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explains very little of the yield-related return predictability observed.
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1.  Introduction   

 The evidence on time series return predictability goes back at least to the late 70s 

(e.g., Fama and Schwert, 1977).  Financial and macroeconomic variables such as interest 

rates, bond yield spreads, dividend yields, etc. seem to have predictive power for returns 

(e.g., , Rozeff, 1984; Keim and Stambaugh, 1986; Fama and French, 1988, 1989; and 

Campbell and Shiller, 1988).  Although the predictability appears to be related to the 

business cycle (e.g., Fama and French, 1989), the statistical significance of the evidence 

has been questioned due to data mining concerns (e.g., Lo and Mackinlay, 1990; Foster, 

Smith and Whaley, 1997 and Bossaerts and Hillion, 1999).  Conventional inference for 

predictive regressions can be misleading due to small-sample biases (Stambaugh, 1999), 

as well, raising doubts about earlier results that rely on standard asymptotics.  A few 

studies have, therefore, resorted to simulation analysis and found some, albeit weaker, 

evidence of statistical significance.1  On the other hand, Lewellen (2001) has recently 

developed an alternative approach to assessing statistical significance in predictive 

regressions and  finds strong evidence of predictability for dividend yield and other 

financial ratios. 

Empirical research on time variation in return volatility is also extensive.  Return 

variance is highly persistent, particularly at high frequencies.  It is negatively related to 

return surprises and positively related to leverage as well as the level of interest rates and 

default spreads.2  Attanasio (1991) finds a positive dividend-yield effect after controlling 

for 9 monthly ARCH terms.  More relevant to our study, Whitelaw (1994) alludes to 

unreported evidence of “strongly significant” simple relations between default spreads, 

dividend yields, and stock volatility for the period 1953-89.     

 Given these empirical findings, several studies have examined the intertemporal 

relation between the conditional mean and volatility of returns (e.g., Merton, 1980; 

Campbell, 1987; French, Schwert and Stambaugh, 1987; Attanasio, 1991; Glosten, 

Jaganathan and Runkle, 1993; Whitelaw, 1994).  At the market level, intuition and 

theoretical models, suggest that conditional expected return and volatility should be 

                                                 
1 E.g. Hodrick (1992), Goetzmann and Jorion (1993), Nelson and Kim (1993), and Kothari and Shanken 
(1997).    
2 E..g., Campbell (1987), French, Schwert and Stambaugh (1987), Schwert (1989), Glosten, Jaganathan and 
Runkle (1993), Whitelaw (1994), and Henstchel (1995). 
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positively related.  For example, in Merton’s (1980) model conditional expected returns 

on the market are proportional to conditional volatility.  However, a positive relation 

between variance and expected market return is not a theoretical necessity, even in a 

rational market with perfect information, as shown in Abel (1988) and Backus and 

Gregory (1993).  

 Empirical evidence on the covariation between expected return and risk is mixed.  

For example, using a GARCH in mean model, French, Schwert and Stambaugh (1987) 

document a statistically significant positive relation between expected returns and 

conditional volatility.  However, for other models, they find that this relation is not 

statistically significant.  Studies generalizing the GARCH in mean model to allow for 

leverage effects (Black, 1976, and Christie, 1982) have found that expected returns are 

negatively related to conditional volatility (e.g. Glosten, Jaganathan and Runkle, 1993).  

Finally, modeling both conditional expected returns and volatility as functions of several 

financial variables, Whitelaw (1994) also uncovers a negative relation. 

 More recently, stock return predictability has been evaluated from a Bayesian 

perspective that links beliefs about predictability to the asset allocation decision of an 

individual investor.  In their pioneering work, Kandel and Stambaugh (1996), henceforth 

KS, show that predictive regression results that would typically be dismissed as 

“statistically insignificant” by conventional standards, can have important implications 

for static asset allocation between a riskless asset and a stock market index.3  The stock 

position becomes more aggressive as the current dividend yield increases, reflecting the 

higher expected excess return.  All of the analysis is conducted under the assumption that 

market risk is constant over time, however.  Multiperiod extensions by Stambaugh (1999) 

and Barberis (2000) have also assumed constant market risk in examining asset allocation 

based on dividend yield.4   

 Our paper extends this literature by analyzing the asset allocation decision of an 

investor who conditions on dividend yield and allows for time variation in both market 

risk and expected return.  As indicated above, the simple relation between yield and 

                                                 
3 Similarly, the limitations of p-value analysis in hypothesis testing are illustrated for the Gibbons, Ross 
and Shanken (1989) test of portfolio efficiency in Shanken (1987).   
4 The decision-theoretic approach of KS has been used to explore other predictability issues in papers by 
Bauer (2000), Cremers (2000) and Tamayo (2000) and Avramov (2001).      
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market risk has not received much attention in past work.  Therefore, before moving on 

to the Bayesian analysis, we provide descriptive evidence on this relation, as well as on 

expected return predictability.   

A common theme in the literature is that yield-related time-variation in expected 

returns is driven either by changing risk or behavioral “mispricing” (or both).  As KS 

recognize, if market risk increases with yield, the optimal allocation to stock might be 

less aggressive or even decrease with yield.  Similarly, we note that if mispricing is the 

dominant factor, then the optimum could be close to that obtained assuming constant risk. 

Clearly, there is a wide range of beliefs about the relative importance of risk and 

mispricing in the determination of time-varying expected returns.  In a Bayesian 

statistical framework, differences in prior beliefs about these issues can be formally 

incorporated and the impact of historical data on these beliefs analyzed.  How, we might 

ask, would the beliefs and investment decisions of Eugene Fama and Richard Thaler 

differ (assuming rationality for both) after observing the same data? We can also evaluate 

the impact of the low dividend yields and high returns of the late 1990s on beliefs about 

predictability.     

To address these issues, we employ a simple model that decomposes expected 

return variation into a component related to risk and and a residual that we refer to as the 

“mispricing” component.  Naturally, mispricing can only be defined in relation to a 

benchmark that describes how expected returns “should” vary over time.  Following 

Merton (1980), the hypothesis imposed here as a starting point for such analysis, is that 

the market risk premium is, apart from mispricing, proportional to the conditional 

variance of returns.  The need for a joint hypothesis of this sort can be likened, in some 

respects, to Fama’s (1970) well-known dictum that tests of market efficiency always 

entail a joint hypothesis about the equilibrium pricing process.   

The Merton condition is obviously a strong joint hypothesis for the purpose of 

making positive economic assertions, in that it ignores market frictions and the potential 

impact of hedging demands on expected returns in an intertemporal equilibrium.  The 

extent to which empirical deviations from this condition are interpreted as evidence of 

mispricing, rather than deviations from the simple risk-return relation due to 

misspecification, will depend on one’s judgment as to the likely magnitude of these other 
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effects and their connection to dividend yield.  From a normative perspective, however, 

the proportionality assumption for expected return and variance can be viewed as a 

pragmatic device for formulating prior beliefs about predictability parameters in the asset 

allocation decision.  Clearly, it would be of interest to consider more sophisticated risk 

models in future work. 

We emphasize that our paper has little to say about the moments of market return 

conditioned on all available information.  In particular, short-run autoregressive 

dynamics for risk are not modeled.  Although the Bayesian simulation techniques that we 

have adapted to the present problem should be useful in addressing broader predictability 

issues as well, our goal in this paper is to provide further insight into predictability based 

on dividend yield.  In particular, we i) assess the extent to which the yield-related 

expected return variation documented in many past studies can be attributed to a 

tendency for market risk to be high when yield is high and, ii) explore the implications of 

these observations for an asset allocation decision that is conditioned on the current level 

of dividend yield. 

Methodologically, in addition to allowing for variation in risk as well as expected 

return, we explore the implications of informative prior beliefs in more detail than past 

studies of this sort.5  We also provide sufficient conditions under which Bayesian analysis 

of the predictive return regression reduces to the simpler nonstochastic regressor case.  

Unlike KS, we analyze the posterior distribution of the model parameters as well as the 

predictive distribution of returns (see related work by Avramov (2001)).  These features 

are accommodated through the application of importance sampling simulation techniques 

that, to our knowledge, have not previously been used in the predictability literature.  

Another novel feature of the study is our comparison of predictive return distributions 

and asset allocations based on prior and posterior beliefs, which allows us to identify the 

incremental significance of the data in the presence of informative priors.  

 The paper is organized as follows.  First, descriptive statistics on dividend yield 

and returns are presented in Section 2.  Our regression specification with changing risk is 

                                                 
5 A recent paper by Pastor and Stambaugh (2001) allows for changes in volatility across different regimes, 
rather than as a function of observable state variables like dividend yield.  They also work with informative 
priors that incorporate a belief about the proportional relation between the market risk premium and 
variance, but do not explore asset allocation issues. 
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described in Section 3 and Generalized Method of Moments estimates are reported.  

Section 4 discusses the specification of prior distributions for our Bayesian analysis and 

Section 5 provides an overview of the Bayesian methodology.  The main results are 

presented in Section 6 for the 1940-99 period and in Section 7 for the more recent data 

since 1960.  Section 8 summarizes our findings and considers directions for future 

research. 

 

2.  Descriptive statistics 

 We begin our analysis by looking at the means and standard deviations of 

continuously compounded excess returns and dividend yields over the period 1926-99 

and various subperiods.  The value-weighted NYSE return is obtained from the CRSP 

data file and the NYSE dividend yield is backed out as a function of the returns with and 

without distributions.  As in Fama and French (1988, 1989), the dividend yield is 

computed as the sum of the dividends paid over the prior twelve months divided by the 

price at the beginning of the forecasting period.   

 The statistics for the NYSE value-weighted excess returns and dividend yields are 

provided in Table 1. Figures 1a and 1b plot the excess returns and squared excess 

(deviation from mean) returns over the entire period.  As has often been noted, the period 

before 1940 was extremely volatile and perhaps could be viewed as a different “regime.”  

In addition, the average excess return of 17 bps per month for the 1927-1939 period was 

far below the mean of 54 bps for the full sample.  Schwert (1990), in studying aggregate 

stock returns from 1802 to 1987, emphasizes that, apart from this unusual period, the 

properties of stock returns have been remarkably homogeneous.  For example, monthly 

volatility in consecutive 20-year periods from 1841 to 1920 ranged from 4.14% to 4.79%.  

Mean (total) returns were more variable in the 20-year periods, ranging from 44 bps per 

month to 102 bps, with an average of 64 bps.  The sample moments for the 1940-99 

period lie within these ranges. 

 Our empirical analysis will focus on the relatively stationary period since 1940, 

with emphasis on the data since 1960.  We consider the 1926-39 data and the earlier data 

of Schwert when specifying prior beliefs, however.  If an investor has doubts about the 

constancy of parameters in the model, the more recent data might be viewed as more 
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relevant.  Recently, Goyal and Welsch (1999) have argued that the predictive power of 

dividend yield has declined over time, as has the level of yield itself, which is apparent in 

Table 1.  This provides additional motivation for our focus on the more recent period.  A 

formal modeling of changing parameters, while of considerable interest, is beyond the 

scope of this paper.   

 It is well known that the historically low yields of the late 1990’s were 

accompanied by extraordinarily high returns, thus weakening the yield/return relation.  It 

is interesting to look at the shift in beliefs that resulted from the last five years of data and 

so we examine the 1960-94 period as well as the 1960-99.  As we will see, this provides a 

broad range of scenarios in which to study predictability in market risk and expected 

return. 

 
3.  The regression model for returns  

 In this section, we introduce the regression model with heteroskedasticity and 

present generalized method of moment (GMM) estimates of the expected return and risk 

parameters.  We then reformulate the model in a manner that splits yield-related expected 

return variation into a component proportional to market risk and a residual “mispricing” 

component.  Estimates of this model are presented as well.  Bayesian estimation results 

are presented in the following sections. 

 
3.1.  The basic regression model  

 We begin by considering empirical results for the standard linear predictive 

regression:   

     rt+1 = α + βxt + εt+1,                             (1) 
 
where rt+1 is the difference between the continuously compounded returns realized at t+1 

on the stock index and a one-month riskless T-bill, xt is the dividend yield at time t, and 

εt+1 is a homoskedastic disturbance, which is normally distributed independently over 

time with mean zero and standard deviation σε.  The slope parameter β measures the 

extent to which expected return varies with dividend yield.  Henceforth, “return” always 

refers to continuously compounded excess return. 
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Since dividend yield is always positive, it is hard to develop intuition about 

expected return conditional on xt = 0.  This is important when specifying informative 

prior beliefs or, more generally, in interpreting statistical estimates of α.  If we measure xt 

as the deviation of yield from some fixed level, then α can be viewed as the expected 

return when yield is at this level.  In our empirical analysis, we work with deviations 

from the sample mean.   

Columns 2-3 of Table 2 contain OLS estimates of α and β for various 

subperiods.6  Given the small-sample problems documented by Stambaugh (1999), 

however, we view the numbers as merely suggestive.  The estimates of α (mean excess 

returns) are all positive and, except for 1960-94, are more than two standard errors above 

zero.  The beta estimates are also positive, but only the 1940-99 and 1960-94 estimates 

are more than 1.5 standard errors from zero.  As Lewellen (2001) notes, inclusion of the 

low-yield, high-return years of the late 90’s drastically lowers the slope, cutting the value 

by nearly two-thirds in our sample.7   

 
3.2. The model with changing market risk and a risk/mispricing decomposition 

In addition to time variation in expected returns, we allow for variation in risk 

associated with changes in dividend yield.  The conditional standard deviation at time t is 

modeled as 

σεt = stdev(εt+1 | xt) = c.exp(λxt) .                                             (2) 
 
This exponential specification ensures that the standard deviation is always positive and 

amounts to assuming that log(σεt) is linear in xt.8  Given that yield is measured as a 

deviation from the mean, c is the standard deviation of return at the average level of 

yield.  Yield-related variation in risk depends on the parameter λ.  For example, λ = 10 

means that a one percentage point increase in yield is associated with an increase in 

                                                 
6 Anticipating the results below, heteroskedasticity-consistent standard errors are reported in parentheses. 
The usual OLS standard errors are not very different except for the 1927-99 period in which the OLS 
standard error is about 40% lower.   
7 Using an innovative approach that conditions on the value of the dividend yield autocorrelation estimate, 
he finds, surprisingly, that statistical rejections of a zero slope are similar and sometimes stronger, 
depending on the index. 
8 Previous linear specifications for squared residuals (Shanken, 1990 and Campbell, 1987?) or absolute 
residuals (Schwert, 1989) do not impose positivity.   
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standard deviation approximately equal to 10% of c.  If λ = 0, the error term is 

homoskedastic. 

The moment condition that we use later to estimate c and λ is based on the 

following nonlinear regression 
 

1
22

1 )2exp( ++ += ttt uxc λε ,            (3)  
 
where εt+1 is the disturbance in (1).  Assuming , we have ( ) 0|1 =+ tt xuE

 
   ( ) 222

1 )2exp(| tttt xcxE εσλε =⋅=+ . 
 

Now consider the impact of changing risk on the market risk premium.  As in 

Merton (1980) and French, Schwert, and Stambaugh (1987), we allow the market risk 

premium to vary directly with the ex ante variance.  Unlike those studies, our risk 

measure is conditioned on the current level of dividend yield, the variable of interest in 

this paper.  To identify the component of return variation due to risk, we make the strong 

assumption that the “price of risk,” i.e., the ratio of expected return to variance, is 

constant over time.  Given the considerable interest in the sources of return predictability 

and the paucity of direct evidence on this question, analysis with this basic measure will 

serve as a useful starting point for thinking about these issues.9     

Let γ denote the long-run (continuously compounded) Sharpe ratio, defined as the 

ratio of expected return to standard deviation when yield is at its mean (x=0).  Assuming 

that  E(rt+1 | xt) = kσεt
2, it follows that kc2 = γc or k = γ/c.  Thus, we consider the equation 

 
   rt+1 =   (γ/c)σεt

2  + βmxt + εt+1                        (4) 

          =   γc.exp(2λxt) + βmxt + εt+1. 

 
where σεt is given in (2) and βm reflects the remaining yield-related variation in expected 

return.  When yield is at its mean, σεt = c and the expected return given by (4) is just γc, 

which plays the role of α in (1).  The subscript m indicates that, under the assumptions of 

                                                 
9 In a similar spirit, Attanasio (1991) considers the relation between several predictive variables and 
expected return after controlling for the effect on return volatility.    
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the model, the remaining component would be attributable to “mispricing,” an alternative 

that is often considered in the literature.    

 By (4), if there is no mispricing (βm=0) then the Sharpe ratio equals (γ/c)σεt.    For 

γ > 0, the ratio increases with the conditional standard deviation and equals γ when x = 0.  

There will be additional variation in the Sharpe ratio that is unrelated to risk if βm is 

nonzero.  For example, a positive mispricing beta implies that expected return goes up 

when yield increases, beyond what can be attributed to the simultaneous increase           

(if λ > 0) in risk.  Thus, the Sharpe ratio increases as well.  Harvey (1989) rejects the 

hypothesis that the ratio of market risk premium to variance (or standard deviation) is, in 

fact, constant.  Our model permits the ratio to vary, but attributes all such variation to 

mispricing effects.   

One can, of course, take a more agnostic view of (4).  It simply decomposes the 

total expected return variation captured by yield, in equation (1), into a component that is 

proportional to total risk and a residual component that is left over.  Breaking down 

predictability in this manner and thinking in terms of implied Sharpe ratios aids in the 

formulation of prior beliefs about predictability.  MacKinlay (1995) makes a similar 

appeal to the plausibility of estimated Sharpe ratios in assessing the rationality of cross-

sectional size and book-to-market expected return effects.10   

Note that if we linearize the exponential term, (4) can be written as  
    
  rt+1 ≈  γc(1 + 2λxt) + βm xt + εt+1              (5a) 
                 

      =  γc + (βm + 2γcλ)xt + εt+1.           (5b) 
 
 
The mispricing and risk components in (5a) are, naturally, perfectly correlated, both 

being functions of dividend yield.  In conjunction with the variance relation, the 

parameters are, nonetheless, identified since there is no separate constant in that 

representation. 

It is apparent from (5b) that, apart from the nonlinearity, (4) is simply a 

reparametrization of (1) and (2) with intercept and slope  
 

α = γc  and  β = βm + 2γcλ,                  (6) 
                                                 
10 See related discussion of Sharpe ratios and approximate arbitrage in Shanken (1992). 
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respectively.  The risk component of β is 2γcλ and the mispricing component is βm.11 

This relation does not entail any restrictions on α or β.  Rather, given the risk parameters 

c and λ, the long-run Sharpe ratio γ and the mispricing slope βm are essentially defined by 

(6).   

Of course, if the Merton proportionality condition is misspecified, then the 

interpretation of βm will be affected.  For example, if expected return is linear in market 

variance, with intercept k0, then a little algebra shows that βm ≈ -2k0λ in the absence of 

other “mispricing” effects.  If, say, λ = 10 and expected return is 10 bps per month when 

risk is zero, then βm is “biased” downward by 0.02, a relatively small amount in the 

context of our analysis below.  Although prior beliefs about this effect could be 

incorporated as well, we opt for simplicity and assume that k0 is zero in our discussion of 

results.  

     
3.3  GMM estimation of  the risk/mispricing model 

Before going on to the Bayesian analysis, we estimate (3) and (4) as a system 

using the generalized method of moments (Hansen, 1982).12  Simultaneous GMM 

estimation of the system accounts for the fact that the disturbances in (1) must be 

estimated and, hence, provides asymptotically correct heteroskedasticity-consistent 

standard errors.  The system is likely to be subject to small-sample problems similar to 

those analyzed by Stambaugh (1999), however.  The moment conditions for estimation 

are 
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11 If the risk-related component of expected return is assumed to be a constant multiple of the conditional 
standard deviation, 2γcλ is replaced by γcλ in (6) and exp(2xλ) by exp(xλ) in (4).  Thus, the variation in 
expected return attributed to risk is lower under this assumption.  Clearly, other specifications of the 
dynamic behavior of the Sharpe ratio could also be explored. 
12 We’ve also estimated the system using a two-step weighted least squares procedure with similar results.    
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Estimates of the risk parameters c and λ are given in columns 4 and 5 of Table 2.  

The average level of risk is near 4.2% for each subperiod since 1940 and, consistent with 

observations in Merton (1980), is estimated with much greater precision than the other 

parameters.  The estimate of c is 5% when the data before 1940 are included.  All 

estimates of λ are positive, several standard errors from zero in the full period, and close 

to two standard errors or more in the post-1960 periods.   

Thus, based on the evidence discussed so far, we have one period (1960-94) in 

which estimates of the yield-related risk and expected return parameters are both large, 

economically, and others in which only the changes in risk (1960-99, 1927-99), or the 

changes in expected return (1940-99) are estimated to be considerable.  This provides a 

convenient “laboratory” in which to study the effect of time-varying risk on expected 

returns.  

Estimates of γ and βm are given in columns 6 and 7 of Table 2.  Since γ ≈ α/c, it is 

not surprising that the estimated prices of risk are all positive with “significance” 

paralleling that of α.  The estimates of βm are positive, except for the 1927-99 period, and 

are more than 1.5 standard errors from zero for 1940-99 and 1960-94.  The estimates of β 

and βm are close in the 1940-99 period since the estimate of λ, the parameter for changing 

risk, is small.  Thus, essentially all of the evidence for yield-related expected return 

variation comes from the mispricing component in this period.  A similar conclusion 

applies for the 1960-94 period in which the estimates of β and βm are 0.56 and 0.46, 

respectively.  In this case, the difference of 0.10 is larger due to the higher value of λ, 

though dampened by the relatively low estimated Sharpe ratio, γ.  The strongest evidence 

of changing risk is found in the full period 1927-99, though the process does not appear 

to be stationary over this period.13    

 The last column of Table 2 presents estimates of the approximate change in the 

Sharpe ratio for a one-percentage point change in yield.  More precisely, δ is the average 

change in Sharpe ratio as yield increases from one point below to one point above its 

mean and is given by  
 

                                                 
13 The standard error for λ is even smaller when adjusted for residual autocorrelation. 
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A δ of 5, for example, means that the ratio increases by .05 when yield increases by 100 

bps.  Since the estimates of γ range from 0.07 to 0.15, this represents a substantial 

increase relative to the long-run ratio.  Given the link between mispricing and the Sharpe 

ratio discussed earlier, it is not surprising that the estimates and standard errors for βm 

and δ are highly correlated across subperiods. For example, δ equals 12.1 for the 1960-

1994 period in which βm attains its highest value. 

          
4.  Prior beliefs about the risk/return parameters 

 Having looked at the coventional regression evidence, we now examine the data 

from a Bayesian perspective.  We ask how the evidence would affect individuals with a 

range prior beliefs.   Thus, understanding the mapping between prior and posterior beliefs 

is a central theme of the analysis.  Our “balanced priors” are continuous and embrace the 

possibility that mispricing and risk effects are present simultaneously.  In contrast, 

“skeptical” versions of these priors entertain the possibility that there is no mispricing 

effect (βm = 0) or that conditional risk does not vary with yield (λ = 0), each with positive 

prior probability.   The skeptical priors accommodate initial beliefs that are oriented more 

toward the classical risk paradigm or beliefs that give behavioral biases more credibility 

than changing risk.   

The next subsection is an overview of factors that affect the relation between 

yield and expected return.  A detailed description of the intuitive economic motivation 

behind the choice of parameter values for our balanced priors is then given in Sections 

4.2 and 4.3.  Some of these choices will inevitably seem a bit arbitrary, but we think they 

provide reasonable points of departure for our analysis.14   

  
4.1.  Dividend yield and expected return 

Before discussing the prior distributions, it will be helpful to impose a little 

formal structure.  Let g* be the expected growth rate of aggregate dividends and, 

                                                 
14 Readers wishing to provide a description of their personal priors can e-mail us.  Anonymity will be 
protected.    
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allowing for deviations from pure rational expectations, let investors’ forecasted growth  

g = g* + m, where m is a stationary mean-zero mispricing component.  By the constant 

growth formula,15 

 D/P = r – g* - m,            (9) 
 
 
where r is the rate “used” by investors to discount expected future cash flows.  This 

discount rate may vary over time.  We assume that higher risk implies a larger risk 

premium.  Other things equal, more risk and a higher r lower the price and increase the 

yield.  On the other hand, correctly perceived shifts in expected dividend growth g* 

should be rationally impounded in prices and yields, but need not affect expected returns, 

holding the other components of yield constant. 

A positive value of m reflects excessive optimism.  This increases price and, 

holding D constant, depresses the dividend yield.  The actual expected return is lower 

than r, given the likely “correction” of mispricing implied by our mean-reversion 

assumption.  Similarly, if m is negative then yield and expected return both increase with 

D constant.   

The discussion above summarizes the partial effects of m, r, and g* on yield and 

expected return.  Since predictive regressions like (1) and  (4) do not control for expected 

growth, correlation between g* and the other components of yield must be considered.16   

First, regarding m, if investors extrapolate recent growth too far into the future 

(Lakonishok, Shleifer, and Vishny, 1994), the market will tend to be underpriced when 

expected g* is low.  Thus, g* and m are positively correlated in this sort of overreaction 

scenario.  In this case, both yield and expected return are high and the yield/return 

relation is positive.  A positive relation can still be observed even if mispricing is 

unrelated to expected growth, though a weaker relation would be expected without the 

mutual reinforcement of both factors.   

Alternatively, in an underreaction scenario, g* and m could be negatively 

correlated.  The market might be underpriced when economic conditions are good, with 

solid growth expected in the future.  If g* is the dominant component of yield, a low 

                                                 
15 The more general framework of Campbell and Shiller (1988) could be used, but the constant growth 
model suffices for our purposes. 
16 We are still discussing partial effects of m and r, but now without g* held constant. 

 13 



 

yield (high g*) is associated with higher expected return (negative m*).  The recent 

behavioral literature notwithstanding, the early paper by DeBondt and Thaler (1985) 

viewed overreaction as the fundamental behavioral hypothesis emerging from the work 

of Kahneman and Tversky.  “Mispricing” effects need not be entirely irrational, however, 

and can arise through a rational process of learning about the economy in a world of 

parameter uncertainty (Lewellen and Shanken, 2001).17  We will consider a prior that is 

strongly oriented toward overreaction (OP) as well as a prior that is more neutral (NP) 

about the direction of the mispricing effect.   

Now consider the impact of g* on the relation between r and dividend yield.  

Suppose there is a decrease in expected future dividend growth.  This will lower price 

and increase yield as well as leverage.  The higher yield is associated with increases in  

both expected return and risk induced by the leverage effect (Black, 1976 and Christie, 

1982).  This reinforces the positive partial relation between yield and movements in r.  In 

the absence of a compelling story to the contrary, we focus on priors that emphasize 

positive relations between risk, expected return, and dividend yield, apart from 

mispricing. 

 
4.2.  Priors for the long-run levels of risk and the Sharpe ratio, c and γ 

We start by specifying a prior for the standard deviation c.18 This prior 

distribution is taken to be lognormal to ensure positivity.  Based on the Schwert (1990) 

data and descriptive statistics above, we let µc = 4.5% and σc = 50 bps as of the beginning 

of 1960 and µc = 6%, σc = 100 bps prior to 1940.  Thus, beliefs about risk are quite 

informative, in keeping with the historical homogeneity discussed earlier.  The 1940 

investor is characterized as expecting somewhat greater economic stability than was 

experienced in the 30s, but with considerably more uncertainty than that of the pre-1927 

period.   

                                                 
17 If the researcher’s model mimics the learning process of investors, the implied predictability will not 
show up in the predictive distribution but could be observed in conventional regression analysis. 
18 Given the specification of (1) in terms of deviations from the mean yield, our priors are conditioned on 
this level of yield.  Allowing certain sample characteristics to enter into the prior is often referred to as an 
“empirical Bayes” approach.  A more sophisticated approach might incorporate perceived trends in yield 
related, for example, to the increasing use by firms of stock repurchases.  
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Now we turn to the Sharpe ratio γ.  The prior is taken to be normal, independent 

of c.  Therefore, the prior mean for long-run expected return α is simply E(γ)E(c).  Over 

the 1940-99 period, the average excess return on the NYSE value-weighted stock index is 

62 bps per month with standard deviation 4.2%, similar to the sample moments for 1841-

1920.  The corresponding Sharpe ratio is about 0.15.  In the spirit of Jorion and 

Goetzmann (1999), who argue that ex post performance in the U.S. market has likely 

exceeded ex ante expectations due to “survivor biases,” we specify a prior mean of µγ = 

1/9, so that µα = 50 bps when µc = 4.5% and 67 bps when µc = 6%.  Since µγ is positive, 

the conditional mean of α increases with c.   

Although the variance of returns can be estimated fairly precisely with relatively 

little data, this is not true of the mean.  For example, with a standard deviation of 4.5% 

and i.i.d. returns over 40 years, the standard error of the mean monthly return is still 

about 20 bps.  Therefore, we need to allow for relatively greater uncertainty about the 

Sharpe ratio, as compared to c.  Although a prior standard deviation for γ as low as 0.03 

might be justified based on past data, we let σγ
 = 0.05 (µγ = 1/9), reflecting uncertainty 

about the influence of survivorship.  This is still low enough to reflect a strong belief that 

γ and the corresponding risk premium are well above zero.   

A few comments on the long-run impact of mispricing before we turn to the other 

model parameters.  While irrational mispricing can induce variation in expected returns, 

if the mispricing reverts to a mean of zero, it should not have a direct effect on the long-

run level of expected return.  Uncertainty about future mispricing can affect risk, 

however, and thus have an indirect impact on expected return.  For example, De Long, 

Shleifer, Summers and Waldmann (1990) analyze a model in which the random 

perceptions of irrational investors induce additional return variability and an associated 

price discount (higher expected return), as both rational and irrational investors demand 

compensation for the additional “sentiment risk.”  This would be reflected in the 

parameters γ and c of our model.  Thus, risk-related variation in expected return need not 

be unambiguously rational, as it can arise from the interplay between rational and 

irrational investors.   

  
4.3.  Priors for the time-varying risk/return parameters, λ and βm
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The prior for λ is assumed to be normal, independent of c and γ.  As discussed in 

section 4.1, a positive relation between risk and yield is reasonable a priori.  Therefore, λ 

is expected to be positive.  To a first-order approximation, σε ≈ c(1 + λx).  As the 

specification of a prior is far from an exact science, we will be content to rely on this 

approximation to guide our choice of  “reasonable” parameter values.  In particular, if  λ= 

20, a 100 bps change in yield will be associated with a proportionate change in σε of 

about 20%  [20% of µc = (0.20)(0.045) = 90 bps].  By (6), with γ = .111, this translates 

into an expected return shift of about 20 bps per month.  We let µλ = 20 and σλ = 15 in 

our “balanced priors,” reflecting a strong belief in a positive risk relation (λ = 0 is a two 

standard deviation “event”).  Later, we will see that the data tend to dominate beliefs 

about λ with this level of prior uncertainty.   

The slope coefficient on yield in (4), βm, reflects expected return variation due to 

mispricing.  As discussed in section 4.1, βm could be negative or positive depending on 

the nature of the mispricing.  In either case, if βm is sufficiently large in magnitude, 

implied expected returns can be negative at times, an implausible conclusion from the 

risk-based perspective.  Kothari and Shanken (1997) exploit this observation in their 

interpretation of predictability results. Risk and mispricing effects need not be mutually 

exclusive, though one might argue for some relation between them.  For simplicity, the 

priors for βm and λ are taken to be independent.19   

If the overreaction and underreaction scenarios are considered equally likely a 

priori, then the prior mean for the mispricing effect might be zero, though the variance 

could be large.  In this view, the literature’s emphasis on the overreaction scenario is 

driven more by the data than compelling theoretical arguments.  Suppose, instead, that 

overreaction is taken more seriously, a priori.  We let µβ

                                                

m = 0.20 in our “overreaction 

prior” (OP), implying that a 100 bps change in yield is associated with a change of 20 bps 

in expected return associated with mispricing.  In this case, a two-percentage-point drop 

 
19 One might argue that greater return volatility should be associated with greater variation in expected 
returns through λ and βm in the prior.  As modeled here, variation due to changing risk (roughly γcλ) 
increases with the level of c.  However, variation related to mispricing is not correlated with c as currently 
modeled.   Incorporating correlation of this sort and allowing for negative correlation between λ and βm, 
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in yield below the mean, a large decline in historical terms, leaves the expected return at 

10 bps, or just 1.2% per annum.   

Even if overreaction is viewed as the fundamental behavioral bias, the leap from 

experimental psychology to financial market equilibrium entails additional uncertainty.  

To reflect this, we let σβm = 0.15.  The prior probability that βm is positive is then about 

90% - high, but not a sure bet.  For those who would not rule out behavioral influences or 

model mispecification, but are more uncertain about the likely effect, we let µβm = 0.05 

and σβm = .20 in our “neutral prior” (NP).  A small positive value for the mean reflects 

the earlier observation that even random mispricing effects can induce a positive 

coefficient.  Later in the paper, we consider “skeptical priors” that rule out mispricing 

with some positive probability.  

                                                                                                                                                

“Diffuse” or “noninformative” priors are often used in Bayesian analysis in an 

attempt to represent prior “ignorance” or, more pragmatically, to let the data dominate the 

resulting posterior beliefs.  This is not always appropriate, insofar as one often does have 

some belief about parameter values based on theory or earlier evidence.  Still, an 

examination of noninformative priors can provide a useful reference point for further 

analysis.  We employ flat priors (identically equal to one) for all parameters except c.  In 

that case, we follow the usual approach of taking the prior for ln(c) to be flat. 

  
5.  Overview of the Bayesian methodology 

In the standard Bayesian regression framework, the regressors are distributed 

independently of the disturbances, with a distribution that does not depend on the 

parameters α, β, and σε.  These conditions hold, in particular, if the regressors are 

nonstochastic.  As KS have noted, however, independence is violated in (1) because the 

return surprise at time t impacts all values of dividend yield from time t forward.  As a 

result, one cannot simply work with the joint density of returns conditional on the time 

series of yields.  KS accommodate stochastic regressors by modeling return and yield as 

elements of a homoskedastic vector autoregression, conditioning on the initial sample 

 
conditional on c, would seem resonable.  Since the data dominate the posterior for c, this would essentially 
amount to using conditional priors for βm and λ, given the posterior mean for c.  
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value of yield, and imposing a noninformative prior on the VAR parameters.20 In this 

case, results from Zellner (1971) can then be applied. 

An alternative approach developed in this paper permits quite general informative 

prior beliefs for the parameters in the return equation.  It is based on a noninformative 

prior assumption for the additional yield-related parameters, as discussed below.  In the 

special case of constant risk, as in KS, analysis of the return equation under our 

assumptions would proceed as if the regressor, dividend yield, were nonstochastic.  This 

continues to be true if conditonal risk is linear in yield, though analysis with the 

exponential specification is a bit more complicated.  A general overview is provided 

below.  Additional details are given in the Appendix. 

 
5.1.  The dividend yield equation   

As in the VAR, the conditional joint distribution of return and yield at time t is 

assumed to depend only on xt.  This density is expressed as   
 
            ft(rt+1, xt+1) =  f(rt+1 | xt) f(xt+1 | rt+1, xt),        (10) 
 

where f(rt+1 | xt)  is the density associated with the regression (4) and f(xt+1 | rt+1, xt) is the 

density based on21 
 

  log(yieldt+1)  =  ϕ + ρ.log(yieldt) + φ.ε

                                                

t+1 + vt+1.                      (11) 
 

The disturbance in (11) is assumed to be i.i.d. normal, independent of the ε’s, with mean 

zero and constant standard deviation σv conditional on xt.  We characterize the 

conditional density for yields in terms of logs to reflect the fact that percentage changes 

in yield and price will tend to be similar, but of the opposite sign.  Thus, the parameter φ 

is expected to be close to –1.0. 

  Equation (11) can also be viewed as an AR(1) model with composite error term   

φεt+1 + vt+1.  Since (unexpected) return is modeled as heteroskedastic in (2), this 

autoregressive error will generally be conditionally heteroskedastic as well.  Table 3 

presents estimates for (11).  As in previous research, the autocorrelation parameter, ρ, is 

 
20 The resulting posterior distribution is identical to that for the nonstochastic regressor case apart from a 
degrees of freedom adjustment.    
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always close to one, reflecting the strong persistence in yields.  The return parameter φ is 

close to –1.0, as anticipated.  Since the return equation is our primary interest, it is 

convenient to employ a noninformative prior for the parameters of (11).  More 

specifically, conditioning on (γ, c, λ, βm), so that εt+1 can be treated as observable, the 

prior for (ϕ, ρ, φ, log(σv)) is taken to be flat.22   

 
5.2. The simulation methodology 

  The complexity of our regression specification is such that simple analytical 

formulas for posterior moments are not readily available.  Therefore, we make use of a 

simulation technique known as “importance sampling,” an alternative to the Gibbs 

sampling method that is often used in Bayesian applications (see Bauwens, Lubrano, and 

Richard (1999), pp.76-83, and Geweke (1989)).  Importance sampling can be used to 

approximate the expectation of any function of the model parameters.  Moreover, since it 

entails i.i.d. sampling, the standard central limit theorem can be invoked to obtain direct 

measures of precision for the simulation estimates.   

Consider, for example, the computation of the posterior mean for θ, the sole 

parameter in some model.  By standard Bayesian analysis, the posterior is proportional to 

the product of the prior and the likelihood function.  Hence, the posterior mean is the 

integral, over θ, of the product θ f(y | θ) p(θ), divided by p(y).  Here, f is the likelihood 

function or density for the data y, p(θ) is the prior density, and p(y) is the probability of 

the data under the prior.  Since the required integral can be viewed as an expectation 

under the prior, it can be evaluated, via simulation, by repeatedly drawing values of θ 

from the prior density and averaging the products, θ f(y | θ).   If the data and the prior 

“disagree,” however, i.e., if the likelihood function and the prior density are concentrated 

in different regions of the parameter space, the convergence can be quite slow.  

The simple idea behind importance sampling is ingenious.  Random draws are 

made, not from the prior, but from an importance density, i(θ), that is a better 

approximation to the desired posterior distribution.  If one now computes the weighting 

                                                                                                                                                 
21 Note that conditioning on xt and rt+1 is equivalent to conditioning on xt and εt+1. 
22 It might prove worthwhile to explore informative priors for the yield equation as well, but using 
noninformative priors seems like a reasonable simplifying assumption for now. 
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function, w(θ) ≡  f(y | θ)p(θ)/i(θ), at each iteration, the average of θw(θ) will converge to 

the expectation under the importance density or  
 

∫ θ w(θ) i(θ) dθ  =   ∫ [θ f(y | θ)p(θ)/i(θ)] i(θ) dθ  =  ∫ θ f(y | θ)p(θ) dθ.      (12) 
 
The required integral is again obtained since i(θ) cancels out.  By a similar argument, the 

average of the weights w(θ) converges to p(y) as the number of random draws 

approaches infinity.  The posterior mean is then obtained by taking the appropriate ratio. 

Although the convergence results above are quite general, reducing the variability 

of the weights improves the speed of convergence.  Since the numerator of the weighting 

function is proportional to the posterior density for θ, the weights tend to be fairly equal 

if the importance density is a good approximation to the posterior.  A variety of methods 

have been proposed to specify importance densities.  We have had success with the 

following approach.  Initially, the prior is taken as i(θ) and “rough” estimates of the 

posterior moments are obtained through simulation. A second round importance density 

is then specified using the estimated posterior means and standard deviations in place of 

the prior moments.  After several rounds, each with a modest number of iterations, 

variability in the importance weights is reduced substantially.  At that point, one more 

simulation is run with a large number of iterations to obtain the desired degree of 

approximation.  Additional details are given in the appendix.23 

Although we have discussed the computation of the mean for simplicity, the ideas 

are unchanged if the function of interest is the expectation of a more complicated 

function π(θ).  To compute expected utility, returns are randomly drawn from the 

conditional distribution of returns, given the fixed yield and θ.  These returns, R(θ), then 

play the role of π(θ).    

   
6.  Bayesian evidence: 1940-99 

 We begin by examining the longer 1940-99 period and later turn to the more 

recent experience since 1960.  Posterior beliefs about the model parameters are discussed 

first, and the implications for asset allocation afterwards.   
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6.1.  Posterior distributions for diffuse and balanced priors: 1940-99 

The diffuse results in the first panel of Table 4 are similar to the 1940-99 row of 

Table 2.  The posterior means for β, βm, and δ are lower than the GMM estimates, 

however.24  The lack of equality is due to the nonlinear heteroskedastic feature of our 

model.  The posterior standard deviations in parentheses are mostly smaller than the 

GMM standard errors, and the standard deviations for c and λ are much lower. 

  Continuing with the diffuse panel, the numbers in brackets are the posterior 

probabilities that the given parameter exceeds zero.  The probability is 86% for λ 

(changing risk) and it is 95% or higher for all other parameters.  Since the mean for λ is 

fairly small (a 2% increase for a 100 bps increase in yield), most of the return 

predictability is attributed to the mispricing component.  The mean for βm is 0.18 and it is 

0.21 for the total predictability parameter β.  As a result, the expected return from 

mispricing increases by 18 bps (per month) and the expected Sharpe ratio increases by a 

third from its long run value (γ = 0.15) when yield rises by 100 bps.   

We now turn to the informative priors in the second and third panels of Table 4.  

Obviously, a strong prior belief about the value of a parameter will carry over to the 

posterior.  Less clear is the extent to which the data will impact posterior beliefs in light 

of the different priors.  In a standard regression context, posterior precision (reciprocal of 

standard deviation) is the sum of prior and sample precisions, while the posterior means 

are precision-weighted averages of the prior means and the regression estimates.  We find 

that these relations are approximately valid for γ and βm, and not too bad for the 

heteroskedasticity parameter λ, with the diffuse posterior standard deviations interpreted 

as indications of data precision.25   

As might be expected, posterior beliefs about parameters other than the betas and 

δ are not very sensitive to the choice of NP or OP.  Since the informative prior and 

                                                                                                                                                 
23 This method of computing p(y) is also used in the evaluation of Bayes factors which are discussed later 
in the paper. 
24 Since expected return is a nonlinear function of yield through the impact of variance, β is defined here as 
the average change in expected return for a 100 bps increase or decrease in yield from its mean. 
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diffuse posterior standard deviations for γ are nearly equal, the posterior mean, .13, is 

halfway between the corresponding means, 0.11 and 0.15.  The data are much more 

informative (lower diffuse standard deviations) about λ and, to a lesser extent βm, so the 

NP/OP posterior means are closer to the diffuse means for these parameters.  The data are 

so informative about the standard deviation of returns that the posterior for c is barely 

affected by the high prior mean of 6% and standard deviation of 1% under NP/OP.  

Recall that the neutral prior (NP) is relatively more agnostic about the sign of 

potential mispricing effects, with a 60% probability for a positive βm, as compared to the 

91% probability under the overreaction prior (OP).  The diffuse/OP posterior mean of 

0.18 for βm is fairly large in economic terms, amounting to an increase in the annualized 

market risk premium of more than 2 percentage points for a 100 bps increase in yield.  

The posterior mean based on NP is naturally a bit lower, reflecting the lower prior mean.  

In this case, the probability that βm is positive increases from 60% to 93% after learning 

from the data.  For the already confident OP investor, the probability increases from 90% 

to 98%. 

 
6.2 Bayes factors and skeptical priors: 1940-99 

The priors considered thus far have implicitly reflected a belief that risk and 

“mispricing” effects exist with probability one.  This continuous approach is typical of 

most applications in the finance literature, including the no-predictability prior of KS, 

which combines hypothetical past sample evidence of no predictability with a diffuse 

prior.26  In this context, beliefs about the sign and magnitude of the effect can be 

analyzed, as above, but the question, “is there predictability in risk or return that is related 

to dividend yield?” is not of interest – it is already presumed.   

Here, our focus is on the mispricing component of expected return variation.  

Intuitively, we would like to examine whether no-mispricing or mispricing is more likely 

in light of the given data.  In the case of a simple alternative, say βm = 0.20, with no other 

                                                                                                                                                 
25 The posterior mean for β under NP is lower than both the prior and diffuse posterior means.  This occurs 
because the NP posterior mean for βm is lower than the diffuse mean and the posterior risk effect through λ 
is small, while the prior risk effect is large. 
26 An exception is the Bayesian test of portfolio efficiency in Shanken (1987).  An interesting example in 
the context of mutual fund performance is  Baks, Metrick, and Wachter (2001).  
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parameters to consider, we would just consider the likelihood ratio for the hypotheses, 

L(βm = 0)/L(βm = 0.20), a function of the data alone.  In our broader context, the 

likelihood that βm=0 must be evaluated jointly with the other model parameters, γ, c, and 

λ, and averaged according to our prior for those parameters.  Moreover, with a composite 

hypothesis like βm ≠ 0, the likelihoods must also be averaged over all nonzero values of 

βm, again weighted by prior beliefs.   

To formalize these ideas, supposethat one assigns positive prior probability to the 

composite hypothesis that “very little” of the variation in yield is related to mispricing.  It 

is convenient to model this in terms of the simple point “null” hypothesis that βm equals 

zero.  In such situations, Bayesian analysis commonly proceeds with a “mixed prior” that 

assigns some positive probability to the null, with the remaining mass spread 

continuously over the rest of the parameter space.27  This probability, call it π, would be 

higher for strong advocates of traditional market efficiency, but could still be positive for 

individuals inclined toward behavioral models or explanations for return phenomena that 

involve learning.28  As long as the likelihood function is fairly flat in the neighborhood of 

zero considered relevant, results obtained this way will approximate those for more 

detailed priors that focus on the composite “null” hypothesis.  

Let NPβm=0 and OPβm=0  denote the conditional versions of our balanced priors, 

neutral and overreaction, given βm = 0.  Formally, we consider a mixed prior,               

p(γ, c, βm, λ),  that equals NPβm=0 with probability π and equals NP with probability 1-π.  

This prior assigns probability π to the hypothesis, βm = 0, with the remaining mass spread 

out according to NP.  Similarly for OP.  In this context, the Bayes factor for βm = 0, BF, 

refers to the expected likelihood under NPβm=0 divided by the expected likelihood under 

NP.    In the simple hypotheses case mentioned above, BF is just the likelihood ratio. 

In general, the posterior odds ratio for a hypothesis is defined as the posterior 

probability that the hypothesis is true divided by the posterior probability for the 

alternative.  This ratio serves as the basis for a sort of Bayesian hypothesis test or, more 

                                                 
27Recent papers by Avramov (2001) and Cremers (2000) consider this possibility within a broader analysis 
of “model uncertainty.”  The predictive variables in their analyses are treated as nonstochastic, however. 
See Chapter 4 of Leamer (1978) for a good discussion of these issues. 
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accurately, hypothesis comparison.  The posterior odds ratio in favor of βm = 0 can be 

written as 
 
P(βm = 0)/ P(βm ≠ 0) = BF*π/(1-π),          (13)    

 
the Bayes factor times the prior odds ratio.  Intuitively, if zero is more likely than other 

values of βm, given the observed data, then BF is greater than zero and the odds in favor 

of βm = 0 increase.  This approach contrasts with conventional p-value analysis, which 

assesses whether an observed statistic is “unusual” solely from the perspective of the null 

hypothesis –alternative hypotheses play no role in the p-value computation.   

 As reported in the second panel of Table 4, BF for βm = 0 equals 0.72 for the 

neutral prior and 0.51 for the overreaction prior.  Thus, the odds move away from βm = 0 

somewhat with NP, but are cut in half with OP.  Let us consider the reason for this 

difference.  As we have seen, the sample evidence favors relatively large positive values 

of βm,  consistent with expections under OP.  On average, these positive values are given 

greater weight under OP than under NP.  Therefore, the expected likelihood ratio for β ≠ 

0 is higher, and the Bayes factor lower under OP.  The bottom line is that a skeptical 

investor who believes a priori that mispricing, if any, will tend to induce reversals (OP), 

finds this belief confirmed in the data and becomes relatively more convinced that 

mispricing effects do indeed exist.  For example, with π = 0.50, the skeptical OP 

probability for no-mispricing decreases from 0.50 to 0.34 = BF/(1+BF), while the 

skeptical NP probability declines to 0.42. 

Turning to the risk parameter λ, recall that the balanced priors for this parameter 

reflect an expectation that risk will increase if yield rises.  The Bayes factors for λ = 0 in 

Table 4 are quite high, indicating a significant shift in beliefs toward a constant risk 

model.  For example, an NP investor skeptical about the possibility of risk changing with 

dividend yield (π = 0.50) comes away from the data with a posterior probability of 88% 

that risk is constant conditional on dividend yield.  It is important to appreciate that such 

conclusions will, in general, vary with the investors’ prior beliefs.    

 

                                                                                                                                                 
28 Of course, this presumes a high degree of confidence in the approximate validity of the simple mapping 
of risk into expected return. 
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6.3  The optimization framework 

As in KS, we consider an individual investor with a single-period investment 

horizon and an iso-elastic utility function, 
 

   U(W) = W1-A/(1-A),                 (14)    
 
where A is the coefficient of relative risk aversion.  At the end of month T, the investor 

chooses a weight ω* on the market index, so as to maximize the expected utility of end-

of-period wealth, 
 

  WT+1 = WT[ω exp(rT+1
 + iT+1) + (1-ω) exp(iT+1)]    (15) 

      = WT exp(iT+1)[ω exp(rT+1) + (1-ω)] 
 
where 0 ≤ ω ≤ 1, rT+1 is the continuously compounded excess stock return, as earlier, and 

iT+1 is the continuously compounded riskless interest rate for month T+1.  In general, the 

certainty equivalent return premium (CER) is the excess return that, if known for sure, 

would provide the same utility as the optimal portfolio.   

A is taken to be 5 in our illustrations, similar to values used in previous studies - 

low enough to generate substantial allocations to stock, but high enough to avoid too 

many corner solutions.  The riskless rate is 40 bps per month throughout.  It follows from 

(14) and (15) that ω* does not depend on the level of the riskless rate, though the optimal 

level of utility is affected.  Our investor is not assumed to be a representative investor for 

the economy.  In fact, since we entertain the possibility of behavioral biases and 

associated mispricing effects in equilibrium, our fully rational Bayesian investor cannot, 

in general, be representative.  The investor maximizes expected utility with respect to his 

predictive probability distribution, which conditions on past empirical evidence, yields 

and returns (the vector yT), as of the end of month T, and prior beliefs.   

The predictive distribution can be viewed as a mixture of distributions, each 

conditioned on a set of parameter values, and averaged according to the posterior 

distribution of the parameters: 

  p(rT+1 | yT) =  ∫ f(rT+1 | θ1) p(θ1 | yT) dθ1,    (16) 
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where θ1 ≡ (γ, c, λ, βm) and p(θ1 | yT) is the posterior density derived from a prior density 

and the data.  We sometimes refer to this posterior-based distribution simply as “the 

predictive distribution.”  Also of interest is the prior-based analog of (16), the prior- 

predictive distribution: 

  p(rT+1) =  ∫ f(rT+1 | θ1) p(θ1) dθ1,     (17) 
 
where p(θ1) is a proper (informative) prior density for θ1.    

 KS note, and we confirm for our model, that the following approximation to the 

optimal weight works quite well  
 

  ω* ≈ µT/(Aσ2
T) + ½A,      (18) 

 
where µT is the predictive mean and σ2

T the predictive variance.  If there is no mispricing, 

(βm = 0) then, based on (4), the ratio of expected return to variance remains constant as 

yield changes.  Insofar as this holds approximately for the predictive mean and variance 

as well, ω* will also be constant.  Then, any shifts observed in the optimal allocation to 

stock as yield varies must be driven by a belief in mispricing.   

 
6.4.  Optimal weight and CER comparisons: 1940-99  

 Predictive results for the period 1940-99 are given in Table 5.  The first column 

lists the scenarios examined.  For each prior, values of dividend yield at the mean and 1.5 

sample standard deviations above or below the mean are considered.  Let’s start with the 

diffuse prior.  When yield is at its mean, the predictive expected return is just the 

posterior mean of α, 61 bps per month (Table 4).  When yield is high, the mean increases 

to 102 bps and at the low yield it is 21 bps.  Predictive risk also increases with yield, but 

not as dramatically.  As a result, the optimal weights (under “True”) rise sharply, from 

37% to 100%, as yield increases.  The corresponding CERs, in the next-to-last column 

(under “True”), increase from 5 to 64 bps.  Thus, due to the strong evidence of 

mispricing, predictability has a large impact on asset allocation.   

 In the spirit of the Kandel and Stambaugh’s analysis of economic significance, 

consider the effect of ignoring predictability in both expected return and risk, and 

allocating 81% (the optimal allocation when yield is at the mean) to stocks, regardless of 
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the actual level of yield.  The numbers under µσ in the CER-posterior portion of the table 

are the certainty-equivalent losses implied by deviating from the true optimal allocations, 

where “true” refers to analysis based on the predictive distribution perceived as correct 

by the investor.  For example, when yield is low and the (true) predictive expected return 

is just 21 bps, it is optimal to invest 37% of the portfolio in stock.  Investing 81%, under 

these circumstances, results in a CER loss of 7 bps.  On the other hand, when yield is 

high, the loss from underinvestment is 5 bps.   

 The numbers just reported illustrate one method for evaluating the joint 

significance of predictability in both expected return and risk.  Suppose, instead, that we 

want to evaluate the partial effect of ignoring expected return variation, holding risk 

constant.  To get at this, we again optimize using the expected return for yield at its mean 

(x=0), but this time we use the correct predictive variance for the given level of yield.  

The corresponding “optimal” weights (but suboptimal with respect to the correct 

predictive distribution) under µ in Table 5 display the anticipated properties.  Ignoring 

the low expected return when yield is low makes the investor overly aggressive (87% vs. 

37% in stock), resulting in a CER loss of 10 bps.  Similarly, there is underinvestment at 

the high yield.29   

To evaluate the partial effect of ignoring variation in risk, holding expected return 

constant, we optimize using the predictive variance for yield at its mean, together with 

the true predictive expected return for the given level of yield.30  The weights are close to 

those under the true predictive distribution and the CER losses are thus essentially zero 

because of the weak relation between risk and dividend yield over this period.   

Given the risk/mispricing theme of our paper, it is also of interest to evaluate the 

separate economic significance of the mispricing component of expected return variation. 

As noted above, shifts in asset allocation are, to a close approximation, driven solely by 

the mispricing component.  For example, with βm equal to zero, the optimal weight is 

                                                 
29 The optimal weights decline as we go down the µ column, because risk increases while expected return is 
held constant.  The weights increase in the σ column because expected return increases with risk is held 
constant. 
30We are not suggesting that an investor is likely to incorporate risk variation and ignore expected return 
variation, any more than we expect an investor to correctly assess a predictive distribution but then plug in 
the wrong value of yield, as in KS.  These are just ways of evaluating the economic “relevance” of 
predictability.   
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81% under the diffuse prior at each level of yield, even though risk and expected return 

change with yield.   It follows that the CER measure of significance is essentially the 

same whether we ignore all predictability or just the mispricing component of expected 

return variation.  Thus, the µσ column in our tables should be interpreted accordingly. 

All of the CER and optimal weight comparisons discussed thus far, like those in 

earlier literature, are properly interpreted as assessing the economic significance of 

posterior beliefs.  Insofar as the prior is truly “uninformative,” a slippery notion, 

significance may reasonably be attributed to the data in this case.  With an informative 

prior, however, the posterior reflects the prior as well as the data.  For example, suppose 

that predictability is expected under the prior, but not under the posterior.  Ignoring 

predictability in the posterior, as earlier, would have no effect on asset allocation, yet the 

data have indeed had a significant impact on the investor’s beliefs.  Therefore, an 

alternative metric is needed to assess the incremental economic significance of the data 

or empirical evidence.  One natural approach is to simply compare optimal weights under 

the prior and posterior-predictive distributions.    

The prior-predictive weights are lower than the posterior-based weights in Table 5 

because of the high (compared to the data) prior values of the risk parameter, c, and the 

resulting high predictive risk.   Given the large prior mean for λ, the largest differences in 

asset allocation are observed when yield is high.  The CER loss implied by following the 

roughly 50-50 prior allocations, rather than being fully invested in stock at the high yield, 

is 15 bps for OP and 14 bps for NP.  The losses represent about 25% of the optimal 

CERs.  By these measures, the data have had an economically important influence from 

the perspective of the NP/OP investors.  Also, note that the CER losses in this 

comparison are larger than those based on ignoring predictability (the µσ numbers).  

Again, those numbers tell us something different - about the significance of the (final) 

posterior predictability beliefs. 

To summarize, we find substantial evidence of expected return predictability that 

is unrelated to risk in the 1940-99 period and this evidence has important implications for 

asset allocation.  The reduction in perceived risk relative to the highly volatile experience 

of the 1920s and 30s is also economically significant.  On the other hand, risk itself does 
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not appear to vary much with dividend yield.  We now consider beliefs based on the more 

recent period since the 1960. 

 
7.  Bayesian evidence: 1960-94 and 1960-99  

 In this section, we examine the beliefs of investors who form posteriors based on 

the data from 1960 onward.  First, we look at the period 1960-94 and then we consider 

the impact of the last five years of the 1990s by examining the period 1960-99. 

 
7.1. Posterior distributions: 1960-94 

As with the 1940-99 period, the diffuse posterior means in Table 6 are similar to 

the GMM estimates in Table 2, but the differences between GMM and the posterior 

means for βm, β, and δ are greater now.  The means for α and γ are a little lower than 

GMM as well, while the mean for λ is larger than the GMM estimate.  Again, the 

posterior standard deviations are lower than the GMM standard errors, particularly for c 

and λ.   

The low mean for γ, relative to the long-run Sharpe ratio for 1940-99, is a 

reflection of the low average returns on the market over the 1960-94 period.  The diffuse 

posterior mean of 16.4 for λ, based on the 1960-94 data, is quite high in economic terms, 

with risk increasing by roughly 16% for a 100 bps increase in yield.   The balanced-prior 

investors become virtually certain that risk increases with yield, as indicated by the 

posterior probability of 1.00 in brackets.  Moreover, the very low Bayes factors for λ in 

Table 6 tell us that even a “skeptical” investor with, say, prior probability π = 0.9 for 

constant risk, will see the odds shift overwhelmingly toward the conclusion that risk does 

increase with yield after looking at the data.   

The diffuse mean for βm is very high as well, implying an increase in expected 

return of 37 bps for a 100 bps increase in yield.  As a result, the expected Sharpe ratio 

more than doubles (increases by 0.10) from its long run value of 0.06 when yield rises by 

100 bps.  Since the mean for β is 0.47, again most of the return predictability is attributed 

to the mispricing component.  There is considerable uncertainty around these expected 

effects, however, given the large posterior standard deviations for βm and δ.  Posterior 

means for βm and β, based on the informative priors, are much lower than the diffuse 

 29 



 

mean.  This high degree of shrinkage toward the prior means reflects the lower precision 

of the data in this shorter estimation period.  The posterior probabilities for βm > 0 are 

similar to those observed in the longer period and the Bayes factors are nearly equal. 

 
7.2.  Optimal weight and CER comparisons: 1960-94  

 Predictive results for the period 1960-94 are given in Table 7.  Predictive 

expected return increases greatly with yield, with the mean under diffuse/OP actually 

negative now when yield is low. 31  Predictive risk also increases with yield, from 3.5% to 

5.2%.  The expected return effect dominates, however, as the optimal weights on stock all 

rise sharply with yield, from zero to 73% in the case of the diffuse prior.  These patterns 

reflect the large positive posterior values of βm and λ.  As earlier, the partial effect of 

expected return variation is large, but now the partial effect for risk is significant as well.  

When yield is high, ignoring variation in risk increases the allocation to stock by nearly 

30 percentage points, with the diffuse/OP investors fully invested in stock.  The 

associated CER losses are 5-6 bps.     

Large differences between prior and posterior-predictive weights are only 

observed in Table 7 when yield is low.  In particular, with the neutral prior, the optimal 

prior weight is 49% while the posterior-based weight is just 15% - a reflection of the low 

prior mean for βm and high mean for α, relative to the data.  Notice that the optimal 

weights under OP are equal when yield is high, despite the nontrival differences between 

prior and posterior predictive moments.  This is because the drop in utility due to the 

decline in expected return from 111 bps to 84 bps is just offset by the increase in utility 

due to the decline in risk from 6% to 5.2%.  In other words, the prior and posterior-based 

optimal portfolios lie roughly on the same indifference curve.   

This example shows that when predictability in both moments is admitted, 

focusing exclusively on the “bottom line” from an investor’s perspective can mask shifts 

in beliefs that would be judged “economically significant” from the broader perspective 

of a researcher.  Therefore, we advocate the reporting of predictive moments, as well as 

                                                 
31 Since these are moments of continuously compounded returns, it is possible for the allocation of stock to 
be positive when the predictive mean is slightly negative, as with OP and low yield.  The actual expected 
(excess) return is positive. 
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utility-based measures of economic significance, in such contexts.  The variation in 

predictive moments in Table 7 is quite significant in our view.  

To summarize, the data for the 1960-94 period point to substantial predictability 

in both return moments, with the evidence for risk variation particularly strong.  Most of 

the predictability in expected return is not proportional to risk, however.  While the 

partial effects of expected return and risk variation on asset allocation are both large, the 

former effect is dominant.   

 
7.3.  Predictive risk and parameter uncertainty: 1960-94 

In general, the predictive variance reflects the underlying “fundamental” 

uncertainty in returns, σε, as well as uncertainty about the true values of the model 

parameters and the implied expected return.  For example, the NP/OP prior-predictive 

standard deviation when yield is at the mean is 4.53%, a bit larger than the prior mean of 

4.5% for c.  This small increase mainly reflects uncertainty about c, as the estimation risk 

(parameter uncertainty) effects for α and γ can be shown to be negligible. 

When yield deviates from the mean, parameter uncertainty should become more 

important since estimation errors in βm and λ are then also relevant.  It is somewhat 

surprising, therefore, that  the (posterior) predictive risk levels for NP and OP are similar 

to, and actually larger than those for the diffuse case in Table 7.  Surprising, because 

parameter uncertainty should be maximized using the diffuse prior, as is confirmed by the 

evidence (posterior standard deviations) in Table 6.  However, valid comparisons must 

take into account differences in the posterior means of c and especially λ across priors.  

One way of assessing the importance of parameter uncertainty is to compare the 

predictive standard deviation to the standard deviation of returns under the assumption 

that the posterior means equal the true parameters.  The latter standard deviation is just 

E(c).exp(x.E(λ)).  When we do this for the diffuse predictive distribution (not in tables), 

the risk attributable to parameter uncertainty is just 1 bp for yield at the mean, 2 bps at 

the low yield and 3 bps at the high yield.  For the informative priors, the numbers are 

lower by about 1 bp.  The parameter uncertainty effect should be greater for the prior-

predictive risk measures since uncertainty is higher before observing the data.  For NP, 

the numbers are 3 bps when yield is at the mean, 15 bps at low yield and 26 bps at high 
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yield, with virtually all of the parameter uncertainty coming through the risk parameters, 

c and λ.   Similarly for OP.   

To summarize, a small amount of prior-predictive risk comes from parameter 

uncertainty when yield is at its mean.  Prior parameter uncertainty becomes more 

important as yield deviates from the mean and this effect is due almost entirely to the 

changing risk feature of our model.  With regard to posterior-predictive risk, most of the 

parameter uncertainty effect has been eliminated through the learning that occurs from 

observing the data.  Avramov (2001) performs a similar risk decomposition in a broader 

context, allowing for uncertainty about the correct set of predictive variables as well.  As 

also noted by Kothari and Shanken (2001) in the context of (unconditional) asset 

allocation with a market index and anomaly-based tilt portfolios, the inherent variability 

of stock returns dominates predictive risk.   

  
7.4.  Influence of the late 1990s 

As noted earlier in discussing the OLS/GMM estimates in Table 2, the high 

returns and low dividend yields of the late 1990s were unprecedented.  It is interesting, 

therefore, to consider the impact of this data on the beliefs of Bayesian investors with the 

priors discussed above.  Analyzing these priors in light of the data for 1960-99 is 

equivalent to letting the posterior for 1960-94 serve as the prior at the beginning of 1995 

and then adding five more years of data.  The results are given in Table 8.  

It is striking that the belief in mispricing is completely eliminated for the diffuse 

investor, with the posterior mean for βm now virtually zero (from 0.37 earlier) and the 

probability of a positive mispricing effect dropping from 93% to 48%.  Similar remarks 

apply to the NP investor.  For the OP investor, the posterior mean drops from 0.24 to 0.11 

and the probability of a positive effect declines from 97% to 83%.  The impact for this 

investor is substantial, but naturally less dramatic, given the strong prior belief in a 

positive effect. 

The Bayes factors provide additional perspective on the shifts in beliefs, with the 

odds now favoring no-mispricing.  In particular, the BF of 2.0 for the OP prior implies 

that the posterior probability of no-mispricing is two-thirds for the skeptical OP investor 

(π=0.5), a complete reversal from the two-thirds probability for mispricing at the end of 
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1994.  Although the 1960-99 posterior means for λ are quite a bit lower, the posterior 

probabilities and Bayes factors still strongly support a belief in changing risk. 

Now we consider the impact of these dramatic shifts in beliefs on optimal asset 

allocations.  Predictive results for the 1960-99 period are reported in Table 9.   Consistent 

with the reversal of belief in mispricing, the optimal asset allocations barely change with 

yield (“true” columns) for the diffuse and NP priors, quite a contrast from Table 7.  Since 

predictability now comes mainly through changing variance (mean βm ≈ zero), the effects 

of risk and expected return changes on utility are roughly offsetting, as discussed in 

Section 7.2.   With OP, the data have not completely offset the strong prior belief in a 

positive mispricing effect, so there is still substantial variation in optimal allocations, 

from 41% to 70%, as yield goes from low to high. 

Although the overall effect of predictability on asset allocation is now negligible 

for the diffuse/NP priors, the partial effects on optimal weights are more substantial, 

though much smaller than in Table 7.  For example, when yield is high the NP optimal 

allocation drops from 59% to 48% if predictability in expected return is ignored (µ 

column), and increases to 73% if variation in risk is ignored (σ column).  There is little 

impact on CERs, however.  Larger effects are observed for OP.   

We conclude this section by taking a more historical view of the belief shifts of 

the late 1990s.  The dividend yield at the end of 1999 was 1.57%.  Based on posterior-

predictive beliefs at this point in time, the optimal allocations to stock (not in tables) 

would have been 59% with the diffuse prior, 54% with NP, and 22% with OP.  Again, the 

OP investor’s stock allocation differs because he still believes that expected returns are 

low when yield is low, beyond what is implied by the decline in risk.  Additional 

perspective on the economic significance of the late 90s data is obtained by posing the 

following question.  How would the allocations at the end of 1999 have differed if they 

were based on the beliefs held at the end of 1994?  The answer is easy to describe.  Each 

of our balanced prior investors would have been completely out of the market because of 

the very low perceived expected stock returns!   

Finally, what about our other investors, the skeptical cousins of OP and NP who 

find it credible a priori that there might not be a mispricing effect?  It can be shown that 

the posterior distribution based on the skeptical NP prior is a weighted average of the 
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posteriors corresponding to NP and NPβm=0 (see Section 6.2).  Likewise for OP.  As a 

result, their posterior means for βm are closer to zero and thus the skeptical investors 

should be less influenced by the low dividend yield.  Based on predictive beliefs using 

the 1960-99 data, the skeptical OP investor would put 46% in stock at the 1.57% yield, 

while the skeptical NP investor would allocate 56%.  Using the 1960-94 data instead, 

even the skeptical OP investor’s belief is strong enough to keep him out of the market 

and fully invested in “cash” at the very low yield.  As we saw earlier, it is harder to 

persuade the NP investor that mispricing effects exist.  As a result, the skeptical NP 

investor would put some money in stock based on the 1960-94 beliefs, but only 3% of her 

portfolio.  Thus, the actions of our skeptical investors are also greatly influenced by the 

data for 1995-99.   

 

 
8. Summary and Conclusions 

We have analyzed the distribution of returns, conditioned on dividend yield, of 

the CRSP value-weighted stock market index.  This is the first study to look at yield-

related predictability of both market risk and expected return in a Bayesian framework.  

Three overlapping subperiods, 1940-99, 1960-94, and 1960-99, have been examined in 

detail.  The evidence of variation in expected return is strong in the 1940-99 and 1960-94 

periods, with (diffuse) posterior probabilities of 0.97 and 0.96, respectively, that expected 

return increases with yield.   The high returns and low dividend yields of the late 1990s, 

when added to the 1960-94 data, completely wipe out the evidence of predictability, 

however, with the posterior probability for a positive effect dropping to 0.48.   

A distinguishing feature of our study is that expected return variation is 

decomposed into a component proportional to conditional variance, as in Merton (1980), 

and a residual that we loosely refer to as the “mispricing” component.  The evidence that 

market risk increases with yield is very strong (posterior probabilities of 1.00) in the 

periods since 1960.  Even an investor who initially assigns substantial probability to a 

constant risk model (a “skeptical” investor) becomes quite convinced of risk variation 

after looking at the data.  The results are not robust, however.  That same skeptical 

investor would be strongly persuaded by the 1940-99 data that risk is constant.  
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In general, there is not much support for the hypothesis that expected-return 

predictability related to yield is explained by corresponding changes in the conditional 

variance of returns.  Even over the 1960-94 period, in which the evidence of risk 

variation is strongest, the implied variation in expected returns based on our simple 

model is small compared to the total variation observed.  The mean slope on dividend 

yield is 0.47, while the mispricing component has a mean of 0.37 under the diffuse prior.  

A different model of the relation between risk and return might fair better, but it will have 

a lot to explain.   

While positive statements about the “true” return process must be tempered by the 

lack of robustness of the predictability evidence, interesting observations can still be 

made about the implications of the data for asset allocation decisions.  First, the partial 

effects on the optimal allocation to stock (versus cash) of ignoring either mispricing-

related predictability or risk variation can both be substantial.  For example, with 

predictive beliefs based on the 1960-94 data and a diffuse prior, if the dividend yield is 

1.5 sample standard deviations above the mean, the optimal weight on stock is 73%.  If 

one ignores the mispricing component of expected return variation, the optimal allocation 

is 39% while it is 100% if risk variation is ignored.   

For beliefs based on the 1960-99 data, asset allocations barely change with yield 

when investors have fairly diffuse priors about the likely sign of potential mispricing 

effects.  Predictive risk and expected return both vary with yield, but with no evidence of 

mispricing over this period, their effects on utility, and hence portfolio choice, are 

offsetting.  Only an investor with a strong prior belief in a positive yield effect still sees a 

significant role for yield in the allocation decision at the end of 1999.  Given these 

observations, we suggest the reporting of predictive moments as one means of assessing 

economic significance from the research perspective, rather than relying solely on utility-

based measures. 

Comparing the optimal portfolios that would be chosen before (prior) and after 

(posterior) observing the data can also be an interesting exercise.  We assume that prior 

expected risk as of the beginning of 1940, near the end of the Great Depression, would 

have been quite high by current standards.  Since the data tend to be especially 

informative about the risk parameter, this does not have much of an influence on 
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posterior beliefs based on the 1940-99 data.  The risk level drops from a prior mean of 

6% per month to a posterior mean of 4.2%, with associated optimal allocations to stock 

of 46% (prior) and 73% (posterior). 

The late 1990s shifts in beliefs are also examined from an asset allocation 

perspective.  Standing there at the end of 1999, with dividend yield at 1.57% and beliefs 

based on the 1960-99 data, optimal asset allocations vary from 22% to 59% for our 

“balanced prior” investors.  One way of highlighting the importance of the last five years 

of data is to consider the changes in allocations that would occur if that data were 

ignored.  We find that the same investors would no longer invest any money in stock, in 

this case. 

We conclude with a few comments about potential extensions of this work.  

Certainly, including multiple predictors of risk and expected return simultaneously would 

be of interest.  The implications of imposing stationarity on the yield process (see 

Stambaugh, 1999) or, more generally, specifying informative priors for the parameters of 

the yield equation, could be explored.  Perhaps most interesting would be an analysis, 

extending the work of Stambaugh (1999) and Barberis (2000), of the impact of changing 

expected return and risk on the multiperiod investment decision.   
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Appendix A.  Obtaining the posterior moments  

Let y ≡ (y1, y2, … , yT), where yt ≡ (rt, xt).  The joint density (conditioned on x0) 

for y is f(y) = f(y1)f(y2 | y1) … f(yT | y1, y2, … , yT-1), where  f(yt+1 | y1, y2, … , yt) =    

f(rt+1 | y1, y2, … , yt)f(xt+1 | rt+1, y1, y2, … , yt) for t = 1, …,T-1.  We assume that xt 

captures the state of the world at time t in the sense that f(rt+1 | y1, y2, … , yt) = f(rt+1 | xt) 

and f(xt+1 | rt+1, y1, y2, … , yt) = f(xt+1 | rt+1, xt).   This representation of the joint density of 

returns and yields includes the restricted VAR of Stambaugh (1999) as a special case, 

with return modeled as in (1) and yield following a homoskedastic AR(1) process.  The 

vector (rt+1, xt+1) would be jointly normally distributed conditional on xt, implying that the 

conditional density f(xt+1 | rt+1, xt) is a linear regression in xt and rt+1.   

 Let θ be the parameter vector for our two-equation system, (4) and (11), and 

partition θ as (θ1, θ2), where θ1 ≡ (γ, βm, c, λ) and θ2 ≡ (ϕ, ρ, φ, σv).  Given the discussion 

above, the joint density of the data or, equivalently, the likelihood function can be written 

as    
f(y | θ) = h(y, θ1)g(y, θ).                    (A.1) 

 
Here, h(y, θ1) is the product of the conditional densities for r and g(y, θ) is the product of 

the conditional densities for x.  Note that h is identical to what the conditional density of 

r, given x, would be if x were nonstochastic.  In our application, the vector θ1 also enters 

g, however, since εt+1 = rt+1 – (γ/c).exp(2xtλ) - βmxt.   

In general, using p(θ) = p(θ1) p(θ2 | θ1) and integrating the posterior p(θ | y) over 

θ2, the marginal posterior for θ1 can be written as  

p(θ1 | y)  =  ∫ p(θ1) p(θ2|θ1) f(y | θ1, θ2) dθ2 / p(y) 
 

or 
          p(θ1 | y) = p(θ1)p(y | θ1)/p(y),                   (A.2)  

 
where p(y | θ1) = Ep(θ2|θ1)[f(y | θ)]  is the marginalized likelihood of θ1, defined in terms of 

the conditional prior p(θ2 | θ1), and p(y) = Ep(θ)[f(y | θ)] = Ep(θ1)[p(y | θ1)] is the 

probability of the data.32  Using the factorization of the likelihood function in (A.1),    

                                                 
32 With a diffuse prior for θ2, these are not really expectations, but the associated integrals are well-defined. 

 37 



 

        

   p(y | θ1) = h(y, θ1)E p(θ2|θ1)g(y, θ).        (A.3) 
 
In order to compute the expectation in (A.3) with θ1 fixed we observe that, in our 

application, it is identical to the normalizing constant in a standard linear regression 

model with the same form as (11) and density g(y, θ).  Since the associated integral is 

taken over θ2, with the data treated as constants, the stochastic nature of the regressors in 

(11) is irrelevant in this context.  With a noninformative prior for the regression 

parameters θ2, i.e., p(θ2 | θ1) ∝ 1/σv, the standard (conditional) posterior for θ2 would be 

of the normal-inverted gamma form.33  It is easily shown in this case that the normalizing 

constant, the product of prior and likelihood divided by the posterior, satisfies 
 

  E p(θ2|θ1)g(y, θ) ∝ 1/{|(Z(θ1)'Z(θ1)|.5RSS(θ1).5(T-4)}.      (A.4) 
 

Here, Z(θ1) is the (T-1)x3 matrix of independent variables in (11) and RSS(θ1) is the 

residual sum of squares, both of which depend on θ1 through εt.34 

 Our application focuses on the posterior moments of θ1 and the predictive 

moments of returns.  In order to evaluate these quantities, it suffices to consider functions 

π(θ1).   By the argument of section 5.2, with p(y | θ1) playing the role of f(y | θ), if θ1 is 

repeatedly drawn from p(θ1) then the average value of  π(θ1)p(y | θ1 )/p(y) will converge 

to Ep(θ1|y)[π(θ1)] = Ep(θ|y)[π(θ1)].  Again, an importance density for θ1 is incorporated to 

improve computational accuracy.     

 If the expectation in (A.3) were a constant function of θ1, the marginalized 

likelihood would equal h(y, θ1) and the marginal posterior for θ1 would reduce to the 

usual posterior for the nonstochastic regressor case.  This occurs if expected return is 

linear in xt and if equation (11) is modeled in terms of x as well (not a nonlinear 

transformation of x).  Given (4), the linearity of expected return holds if and only if the 

variance relation is also linear in xt; in particular, if variance is constant, as in most of the 

                                                 
33Although we do not make use of this fact, the conditional posterior for θ2 is of this standard form.  This 
follows from the observation that the factor h(y, θ1) is a proportionality constant in the actual likelihood 
(A.1). 
34T-1, rather than T, because there is no time T value of yield in the data y. 
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literature.  Under these assumptions, it is easy to see that RSS(θ1) is independent of θ1 

since the span of xt, εt+1, and a constant is independent of θ1.  Moreover, it can be shown 

that the determinant in (A.4) is also constant in this case.  

Although we have chosen to work with the conditionally diffuse prior for θ2 in 

order to focus on the return equation, the basic methodology can be modified to 

accommodate draws of θ2 from an informative prior.  Also, it is not essential that priors 

and returns be normally distributed in order to apply the general procedure.  This 

flexibility will undoubtedly be of use in future extensions of this work. 

 

Appendix B: Obtaining the predictive moments and optimal weights 

In the case of expected predictive utility, E[U(R)], we would ideally want to 

compute π(θ1) ≡  E[U(R) | θ1)].  Since this is not readily obtainable, for each draw of θ1, 

we randomly draw R(θ1) from the normal density f(R | θ1) and compute U(R(θ1)).  The 

utilities generated in this manner are i.i.d. draws.  The expectation of U(R(θ1)), 

conditional on θ1, is E[U(R) | θ1] and the unconditional expectation is, by the law of 

iterated expectations, E[U(R)].  Thus, U(R(θ1)) plays the role of π(θ1) in this context. 

We also modify the procedure just described to incorporate antithetic sampling  

(see Bauwens, Lubrano, and Richard (1999), pp. 75-76), which increases computational 

efficiency.  Given θ1 and the fixed value of dividend yield, the mean and variance of the 

conditional normal distribution of returns is known.  The unexpected return, ε, is drawn 

from a normal distribution with mean zero and the given variance, and is then added to 

the expected return.  Then, an antithetic return is obtained by repeating the computation 

with -ε in place of ε.  Utility is computed for each pair of returns and the average serves 

as U(R(θ1)).  The expectation of U(R(θ1)) is unchanged using this modification, but 

variability is reduced, improving the computations. 

To compute the optimal weight, the returns from 100,000 iterations are saved and 

an optimization routine is used, again incorporating the antithetic perspective.  In order to 

get a measure of the precision (and bias) for the optimal weight, a bootstrap approach is 

used.  That is, we sample returns from the original 100,000 with replacement and 

compute a new optimal weight.  This is done 100 times, generating a series of 100 i.i.d. 
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optimal weights.  Bias is assessed by comparing the original optimum to the bootstrap 

average and precision estimated by the mean-squared errors of the 100 weights around 

the original optimum.  The difference between the approximation in (18) and the “exact” 

optimal weight was less than 0.01 in a range of cases.  The bootstrap routine should prove 

useful in more complicated situations in which simple approximations are not available.   
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Table I: Descriptive Statistics 

 
 

Excess Return and Dividend Yield on the NYSE value-weighted index 
 

This table presents the descriptive statistics for the continuously compounded excess return and dividend yield on 
the NYSE value-weighted index.  The dividend yield is computed as the sum of the dividends paid over the prior 
twelve months divided by the price at the beginning of the forecasting period.    

 
 

   
    Monthly 
Excess Return  
 

  
      D/P 

 Mean Standard 
Deviation 

Sharpe 
Ratio 

Mean Standard 
Deviation 

      
1927-1999 0.54 5.46 0.10 4.18 1.43 

      
1927-1939 0.17 9.37 0.02 4.91 1.81 

      
1940-1999 0.62 4.17 0.15 4.02 1.29 

      
1960-1999 0.43 4.27 0.10 3.48 0.95 

      
1960-1994 0.31 4.31 0.07 3.69 0.81 

      
 



 

 

Table 2: OLS and GMM Estimates 
 

This table reports the Ordinary Least Squares and Generalized Method of Moments parameter estimates from regressions that 
examine the predictive ability of the dividend yield.  rt+1 is the (excess) return on the CRSP value-weighted stock index and xt 
is the NYSE dividend yield, measured as deviation from its mean.  White adjusted standard errors in parentheses. 
 
Columns 2-3 contain OLS estimates of the simple relation between expected return and yield.  α is the expected return when 
yield is at its mean and β measures the (total) impact of yield on expected return:   
  

11 ++ ++= ttt xr εβα .        (1) 

Columns 4-8 contain GMM estimates for the regression equation 
  

1
2

1 ++ ++= ttmtt x
c

r εβσγ
ε ,       (2) 

 
where 1+tε  | xt ~ N(0, tεσ ) and ).exp( tt xc λσ ε ∗=   The slope βm measures the impact of yield on expected excess return, 

net of its impact through σεt.  In this specification, c is the standard deviation, γ the Sharpe ratio, and γc the expected excess 
return, all when yield is at its mean.    
 
δδδδ measures the impact of yield on the Sharpe ratio as the average change in the ratio for a 1% increase or decrease in yield 

from its mean.  

 
 

 αααα (%) ββββ   c (%) λλλλ γγγγ ββββM δδδδ 
        
1927-1999     0.54**  0.16      5.02**    17.1**     0.09**  -0.14  -1.2 
 (0.18)   (0.24)   (0.22)  (2.2)  (0.03)   (0.22)   (4.4) 
        
1940-1999     0.62**     0.25**      4.15**  2.1     0.15**    0.23*    5.8*  
 (0.15)  (0.12)  (0.19)   (2.9)  (0.04)  (0.14)  (3.0) 
        
1960-1999   0.43**  0.19     4.21**   11.0*     0.10**  0.10  3.4  
 (0.19)  (0.23)  (0.23)  (5.6)  (0.05)  (0.25)  (5.6)  
        
1960-1994 0.31    0.56*     4.20**    15.8**  0.07   0.46*   12.1* 
 (0.21)  (0.28)  (0.25)  (6.1)  (0.05)  (0.29)  (6.6) 
        

 
 * and ** indicate estimates more than 1.5 or 2.0 standard errors from zero, respectively.   



 

 

Table 3: Log-Dividend Yield Equation  
 
 

This table reports GMM parameter estimates for the log dividend yield model,  

                         log(yieldt+1) =  ϕ + ρ.log(yieldt)  + φ.εt+1 + vt+1,             

where vt+1| xt ~ N(0, σv), and εt+1 is the unexpected return.   The GMM estimation 

is carried out jointly with equations (1) and (2) of Table 2.  White adjusted 

standard errors in parentheses.   

 
       

 
 ϕϕϕϕ ρρρρ φφφφ Adj(R2) 

     
1927-1999 -0.031 0.991 -0.987 0.997 
 (0.032) (0.010) (0.018)  
     
1940-1999 -0.017 0.995 -1.010 0.998 
 (0.016) (0.005) (0.013)  
     
1960-1999 -0.022 0.994 -0.998 0.998 
 (0.027) (0.008) (0.011)  
     
1960-1994 -0.073 0.978 -0.995 0.997 
 (0.038) (0.011) (0.012)  
     

 
 
 
 

 



 

 

Table 4: Bayesian Estimates: 1940 – 1999  
 

This table reports Bayesian estimates for the regression 

1
2

1 ++ ++= ttmtt x
c

r εβσγ
ε ,         

where rt+1 is the excess return on the CRSP value-weighted stock index and xt is the NYSE dividend yield, measured as 
deviation from its mean.  The conditional standard deviation of return is )exp( tt xc λσ ε ∗=  and unexpected return is 
distributed as 1+tε | xt ~ N(0, tεσ ).   
βm measures the impact of yield on expected excess return, net of its impact through σεt; the total impact of yield on expected 
return is given by β; γ is the long-run (when yield is at its mean) Sharpe ratio and c is the long-run standard deviation of 
return; γc = α is the long-run expected excess return. Finally, δ measures the impact of yield on the Sharpe ratio.

 
  

 
Means and standard deviations (in parentheses) of the posterior distributions of the parameters are reported.  The  probability 
that the given parameter is larger than zero is given in brackets.  The Bayes factor is the expected likelihood conditional on 
the parameter of interest equaling zero divided by the unconditional expected likelihood for the given prior.   

 
 αααα (%) ββββ c (%) λλλλ γγγγ ββββM δδδδ 

        
Diffuse        

        
Posterior        
    Mean 0.61 0.21 4.16 2.3 0.15 0.18 4.7 
    (Stdev) (0.16) (0.11) (0.11) (2.1) (0.04) (0.11) (2.7) 
    [Prob(*>0)] [1.00] [0.97] [1.00] [0.86] [1.00] [0.95] [0.96] 

        
        

Neutral        
        
Prior        
    Mean 0.67 0.34 6.00 20.0 0.11 0.05 3.1 
    (Stdev) (0.32) (0.35) (1.00) (15.0) (0.05) (0.20) (4.2) 
    [Prob(*>0)] [0.99] [0.85] [1.00] [0.91] [0.99] [0.60] [0.78] 
        
Posterior        
    Mean 0.56 0.18 4.20 2.8 0.13 0.14 3.8 
    (Stdev) (0.13) (0.10) (0.11) (2.1) (0.03) (0.10) (2.3) 
    [Prob(*>0)] [1.00] [0.96] [1.00] [0.91] [1.00] [0.93] [0.95] 
    Bayes Factor    7.05  0.72  
        
        

Overreaction        
        
Prior        
    Mean 0.67 0.49 6.00 20.0 0.11 0.20 5.8 
    (Stdev) (0.32) (0.32) (1.00) (15.0) (0.05) (0.15) (3.5) 
    [Prob(*>0)] [0.99] [0.96] [1.00] [0.91] [0.99] [0.91] [0.96] 
        
Posterior        
    Mean 0.56 0.21 4.20 2.6 0.13 0.18 4.8 
    (Stdev) (0.13) (0.09) (0.11) (2.1) (0.03) (0.09) (2.1) 
    [Prob(*>0)] [1.00] [0.99] [1.00] [0.90] [1.00] [0.98] [0.99] 
    Bayes Factor    8.09  0.51  
        



 

 

Table 5: Predictive Analysis: 1940 – 1999 
 

This table reports predictive return moments for the market index, the optimal allocations to stock (weight), and the associated 
certainty equivalent return premia (CER) for each prior and level of yield, the latter in sample standard deviations from the mean.  
 
“True” refers to the predictive distribution for the model in Table 6.  In contrast, “µ” and “σ,” refer to “optimizations” incorrectly 
based on predictive distributions that ignore variation in expected return or risk, respectively (µσ ignores both).  “Ignore” means 
that the predictive mean or variance is taken to be the value for yield = 0.  Prior weights are computed from optimization based 
on the prior predictive distribution.   
 
The CERs in columns 8-11 are computed under the true (posterior) predictive distribution and are based on the weights from 4-7. 
Actual CERs are reported for the true posterior, whereas the certainty equivalent loss from the use of suboptimal weights is 
reported for the other scenarios.  For µ, σ, and µσ, the change in weights and CER loss are measures of the economic 
significance of expected return and/or risk predictability and reflect the combination of prior and data.  For “prior,” these 
measures reflect the incremental significance of the data. 
 
 

 
PRIOR 

    

Mean 
  (Stdev) 

(%) 

      
WEIGHT (%) 

 
CER (bps) 

   Yield Posterior Posterior 

 

      
Prior 

 
Posterior 

 
Prior 

µµµµ True  σσσσ 

 
Prior 

µµµµ µµµµσσσσ (True) σσσσ 

             Diffuse 
          

-1.5 - 0.21 - 87 37 35 - 10    7  (5) 0 
  (4.00)         

0 - 0.61 - 81 81 81 - 0 0 (28) 0 
  (4.16)         

1.5 - 1.02 - 74 100 100 - 7 5 (64) 0 
  (4.36)         
           

          Neutral 
          

-1.5 0.27 0.23 36 80 38 36 0 7     5 (6) 0 
 (4.51) (3.99)         

0 0.66 0.56 46 73 73 73 3 0  0 (24) 0 
 (6.08) (4.20)         

1.5 1.80 0.90 47 67 100 100 14 6  4 (51) 0 
 (9.84) (4.45)         
           

          Overreact 
          

-1.5 -0.02 0.15 8 80 29 27 1 10    8  (3) 0 
 (4.51) (4.01)         

0 0.66 0.56 46 73 73 73 3 0 0 (24) 0 
 (6.08) (4.20)         

1.5 2.09 0.98 53 67 100 100 15 9 6 (59) 0 
 (9.83) (4.43)         

           
 

 



 

 

Table 6: Bayesian Estimates: 1960 – 1994 
 

This table reports Bayesian estimates for the regression 

1
2

1 ++ ++= ttmtt x
c

r εβσγ
ε ,        

where rt+1 is the excess return on the CRSP value-weighted stock index and xt is the NYSE dividend yield, measured as 
deviation from its mean.  The conditional standard deviation of return is )exp( tt xc λσ ε ∗=  and unexpected return is 
distributed as 1+tε | xt ~ N(0, tεσ ).   
βm measures the impact of yield on expected excess return, net of its impact through σεt; the total impact of yield on expected 
return is given by β; γ is the long-run (when yield is at its mean) Sharpe ratio and c is the long-run standard deviation of 
return; γc = α is the long-run expected excess return. Finally, δ measures the impact of yield on the Sharpe ratio.

 
  

 
Means and standard deviations (in parentheses) of the posterior distributions of the parameters are reported.  The  probability 
that the given parameter is larger than zero is given in brackets.  The Bayes factor is the expected likelihood conditional on 
the parameter of interest equaling zero divided by the unconditional expected likelihood for the given prior.   

 
 αααα (%) ββββ c (%) λλλλ γγγγ ββββM δδδδ 

        
Diffuse        

        
Posterior        
    Mean 0.26 0.47 4.22 16.4 0.06 0.37 10.3 
    (Stdev) (0.20) (0.27) (0.15) (4.3) (0.05) (0.26) (6.3) 
    [Prob(*>0)] [0.90] [0.96] [1.00] [1.00] [0.90] [0.93] [0.95] 

        
        

Neutral         
        
Prior        
    Mean 0.50 0.26 4.50 20.0 0.11 0.05 3.4 
    (Stdev) (0.23) (0.29) (0.50) (15.0) (0.05) (0.20) (5.1) 
    [Prob(*>0)] [0.99] [0.83] [1.00] [0.91] [0.99] [0.60] [0.75] 
        
Posterior        
    Mean 0.36 0.29 4.24 16.8 0.08 0.17 5.5 
    (Stdev) (0.15) (0.17) (0.14) (4.1) (0.03) (0.16) (3.9) 
    [Prob(*>0)] [0.99] [0.96] [1.00] [1.00] [0.99] [0.86] [0.92] 
    Bayes Factor    0.001  0.730  

        
        

Overreaction        
        
Prior        
    Mean 0.50 0.41 4.50 20.0 0.11 0.20 6.9 
    (Stdev) (0.23) (0.26) (0.50) (15.0) (0.05) (0.15) (4.2) 
    [Prob(*>0)] [0.99] [0.96] [1.00] [0.91] [0.99] [0.91] [0.96] 
        
Posterior        
    Mean 0.36 0.36 4.24 16.7 0.08 0.24 7.3 
    (Stdev) (0.15) (0.14) (0.14) (4.1) (0.03) (0.13) (3.2) 
    [Prob(*>0)] [0.99] [1.00] [1.00] [1.00] [0.99] [0.97] [0.99] 
    Bayes Factor    0.001  0.486  
        



 

 

Table 7: Predictive Analysis: 1960 – 1994 
 

This table reports predictive return moments for the market index, the optimal allocations to stock (weight), and the associated 
certainty equivalent return premia (CER) for each prior and level of yield, the latter in sample standard deviations from the mean.  
 
“True” refers to the predictive distribution for the model in Table 4.  In contrast, “µ” and “σ,” refer to “optimizations” incorrectly 
based on predictive distributions that ignore variation in expected return or risk, respectively (µσ ignores both).  “Ignore” means 
that the predictive mean or variance is taken to be the value for yield = 0.  Prior weights are computed from optimization based 
on the prior predictive distribution.   
 
The CERs in columns 8-11 are computed under the true (posterior) predictive distribution and are based on the weights from 4-7. 
Actual CERs are reported for the true posterior, whereas the certainty equivalent loss from the use of suboptimal weights is 
reported for the other scenarios.  For µ, σ, and µσ, the change in weights and CER loss are measures of the economic 
significance of expected return and/or risk predictability and reflect the combination of prior and data.  For “prior,” these 
measures reflect the incremental significance of the data. 
 
 

 
PRIOR 

    

Mean 
  (Stdev) 

(%) 

      
WEIGHT (%) 

 
CER (bps) 

   Yield Posterior Posterior 

 

      
Prior 

 
Posterior 

 
Prior 

µµµµ True  σσσσ 

 
Prior 

µµµµ µµµµσσσσ (True) σσσσ 

             Diffuse 
          

-1.5 - -0.30 - 53 0 0 - 21    14 (0) 0 
  (3.48)         

0 - 0.26 - 39 39 39 - 0  0  (7) 0 
  (4.23)         

1.5 - 0.86 - 29 73 100 - 14      8 (37) 5 
  (5.19)         
           

          Neutral 
          

-1.5 0.27 0.03 49 70 15 14 3 9    4  (1) 0 
 (3.68) (3.47)         

0 0.50 0.36 59 50 50 50 0 0 0 (11) 0 
 (4.53) (4.24)         

1.5 0.93 0.75 62 36 65 93 0 6 2 (29) 6 
 (6.00) (5.23)         
           

          Overreact 
          

-1.5 0.08 -0.06 22 70 1 4 1 14    7  (0) 0 
   (3.67) (3.47)         

0 0.50 0.36 59 50 50 50 0 0 0 (11) 0 
 (4.53) (4.24)         

1.5 1.11 0.84 72 36 72 100 0 8 3 (35) 6 
 (6.00) (5.21)         

           
 

 



 

 

Table 8: Bayesian Estimates: 1960 – 1999  
 

This table reports Bayesian estimates for the regression 

1
2

1 ++ ++= ttmtt x
c

r εβσγ
ε ,         

where rt+1 is the excess return on the CRSP value-weighted stock index and xt is the NYSE dividend yield, measured as 
deviation from its mean.  The conditional standard deviation of return is )exp( tt xc λσ ε ∗=  and unexpected return is 
distributed as 1+tε | xt ~ N(0, tεσ ).   
βm measures the impact of yield on expected excess return, net of its impact through σεt; the total impact of yield on expected 
return is given by β; γ is the long-run (when yield is at its mean) Sharpe ratio and c is the long-run standard deviation of 
return; γc = α is the long-run expected excess return. Finally, δ measures the impact of yield on the Sharpe ratio.

 
  

 
Means and standard deviations (in parentheses) of the posterior distributions of the parameters are reported.  The  probability 
that the given parameter is larger than zero is given in brackets.  The Bayes factor is the expected likelihood conditional on 
the parameter of interest equaling zero divided by the unconditional expected likelihood for the given prior.   

          
 αααα (%) ββββ c (%) λλλλ γγγγ ββββM δδδδ 

        
Diffuse        

        
Posterior        
    Mean 0.43 0.07 4.32 9.4 0.10 -0.01 0.7 
    (Stdev) (0.20) (0.18) (0.14) (3.1) (0.05) (0.18) (4.2) 
    [Prob(*>0)] [0.98] [0.65] [1.00] [1.00] [0.98] [0.48] [0.56] 

        
        

Neutral         
        
Prior        
    Mean 0.50 0.26 4.50 20.0 0.11 0.05 3.4 
    (Stdev) (0.23) (0.29) (0.50) (15.0) (0.05) (0.20) (5.1) 
    [Prob(*>0)] [0.99] [0.83] [1.00] [0.91] [0.99] [0.60] [0.75] 
        
Posterior        
    Mean 0.45 0.10 4.33 9.7 0.10 0.01 1.3 
    (Stdev) (0.15) (0.14) (0.14) (3.0) (0.03) (0.13) (3.1) 
    [Prob(*>0)] [1.00] [0.77] [1.00] [1.00] [1.00] [0.54] [0.66] 
    Bayes Factor    0.06  1.54  

        
        

Overreaction        
        
Prior        
    Mean 0.50 0.41 4.50 20.0 0.11 0.20 6.9 
    (Stdev) (0.23) (0.26) (0.50) (15.0) (0.05) (0.15) (4.2) 
    [Prob(*>0)] [0.99] [0.96] [1.00] [0.91] [0.99] [0.91] [0.96] 
        
Posterior        
    Mean 0.46 0.20 4.33 9.3 0.11 0.11 3.6 
    (Stdev) (0.15) (0.12) (0.14) (2.9) (0.03) (0.12) 2.7 
    [Prob(*>0)] [1.00] [0.95] [1.00] [1.00] [1.00] [0.83] [0.9] 
    Bayes Factor    0.09  2.00  
        



 

 

Table 9: Predictive Analysis: 1960 – 1999 
 

This table reports predictive return moments for the market index, the optimal allocations to stock (weight), and the associated 
certainty equivalent return premia (CER) for each prior and level of yield, the latter in sample standard deviations from the mean.  
 
“True” refers to the predictive distribution for the model in Table 5.  In contrast, “µ” and “σ,” refer to “optimizations” incorrectly 
based on predictive distributions that ignore variation in expected return or risk, respectively (µσ ignores both).  “Ignore” means 
that the predictive mean or variance is taken to be the value for yield = 0.  Prior weights are computed from optimization based 
on the prior predictive distribution.   
 
The CERs in columns 8-11 are computed under the true (posterior) predictive distribution and are based on the weights from 4-7. 
Actual CERs are reported for the true posterior, whereas the certainty equivalent loss from the use of suboptimal weights is 
reported for the other scenarios.  For µ, σ, and µσ, the change in weights and CER loss are measures of the economic 
significance of expected return and/or risk predictability and reflect the combination of prior and data.  For “prior,” these 
measures reflect the incremental significance of the data. 
 
 

 
PRIOR 

    

Mean 
  (Stdev) 

(%) 

      
WEIGHT (%) 

 
CER (bps) 

   Yield Posterior Posterior 

 

      
Prior 

 
Posterior 

 
Prior 

µµµµ True  σσσσ 

 
Prior 

µµµµ µµµµσσσσ (True) σσσσ 

             Diffuse 
          

-1.5 - 0.35 -  67 57 48 - 0 0 (12) 0 
  (3.86)         

0 - 0.43 - 56 56 56 - 0 0 (15) 0 
  (4.33)         

1.5 - 0.52 - 46 54 66 - 0 0 (17) 0 
  (4.87)         
           

          Neutral 
          

-1.5 0.27 0.34 49 71 56 46 0 1 0 (12) 1 
 (3.68) (3.86)         

0 0.50 0.45 59 58 58 58 0 0 0 (16) 0 
 (4.53) (4.33)         

1.5 0.93 0.59 62 48 59 73 0 1 0 (21) 1 
 (6.00) (4.89)         
           

          Overreact 
          

-1.5 0.08 0.23 22 71 41 35 1 3    1  (6) 0 
 (3.67) (3.87)         

0 0.50 0.46 59 59 59 59 0 0 0 (16) 0 
 (4.53) (4.33)         

1.5 1.11 0.71 72 49 70 86 0 2 0 (29) 1 
 (6.00) (4.86)         

           
 
 
 



 

 

Figure 1a: NYSE Value-Weighted Excess Returns
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Figure 1b: NYSE Value-Weighted Squared (Deviation from the Mean) Excess Returns

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1927 1932 1937 1942 1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997

 


	,       (3)
	Estimates of \( and \(m are given in columns 6�
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