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ABSTRACT

This paper proposes an estimation method for a repeated auction game under the presence of

capacity contraints. The estimation strategy is computationally simple as it does not require solving for

the equilibrium of the game. It uses a two stage approach. In the first stage the distribution of bids

conditional on state variables is estimated using data on bids, bidder characteristics and contract

characteristics. In the second stage, an expression of the expected sum of future profits based on the

distribution of bids is obtained, and costs are inferred based on the first order condition of optimal bids.

We apply the estimation method to repeated highway construction procurement auctions in the

state of California between May 1996 and May 1999. In this market, previously won uncompleted

contracts reduce the probability of winning further contracts. We quantify the effect of intertemporal

constraints on bidders' costs and on bids. Due to the intertemporal effect and also to bidder asymmetry,

the auction can be inefficient. Based on the estimates of costs, we quantify efficiency losses.
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1. INTRODUCTION

Most of the literature on empirical estimation of auctions assumes a static auction setting.

Parsch (1992), La�ont, Ossard and Vuong (1995), Guerre, Perrigne and Vuong (2000), and

others develop an empirical approach to quantify informational uncertainty in static auction

games. On the contrary, there is little empirical work on dynamic auction games2 or dynamic

oligopoly games.3

This paper proposes an estimation method for dynamic oligopoly games. The method

is computationally simple as it does not require solving for the equilibrium strategies of the

game. We apply the method to estimate a repeated �rst-price auction game under the presence

of capacity contraints.

We observe data on bids, contracts' characteristics and bidders' state variables. The

estimation problem is how to infer privately known costs. We propose an estimation method

that infers costs based on the �rst order condition of optimal bids of the repeated bidding game.

We assume that observed data is generated by equilibrium play and estimate the distribution

of bids conditional on state variables. Our crucial idea is that the expected discounted sum

of future pro�ts, which enter the �rst order condition, can be written looking forward and

depending entirely on the distribution of bidders' bid choices.4 In particular, the resulting

expression of the value function can be written as a linear equation system which can be easily

solved numerically. With the value function at hand, costs are inferred based on the �rst order

condition.

2 La�ont and Robert (1999) and Donald, Paarsch and Robert (1997) analyze �nitely
repeated auctions. La�ont and Robert consider a sequence of auctions in which, at each stage,
an identical object is sold. Their model generates complex intra-day dynamics which are
applied to data on eggplant auctions. Donald, Paarsch and Robert consider a model in which
a �nite number of objects are sold in a sequence of ascending-price auctions. They estimate
the model using data on the sales of Siberian timber-export permits.

3 Pakes (1994) summarizes the literature on estimation in dynamic games.
4 A related estimation strategy of the value function is employed by Hotz and Miller

(1993). They approximate the value function with discrete choices using estimates of choice
probabilities. Their framework di�ers from ours in a number of ways: First, they consider
a single agent dynamic decision problem. Second, they restrict their attention to discrete
actions. Finally, they do not model informational constraints.
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Our approach builds partially on the two stage approach that Elyakime, La�ont, Loisel

and Vuong (1994), and Guerre, Perrigne and Vuong (2000) develop for static models. These

papers estimate the distribution of equilibrium actions based on bid data. In equilibrium, the

distribution function estimates summarize bidders' beliefs and can be used to infer bidders'

valuations based on the �rst order condition of optimal actions. The main contribution of our

paper is to extend the estimation method to dynamic games.

In work in progress, Berry and Pakes (2000) consider a related estimation strategy for

dynamic games. The distinguishing feature of their approach is to consider an alternative

representation of the value function in which the expected sum of future pro�ts is replaced

with a sequence of future pro�t realizations. In dynamic auction games, this representation

is less attractive because pro�ts are not observed and cannot be expressed indirectly, from

observed bids, without knowing the equilibrium bid functions.

We apply our method to repeated procurement auctions for highway paving contracts.

In this setting, previously won uncompleted contracts may a�ect the ability to win further

contracts. Two distinct e�ects may arise: First, since the duration of highway paving contracts

is a number of months, winning a large contract may commit some of the bidder's machines and

paving resources for the duration of the contract. Although rental of additional equipment is

available, this may increase total cost. Second, an experience e�ect may arise, since supplying

services on a large contract may give a bidder the necessary expertise to conduct further

services. The expertise e�ect may lower the cost for future contracts.

The results of our estimation using highway procurement data show that capacity con-

straints do a�ect �rms' bidding strategies. In particular, the cost of taking on an additional

contract is increasing in backlog. The increase in costs resulting from a larger than average

backlog seems to cancel out any cost-reducing expertise e�ects, if they exist. Based on the

estimates of costs, we quantify eÆciency losses.

Our estimation method requires that bidders completely understand the auction envi-

ronment and that our estimates of winning probabilities correctly measure bidders' perceived

odds of winning. Beyond some general regularity predictions, we are not able to assess the

adequacy of our behavioral assumptions. The main reason is that our data do not contain in-
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formation about bidders' assessments. In particular, we do not observe bidders' perceived odds

of winning a contract, nor bidders' actual contract costs. More detailed information about ex

post realized outcomes is observed in outer continental shelf auctions studied by Hendricks and

Porter (1988) and Porter (1995) among others. Hendricks and Porter convincingly show that

auction models provide accurate predictions of outcomes and that the behavioral assumptions

of game theoretic models are satis�ed.

The paper is organized as follows: Section 2 describes the bidding model. Section 3 in-

troduces the econometric method. The section addresses several issues: First, how to estimate

the distribution of bids conditional on bidders' state variables and contract characteristics.

Second, how to estimate the expected future discounted payo� of bidders based on estimates

of the bid distribution function. Third, how to infer costs using the �rst order condition of

optimal bids in the repeated game. Finally, conditions are provided under which the bidding

model's parameters are identi�ed.

Section 4 describes the industry and the data. We examine data on highway procurement

contracts in California. The descriptive data analysis suggests the presence of capacity con-

straints. Estimates of the probability of submitting a bid reveal that bidders with low backlog

levels are about twice as likely to submit a bid than bidders with high backlog levels.

Section 5 presents the estimates of the bidding model. The distribution of costs exhibits

the expected properties of capacity constraints. To illustrate the estimates, we evaluate the

estimated bid and cost distributions at average sample characteristics. The distribution of

bids and costs at low backlog values stochastically dominates (in the �rst order sense) the

distribution at high backlog values. Moreover, increasing the backlog appears to monotonically

decrease the discounted sum of future pro�ts.

Section 6 reports the e�ect of backlog on the expected price paid by the auctioneer and the

e�ect of backlog on the expected auction return to individual bidders. In addition, we compare

the observed outcome to a cost minimizing allocation of contracts. We conduct experiments

to assess the magnitude of eÆciency losses. Finally, section 7 provides some discussion and

concludes.
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2. THE BIDDING MODEL

This section describes the bidding model. We begin with a general description of the

game. We describe the sequencing of events in the stage game and the assumptions entering

each event. We then describe the law of motion of the state variables and the payo�s to bidders.

We conclude the section with some remarks on the existence of a value function representation

of payo�s and the existence of markovian equilibria of the game.

The bidding model that we take to the data has the following features: Time is discrete

with an in�nite horizon, t = 0; 1; 2; : : :. There are two types of bidders: regular and fringe

bidders. Fringe bidders have a short life and exit in the period they entered.5 Regular bidders

stay in the game forever. The set of regular bidders is denoted by f1; : : : ; ng and the set of

fringe bidders in period t is denoted by fn+ 1; : : : ; ntF g.

The Stage Game: In every period t the buyer o�ers a single contract for sale. The sale

can be described by the following sequence of events: First, the characteristics of the contract

are revealed to all bidders. Second, bidders learn their costs privately. Third, bidders may

submit bids. Fourth, the seller awards the contract to the low bidder - ties are resolved with

the ip of a coin. The events in the stage game have the following features:

The contract characteristics, st0, are drawn independently and identically from the ex-

ogenous probability distribution function, F0(:), with �nite support S0. Future contract char-

acteristics are assumed to be unknown to bidders.6 The contract characteristics, st0, include

the physical attributes of the contract such as the contract size and duration, as well as the

5 We observe a number of bidders that submit a bid only once, or a small number of times.
On the other hand, we observe a number of bidders that submit bids frequently. To account
for this di�erence, we classify �rms into two groups: Regular bidders, which are the largest 10
�rms in dollar value won and with at least 80 bids submitted; and Fringe bidders which are
the remaining �rms.

6 In highway procurement auctions future projects are not known to bidders. Only a short
period in advance do project descriptions become available. The length of the announcement
period ranges between 4 and 10 weeks. Information on the speci�cation of immediately upcom-
ing projects could be incorporated into the model by including the information on upcoming
contracts as additional state variables. However, due to the added computational burden of
additional state variables, we decided to ignore this feature of the data, and assume that
contract characteristics become known in the period of the letting.
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total number of bidders that are active in the period, ntF , and the �xed (non-random) reserve

price of the seller Rt.

Costs: Each bidder i learns her cost for the contract, cti, after the contract characteristics

are revealed. The cost is privately known and independently distributed conditional on state

variables. The cost of a regular bidder i is drawn from the conditional distribution function

F (:jst0; s
t
i; s

t
�i) with support [C(s

t
0; s

t
i; s

t
�i); C(s

t
0; s

t
i; s

t
�i)], where s

t
i 2 Si, with Si �nite, denotes

a vector of state variables for bidder i and st�i denotes the vector of other bidders state

variables (st1; : : : ; s
t
i�1; s

t
i+1; : : : ; s

t
n).

7 We sometimes use the symbol st to denote the vector of

all regular bidders' state variables with st 2 S and S = �n
i=1Si. We sometimes write (sti; s

t
�i)

to indicate that the state vector is evaluated from bidder i's perspective. Bidder i's state

vector si includes a list of the sizes of all uncompleted projects that she has won in the past

and the time left to complete each of them. Speci�cally, si records the remaining size in dollars

and the number of days left until completion of each project previously won by bidder i. We

assume that both st0 and st are observable to all bidders and to the econometrician. We do

not consider heterogeneity that is known to the bidders but not known to the econometrician.

The distribution of costs has a continuous density function f(:jst0; s
t
i; s

t
�i). Similarly, the cost

of a fringe bidder is drawn from a distribution function Ff (:jst0; s
t) with associated continuous

density function ff (:jst0; s
t) and support [C(st0; s

t); Rt]. The support assumption ensures that

fringe bidders submit a bid.

Conditional independence of contract characteristics and cost realizations is the crucial

assumption in the data generating process. It permits us to adopt the framework of markov

dynamic decision processes. The role of conditional independence is discussed further in Rust

7 An alternative two step process in which costs are learned is considered in Hendricks,
Pinske and Porter (2000). Hendricks, Pinske and Porter assume that bidders decide, initially,
whether to acquire private information or not, and only bidders that decide to acquire in-
formation will potentially participate in the auction. This approach appears reasonable for
auction environments where it can be rather costly to obtain an estimate about value of the
item. Our data do not contain information on information acquisition decisions that would
allow us to identify such a two step model. In addition, the two step approach appears less
plausible for highway paving jobs in which most bidders have a relatively accurate assessment
about the opportunity cost of using their paving resources. The cost uncertainty in highway
bidding arises because the bidder's opportunity costs are not known to other bidders.
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(1994).

Bids: Each bidder may submit a bid, b, which is the price at which the bidder is willing

to provide the service. The bidder with the lowest bid wins the contract and receives her bid.

All agents are risk neutral. Ties are resolved by the ip of a coin. The buyer rejects bids above

the reserve price Rt.

The transition function of the state variable, ! : S0 � S � f0; 1; 2; : : : ;max(ntF )g �! S,

is a deterministic function of the contract characteristics, the state variables, and the identity

of the low bidder - where identity 0 indicates that nobody won the auction.8 As described

above, the bidders' state variables include the sizes of all the projects left to do and the time

remaining until their completion. Unfortunately, the data do not include information on the

pattern in which projects are completed over time, but only the contract scheduled completion

date. We assume that, at every point of time, an equal share of the project is completed and

that contracts are completed as planned.9 Let the ith component of the transition function

! measure the sizes and remaining times of all the project left to do for bidder i. It can be

written as:

!i(s0; s; j) =

8<
:
(z0; �0; (

�tj�1

�t
j

� ztj ; �
t
j � 1)j2Jt

i
) if j = i

(
�tj�1

�t
j

� ztj ; �
t
j � 1)j2Jt

i
otherwise,

where (ztj; �
t
j )j2Jti 2 sti is a component of bidder ith state vector; J

t
i denotes the set of previously

won and uncompleted projects of bidder i; ztj denotes the size of project j; and, �
t
j its remaining

time until completion. Given the linearity assumption regarding the completion of projects,

for each project j 2 J ti , the size carried over to next period, zt+1
j , equals

�tj�1

�t
j

� ztj, and the

remaining time until completion � t+1
j equals � tj � 1. If contract at period t is won by bidder

8 Note that the identity of the low bidder can be deduced from the vector of submitted
bids. Thus, an equivalent formulation of the state's transition function uses the vector of bids
by all bidders instead of the identity of the low bidder.

9 Section 8-1.07, \Liquidated Damages", of the Standard Speci�cations (1999) of the
Department of Transportation of California speci�es that unjusti�ed delays may come at a
high cost to the contractor. The cost of delays for contracts during our sample period ranges
between hundreds of dollars to thousands of dollars per day.
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i, it is added to the set J t+1
i with the initial size and time until completion taken from the

contract's characteristics (z0; �0) 2 s0.

We introduce a common discount factor parameter, � 2 (0; 1), that measures �rms'

patience with regard to future pro�ts.

We consider subgame perfect equilibria and restrict our attention to symmetric markovian

strategies. Markovian strategies do not depend on time and in the subsequent analysis we omit

the time superscript whenever possible. A strategy for bidder i is a function of bidder i's cost,

the contract's characteristics, and her own and her competitors' states, b(ci; s0; si; s�i). Let

b�i denote a strategy pro�le of other bidders. We assume that the strategy pro�le b�i is such

that the distribution of the low bid submitted by other bidders is continuous.

Payo� of a regular bidder: The discounted sum of future expected payo�s for bidder i

can be written in value function form as:

Wi(s; s0; ci;b�i) =max
b
[b� ci]Pr(i wins jb; s0; si; s�i;b�i)+

+ �

nFX
j=0

Pr(j winsjb; s0; si; s�i;b�i)E0

Z
Wi(!(s0; s; j); s

0
0; c

0
i;b�i)

� f(c0ijs
0
0; !i(s0; s; j); !�i(s0; s; j))dc

0
i;

where Pr(i wins jb; s0; si; s�i;b�i) denotes the probability that bidder i with state si wins

contract s0 given the strategy b�i by other bidders and the state s�i by other bidders; E0

denotes the expectation operator with respect to the contract characteristic s00; and, j = 0

indicates that nobody won the auction. Notice, that due to the reserve price rule, any bid

exceeding the reserve price will be rejected. Therefore, without loss of generality, we can assume

that bids exceeding the reserve price equal b0, with b0 > max(Rt), and restrict attention to

the compact bid space [0;max(Rt)] [ b0.

Existence of Wi(s; s0; ci;b�i) follows from a result in Bhattacharya and Majumdar

(1989). To see this, notice that our assumptions imply that the period payo� function,

[b � ci]Pr(i wins jb; s0; si; s�i;b�i), is continuous in b; ci; s0; si and s�i, and bounded by
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the maximum reserve price max(Rt). Moreover, the bid space, [0;max(Rt)] [ b0, is compact;

the state space, S, and the contract space, S0, are �nite; and the cost space [C;C] is compact.

Furthermore, since Pr(j winsjb; s0; si; s�i;b�i) is continuous in b; s0; si and s�i for all j, it

follows that the transition probability !(s0; s; j) � Pr(j winsjb; s0; si; s�i;b�i) is weakly con-

tinuous in b; s0; si and s�i.
10 Finally, since the state space is �nite, F (:js0; si; s�i) is weakly

continuous in s0; si and s�i. Thus, the in�nite-horizon dynamic programming problem of bid-

der i satis�es the necessary conditions of Theorem 3.2. in Bhattacharya and Majumdar (1989),

which guarantees the existence of a unique solution to the value function, Wi(s; s0; ci;b�i).

In the subsequent analysis, we sometimes use the ex ante value function which is de�ned

as the value function evaluated before contract characteristics and bidder i's cost are known.

We can write the ex ante value function as:

Vi(s;b�i) = E0

Z
Wi(s; s0; c;b�i)f(cjs0; s)dc;

where E0 denotes the expectation operator with respect to contract characteristics. For the

simplicity of the exposition, from now on we suppress the dependence on the bidding strategies

of other bidders in the value function. The above value function equation leads to the following

recursive equation for Vi(s):

Vi(s) = E0

"Z
maxb

(
[b� c]Pr(i wins jb; s0; si; s�i)+

�

nFX
j=0

Pr(j winsjb; s0; si; s�i)Vi(!(s0; s; j))

)
f(cjs0; si; s�i)dc

#
: (3:1:)

Payo� of a fringe bidder: For a fringe bidder, the ex ante payo� equals to the expected current

10 If D is a metric space, then P(D) denotes the set of all probability measures on the Borel
sigma�eld B(D) of D. A function F on a metric space D1 into P(D) is weakly continuous if
the sequence of probability measures F (yn) converge weakly to F (y) when yn �! y in D1.

{ 8 {



period payo�:

E0

"Z
maxb

(
[b� c]Pr(i fringe wins jb; s0; s)

)
ff (cjs0; s)dc

#
:

The role of our earlier assumptions on the behavior of fringe bidders can be illustrated at this

point: Fringe bidders exit in the period they entered and, therefore, they assign no value to

the future. The assumption that the cost of fringe bidders is contained in the interval [C;Rt]

guarantees that fringe bidders �nd it pro�table to submit a bid in the period they enter. In

contrast, note that our model implies that a regular bidder may not submit a bid in a given

period. This may arise either because the cost realization is above the reserve price, or because

the cost of being constrained in the future outweighs the current period gain of winning the

contract.

Existence of an equilibrium: We restrict attention to monotone and symmetric strate-

gies b(c; s0; si; s�i). Existence of an equilibrium follows from recent results on equilibrium

existence in static asymmetric �rst price auctions by Lebrun (1996), Maskin and Riley

(2000), Athey (2001) and others. Maskin and Riley consider payo� functions of the form

Ui(b; c) � Pr(bidder i wins). In our model the payo� in period t to bidder i with contract

realization s0, state vector s and cost c can be written as Ui(b; c) =
�
b� c+ �Vi(!(s0; s; i)) +

�
P

j 6=i
Pr(j winsjb;s0;si;s�i)
Pr(i wins jb;s0;si;s�i)

Vi(!(s0; s; j))
�
�Pr(i wins jb; s0; si; s�i) + constant, which is of the

same form as in Maskin and Riley. Proposition 5 in Maskin and Riley states that - at a given

period t of any �rst price auction game - an equilibrium exists if preferences are monotone,

@Ui

@c
< 0, and supermodular, @2Ui

@c@b
� 0. These two conditions are satis�ed in our model for

any state s and for any continuation value Vi(s). Therefore, we can select one equilibrium

strategy pro�le for every state vector (s0; s). The resulting strategy pro�le is markovian and

by construction it is an equilibrium in the repeated game.11

11 Additionally, Proposition 3 in Maskin and Riley establishes that the distribution of
winning bids is continuous. Thus, our earlier restriction to consider continuous distribution
function of low competitors' bids does not a�ect the existence question.
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Bid distribution function: We denote the distribution function of equilibrium bids of

bidder i with state (s0; si; s�i) by G(:js0; si; s�i), and the associated density by g(:js0; si; s�i).

We denote the distribution function of equilibrium bids by a fringe bidder with state (s0; s)

by Gf (:js0; s) and the associated density function by gf (:js0; s). We sometimes suppress the f

subscript in the distribution function of fringe bids and instead write G(:js0; s) to economize

on notation. Doing so, the probability Pr(i wins jb; s0; si; s�i) can be written as
Q

j 6=i[1 �

G(bjs0; sj; s�j)]. The ex-ante probability distribution function of the event that bidder i wins

with a bid less than or equal to b is denoted by G(i)(bjs0; s), and the probability density

function associated with G(i)(bjs0; s) is given by
Q

j 6=i[1�G(bjs0; sj; s�j)]g(bjs0; si; s�i).

3. ESTIMATION METHOD

This section describes the estimation method: Subsection 3.1. explains the estimation

approach which is based on the �rst order condition of optimally chosen bids. The �rst order

condition provides an explicit function of the cost in terms of the submitted bid, the distribution

of bids, and the value function. We show that the value function, which enters the �rst order

condition, can be represented in form of a recursive equation involving the equilibrium bid

distribution function. Therefore, with an estimate of the bid distribution function we can infer

costs using the �rst order condition of optimal bids. Subsection 3.2 establishes a condition

under which the distribution function of privately known costs is identi�ed. Subsection 3.3

describes in detail our parametric speci�cation of the bid distribution function.

3.1. ESTIMATION APPROACH

We observe data on bids, contract characteristics and bidders' state variables. Our goal

is to infer privately known costs. We propose a computationally simple estimation method

that does not require solving for the equilibrium bid functions. The method is based on the

necessary �rst order condition of optimal bids and requires the assumption that observed bids

are generated by equilibrium play.

Estimation methods based on the �rst order condition in static games are well known

in the literature. Elyakime, La�ont, Loisel and Vuong (1994) estimate the beliefs about the
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equilibrium play of agents based on data on bids. The cost realization is then inferred from

the �rst order condition. We extend the estimation method to dynamic oligopoly models.

First order condition: Let �(:) denote the unobserved cost associated with a bid, which

is a function of the bid, b, the contract characteristics, s0, the state vector, s, and the value

function Vi. Let h(:js0; si; s�i) =
g(:js0;si;s�i)

1�G(:js0;si;s�i)
denote the hazard function of bids submitted

by bidder i when the state equals (s0; si; s�i). The �rst order condition for optimal bids yields

the following equation (see the Appendix for a more detailed description) for privately known

costs, �:

�(bjs0; si; s�i; h; Vi) = b�
1P

j 6=i h(bjs0; sj; s�j)
+

+�
X
j 6=i

h(bjs0; sj; s�j)P
l6=i h(bjs0; sl; s�l)

h
Vi(!(s0; s; i))� Vi(!(s0; s; j))

i
: (3:2:)

Equation (3.2.) provides an explicit expression of the privately known cost that involves the

bid; the hazard function of bids, h; and, the value function, Vi. Equation (3.2.) states that

the cost equals the bid minus a mark-down. The mark-down has two parts: The �rst part

accounts for the level of competition in the current period. The second part accounts for the

incremental e�ect on the future discounted pro�t if �rm i wins the contract instead of another

�rm. The �rst order condition for fringe bids is of the same form as equation (3.2.). However,

fringe bidders assign no value to the future, Vf = 0, and the second term in equation (3.2.)

vanishes for fringe bids.

The �rst order condition provides an explicit function of the cost for a submitted bid,

b � R. If a bid is not submitted, b > R, then the monotone relationship (3.2.) implies a lower

bound for the cost, c � �(Rjs0; si; s�i; h; Vi).

In order to infer the distribution of costs, we need estimators for the functions appearing

in the right hand side of (3.2.). These functions are: The transition function of the state, the

bid hazard function, the discount factor, and the value function. As described before, in our

auction model, the transition function of the state is a given function. An estimator of the bid
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distribution function, and thus of the hazard function, can be directly obtained from the data

on bids, contract characteristics and state variables. We describe the details of our estimator

in section 3.3. The discount factor we choose - and we examine how sensitive the estimates

are to variations in the discount factor. Finally, the de�nition of the value function is given

in equation (3.1.). However, observe that the expression of the value function in equation

(3.1.) involves cost variables that are unobserved, and decisions by multiple agents, which are

endogenous. In the next paragraphs, we explain how we overcome the problems posed by this

latter observation and obtain an approximation of the value function.

The Value Function: The key idea of our method is to notice and use the fact that

the distribution of equilibrium bids determines the discounted sum of expected future pro�ts.

Thus, there is a representation of the value function in terms of the distribution of bids only.

The following Proposition states that the value function can be represented as a recursive

equation involving the bid distribution function. The proof of Proposition 1 is given in the

Appendix.

Proposition 1.

Vi(s) = E0

(Z R

b

1P
j 6=i h(:js0; sj; s�j)

dG(i)(:js0; s)+�

nFX
j=0;j 6=i

"
Pr(j winsjs0; si; s�i)

+

Z R

b

h(:js0; si; s�i)P
l6=i h(:js0; sl; s�l)

dG(j)(:js0; s)

#
� Vi(!(s0; s; j))

)
: (3:3:)

The value function representation in Proposition 1 has two parts: The �rst part ac-

counts for bidder i's current expected pro�ts. The second part accounts for bidder i's sum

of discounted expected future payo�s. Notice that the terms in square brackets in (3.3)

can be interpreted as probabilities, as they sum to one, since Pr(i winsjs0; si; s�i) =P
j 6=i

R R
b

h(:js0;si;s�i)P
l6=i

h(:js0;sl;s�l)
dG(j)(:js0; s).

The proof of the Proposition is based on two observations: First, we may write the

probability of winning as a function of the distribution of bids by other bidders, ignoring
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dependence of other bidders' bids on costs' draws. Thus, each bidder dynamic game is reduced

to a single agent dynamic decision problem where each bidder maximizes the discounted sum

of future payo�s taking as given the equilibrium bid distribution associated with other bidders.

Still, this single agent dynamic decision problem does involve bidder i's privately known costs

which are not observed. Our second observation is that the �rst order condition of optimal

bids gives an explicit expression of bidder i's unknown costs in terms of her equilibrium bids

and the equilibrium bids distribution. Substituting this expression into the value function

yields an expression involving the distribution and the density of equilibrium bids only.

Approximation of the Value Function: Numerical methods can be used to approximate

the value function based on equation (3.3.), which we describe next. The assumption of a

symmetric markovian strategy space imposes a number of restrictions on the shape of the

value function which facilitates the approximation. In particular, Pakes (1994) shows that

the number of coeÆcients in a Jth order polynomial approximation does not increase as the

number of bidders increases. The reason is that symmetric markovian strategies require that

bidders with the same state follow the same bidding strategy. Thus, we can exchange the state

of two competing bidders without a�ecting the value of bidder i's expected future payo�s. As

has been shown by Pakes, in a Jth order polynomial approximation of the value function, the

polynomial coeÆcients associated with the state variable of a competitor j, sj, are identical

for all j 6= i, or, in other words, their identities do not matter. In section 5, we discuss in

detail the variables entering the value function approximation. In our case, the dimensionality

of the approximation is reduced to a four dimensional problem for each bidder.

Numerical methods to approximate the value function based on equation (3.3.) are dis-

cussed in more detail in Judd (1998). We briey summarize the method we use: We select

a grid of state vectors Ŝ = (s1; : : : ; sm) by randomly drawing 200 states from the distri-

bution of observed states. We numerically solve equation (3.3.) for every bidder on this

grid. We restrict the range of the transition function ! to Ŝ by de�ning a transition func-

tion !̂(s0; s; j) = fs 2 Ŝjs is closest to !(s0; s; j)g. For every point s 2 Ŝ we calculate the

expectations on the right hand side of equation (3.3.). Speci�cally, we numerically evaluate
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the expected current period payo�,

A(s) = E0

nZ 1P
j 6=i h(:js0; sj; s�j)

dG(i)(:js0; s)
o
;

and the transition probabilities of the events that the states (s1; : : : ; sm) are reached when

bidder j wins the contract,

Bj(s) = E0

nZ �
1 +

h(:js0; si; s�i)P
l6=i h(:js0; sl; s�l)

�
dG(j)(:js0; s) � (1f!̂(s0;s;j)=s1g; : : : ; 1f!̂(s0;s;j)=smg)

o
:

In both expressions, the �rst expectation is with respect to contract characteristics. We eval-

uate the expectation with respect to contract characteristics in the following way: We select a

set of contract characteristics, Ŝ0, by randomly drawing 100 contracts from the set of observed

contracts. Contract characteristics' are modeled as independent and identical draws from the

set Ŝ0. The second expectation depends on the bid distribution function. The speci�cation

of the bid distribution function is described in the next section. We evaluate the expectation

with respect to the bid distribution function by numerical integration using the estimated

density functions dĜ(i) and dĜ(j). Using the symbol A for current period payo� and Bj for

the transition probabilities, the value function is given by the equation,

Vi(s) = A(s) + �
X

Bj(s)Vi; (3:4)

where Vi denotes the vector (Vi(s
1); : : : ; Vi(s

m))0. We can rewrite the value function in matrix

notation as: [I � �B]Vi = A; where I denotes the m-dimensional identity matrix, B de-

notes the transition matrix obtained based on the coeÆcients Bj(s) and A denotes the vector

(A(s1); : : : ; A(sm)). The value function can be expressed as:

Vi = [I � �B]�1A:

To evaluate the value function for points s 2 S, possibly outside the grid Ŝ, we approximate

the function with a quadratic polynomial.
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Estimation of the cost distribution function: With the distribution function of bids at

hand, the parameters of the bidding model can be readily inferred. To see how we infer

the distribution of costs, notice the following: First, there is a relationship between the dis-

tribution function of costs and the distribution function of bids given by F (cjs0; si; s�i) =

G(b(c; s0; si; s�i)js0; si; s�i). Second, the inverse of the bid function conditional on state vari-

ables, c = �(bjs0; si; s�i), is given in equation (3.2.). Thus, using these two relationships, we

can specify our estimator of the costs' distribution function as:

F (cjs0; si; s�i) = G(��1(cjs0; si; s�i)js0; si; s�i);

for c � �(R(s0)js0; si; s�i). Standard errors of estimates are calculated using the delta method.

A nice feature of the auction model is that the discount factor and the distribution of

costs are the only unknown parameters in the model. However, observe that our estimation

method extends to models in which the per period payo� function may depend on additional

parameters. For example the Hotz and Miller (1993) estimator can be applied.12

Next, we examine whether the distribution function of costs can be identi�ed.

3.2. IDENTIFICATION

This subsection addresses the question of under which conditions we can infer the pa-

rameters of our model. There are two related and somewhat opposing results in the literature:

Guerre, Perrigne and Vuong (2000) have established that, in the static �rst price auction, the

distribution of costs is identi�ed. On the other hand, Rust (1994) �nds that the primitives

in a dynamic decision problem with an unknown per-period payo� function are not identi�ed.

Proposition 2 establishes that our model lies in between those two extremes. First, observe

that, in our setting, the identi�cation problem consists in determining if the two underlying

primitives, which are the distribution of costs F (:j:) and the discount factor �, are identi�ed

based on expressions (3.1.) and (3.2.), and a suÆcient number of observations (bt; st0; s
t).

12 Hotz and Miller de�ne an iterative procedure for single agent dynamic decision problems
in which the value function is calculated for a given parameter vector at every step of the iter-
ation. A method of moments estimator is de�ned which compares the predicted and observed
actions based on the �rst order condition. Although Hotz and Miller consider discrete choices,
it can also be applied to continuous choices.
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Proposition 2. Suppose � is given. Then the cost distribution function F (:j:) is iden-

ti�ed on the interval [C(:); �(R()j:)].

The Proposition establishes that the truncated distribution of costs is identi�ed for a

�xed discount factor �. The truncation occurs at the point where it is not pro�table to submit

a bid, that is for costs exceeding �(R(s0)js0; si; s�i). Thus, in contrast to Rust (1994) we

obtain a partially positive answer in our model. A main reason for the apparently opposing

result is that the reward function is known in our auction model, but not known in Rust. As

in Rust (1994), the discount factor is not identi�ed and the condition in the Proposition is

necessary. To see this, notice that there can be two discount factors �1; �2, with �1 6= �2, and

associated distribution functions F1; F2, with F1 6= F2, such that (�1; F1) and (�2; F2) lead to

the same distribution function G(:j:).

3.3. BID DISTRIBUTION FUNCTIONS

So far we have described the estimation procedure to infer costs and addressed the iden-

ti�cation question. Thus, what is left to do is to specify our estimator of the distribution

function of bids. This section describes the parametric speci�cation of the bid distribution

function of fringe and regular bidders. In addition, we discuss the restrictions on parameters

implied by the bidding model and describe how we impose these restrictions on the estimation

procedure.

At an early stage of the research, we adopted Kernel methods to estimate the bid distri-

bution functions as is proposed by Guerre, Perrigne and Vuong (2000). Our estimation results

are summarized in Jofre-Bonet and Pesendorfer (2000). In this earlier work, we found that

non-parametric approaches reduce greatly the number of covariates we could use, which, in

our case, limited severely the ability of the model to capture the richness of the data. For this

reason we decided to adopt a parametric framework.

The bid distribution function is not a primitive of the model. However, Jofre-Bonet and

Pesendorfer (1999) provide the equilibrium mapping from costs into bids for a particular class

of cost distribution functions. In this paper, we select a parametrization of the bid distribution

function of regular bidders that contains that particular class of costs distribution functions as
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a special case. In other words, the example in Jofre-Bonet and Pesendorfer (1999) illustrates

a class of cost distribution functions that satis�es our parametric assumptions.

Density function of regular bidders: We experimented with di�erent speci�cations for the

density function of bids by regular bidders and we obtained the best �t with a Weibull density

function. Speci�cally, we de�ne the density function of the logarithm of bids by regular bidder

i plus one, ln(b+1), as a Weibull density function. The lower endpoint of the Weibull density

function is ln(�3 + 1). In our speci�cation, the parameters of the density are a function of the

state variables and contract characteristics. By suppressing the parameters' dependence on

these variables, we can write the density function as:

g(bj�1; �2; �3) =
h�1[ln(b+ 1)� ln(�3 + 1)]�1�1

�2
�1

i
exp�(

ln(b+1)�ln(�3+1)
�2

)�1 :

The support of bids for regular bidders is [�3;1).13 The parameters of the distribution function

consist of the constant �1, and two parameters, �2 and �3, that depend on the state variables

as will be explained below.

The density function of bids by fringe bidders is speci�ed as a beta density function. We

can write the density function as:

gf (bj�3; �4; �5) =
1

R � �3

� b� �3
R� �3

��4�1� R� b

R � �3

��5�1 1

B(�4; �5)
;

where the distributional parameter �4 is a constant; the distributional parameters, �3; �5,

depend on the state variables as will be described below; R denotes the reserve price; the

support of fringe bids is [�3; R]; and, the function B(�4; �5) denotes the beta function.14

Estimation procedure: The regularity conditions of maximum likelihood need not hold for

auction models as has been shown by Donald and Paarsch (1993). In our case a non-regularity

arises since one parameter is the boundary of the support of bids. There is a substantial statis-

tics literature including Smith (1985), Harter and Moore (1965) and Smith (1994) studying

13 In principle, it is possible to estimate di�erent supports of bid distributions for individual
bidders. However, we restrict the supports to be identical. The main reason is that, empirically,
with a small data sample, it is diÆcult to determine whether bidders have indeed di�erent
supports or not.

14 B(v; w) =
R 1
0
uv�1(1� u)w�1du.
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properties of estimation methods of the support and shape parameters for the Weibull and beta

distribution function. Smith (1985) shows that the maximum likelihood estimates of the pa-

rameters are consistent and eÆcient provided that �1; �4 � 2.15 For the case �1; �4 < 2 Harter

and Moore (1965), Smith (1985)and Smith (1994) describe a two stage estimation procedure:

In the �rst stage the lower bound is estimated using the sample minimum. In the second stage

the observation involving the sample minimum is dropped and the shape and scale parameters

are estimated using maximum likelihood. Smith (1994) considers a multi-dimensional lower

bound and proposes a linear program estimator for the lower bound to be used in the �rst

stage. Smith (1985) and Smith (1994) establish that the two stage estimation procedure is

consistent for �1; �4 > 1, and also asymptotically eÆcient, provided the density does not vanish

too fast at the lower bound, 1 � �1; �4 < 2. The above results require that �1 and �4 are one

dimensional, and allow �2; �3 and �5 to be multi-dimensional. The asymptotic results do not

readily extend to the case in which �1 and �4 are multi-dimensional.

We estimate the model using both estimation procedures. Under the two stage estima-

tion procedure, we found that �1 and �4 exceed 2. Therefore, only maximum likelihood is

eÆcient. In the following sections, we report the estimation results using maximum likelihood

estimation.

Restrictions on the parameters: As mentioned, some of the distributional parameters are

a function of state variables and contract characteristics. Nevertheless, there are a number of

restrictions on the functional form of the parameters' dependence on the state variables. First,

there are the restrictions that �2; �5 > 0, and that �1; �4 � 2. These restrictions ensure that

the conditions for a probability density function are satis�ed, that the monotonicity of the bid

hazard functions holds, which is required from the bidding model,16 and that we can apply the

asymptotic eÆciency result in Smith (1985). Moreover, we assume that bids are non-negative.

To impose these restrictions, we de�ne �j = 2 + exp�0j for j = 1; 4, and �j = exp�0j for

j = 2; 3; 5.

15 For �1; �4 < 1, the maximum likelihood estimators may be inconsistent.
16 For �1; �4 < 1, the hazard of bids can be decreasing, which would violate the condition

that equilibrium bids are monotone increasing in costs.
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The second restriction is the symmetry of the bidding functions conditional on state

variables. Bidders with the same state follow the same bidding strategy. Thus, the parameter

entering the bid distribution of fringe �rms, �03(s); �05(s), should not be a�ected by the order of

elements in the vector s. Similarly, the order of elements in the vector s�i does not matter for

parameter �02 either. We consider the following speci�cation which incorporates the described

conditional symmetry restrictions:

�0j(s0; si; s�i) = j;0 + j;1s0 + j;2	(si; s0) + j;3 �
nX
l=1

	(sl; s0) for j = 2

�0j(s0; s) = j;0 + j;1s0 + j;2 �

nX
l=1

	(sl; s0) for j = 3; 5;

where 	(si; s0) is a function that denotes the characteristics of a bidder with state si on

contract s0. The function 	(si; s0) captures the possibility that bidder characteristics may

vary across contracts.

Likelihood function: Finally, in order to estimate the density functions described above,

we have to take into account that the bid data for regular bidders are censored. We only observe

bids that are below the reserve price, Rt. Let oti be a dummy variable that equals one if we ob-

serve a bid by bidder i on contract t, and zero otherwise. In an abuse of notation, we abbreviate

the dependence of parameters on the state vector with superscripts, and write the parameter

vector for regular bidders as �it where �it = (�1; �2(s
t
0; s

t
i; s

t
�i); �3(s

t
0; s

t)). Similarly, the pa-

rameter vector for fringe bidders we abbreviate as �t where �t denotes (�3(s
t
0; s

t); �4; �5(s
t
0; s

t)).

Doing so, we may write the likelihood of regular and fringe bids as:

L =
Y
t

h nY
i=1

[g(btij�
it)]o

t
i [1�G(Rtj�it)]1�o

t
i

ntFY
j=n+1

gf (b
t
jj�

t)
i
;

where bti is the bid by regular bidder i on contract t, and btj is the bid by fringe bidder j on

contract t. We assume that the initial state s1 is exogenous. We maximize the logarithm of
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the likelihood function. Billingsley (1961) establishes the asymptotic properties of maximum

likelihood estimators for Markov processes, as the number of auctions T goes to in�nity.

The Markovian structure of the observed controlled process (s0; s; b) follows directly from

the assumption that the cost realizations are conditionally independently distributed, the bid

functions are Markovian, and the assumption that the distribution of contract characteristics

is exogenous. A closely related result is Theorem 3.3 in Rust (1994).

The next section describes the data and the industry. Section 5 reports the estimation

results.

4. THE DATA AND INDUSTRY

In this section, we describe some characteristics of the highway construction industry

with emphasis on California. We present our data and describe the awarding process for

contracts. In addition, we report reduced form evidence on the e�ect of previously won and

uncompleted contracts on bid submission and bid level decisions.

4.1. THE CALIFORNIA MARKET

According to the 1992 US Census of Construction Industries17 a total of $35.3 billion

were spent during 1992 on highway and street construction activities. In California, the total

amount spent in highway construction was $2.7 billion, 93% of which was done by 896 estab-

lishments located in California. Transportation costs play an important role in this industry,

and, therefore, we consider California as a market.

The data: Our data consist of California Department of Transportation (Caltrans) con-

tract awards for highway and street construction made between December 1988 and May

1999.18 Information on bids is available from May 1st, 1996 through May 31st, 1999. During

the latter period, Caltrans advertised 2,566 projects from which 2,207 were �nally awarded,

17 U.S. Department of Commerce, Economics and Statistics Administration, Bureau of
Census, 1992.

18 We obtained our data from the California Department of Transportation. The OÆce of
Engineers publishes the data on the web: http : ==www:dot:ca:gov=hq=esc=oe=awards=bidsum:
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343 cancelled or postponed19 and 16 received no bids.

The bid data contain the following information on every project awarded: Bid Open-

ing Date; Contract Number; Location; Reservation Price; Number of Working Days and the

Engineers' Estimate. Additionally, the data provides the Name, the Address, the Amount of

the Bid and the Rank of the Bid for each of the bidding �rms. In order to obtain a measure

of past performance and maximum capacity of the �rms active in our period of analysis, we

complement the bid data with the Caltrans Contract Performance database. This source con-

tains information on contracts awarded between December 1988 to May 1999. It provides the

actual dollar amount received for the contract, the contract duration and the identity of the

contractor.

The Awarding Process: Contracts are awarded by the California Department of Trans-

portation subject to Federal Acquisition Regulations and, therefore, is very similar to other

states' procedures. The process can be described in three steps: First, the Caltrans' Headquar-

ters OÆce Engineer announces a project that is going to be let and the invitation to submit

bids starts. This period is called the Advertising period and its length ranges between 4 and

10 weeks, depending on the size or complexity of the project. Occasionally, the Advertising

period will be reduced to expedite project scheduling. Second, potential bidders may collect

bid proposals that explain the plans and speci�cations of the work required, i.e., the project's

characteristics, terms and identi�cation number. Based on the proposal, bidders may submit

a sealed bid. Bidders do not know who else submits a bid. For each bid, Caltrans checks

that the bidding �rm is among the �rms that are quali�ed to do business with Caltrans.20

19 According to the Federal Acquisition Regulation, part 14, a contract might be cancelled
before opening if either the project is no longer needed or if the advertised contract characteris-
tics become obsolete or inadequate and have to be revised. Other reasons to cancel are that all
bids are either unreasonable or collusive or both. Cancellation can also occur if all reasonable
bids belong to bidders that can not prove to be responsible. Additionally, the awarding agency
might postpone the opening bids if it believes that a large fraction of bids have been delayed
in the mail or other disruptive circumstances interfered in the regular reception of bids.

20 Prior to the bidding, potential bidders have to qualify for contractual work for the
Department of Transportation. In addition, �rms are required to deposit a predetermined
amount of funds that have to be available. Receipt of funds clearance, permit issuance and
local agencies approvals are needed for the bid of a �rm to be accepted. A submitted bid can
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Third, on the letting day, the bids received are unsealed and ranked. The project is awarded

to the lowest bidder provided it is below the reserve price. The reserve price consists of a �xed

non-random dollar amount which is assigned prior to the bidding. Additionally, in order to

win the project, it is required that the lowest bidder ful�lls certain responsibility criteria. The

bid is accepted if all computations and cost imputations are considered correct. After each

letting, a list of all bids and their rankings is announced and made accessible to the public.

The winning �rm is awarded the project no more than 30 days after the letting date.

The highway paving industry has already been studied by a number of authors. Porter

and Zona (1993) and Feinstein, Block and Nold (1985) study issues of bidder collusion. Bajari

(1997) studies asymmetry between bidders. He estimates a static bidding model based on a

numerical calculation of equilibrium bid functions.

4.2. DESCRIPTIVE STATISTICS

Between May 1st of 1996 and May 31st of 1999, the Caltrans awarded 2,207 contracts.

The total value of the contracts was $4,661.73 million.

Contracts are o�ered for sale on a frequent and regular basis. Typically, there are several

letting dates per week. According to our data, the average duration between letting dates

equals 2.96 days. Several contracts may be o�ered on a given letting date and contracts are

o�ered in 11 distinct regions of the state.

(TABLE 1A and TABLE 1B about here)

Table 1A reports that on average there were 4.63 bidders per contract, ranging from 0

to 19 bidders across contracts. A total of 10,289 bids were received for these contracts and 16

contracts received no bids.21 Table 1B reveals that a total of 96 contracts received one bid,

285 contracts received two, 393 contracts received three bidders and so on.

be rejected if either it fails to conform to the essential requirements of the invitation for bids;
or does not conform to the applicable speci�cations without having been authorized to do so;
or fails to conform to the delivery schedule or permissible alternates stated in the invitation.

21 A total of 1,466 submitted bids, or 12% of all bid observations, violate the reserve price
requirements. We exclude these bids from the analysis. These bids may have been submitted
erroneously. Alternatively, bidders may have expected that the reserve price rule would not
be enforced. According to conversations with Caltrans, it is indeed possible that the reserve
price is altered ex post. Nevertheless, our data do not include information on bids below the
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Table 1B illustrates that in highway procurement competition and informational asym-

metries may be important. As the number of bidders increases, the relative di�erence between

the low bid and the Caltrans estimate falls. The low bid is 11% above the estimate when there

is one bidder, and the low bid falls to 14% below the estimate when there are nine or more

bidders.

Money left on the table measures the di�erence between the low and second lowest bid.

As expected, the di�erence declines as the number of bidders increases. However, it does not

approach zero. When there are nine or more bidders, the money left on the table is about 6%

of the low bid, which suggests that the magnitude of informational asymmetries may be quite

large.

Fringe and regular bidders: In total, more than 500 bidders submit a bid at least once.

Most of these bidders submit a bid only once, or only on a few occasions. For these bidders, the

number of bid observations are too few to make inference about their behavior in a repeated

game setting. We classify these bidders as fringe bidders. On the other hand, there is a small

number of bidders that submit bids regularly and win a substantial fraction of contracts. With

\regular" bidders we denote the set of the largest 10 �rms in dollar value won that submit a

bid at least 80 times during the sample period.22 The number of regular bidders per contract

ranges from 0 to 4 and has an average of 0.53. Regular bidders win 25% of the total dollar

value awarded and 17% of all contracts. For these 10 regular bidders, we supplement the data

with information on the locations of their plants. Then, for each �rm, we create a variable

called distance that measures the distance between the contract location and the �rm's closest

plant.

reserve price being rejected, or bids above the reserve price being accepted. The lack of data
points that fall into either of these two categories, suggests that the probability of these events
is low. In our analysis we assume that the reserve price rule is binding.

22 The estimation results and, in particular, the e�ect of backlog, remain very similar as
we vary the de�nition of regular bidders.
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4.3. THE EFFECT OF BACKLOG

During our sample period, the average contract duration is 156 days. We de�ne backlog

as the amount of work measured in dollars that is left to do from previously won projects.

The backlog variable is constructed in the following way: For every contract previously won,

we calculate the amount of work measured in dollars that is left to do by taking the initial

size of the contract and multiplying it by the fraction of time that is left until the project's

completion date. For contracts that �nished prior to the end of the sample period, we use the

actual completion date of the contract. For contracts that did not �nish by the end of the

sample period, we use the planned completion date. Based on this calculation, we determine

the total amount of work measured in dollars that is left to do at any given point in time.

We standardize the backlog variable by subtracting the bidder speci�c mean (calculated using

daily observations) and dividing this di�erence by the bidder speci�c standard deviation. The

resulting backlog variable is a number that is comparable across bidders.23 There is substantial

variation in the backlog variable. On average on about 10% of the observations a regular bidder

has almost no capacity committed at the letting day, while on about 5% of the observations,

the �rm is about two standard deviations above its average backlog.

The e�ect of backlog in a simple dynamic bidding game is described in Jofre-Bonet and

Pesendorfer (1999). Using a theoretical model, they examine the case in which bidders with

above average backlog levels, or capacity constrained bidders, have a higher cost, in the sense

of �rst order stochastic dominance, than unconstrained bidders. A prediction from the bidding

model is that constrained bidders bid less frequently and higher than unconstrained bidders.

Alternatively, there may be bene�ts to performing several contracts simultaneously which we

may call expertise e�ect. Suppose the expertise e�ect lowers the cost of additional projects in

the sense of �rst order stochastic dominance. In this latter case, a prediction of the bidding

23 We experimented with di�erent de�nitions of the backlog variable. In particular, we also
used a variable that measures the total backlog from previously won uncompleted contracts
divided by the maximum dollar amount won during the sample period. The estimation results
were very similar. We prefer the described speci�cation because we do not have an accurate
estimate of the maximum capacity. We also experimented with regional backlog variables. The
regional e�ects appear less important perhaps because capacity and resources can be moved.
Therefore, we report the results of the analysis when only the aggregate backlog level is used.

{ 24 {



model is that bidders with high backlog bid more frequently and lower than bidders with

low backlog. Next, we assess the presence of these opposing intertemporal e�ects by using a

reduced form analysis.

(Table 2)

Reduced form estimates: Table 2 reports nine columns of estimation results. The �rst

three columns report Probit estimates of the decision to submit a bid. The fourth to sixth

column report Tobit estimates of the bid level decision. The seventh to ninth column report

Heckman estimates of the bid level decision. We observe bids only if they are below the reserve

price. To apply the Tobit and Heckman analysis we consider a transformation of the bid. The

dependent variable equals the reserve price minus the bid and is divided by the engineers'

estimate. The dependent variable is negative if the bid is not observed, and it is positive if the

bid is below the reserve price. Explanatory variables include contract speci�c characteristics,

such as the estimate and the number of working days, and bidder speci�c characteristics such

as the �rm's size, measured as the number of plants in the region, the distance of the bidder's

closest plant to the project location, and the bidder's backlog. For each regression, we report

three sets of estimates: without any �rm speci�c dummy variables, with a set of �rm speci�c

�xed e�ects, and with a set of �rm speci�c backlog variables.

Backlog has a signi�cant e�ect in all speci�cations. The sign of the coeÆcients suggests

the presence of capacity constraints. The magnitude of the e�ect is substantial. An exami-

nation of the coeÆcients reveals that, on average, a constrained bidder is 50% less likely to

submit a bid than an unconstrained bidder. An increase of the backlog from �1 to 1 increases

the bid level between 2:5% and 7:6%.24

Asymmetries between bidders accounted for by observable variables are important. In

addition to capacity e�ects, asymmetries between bidders due to location and size have signi�-

cant e�ects. Distance to the project decreases the probability of submitting a bid and increases

the bid level. The size of the bidder, measured by the number of plants within the region,

increases the probability of submitting a bid. The e�ect of size on the bid level decision is

24 Note that if a �rm's backlog changes from -1 to +1, its committed capacity increases
from one standard deviation below its average value to one standard deviation above it.
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negative in the Tobit model and not signi�cant in the Heckman model.

Bidder heterogeneity not captured by our observables is also present. Firm speci�c �xed

e�ects are included in columns two, �ve and eight. In all three speci�cations we can reject the

null of no signi�cant �rm �xed e�ects.25 A possible explanation is that the paving technology

between �rms di�ers beyond what our measures of �rm size, backlog and location capture.

Ideally, we would like to have additional variables measuring �rm heterogeneity.

Bidder heterogeneity not captured by our observables may account for part of the backlog

e�ect, which could bias our estimates. We test whether the coeÆcient of the backlog variable

changes as we introduce �rm speci�c �xed e�ects. As is evident in the Table, the coeÆcients

do not change signi�cantly. Thus, excluding unobserved �rm heterogeneity does not a�ect the

estimates of the backlog e�ect.

As described in section 2, our model requires that bidders behave symmetrically condi-

tional on observables. We can test this assumption by including a set of backlog and bidder

identity interaction terms. We report these results in columns three, six and nine of Table 2.

We �nd that the interaction terms are not signi�cant for the majority of �rms. An examina-

tion of individual coeÆcients reveals that 21 out of 27 coeÆcients are not signi�cantly di�erent

from zero. Although we can reject the null of no signi�cant �rm speci�c backlog e�ects for all

�rms jointly in all three columns26, we cannot reject the null that �rm speci�c backlog e�ects

are zero for eight of the ten �rms in all three speci�cations.27 The backlog variable has the

same e�ect for eight of ten bidders. The e�ect di�ers for two �rms: One exception occurs for

25 Under the null the test statistic is a chi-squared random variable with nine degrees of
freedom in the probit and it equals 366:75. In the Heckman model the test statistic is a chi-
squared random variable with 18 degrees of freedom and it equals 388:12. For the Tobit model
we constructed an F-test. The test statistic equals 35:35 with (9, 22215) degrees of freedom.

26 Under the null, the test statistic is a chi-squared random variable with nine degrees of
freedom in the probit and it equals 70:99. In the Heckman model, the test statistic is a chi-
squared random variable with 18 degrees of freedom and it equals 74:0. For the Tobit model,
we constructed an F-test. The test statistic equals 7:42 with (9, 22215) degrees of freedom.

27 Under the null, the test statistic is a chi-squared random variable with seven degrees of
freedom in the probit and it equals 7:48. The test statistic is a chi-squared random variable
with 14 degrees of freedom in the Heckman model and it equals 10:78. For the Tobit model,
we construct an F-test. The test statistic equals 0:95 with (7, 22215) degrees of freedom.
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�rm �ve, where the sign of the backlog e�ect is reversed. The other exception occurs for �rm

eight, where the e�ect of backlog is of larger magnitude. Overall, we interpret this evidence

as partially supportive of our assumption of symmetric behavior conditional on observables.

The estimates in Table 2 provide preliminary support for our dynamic bidding model in

at least three ways: First, capacity constraints appear important. Second, bidders' additional

state variables, location and size, are important. Third, a test of identical backlog e�ects

cannot be rejected for the majority of bidders.

5. ESTIMATION RESULTS

This section discusses the estimates of the econometric model. Subsection 5.1 reports

the estimates of the bid distribution functions. We discuss how well the estimates predict the

data. We then illustrate the predicted e�ect of selected variables. Subsection 5.2. discusses

the estimates of the value function. Subsection 5.3. discusses the estimates of the bidding

function and inferred costs. The estimates suggest that the e�ect of the backlog variable is in

accordance with the expected e�ect under the presence of capacity constraints. Moreover, the

e�ect is substantial, suggesting that capacity constraints play an important role in highway

bidding.

5.1. ESTIMATES OF THE BID DISTRIBUTION FUNCTIONS

The parameter estimates are reported in Table 3. Columns one, two and three report

the parameter estimates for regular bids, for fringe bids and for the lower bound respectively.

Columns four, �ve and six report the second set of parameter estimates which include addition-

ally a set of �rm identity and backlog interaction variables. The variables entering Table 3 are

bidders' characteristics and contract characteristics. Bidders' characteristics include the stan-

dardized backlog from previously won uncompleted projects, the distance between the closest

plant of the bidder to the contract location, and the number of plants within the region of the

contract. The contract characteristics include the engineers' estimated cost of the project, the

number of working days, the reserve price and the number of fringe bids. Some fringe bids and

a small number of regular bids are (substantially) below the engineer's estimate. We believe

that these bids represent erroneous bids by inexperienced bidders, or coding errors and we
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omit bid observations that are more than 15% below the engineer's estimate.28 Keeping the

bid outliers in the data reduces the lower bound estimate which ampli�es the per period payo�

estimates, the value function estimates, and also the e�ect of the backlog variable on the cost

estimates. Thus, to the extent that our data selection rule may inuence our estimates, our

results provide a conservative assessment of the backlog e�ect.

(Table 3)

As mentioned earlier, we also estimated the bid distribution functions using the consistent

but less eÆcient two stage approach described in Smith (1985). The point estimates are qual-

itatively similar to the results reported here and are reported in Jofre-Bonet and Pesendorfer

(1999).

Goodness of Fit: As a measure of the goodness of �t of the model, we randomly draw bids

from the estimated distribution of bids and compare them to the observed bids. To account for

contract heterogeneity, we normalize bids by dividing them by the reserve price. The estimates

predict well the observed distribution of fringe bids. We draw 10,000 fringe bids. On average,

the predicted fringe bid equals 78.01% of the reserve price with a standard deviation of 11.71%.

The observed fringe bid equals 77.72% of the reserve price with a standard deviation of 11.53%.

The di�erence between the two means is not signi�cant.

The predicted probability of observing a regular bid equals 5.97%. In the data, the

probability of observing a regular bid equals 5.96%. The di�erence between the two numbers

is not signi�cant. Conditional on observing a regular bid, the mean predicted bid equals

82.36% of the reserve price with a standard deviation of 12.02%. The observed regular bid

equals 79.03% with a standard deviation of 10.40%. We can reject the null hypotheses of equal

mean and we reject the null of equal variance. Conditional on observing a regular bid, the

predicted bid is, on average, higher and has a higher standard deviation. A closer inspection of

the distribution of regular bids conditional on observing a regular bid reveals that the di�erence

between the predicted and observed distribution is attributable to a small fall in the number of

28 In total we omit 25 regular bids and 273 fringe bids. Low bids occur mostly for small
contracts and low regular bids do not arise on contracts with engineer's estimates exceeding
$1,000,000.
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bid observations close to the reserve price. Indeed, a closer �t is obtained when we estimate the

bids' distribution function as a product of a Weibull and a Beta distribution functions, instead

of the Weibull distribution function that we use. When using the Weibull-Beta alternative

speci�cation, we obtain that, conditional on observing a regular bid, the resulting predicted

mean bid equals 78.81% of the reserve price with a standard deviation of 9.81%. For this

speci�cation, the observed mean is not signi�cantly di�erent from the predicted mean. The

reason for the improvement is that the estimated parameters for the Beta density permit a fall

in density close to the reserve price, which improves the �t. But, the Weibull-Beta speci�cation

violates the monotonicity assumption of the hazard function which is required by the bidding

model. Thus, we decided to impose the monotonicity condition in the estimation and report

the estimates obtained using the Weibul distribution function.29

The e�ect of individual variables can be illustrated by evaluating their e�ect on the

probability of submitting a bid at sample average values of explanatory variables. In general,

the predicted e�ect con�rms the intuition: The probability of submitting a bid decreases

monotonically in backlog, which is consistent with the notion of capacity constraints. An

increase in the number of competing fringe �rms has a negative e�ect on the bid submission

decision. Distance a�ects the probability of bid submission negatively, and the number of

plants in the region has a positive e�ect.

29 The fall in the number of bid observations close to the reserve price has at least two
explanations: First, bidders do not fully understand the reserve price rule. As described before,
about 12% of all bid observations violate the reserve price requirement, which indicates that
at least some bidders did not interpret the reserve price rule correctly. In general, the reserve
price rule is complicated, varying with contract size and equaling a �xed dollar amount and
a certain percentage (typically 10%) above the contract's budget. Additionally, a change in
the reserve price rule occurred in the middle of the sample period. Second, Caltrans can use
a secret reserve price in addition to the announced reserve price rule, by rejecting bids (below
the reserve price) that are deemed to high. The data do not substantiate the importance
of the secret reserve price rule, as there are no observed bids below the reserve price that
were rejected. However, the lack of data may reect that most winning bids are substantially
below the reserve price and does not necessarily indicate the absence of the secret reserve price
rule. Both explanations can account for the fall in observations close to the reserve price.
Unfortunately, the data are not rich enough to explore these explanations further. For these
reasons, we decided to impose the monotonicity requirement in the estimation.
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Backlog: For regular bidders, the backlog variable enters in the scale parameter �2. Our

assumption of symmetric bidding behavior conditional on observables requires that backlog

has the same e�ect across bidders. We can test this assumption using our second set of

estimates reported in columns four, �ve and six in Table 3. This second set of coeÆcients was

estimated including additionally a set of bidder identity and backlog interaction variables. We

�nd that di�erences in the backlog e�ect between bidders are not signi�cant for the majority

of bidders, reinforcing our earlier evidence in Table 2. An examination of bidder identity and

backlog interaction variables reveals that for seven cases out of nine, the bidder speci�c backlog

coeÆcients are not signi�cantly di�erent from zero. The two signi�cant e�ects are for �rms �ve

and eight. The null of jointly no bidder speci�c backlog e�ects is rejected. The test statistic

is a chi-squared random variable with nine degrees of freedom and equals 66:72. However,

taking only those seven �rms with backlog e�ects not signi�cantly di�erent for zero, the null

of jointly no signi�cant backlog e�ects cannot be rejected. The test statistic is a chi-squared

random variable with seven degrees of freedom and equals 7:88.

(Figure 1)

The e�ect of the backlog variable on the bid distribution of regular bidders is illustrated

in Figure 1. It shows the distribution function between the lower bound of bids and the

reserve price and evaluated at sample average values of state variables. Two distribution

functions are reported: The solid function assumes a backlog equal to -2 (unconstrained bids)

and the dashed function assumes a backlog equal to 2 (constrained bids). The dotted lines

represent 90% con�dence intervals. The con�dence interval in Figure 1 (and all subsequent

estimates' standard errors) are calculated using the delta method. The Figure illustrates

that the distribution of constrained bids stochastically dominates, in the �rst order sense, the

distribution of unconstrained bids. On average, unconstrained bidders are about twice as likely

to submit a bid than constrained bidders. This �nding con�rms the importance of capacity

constraints.

{ 30 {



5.2. ESTIMATES OF THE VALUE FUNCTION

As arguments of the value function approximation we include a three-dimensional vector

for each bidder which de�nes her state. The three dimensional state variables are the bidder's

backlog, plant locations and number of plants in all regions.

The value function is de�ned as the expected sum of future per period payo�s, where

expectations are taken over contract characteristics. Per period payo� realizations are a func-

tion of bidders' state and the contract characteristics and are evaluated after the contract

realization has been observed. The variables entering the per period payo� realization are

the variables in Table 3, which include the contract characteristics, bidders' backlogs, bidders'

distances to the contract, and bidders' number of plants in the contract's region. Notice that

the distance measure entering the value function will di�er from the distance measure entering

the per period payo� function. The per period payo� function includes the actual distance to

the contract, while the value function is evaluated before contract characteristics are known.

Thus, plant locations - or the distribution of possible distances induced by the distribution of

contract characteristics- are the distance measure entering the value function instead. The

same distinction applies to the number of plants per region variable.

We approximate a value function for each bidder i separately. Since, bidder i's plant

locations do not change over time and their level e�ect is accounted for in the per period

payo� function, they do not enter bidder i's value function approximation as an argument.

The same reasoning applies to bidder i's size measure (number of plants in the region). Thus,

the only bidder i's state variable that remains in bidder i's value function approximation is

bidder i's backlog.

Thus, taking into account the observations above, the value function is approximated

using four components: The bidder's own backlog and three state variables per competitor:

Backlog, plant locations, and their number of plants per region. Similarly to bidder i's own

plants and size, competitors' plant locations and number of plants do not have a direct e�ect

on the value function. This e�ect is already accounted for in the per period payo� function.

As explained in section 3, we make use of the symmetry property to simplify the value

function approximation. However, the reduction in dimension by means of the symmetry
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property requires the inclusion of interaction terms between competitor j's backlog and her

plant locations and size (for all j 6= i). Thus, in bidder i's value function approximation,

there still remains an indirect e�ect of the competitor's distribution of possible distances to

contracts and size in the region. This indirect e�ect is manifested in the interaction terms

involving the competitor's possible distances and size with backlog, which does change from

period to period. As measures of each competitor's locations and regional size, we include the

average distance to contracts and the average number of plants per region for every competitor.

These averages are calculated using the observed contracts. We assume that these variables

adequately measure the distribution of distances and the distribution of the number of plants

per region.

(Figure 2)

The approximation of the value function for bidder 3 is depicted in Figure 2. We arbitrar-

ily select bidder 3 who is the third largest bidder in dollar value won. We assume the projects

are equally spaced over time and since our data contain on average 709 projects per year this

assumption implies that a project is o�ered for sale about every 12 hours.30 We impose an

annual discount factor of 0.80. In the Figure the competitors' three state variables are �xed

at their sample averages. The plot illustrates the discounted expected future pro�t of bidder

3 by varying the backlog variable of bidder 3 between -1.6 and 1.6. The dotted lines depict

the 90% con�dence interval calculated using the delta method.31

The average discounted sum of payo�s for bidder 3 equals $15 million. Other regular

bidders discounted sum of payo�s ranges between $6 million and $59 million. The assumed

annual discount factor of 0.8 is a conservative measure for the e�ect of the future. Increasing

the annual discount factor from 0.8 to 0.9 increases the discounted sum of payo�s by a factor

30 To permit randomness in the timing of projects, a shorter period length could be used
and it could be assumed that with a certain probability no projects is o�ered for sale.

31 To calculate the derivative of the value function with respect to the parameter vector,
we take the derivative in equation (3.4) which yields, V 0

i = A0 + �
P

B0
jVi + �

P
BjV 0

i . We
numerically calculate the derivatives A0 and B0

j and the derivative of V 0
i is then given by

V 0
i = [A0 + �

P
B0
jVi]=[1� �

P
Bj ].
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of 2, approximately. The accuracy of the computations depend on the �neness of the selected

grid of states. Doubling the number of state points, from 200 to 400, alters the value function

of bidder 3 by a very small amount only. The di�erence between the value functions based

on 200 and based on 400 states equals at most 1%, or $180,000, and the di�erence equals less

than 0:01% on average which amounts to $7,600.

The e�ect of backlog on the value function in Figure 2 is negative, which is in accordance

with the expected e�ect under capacity constraints. In Figure 2, backlog reduces the value

function in total by about 30%. Value function estimates for other bidders are of di�erent

magnitude, but in general similar shape. An exception is bidder 5 for which the value function

increases initially and then decreases as backlog increases. To illustrate the backlog e�ect for

the average bidder we regress the value functions of bidders evaluated at the 200 states on a set

of bidder speci�c dummy variables and the state variables. To capture possible non-linearities

we include both, linear and quadratic coeÆcients of variables. We �nd that the predicted value

function is about 31% higher at a backlog level of -1 than at a backlog level of 1.

5.3. ESTIMATES OF COSTS

First, we illustrate the equilibrium bid functions. Then, we describe mark-ups and cost

estimates.

(Figure 3)

The equilibrium bid function for bidder 3 is illustrated in Figure 3. The bid function

is estimated using equation (3.2.). The bid function is plotted by �xing the state variables

at sample average values for bidder 3 and varying the cost. In addition to the bid function,

the 45 degree line is reported. As is evident in the Figure, the bid increases with the cost.

In addition, the distance between the bid and the cost decreases as the cost increases. The

bid function is of similar shape for other contract characteristics and state variables. In some

instances, the di�erence between bids and costs is large in magnitude at the lower end of the

support of bids which can result in a negative cost. We �nd negative costs implausible and set

the cost to zero if the inferred cost would be negative.

The mark-up denotes the di�erence between the bid and the cost of a bidder. In the
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Figure, the mark-up is the distance between the bid and the 45 degree line. An examination of

all observed bids by bidder 3 reveals that the median estimated mark-up for this bidder equals

17.1% of the bid. The mean mark-up is higher and equals 27.3% of the bid. The estimated

mark-up di�ers across bidders. The median mark-up across all observed regular bids equals

33.8% and the mean mark-up equals 40.2%. Although the magnitude of the mark-up may

appear large, it appears in accordance with descriptive evidence in Table 1a and Table 1b.

The di�erence between the lowest and second lowest bid is, on average, 9% of the value of the

bid.

A substantial portion of the mark-up of regular bidders is attributable to the loss in

future discounted value due to limited capacity. This loss reects the cost of winning today

versus winning later. We can measure this loss based on equation (3.2.) which decomposes the

mark-up into two parts: The �rst part reects contemporaneous competition. The second part

measures the loss in value of winning today versus winning later. For bidder 3, on average,

across all observed bids 43.0% of the mark-up is attributable to the second part, which is the

option value of winning today versus winning later. The number varies across bidders. Across

all regular bidders 51.8% of the mark-up is attributable to the second part.

The mark-up estimates depend on the assumed discount factor. As we increase the annual

discount factor, from 0.8 to 0.9, the following changes take place: For bidder 3 the median

estimated mark-up becomes 19.5% of the bid and the mean mark-up increases to 35.3% of

the bid. The median mark-up across all observed regular bids becomes 36.1% and the mean

mark-up equals 45.6%. Finally, when the discount factor is 0.9, the option value for bidder i

accounts for about 52.1% of the mark-up, and across all regular bidders for about 55.5%.

(Figure 4)

Costs' Estimates: Figure 4 depicts the distribution function of costs for bidder 3. Dis-

tribution functions are reported for two values of backlog and holding other state variables at

sample average values. The backlog values are -2 and 2. The dotted lines represent 90% con�-

dence intervals which are calculated using the delta method. The estimated cost distribution

functions are truncated at the point at which the equilibrium bid corresponding to the cost

equals the reserve price and are reported for a common range of costs. Figure 4 documents
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that the cost distribution of the constrained bidder stochastically dominates in the �rst order

sense the cost distribution of the unconstrained bidder. On average, the probability that the

cost is below a certain threshold is more than twice when the bidder is unconstrained than

when the bidder is constrained. Similar to our earlier evidence in Table 3, we �nd that cost

realization depend not only on the bidder's own state variables, but also on other bidders'

state variables. A possible explanation is that shortages of paving workers or shortages of

paving equipment caused by high backlog levels of bidders can increase the contract costs for

all bidders.

6. THE EFFECT OF BACKLOG AND INEFFICIENCIES

This section reports three applications of the estimates: First, we measure the bene�ts

to the auctioneer of increasing capacity of all bidders simultaneously. Second, we measure the

short run bene�ts of individual bidders to an increase in their capacity. Third, we determine to

what extent the auction rule does not select the low cost bidder due to the presence of capacity

constraints and bidder asymmetries. We quantify the magnitude of resulting ineÆciencies.

6.1. PRICE EFFECT

We have shown that individual regular bids, costs and future pro�ts depend on the

backlog level. Next, we report the hypothetical e�ect on the price paid for the service by

the auctioneer as the backlog level of all regular bidders is increased simultaneously. We may

interpret the e�ect as the bene�t to the auctioneer of an increase in capacity of all bidders.

We report the price e�ect for a hypothetical contract on which the fringe bidders are absent.

Due to the absence of fringe bidders, the price equals the low regular bid which is the low

bid submitted from the set of regular bids. The reason why we select a contract on which

the fringe bidders are absent is that their dependence on backlog was not modeled, as fringe

bidders' backlog level is not observed in our data.

To compute the price e�ect we conduct the following exercise: We select the contract with

an engineers' cost estimate equal to the sample average. For each regular �rm, we randomly

draw a bid from the bid distribution under the assumption that their backlog equals -2. Then,

we calculate the price which equals the low bid from this set of regular bids. Similarly, we
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randomly draw bids from the bid distributions of regular bidders under the assumption that

their backlog equals 2. Then, we determine this draw's low regular bid. We repeat this

sampling procedure to obtain 1,000 observations. Finally, we compare the distribution of

prices between both cases.

The price e�ect is substantial. When backlog of all regular bidders equals -2, the average

price equals $539,845. When backlog equals 2, the average price increases to $657,016. The

di�erence in the mean is signi�cant and equals about 18% of the average at the -2 backlog

level.

We repeat the above calculations for backlog levels equal to -1 and 1. The di�erence in

the average of the price between backlogs of -1 and +1 is signi�cant and equals about 12% of

the average price at a backlog of -1. We also conducted the experiment for other engineers'

cost estimates with similar results.

We can conclude that the bene�ts to the auctioneer of an increase in available bidder

capacity is substantial. Next we examine the e�ect of available capacity on bidders' returns.

6.2. PERIOD RETURNS

We illustrate the e�ect of available capacity on the ex ante expected period return of an

individual regular bidder. The bene�ts of an additional unit of capacity is an important part

in the equation that determines the optimal capacity choice as a function of the returns to

capacity and the cost of investing in capacity. The cost of additional capacity in the highway

paving industry is diÆcult to measure and we do not attempt to quantify it. However, our

estimates permit us to assess the short run auction returns due to a reduction in backlog and

holding total bidder capacity �xed. We calculate the ex ante expected period auction return

before contract characteristics and costs are observed. We emphasize that the exercise looks

at one auction only. The long run e�ect of backlog on bidders' returns were illustrated earlier

in the discussion of the value function estimates in Section 5.2. and exempli�ed in Figure 2.

The period returns are de�ned as the �rst expression on the right hand side in equation

(3.1.). Due to our conditional symmetry assumption, variations in period returns are entirely

determined by variations in the state variables. To assess bidder speci�c returns, we take a

{ 36 {



sample of 200 random draws from the observed distribution of states for each regular bidder

and we obtain the short run auction return corresponding to each one of the 200 states, for

each regular bidder. Our calculations indicate that regular bidders expect to receive $9,200

per contract on average, but there is substantial variation in ex ante expected returns for

individual regular bidders ranging between $2,000 and $18,400 across bidders.

The e�ect of available capacity on ex ante expected returns can be illustrated by regress-

ing these ex ante period returns on a set of bidder speci�c dummy variables and the state

variables. To capture possible non-linearities we include both linear and quadratic coeÆcients

of the state variables. Using the estimated backlog coeÆcient, we conduct counterfactual pre-

dictions by varying the backlog level, while holding the other variables constant at sample

average.

We �nd that the ex ante expected period payo�s are about 127% higher if backlog equals

-2 than if the backlog equals 2, they are about 71% higher if backlog equals -1 than if the

backlog equals 2, they are about 32% higher when backlog equals 0 than if the backlog equals

2, and they are about 8% higher when backlog equals 1 than if the backlog equals 2. If we

compare the e�ects to our earlier results on the value function, we can conclude that the e�ect

of capacity is of larger magnitude in the short run than in the long run.

The illustration shows that available capacity is important in the bidders calculus of

bidding.

6.3. INEFFICIENCIES

Next, we assess the magnitude of the ineÆciencies. Notice, that due to the presence of

intertemporal e�ects and due to bidder heterogeneity, a �rst-price auction need not select the

eÆcient �rm. The bidder with the lowest bid need not be the bidder with the lowest cost. The

reason is that constrained (or smaller) bidders may bid more aggressively than unconstrained

(or larger) bidders. The strategic bid shading can imply that a constrained �rm wins although

it did not have the lowest cost.

To assess the magnitude of ineÆciencies at auction t, we conduct the following experi-

ment: We select the �rm that minimizes costs at auction t and take as given that the �rst-
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price auction is used at auction t + 1 and onwards. This selection rule gives us a lower

bound on the eÆciency loss.32 To assess which �rm to select, we take into account con-

temporary and future costs. Contemporary costs are those implied by the observed bids.

The discounted sum of expected future costs, V c, are approximated using the estimates re-

ported in section 5. Speci�cally, the discounted sum of expected future costs can be written

as, V c(s) = Es0
� R

�(:; s0; s)dG(1)(:js0; s) + �
PnF

j=0 Pr( j winsjs0; s)V
c(!(s0; s; j))

	
, where

G(1)(:js0; s) denotes the distribution function of the winning bid on contract s0 with state s.

We evaluate V c numerically in the same way as the value function. The low cost �rm is the

�rm j that minimizes cj + �V c(!(s0; s; j)).

( Table 4)

Table 4 reports the frequency and the ineÆciencies' dollar amounts associated with the

experiments. We perform the experiment for all observed contract characteristics, except con-

tracts which we omitted in the estimation of the bid distribution functions due to suspiciously

low bids, and using the observed bid data. IneÆciencies are reported as a fraction of the initial

engineers' estimate. On 35% of all experiments, an ineÆcient bidder is selected. We decom-

pose the eÆciency loss into contemporary and future cost e�ects. We �nd that the ineÆciency

arises because a lower cost �rm could have been chosen in auction t. The e�ect on future costs

is negligible. The average eÆciency loss across experiments amounts to 18% of the engineers'

estimate. In dollar value, this amounts to $423,060 per experiment, on average. In addition to

the overall results, Table 4 reports eÆciency losses for a range of selected engineers' estimate

values. In general, ineÆciencies arise for small and large contracts. Nevertheless, ineÆciencies,

measured in percent of engineers' estimate, are of larger magnitude for larger contracts. Table

4 also reports eÆciency losses for two subsets of the data: Contracts won by regular bidders

and contracts won by fringe bidders. Table 4 illustrates that the probability of ineÆciencies is

about the same if a contract is won by a regular bidder than when it is won by a fringe bidder.

32 The full cost minimizing problem is a dynamic decision problem involving ten state
variables, one backlog variable for each regular bidder. This problem is too complex for the
computing techniques available.
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7. CONCLUSIONS

This paper proposes an estimation method for a repeated auction game under the pres-

ence of capacity constraints and bidder asymmetry. We apply the method to highway procure-

ment auctions in California. We characterize costs as a function of state variables and illustrate

the bidding equilibrium. The data suggests the presence of capacity constraints. Bidders that

have a large fraction of their capacity committed have, on average, higher costs than bidders

with little capacity committed. We �nd that when all bidders are capacity constrained, the

resulting price paid by the auctioneer is about 18% higher than when all regular bidders are

unconstrained. Moreover, an individual bidder expects to receive about twice as much from

an auction in which the bidder is unconstrained than from an auction in which the bidder is

constrained.

There are at least two policy implications from our analysis: First, scheduling and timing

of contracts o�ered for sale inuences the �nal price. Preventing that bidders operate close to

the capacity constraint may save costs. Second, due to intertemporal constraints and bidder

heterogeneity, an ineÆcient �rm may be chosen. Our experiments indicate that ineÆciencies

may arise on about 35% of all contracts and they may amount to 18% of the expected contract

size. Our estimates suggest that auction rules that cope better with intertemporal e�ects and

bidder asymmetry could be a cost saving alternative.

There are two shortcomings of our estimation method: First, possibly the most impor-

tant assumption in our estimation method is that bidders completely understand the auction

environment and that our estimates of winning probabilities correctly capture bidders' per-

ceived winning odds. While we feel that these assumptions are reasonable in our context, we

emphasize that our data are too limited to test the adequacy of these assumptions beyond

some regularity conditions that our data do satisfy. It may be fruitful to assess the accuracy

of the models' predictions with data on independent and reliable information on the perceived

winning odds and bidders' cost estimates. Second, our estimation method does not identify

the discount factor. The non-identi�cation problem of the discount factor is similar to other

dynamic estimation approaches, see Rust (1994).
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APPENDIX

The appendix contains the proofs to all propositions in the text as well as an auxiliary

result.

Subsection 3.1.: Equation (3.2.)

The probability that bidder i assigns to the event that bidder j wins the contract when

bidder i bids b, can be written as
R b
b
g(xjs0; sj; s�j)

Q
l6=i;j [1 � G(xjs0; sl; s�l)]dx. The �rst

order condition of equilibrium bids by a regular bidder is given by:

[b� c] �
X
j 6=i

Y
l6=i;j

[1�G(bjs0; sl; s�l)][�g(bjs0; sj; s�j)] +
Y
j 6=i

[1�G(bjs0; sj; s�j)]+

+�Vi(!(s0; s; i))
X
j 6=i

Y
l6=i;j

[1�G(bjs0; sl; s�l)][�g(bjs0; sj; s�j)]+

+�
X
j 6=i

�
g(bjs0; sj; s�j)

Y
l6=i;j

[1�G(bjs0; sl; s�l)] � Vi(!(s0; s; j))
�
= 0: (A3:1)

We can rearrange this expression by dividing by
Q

l6=i[1�G(bjs0; sl; s�l)]. This yields:

[b� c] �
X
j 6=i

�g(bjs0; sj; s�j)

1�G(bjs0; sj; s�j)
+ 1 + �Vi(!(s0; s; i))

X
j 6=i

�g(bjs0; sj; s�j)

1�G(bjs0; sj; s�j)
+

+�
X
j 6=i

g(bjs0; sj; s�j)

1�G(bjs0; sj; s�j)
� Vi(!(s0; s; j)) = 0: (A3:2)

The hazard function, h(:js0; sj; s�j) =
g(:js0;sj ;s�j)

1�G(:js0;sj ;s�j)
can be substituted into this equa-

tion. This substitution yields equation (3.2.).

The �rst order condition for optimal bids by a fringe bidder is obtained in analogous

way. In particular, evaluating (A3.2) at Vi = 0, gives the corresponding �rst order condition

of a fringe bidder.
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Proof of Proposition 1:

To establish the claim in the proposition, we show that the value function, de�ned in

equation (3.1.), has a representation in terms of the distribution of bids. There are two steps

involved: First, we make use of the �rst order condition of optimal bids. This condition

provides us with an explicit expression of the cost in terms of bids and the value function.

Second, we change the range of integration from the cost space to the bid space. The resulting

equation (3.3.) characterizes the value function as an in�nite sum.

Note that the probability that bidder i assigns to the event that bidder j wins the contract

when bidder i bids b, Pr(j winsjb; s0; si; s�i), can be written as:
R b
b
g(xjs0; sj; s�j)

Q
l6=i;j[1�

G(xjs0; sl; s�l)]dx. In an abuse of notation, we denote by b(c) the equilibrium bid by bidder

i on contract s0 if the state is s. We can substitute the �rst order condition for optimal

bids, equation (3.2.), into the value function, equation (3.1.). Notice that we can use the �rst

order condition only for costs such that the equilibrium bid is below the reserve price. If the

equilibrium bid equals or exceeds the reserve price, then the bid is rejected and the current

period payo� equals zero. We account for this distinction explicitly by including an indicator

function 1A that equals one if event A is true and equals zero, otherwise. Doing so yields:

Vi(s) = E0

nZ h1� �
P

j 6=i h(b(c)js0; sj; s�j)[Vi(!(s0; s; i))� Vi(!(s0; s; j))]P
j 6=i h(b(c)js0; sj; s�j)

�

� Pr(i wins jb(c); s0; si; s�i)1fb(c)�R(s0)g + 0 � 1fb(c)>R(s0)g

+ �

nFX
j=0

Pr(j winsjb(c); s0; si; s�i)Vi(!(s0; s; j))
i
� f(cjs0; si; s�i)dc

o
:

Note that the expression
R
�[
PnF

j=0 Pr(j winsjb(c); si; s�i)Vi(!(s0; s; j))f(cjs0; si; s�i)dc is the

ex ante expected value of �
PnF

j=0 Pr(j winsjs0; si; s�i)Vi(!(s0; s; j)), and that the term in-

volving bids above the reserve price, 0 � 1fb(c)>R(s0)g, vanishes. Furthermore, the expression

P
j 6=i

h(b(c)js0;sj ;s�j)Vi(!(s0;s;i))P
j 6=i

h(b(c)js0;sj ;s�j)
reduces to Vi(!(s0; s; i)) and cancels with the second term in-
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volving Vi(!(s0; s; i)). By making these changes, we can write the value function as:

Vi(s) = E0

nZ h1 + �
P

j 6=i h(b(c)js0; sj; s�j)Vi(!(s0; s; j))P
j 6=i h(b(c)js0; sj; s�j)

i
� Pr(i wins jb(c); s0; si; s�i)�

� 1fb(c)�R(s0)gf(cjs0; si; s�i)dc+ �
X
j 6=i

Pr(j winsjs0; si; s�i)Vi(!(s0; s; j))
o
:

Next consider a change of variable of integration from c to b. Notice that db = @b(c)
@c

dc. Let

b�1 denote the inverse function of the equilibrium bid function. By assumption the inverse

bidding function exists for bids below the reserve price. The inverse bidding function allows

us to write the distribution function of cost in terms of the distribution functions of bids.

Speci�cally, F (b�1(b)js0; si; s�i) = G(bjs0; si; s�i). Taking the partial derivative yields a rela-

tionship between the density of costs and bids: f(b�1(b)js0; si; s�i) �
@b�1(b)

@b
= g(bjs0; si; s�i).

Also, notice that @b�1(b)
@b

= 1
@b(c)
@c

. Finally, the probability that bidder i wins can be written as

Pr(i wins jb; s0; si; s�i) =
Q

j 6=i[1�G(bjs0; sj; s�j)]. Applying the change of variables in the

above equation yields:

Vi(s) = E0

nZ R

b

Q
k 6=i[1�G(bjs0; sk; s�k)]P

j 6=i h(bjs0; sj; s�j)
g(bjs0; si; s�i)db

+ �

Z R

b

hX
j 6=i

h(bjs0; sj; s�j) � Vi(!(s0; s; j))P
l6=i h(bjs0; sl; s�l)

iY
k 6=i

[1�G(bjs0; sk; s�k)] � g(bjs0; si; s�i)db

+ �
X
j 6=i

Pr(j winsjs0; si; s�i)Vi(!(s0; s; j))
o
:

Observe that the expression in the second line of the value function can be rewritten, by

taking the sum
P

j 6=i outside, multiplying the expression by 1�G(bjs0;si;s�i)
1�G(bjs0;si;s�i)

and g(bjs0;sj ;s�j)
g(bjs0;sj ;s�j)

,

and rearranging terms, as:

�
X
j 6=i

h Z R

b(s)

h(bjs0; si; s�i)P
l6=i h(bjs0; sl; s�l)

Y
l6=j

[1�G(bjs0; sl; s�l)] � g(bjs0; sj; s�j)db
i
� Vi(!(s0; s; j)):
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Finally, observe that
Q

l6=j[1 � G(bjs0; sl; s�l)]g(bjs0; sj; s�j) is the probability density

function that a bid of bidder j is the low bid, dG(j)(bjs0; s), which yields the expression (3.3.)

in the Proposition.

QED

Proof of Proposition 2: Suppose there are two cost distribution functions F1(:j:) and

F2(:j:) with support [C1(s
t
0; s

t
i; s

t
�i); C1(s

t
0; s

t
i; s

t
�i)] and [C2(s

t
0; s

t
i; s

t
�i); C2(s

t
0; s

t
i; s

t
�i)] respec-

tively, such that both distribution lead to the same bid distribution function G(:j:) on the

interval [b(st0; s
t); Rt]. By assumption, an equilibrium in monotone strategies exists and the

discount factor is known. The necessary �rst order condition of equilibrium bids (3.2.) implies

that:

C1(s
t
0; s

t
i; s

t
�i) = �(b(st0; s

t)jst0; s
t
i; s

t
�i; �;G)

C2(s
t
0; s

t
i; s

t
�i) = �(b(st0; s

t)jst0; s
t
i; s

t
�i; �;G)

and it follows that C1(s
t
0; s

t
i; s

t
�i) = C2(s

t
0; s

t
i; s

t
�i).

Furthermore, for any (st0; s
t
i; s

t
�i) and any b � Rt, equation (3.2.) yields c =

�(bjst0; s
t
i; s

t
�i; �;G), and therefore,

F1(cjs
t
0; s

t
i; s

t
�i) = G(��1(cjst0; s

t
i; s

t
�i; �;G)js

t
0; s

t
i; s

t
�i)

F2(cjs
t
0; s

t
i; s

t
�i) = G(��1(cjst0; s

t
i; s

t
�i; �;G)js

t
0; s

t
i; s

t
�i):

It follows that F1 = F2 on the interval [C(:); �(Rtj:)].

Q:E:D:
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Number of Standard 

Observations Deviation

Number of Bidders 2223 4.63 2.46 0.00 19.00
Estimate* 2223 13.41 1.35 9.47 18.31
(Ranked1**-Estimate)/Estimate 2207 -0.04 0.22 -0.79 3.07
(Ranked2**-Ranked1)/Ranked1 2111 0.09 0.12 0.00 2.62
Backlog*** 22230 0.00 1.00 -3.24 2.97

*Logarithm of the engineers' estimate.
**Ranked1 and Ranked2 are the winning bid and the bid ranked in second position, respectively.
***Backlog measures the $ value of previously won uncompleted contracts. It is standardized by subtracting
the bidder specific mean and dividing by the bidder specific standard deviation. 

Table 1A: Descriptive Statistics of Selected Variables

Minimum MaximumMean



Number of bidders: All 0 1 2 3 4 5 6 7-8 9-19
# Observations: 2223 16 96 285 393 432 356 237 251 157

Estimate*
Mean 13.41 13.14 13.47 13.49 13.32 13.42 13.55 13.48 13.12
Standard Deviation 1.35 1.04 1.27 1.33 1.29 1.35 1.59 1.47 1.19

(Ranked1**-Estimate)/Estimate
Mean -0.04 0.11 0.03 -0.01 -0.04 -0.06 -0.09 -0.10 -0.14
Standard Deviation 0.22 0.36 0.29 0.21 0.20 0.19 0.16 0.20 0.16

(Ranked2**-Ranked1)/Ranked1
Mean 0.09 0.14 0.11 0.09 0.08 0.06 0.07 0.06
Standard Deviation 0.12 0.11 0.19 0.10 0.09 0.06 0.07 0.07

*Logarithm of the engineers' estimate.
**Ranked1 and Ranked2 are the winning bid and the bid ranked in second position, respectively.

Table 1B: Descriptive Statistics of Selected Variables by Number of Bidders



Estimation Method:
Dependent Variable:
Number of observations: 22230 22230 22230 22230 22230 22230 22230 22230 22230
Chi^2: 1605.65 1984.17 1677.77 1518.99 1883.42 1589.23 420.41 444.64 420.44
Degrees of freedom: 6 15 15 6 15 15 6 15 15
Log Likelihood: -4281.26 -4092.39 -4245.60 -3765.05 -3582.84 -3729.93 -3404.46 -3394.35 -3366.71
Variable

Constant -2.8485 -3.169 -2.864 -1.1654 -1.2511 -1.1644 0.3093 0.2734 0.3207
(0.173) (0.184) (0.174) (0.089) (0.091) (0.089) (0.072) (0.076) (0.073)

Estimate 0.2905 0.3024 0.2902 0.1235 0.1220 0.1250 0.0040 0.0038 0.0032
(0.015) (0.016) (0.015) (0.008) (0.008) (0.008) (0.006) (0.007) (0.007)

Working Days -0.3176 -0.3234 -0.3270 -0.1498 -0.1446 -0.1537 -0.0533 -0.0540 -0.0527
(0.022) (0.023) (0.023) (0.011) (0.011) (0.011) (0.008) (0.009) (0.008)

Nbid-Fringe -0.1835 -0.1913 -0.1885 -0.0882 -0.0875 -0.0905 -0.0613 -0.0599 -0.0624
(0.027) (0.027) (0.027) (0.013) (0.013) (0.013) (0.007) (0.008) (0.008)

Distance -0.5193 -0.4805 -0.5238 -0.2536 -0.2240 -0.2543 -0.1196 -0.0978 -0.1188
(0.023) (0.024) (0.023) (0.012) (0.012) (0.012) (0.008) (0.009) (0.009)

# Plants  within Region 0.1807 0.0513 0.1786 0.0638 0.0078 0.0632 -0.0051 -0.0193 -0.0052
(0.051) (0.054) (0.052) (0.025) (0.024) (0.024) (0.014) (0.015) (0.015)

Backlog -0.0835 -0.0856 -0.1079 -0.0383 -0.0372 -0.0528 -0.0127 -0.0127 -0.0162
(0.015) (0.015) (0.053) (0.007) (0.007) (0.025) (0.004) (0.005) (0.017)

Firm_2 0.6784 0.2985 0.1204
(0.061) (0.029) (0.019)

Firm_3 -0.0338 -0.0081 -0.0223
(0.073) (0.034) (0.024)

Firm_4 0.1499 0.0649 0.0011
(0.074) (0.034) (0.022)

Firm_5 -0.0325 -0.0133 -0.0097
(0.073) (0.033) (0.023)

Firm_6 -0.1885 -0.0976 -0.0458
(0.076) (0.035) (0.023)

Firm_7 0.2011 0.0969 0.0054
(0.072) (0.033) (0.022)

Firm_8 -0.0515 -0.0212 -0.0357
(0.073) (0.034) (0.023)

Firm_9 -0.2070 -0.0893 -0.0372
(0.077) (0.035) (0.023)

Firm_10 0.2277 0.1297 0.0742
(0.069) (0.031) (0.021)

Backlog_2 0.0345 0.0214 0.0065
(0.072) (0.034) (0.022)

Backlog_3 -0.0239 0.0033 0.0015
(0.063) (0.030) (0.019)

Backlog_4 -0.0637 -0.0338 -0.0258
(0.078) (0.037) (0.024)

Backlog_5 0.3193 0.1530 0.0591
(0.070) (0.034) (0.023)

Backlog_6 0.0495 0.0256 -0.0072
(0.076) (0.034) (0.024)

Backlog_7 0.0970 0.0458 0.0128
(0.074) (0.035) (0.023)

Backlog_8 -0.2357 -0.1117 -0.0344
(0.075) (0.036) (0.024)

Backlog_9 0.0546 0.0261 0.0018
(0.071) (0.034) (0.024)

Backlog_10 -0.0195 -0.0075 -0.0096
(0.071) (0.030) (0.022)

Mills Ratio 0.2342 0.2233 0.2319
(0.011) (0.011) (0.011)

*(R-Bid)/Estimate denotes the logarithm of the variable (Reserve price minus the Bid) over the engineers' Estimate plus one.

All variables except Backlog are in logarithm. The numbers in parenthesis are standard deviations.

Probit Tobit Heckman

Table 2: Bid Subsmission and Bid Level Decisions

Bid Submission (R-Bid)/Estimate* (R-Bid)/Estimate*



Data:
Number of Observations:
Log Likelihood:

Variables Regular Bids Fringe Bids Lower Bound Regular Bids Fringe Bids Lower Bound

θ1 -13.1688 -13.1721
(22.689) (14.779)

θ4 -1.3354 -1.3357
(0.155) (0.154)

Constant 5.6934 1.8821 -0.8228 5.6997 1.8820 -0.8228
(0.193) (0.170) (0.019) (0.193) (0.151) (0.022)

Ln Estimate -0.3739 -0.0014 1.0541 -0.3767 -0.0014 1.0541
(0.015) (0.011) (0.001) (0.015) (0.006) (0.001)

Ln Working Days 0.2765 -0.0283 -0.0049 0.2813 -0.0283 -0.0049
(0.021) (0.018) (0.002) (0.021) (0.019) (0.002)

Estimate/Reserve_Price -2.8037 -2.5396 -0.0188 -2.7803 -2.5395 -0.0188
(0.200) (0.158) (0.013) (0.200) (0.158) (0.013)

Nbid-Fringe 0.025 0.0049 0.0011 0.0258 0.0049 0.0011
(0.006) (0.008) (0.001) (0.007) (0.006) (0.001)

Distance 0.0559 0.0562
(0.003) (0.003)

# of Plants within the Region -0.3144 -0.3159
(0.026) (0.027)

Backlog 0.0721 0.0803
(0.015) (0.016)

Sum_Distance 0.0015 0.0002 -0.0004 0.0015 0.0002 -0.0004
(0.001) (0.001) (0.000) (0.001) (0.001) (0.000)

Sum_# of Plants within the Region 0.1242 -0.0262 -0.0129 0.1271 -0.0262 -0.0129
(0.012) (0.013) (0.002) (0.012) (0.014) (0.002)

Sum_Backlog 0.0108 0.0278 -0.0022 0.0128 0.0277 -0.0022
(0.006) (0.007) (0.001) (0.006) (0.007) (0.001)

Backlog_Firm_1 -0.0497
(0.045)

Backlog_Firm_2 0.0530
(0.035)

Backlog_Firm_3 0.0274
(0.026)

Backlog_Firm_4 0.0777
(0.059)

Backlog_Firm_5 -0.2561
(0.045)

Backlog_Firm_6 -0.0416
(0.056)

Backlog_Firm_7 -0.0526
(0.046)

Backlog_Firm_8 0.2264
(0.050)

Backlog_Firm_9 -0.0375
(0.028)

-1,500.82
30,873

Regular and Fringe Bids

Table 3: Parameter Estimates of the Bid Distributions

30,873
-1,467.46

Regular and Fringe Bids



Overall

Variable [0,100] (100,400] (400,1000] (1000,5000] (5000,.]

All Contracts:

    Number of Contracts 49 893 525 545 184 2196
    Prob of an Inefficiency 0.03 0.53 0.17 0.27 0.33 0.35
    Average Efficiency Loss* 0.08 0.13 0.18 0.23 0.32 0.18

Contract Won by a Regular Bidder:

    Number of Contracts 1 90 94 147 42 374
    Prob of an Inefficiency 0.44 0.14 0.54 0.36 0.47 0.37
    Average Efficiency Loss * 1.00 0.24 0.22 0.18 0.29 0.22

Contract Won by a Fringe Bidder:

    Number of Contracts 48 803 431 398 142 1822
    Prob of an Inefficiency 0.02 0.58 0.09 0.24 0.29 0.35
    Average Efficiency Loss* 0.06 0.12 0.17 0.26 0.32 0.17

*Efficiency losses are reported as a fraction of the engineers' estimate.

Range of Engineers' Estimate (in $ 1,000)

Table 4: Estimates of Efficiency Losses










