,s =
s−1X
j=0

(
(1− δ)jPs−1
j=0(1− δ)j

× j
)
,

where δ is the depreciation rate. Investments in later years are direct purchases of property, plant,
and equipment (item 128). This item includes new and used equipment, but we treat them all as
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TABLE IV
Regressions of Log Market-to-Book Ratios
on the Age of Firm Capital, TK, in 1998

constant TK R2 (obs.)
IT firms 1.692 -0.082 .099

(15.8) (-4.17) (155)
All firms 1.054 -0.035 .034

(34.4) (-8.74) (2191)
All firms (with 1.337 -0.022 .161
sector effects) (36.6) (-5.32) (2191)
Note: T-statistics appear in parentheses beneath
the coefficient estimates.

In Table IV the coefficients on TK are all negative and significant at the 5 percent
level. The steeper slope for the IT firms continues to suggest a much higher rate of
depreciation of firm-values for the IT firms than for firms in general. The coefficient-
estimate of TK is comparable to estimates that use plant-level data: Sakellaris and
Wilson (2001) estimate that the quality of equipment in plants declines at 8-17 percent
for each year of age, and Bahk and Gort (1993) estimate it at 13 percent. Others
estimate much lower numbers. Our estimates are between 2.2 and 8.2 percent.

Market-to-book ratios vs. the age of the firm.–We have good measures of the age
of the firm:

TFj = age of firm j,

defined as the number of years since firm j incorporated or, alternatively, since it
listed on a stock exchange.9 Table V reports the regressions of M/B on T F . It

new. The average age of the capital stock T years after appearance on Compustat is

agek,T =
TX
j=0

(
(1− δ)jXT−j

K0(1− δ)T +
PT
j=0(1− δ)jXT−j

× (T − j)
)
+K0(1− δ)Tagek,s,

where K0 is the capital stock at the time of Compustat listing, and Xi is direct investment in
subsequent years. We also have the value of capital obtained through acquisition of other firms
(item 129) and include it in updating the size of the total depreciated capital stock in each year.
We assume, however, that this acquired capital enters at the average age of the firm’s capital in the
year of acquisition and then depreciates at the same rate as the rest.
The approximation ignores inflation. Correcting for inflation is not possible for the pre-listing

period since the opening capital stock is a book value. Given that the vast majority of the firms in
our 1998 sample entered Compustat after 1980, the lack of inflation adjustment for the subsequent
annual invesment figures should have minimal effects. Overall, however, our computation will tend
to understate the “true” age of a firm’s capital.

9Listing years for 1925-98 are those in which firms enter the CRSP database. The CRSP files
include all NYSE-listed firms from 1925, with AMEX firms added in 1962 and Nasdaq firms added
in 1972. For 1885-1924, listing years are those in which prices first appear in the NYSE listings of
The Annalist, Bradstreet’s, The Commercial and Financial Chronicle, or The New York Times. We
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TABLE V
Regressions of Log Market-to-Book Ratios on Firm Age (T F )

By incorporation date By date of exchange listing
constant TF R2 (obs.) constant TF R2 (obs.)

1998 Cross-section
IT firms 1.561 -.0085 .035 1.384 -.0132 .018

(20.3) (-3.34) (216) (30.5) (-3.47) (637)
All firms 0.856 -.0007 .001 0.832 -.0017 .001

(46.9) (-2.00) (3004) (72.3) (-3.27) (6730)
All firms (with 1.137 -.0002 .175 1.077 -.0000 .136
sector effects) (125.8) (-0.64) (3004) (9.77) (-0.04) (6730)
1920 Cross-section
Electricity- -.0462 -.0039 .011 .0099 -.0106 .038
intensive firms (-0.81) (-0.40) (36) (0.09) (-1.32) (38)
Transportation -.0285 -.0043 .011 .1405 -.0275 .115
firms (-0.18) (-0.65) (18) (0.87) (-1.90) (19)
Electricity excl. -.0034 -.0060 .023 -.0855 -.0033 .006
transportation (-0.02) (-0.82) (17) (-0.65) (-0.38) (18)

All firms -.3553 .0039 .018 -.2845 -.0024 .001
(-6.59) (2.85) (239) (-4.76) (-0.53) (233)

All firms (with .0055 .0063 .151 .0186 0.029 .206
sector effects) (1.07) (3.64) (239) (2.24) (0.69) (233)
Note: T-statistics appear in parentheses beneath the coefficient estimates.

groups firms into GPTs and others. The upper panel of the table considers the 1998
cross section in which we take the IT firms to be GPT. The sample includes those
firms in the Compustat database that were active in 1998, for which market and book
values are available, and for which we could determine the year of exchange listing or
incorporation.10 We identify IT firms by their Standard Industry Classification (SIC)
codes.11 For “all firms,” we estimate specifications of (10) with and without dummy
variables for SIC two-digit sectors.
Using either measure of T F , the coefficients on T F are negative and significant at

the 5 percent level for the IT firms in 1998. If we consider the mean age in the IT

obtain years of incorporation from Moody’s Industrial Manual (1920, 1928, 1955, 1980), Standard
and Poor’s Stock Market Encyclopedia (1981, 1988, 2000), and various editions of Standard and
Poor’s Stock Reports. See Jovanovic and Rousseau (2001) for a detailed description of these data
and sources.

10To compute market values, we take the value of common equity at current share prices, and
add in the book value of preferred stock and short- and long-term debt. Book values are computed
similarly, but use the book value of common shares rather than the market value. We omitted firms
with negative values for net common equity from the plot since they imply negative market to book
ratios.

11We identify “IT” firms as those with SIC codes for office equipment and computers (3570-79),
and programming and data processing (7370-79).
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sample of 13.7 years since incorporation, the coefficient on age (-.0085) in the upper
left panel of Table V implies that an IT firm that is one year younger would have a
market-to-book ratio that is 0.9 percent higher. The second line in Table V presents
results for all firms in our sample, and the third line augments the specification with
sectoral fixed effects. In both cases, the coefficients on TF are much smaller in absolute
value. For example, evaluated at the sample mean age of 20 years since incorporation,
the coefficients in the regression without sectoral fixed effects relate one less year of
life with a market-to-book ratio that is larger by less than 0.1 percent. The results
with sectoral effects indicate an even smaller effect of age on market-to-book ratios.
Note, too, that the inflation of the ’70s and ’80s eroded the book values of the older
firms and acted to inflate their M/B ratios relative to those of the younger firms.
This would bias the results against our hypothesis that the coefficient of T F is higher
today than it used to be.

The lower panel of Table V presents estimates of (21) for a sample of NYSE-listed
firms in 1920. We compute market-to-book ratios using prices and the number of
outstanding shares from our backward extension of the CRSP database, and using
balance sheet items from the 1921Moody’s investor manuals.12 We group the sample
into firms that are “electricity-intensive,” producers of transportation equipment, and
all firms. The electricity-intensive firms are those identified by David (1991, Table 5,
p. 329) as having more than 80 percent of their horsepower driven by electricity in
1919. These include tobacco products (SIC 2100), electrical machinery (SIC 3600),
fabricated metals (SIC 3400), printing and publishing (SIC 2700), and transporta-
tion equipment (SIC 3700). Since transportation equipment firms, including those
manufacturing autos, trucks, buses, motorcycles and railroad equipment, are a sub-
set of the electricity-intensive group, we also examine the electricity firms with the
transportation firms excluded.

The regression coefficients are negative for both measures of age for the electricity
and transportation firms, though most of them are not statistically significant at the
5 percent level. The slopes are more steeply negative for the transport firms than for
the electricity-intensive as well, suggesting that the internal combustion technology
was evolving to render its immediate predecessors obsolete even more rapidly than
in the case of electricity. This finding is consistent with the strikingly rapid declines
in price and increases in quantities that characterize the auto industry in the 1910’s

12To be precise, we draw balance sheet data fromMoody’s Industrial Manual, Moody’s Public Util-
ities Manual, and Moody’s Transportation Manual. Since balance sheet items are not as uniformly
defined across firms in these early Moody’s manuals as they are in today’s Compustat, we must
compute the market-to-book ratio for 1920 firms a bit differently. In this case, the numerator of the
ratio is the book value of common equity (including surplus and retained earnings) less the book
value of common shares, to which we add in the market value of common shares and the book value
of long-term debt. The denominator is the sum of the book values of common equity and long-term
debt. The difference between the measures for 1920 and 1998, then, is the inclusion of short-term
debt in both numerator and denominator of the ratio in 1998. The omission of short-term debt in
1920 imparts an upward bias to the market-book ratios computed in that year.
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Figure 8: Capital age vs. firm age for IT firms in 1998

(see Figure 1). Interestingly, when we expand the sample to include all firms in 1920,
we find positive coefficients on T F in three of the four specifications, and a very small
negative coefficient in the exception case.

Why do old firms have lower M/B values?–How much of the loss in market-to-
book value is from the aging of the firm’s capital stock? Is aging capital the only
reason why older firms have lower M/B values? Table VI reports the regressions of

TABLE VI
Regressions of TK on TF in 1998
constant age (TF ) R2 (obs.)

IT firms 2.484 0.084 .333
(9.23) (9.16) (155)

All firms 3.378 0.068 .389
(38.8) (38.1) (2191)

Note: T-statistics appear in parentheses beneath
the coefficient estimates.

TK on T F . They show that T F raises TK by 0.085 in the IT sector and only by 0.068
in other sectors. Figures 8 and 9 are scatterplots of these relations.

If the negative coefficient of TF were entirely due to the aging of physical capital,
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Figure 9: Capital age vs. firm age for all firms in 1998

the following equality would hold:

d

dT F
log

µ
M

B

¶
=[

d

dTK
log

µ
M

B

¶
]
dTK

dT F
. (22)

The coefficients of T F in the top panel of Table V and the coefficients of TK in Table
IV can then be used with the estimate of dTK/dT F from Table VI to compute both
sides of (22). The comparison is feasible only for 1998. The results are in Table VII.

TABLE VII
Estimates of (22) in 1998

Actual decline Explained via TK Unexplained decline
−[LHS of (22)] −[RHS of (22)] [LHS−RHS]

IT firms 0.0132 0.082(.084) = 0.0069 0.0063
All firms 0.0017 0.035(.068) = 0.0024 -0.0007

Table VII shows that the obsolescence of physical capital plays a more important
role in the obsolescence of IT firms than it does in the obsolescence of non-IT firms.
On the other hand, other, unexplained factors are also more important for IT firms,
whereas all of the obsolescence of the non-IT firms seems to be explained by the
obsolescence of their capital stocks.
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The effect of underreported book values.–For tax reasons, firms tend to depreciate
their capital faster than it wears out physically. Thus the book value of capital
understates the historical cost of the surviving capital, and this bias is strongest for
old capital. If pK were constant, this bias would lead to the finding that older firms
have higher M/B ratios than young firms, and that older capital fetches a higher
market value per unit of book. This all means that our estimates of the effects of TK

and T F on M/B are both biased towards zero. In spite of that, our estimates show
them both to be significantly negative.

6 Relation to other growth models
Several growth models are related to ours.

Arrow (1962):–Learning by Arrow’s capital-goods producers is the same as in
our model, i.e., (1). But he assumes that in the final-goods sector there are fixed pro-
portions between capital and labor, and this complicates the analysis so that he can
calculate only the steady state growth path. Our limiting growth rate is proportional
to the rate of labor growth, as in Arrow (1962) and also in Jones (1995) where the
scale effect works not through the accumulation of experience but through research.
Another interpretation of (1) is implicit in Aghion and Howitt (1998) who explain
how, by raising income, a larger capital stock raises the demand for new research and
thus raises the efficiency of future capital. One can view (1) as a summary of such a
process.

Frankel (1960) and Romer (1986):–In these models aggregate capital affects the
production of final goods directly. The effect appears similar to ours if we write

y = qf (k) , where, again,
1

q
=
µ
K

B

¶−β
.

The price of capital is unity. The investment condition is

µ
K

B

¶β

f 0 (k) = r. (23)

The incentives to invest in the Frankel-Romer model, as summarized by (23), are
therefore quite different from the incentives in our model. When our marginal condi-
tion (7) is combined with (4), it reads

µ
K

B

¶β

f 0 (k) = r − gp. (24)

Since gp < 0, our firms will invest less, and our transition will be slower than in the
Frankel-Romer model, in which the final goods producer benefits from spillovers on
all the units of his capital, k, regardless of when they are installed. Our model, on
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the other hand, is a vintage-capital model in which the owner of a machine does not
benefit from future technological improvements, and that is why −gp deters invest-
ment.

Barro and Sala-i-Martin (1995).–The rate in (14) is exact, but that comes at
the expense of assuming σ = 0. Barro and Sala-i-Martin (1995, ch. 2) work with a
positive σ, and so their results are not a special case of ours, but their rates are only
approximations around the steady state. When σ = 0, their result is the same as
ours when β = 0. In this case convergence is instantaneous.

7 Conclusion
We modelled Moore’s law as arising from learning by doing in the sector that makes
computers. We assumed that the law would continue to operate for ever, and de-
rived long-run implications and worked out the transitional dynamics. We found
that combining this model with Arrow-style learning can slow down the speed of
convergence, perhaps even to realistic levels. We also found that incumbent firms are
losing ground faster today than they did eighty years ago, and we argued that this is
so largely because old firms use older capital.

Nothing like Moore’s Law has ever operated for as sustained a period of time and
for as large an investment item. Never before, in other words, have capital goods
declined in price as fast as they are doing at present. If population or the quality of
labor continue to grow at historical levels, in the coming decades consumption growth
will probably rise well above its twentieth-century average.
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